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 14 

ABSTRACT 15 

The objectives of the present study were to determine effects of jugular vein infusions of 16 

glucagon like peptide-1 (GLP-1) and dietary fat inclusion on dry matter intake, nutrient 17 

digestibility and hypothalamic mRNA concentration of neuropeptide Y, agouti related peptide, 18 

and proopiomelanocortin in growing sheep. Thirty six wethers were used (40.7 ± 3.3 kg BW). 19 

Treatments were a control diet (n = 11), dietary addition (6% of dry matter) of Ca salts of palm 20 

oil fatty acids (n = 12), or 6-d jugular vein infusions of 0.155 μg/kg body weight/day of GLP-1 21 

(n = 11). Hormone concentrations were measured in jugular vein plasma from samples taken on 22 

day 1, 4 and 6. On d 7, the wethers were slaughtered for hypothalamus collection to measure 23 



mRNA concentration. The dietary addition of 6% of Ca salts of palm oil increased plasma GLP-24 

1 concentration (P < 0.01) and decreased dry matter intake on day 1, but not on day 6 (time x 25 

treatment interaction, P < 0.05). The infusion of GLP-1 did not change dry matter intake (P > 26 

0.20), but increased neutral detergent fibre digestibility (P < 0.01). In conclusion, glucagon like 27 

peptide-1 infusion or feeding fat did not decrease dry matter intake or affect hypothalamic 28 

neuropeptide mRNA concentrations of sheep.  29 

RÉSUMÉ 30 

Les objectifs de cette étude étaient d'évaluer l'effet des infusions dans la veine jugulaire 31 

du glucagon-like peptide-1 (GLP-1) et de l’addition alimentaire de matières grasses sur 32 

l’ingestion de matière sèche (IMS), la digestibilité des nutriments et la concentration de l'ARNm 33 

dans l'hypothalamus du neuropeptide Y (NPY), de la protéine agoutie (AgRP), et de la pro-34 

opiomélanocortine (POMC). Trente-six béliers ont été utilisés (40.7 ± 3.3 kg). Les traitements 35 

ont été un régime témoin (n 11), addition alimentaire (6% de la MS) de sels de Ca d’acides 36 

palmitiques (n12), ou 6 jours (j) d’infusion dans la veine jugulaire de 0.155 μg/kg PC/j de GLP-1 37 

(n 11). Les concentrations d'hormones ont été mesurées dans le plasma de la veine jugulaire des 38 

échantillons prélevés le jour 1, 4 et 6. Le jour 7, les béliers ont été abattus pour la collecte de 39 

l'hypothalamus pour mesurer la concentration de l'ARNm de NPY, AgRP et POMC. L'ajout de 40 

6% de sels de Ca d’acides palmitiques a augmenté la concentration plasmatique de GLP-1 (P 41 

<0,01) et diminué l’lMS du j 1, mais pas du j 6 (interaction de temps x traitement, P <0,05). 42 

L'infusion de GLP-1 n'a pas changé l’IMS (P> 0,20), mais a augmenté la digestibilité des fibres 43 

au détergent neutre (P <0,01). Il n'y avait aucune différence dans la concentration de l'ARNm de 44 

NPY, AgRP ou POMC en raison de l’infusion de GLP-1 ou de l’addition alimentaire de matières 45 



grasses. En conclusion, la seule perfusion intraveineuse de GLP-1 n'a pas diminué l’IMS chez les 46 

ovins en croissance. 47 

Mots-clés: glucagon-like peptide-1, ingestion de matière sèche, mouton, neuropeptides 48 

hypothalamiques 49 

 50 

Running head:  Relling et al. Glucagon like peptide 1 infusion in sheep 51 

Keywords: glucagon-like peptide-1, dry matter intake, sheep, hypothalamic neuropeptide mRNA 52 

 53 

Abreviations: AgRP, agouti-related peptide; CP, crude protein; DM, dry matter; DMI, dry 54 

matter intake; FA, fatty acids; GLP-1, glucagon-like peptide-1(7, 36) amide; ICV, 55 

intracerebroventricular; NDF, neutral detergent fibre; NPY, neuropeptide Y; OM, organic 56 

matter; POMC, proopiomelanocortin.  57 

 58 

INTRODUCTION 59 

In nonruminants, increasing plasma glucagon-like peptide-1(7, 36) amide (GLP-1) 60 

concentration decreases feed intake (Turton et al., 1996). In ruminants, an increase in plasma 61 

GLP-1 concentration has been associated with a decrease in dry matter intake (DMI) when fat 62 

was added to the diet (Relling and Reynolds, 2007; Bradford et al., 2008, Relling et al., 2010). 63 

Also, intrajugular infusion of GLP-1 in wethers decreased DMI to a similar extent as feeding fat 64 

(Relling et al., 2011). However, the central mechanism of how GLP-1 regulates feed intake is not 65 

certain. In fasted rats, intracerebroventricular (ICV) infusion of GLP-1 did not change mRNA 66 

concentration for neuropeptide Y (NPY) (Turton et al., 1996). In contrast, Seo et al. (2008) 67 



reported that ICV infusion of GLP-1 decreased NPY and agouti-related peptide (AgRP) and 68 

increased proopiomelanocortin (POMC) mRNA concentration in the hypothalamus of fasted 69 

rats. In ruminants, in vitro culture of sheep hypothalamus in media containing GLP-1 did not 70 

change the relative concentration of NPY, AgRP or POMC mRNA (Relling et al., 2012). 71 

However, an increase in NPY and AgRP mRNA was associated with an increase in plasma GLP-72 

1 concentration and a decrease in DMI when fat was fed to growing lambs (Relling et al., 2010). 73 

There is a paucity of information on the effect of intravenous infusion of GLP-1 on the mRNA 74 

concentration for hypothalamic neuropeptides associated with DMI regulation and its association 75 

with DMI. Based on the cited literature, we hypothesized that increases in plasma GLP-1 76 

concentration within physiological concentrations, due to continuous jugular vein infusion of 77 

GLP-1 or by feeding fat, would decrease DMI. We also hypothesized that decreases in DMI 78 

would be associated with changes in hypothalamic gene expression of NPY, AgRP and POMC. 79 

Therefore the objective of our study was to determine the effect of a continuous jugular vein 80 

infusion of GLP-1 or feeding fat on plasma GLP-1 concentration, DMI, and mRNA 81 

concentration of the neuropeptides NPY, AgRP and POMC in growing wethers.  82 

 83 

MATERIALS AND METHODS 84 

Animal care followed guidelines recommended in the Guide for the Care and Use of 85 

Agricultural Animals in Agricultural Research and Teaching (FASS, 1998) and procedures used 86 

were approved by the Animal Care Committee of the Ohio Agricultural Research and 87 

Development Center. 88 

Three weeks before the start of the experiment, 36 Targhee x Hampshire wethers  (40.7 ± 89 

3.3 kg BW) were fed a pelleted control diet (Table 1) formulated to meet nutrient  requirements 90 



of growing lambs according to the National Research Council (NRC, 1985). The wethers were 91 

grouped by weight and housed in three pens with 12 wethers each. Daily rations were provided 92 

at 0800 h, and wethers were fed for ad libitum intake of dry matter (DM, 10% refusal) 93 

throughout the study. Treatments were 7 d of: 1) control diet (CONT); 2) supplemental dietary 94 

fat (Ca-salts of palm oil) at 6% of ration DM (FAT); 3) control diet with intravenous GLP-1 95 

(GLP-1; 0.155 μg/kg BW/d of GLP-1(7-36) amide H6795, Bachem California Inc, CA) in 1 L of 96 

saline (0.9% NaCl). These treatments were selected based on previous results in growing lambs 97 

(Relling et al., 2011), where the infusion of 0.155 μg/kg BW/d of GLP-1(7-36) amide produced a 98 

similar increase in plasma GLP-1 concentration as adding 6% supplemental fat to the diet. The 99 

wethers on the CONT and FAT treatments received a control intravenous infusion of 1 L of 100 

sterile saline solution daily. The hormone solutions and the saline solutions were made and 101 

infused as described in Relling et al. (2011).  102 

The experiment was conducted as a completely randomized block design. Each of the three 103 

groups of wethers was considered as a block. Within each block, the 12 wethers were allocated randomly 104 

to one of the three treatments (n = 4/treatment). Beginning two weeks before the experiment, the wethers 105 

were housed in individual pens. Wethers fed supplemented fat were adapted to fat supplementation for 2 106 

wk before sampling began, with an amount equal to 2% of ration DM fed on day 1 of the adaptation 107 

period, 4% on day 2 and 3, and 6% from day 4 onwards. One week before the experiment started, the 108 

lambs were moved into metabolic crates as described previously (Murphy et al., 1994) and adapted to 109 

procedures used during the sampling week, including feeding, removal of orts, and changing of fecal 110 

collection containers. Forty five hours before the experiment started, jugular vein catheters were 111 

established as described previously (Relling et al., 2011). Two animals experienced a drop in DMI to less 112 

than 50% of the previous day’s intake when lambs were moved into the metabolic crates. Therefore, 113 

before the infusions started, one wether on the control treatment and one wether on the GLP-1 treatment 114 

were removed from the experiment. The continuous infusions were done as described previously (Relling 115 



et al., 2011) and started at 1000 h on day 1 of the experimental period. Briefly, GLP-1 solutions were  116 

prepared using 1 L of sterile saline solution (9 g/L of NaCl; VWR International, West Chester, PA). The 117 

liter of saline solution was infused at a rate of 0.725 ml/min during 23 h. The wethers fed the 118 

control and the fat supplemented diets were intravenously infused with 1 L of sterile saline solution (9 g/L 119 

of NaCl). The targeted dose of GLP-1 infused was calculated using a single compartment, first-order 120 

kinetic hormone degradation model, based on the equation: 121 

Increase in hormone concentration x 0.693/half life. 122 

The half life used for this equation was 5 min for GLP-1 (Perfetti and Merkel, 2000). The 123 

value, 0.693, is the slope of the first order degradation. The target increase for GLP-1 was based 124 

on a previous report (Relling et al., 2011).  125 

The bottles with sterile saline solution and those with GLP-1 in solution were kept on ice 126 

during the infusion. The infusion line from the bottle to the animal was sterilized using an 127 

ethylene oxide (EtO) gas (Cole-Parmer, Vernon Hills, IL). The connection between the bottle 128 

with the infusion and the infusion line included a sterile 0.45 μm syringe filter (Whatman 129 

International Ltd, Florham Park, NJ). 130 

  Between the end of each day’s infusion and the start of the following day, the infusion 131 

lines were flushed with sterile saline solution (9 g/L of NaCl) and the filters were changed. Feed 132 

was offered daily at 1300 h and the refusals were removed and weighed 23 h later at 1200 h. For 133 

digestibility and plasma samples, samples were collected and processed as described previously 134 

(Relling et al., 2011). Briefly, to measure digestibility, total fecal collection was performed daily 135 

during the last 5 d of each experimental period. Five percent of the total daily feces was collected 136 

and composited for analysis of DM (100°C oven for 24 h), neutral detergent fibre (NDF, 137 

(Ankom200 Fiber Analyzer, ANKOM Technology, Fairport, NY), crude protein (CP, Kjeldahl N 138 



x 6.25), fatty acids (FA, Sukhija and Palmquist, 1988), and ash (AOAC 1990) concentration. 139 

Blood samples (10 ml) were taken 6 and 8 h after feed was offered on day 1, 4, and 6 of each 140 

experimental period. Blood samples were immediately transferred into polypropylene tubes 141 

containing solutions of disodium EDTA and benzamidine HCl (1.6 mg and 4.7 mg/ml blood, 142 

respectively) and placed on ice. After centrifugation for 25 min at 1800 x g and 4°C, plasma was 143 

partitioned into individual polypropylene tubes for each analysis to be performed, flash frozen 144 

using liquid N2 within 40 min of sample collection, and stored at -80°C until analyzed. Samples 145 

from the infusate were taken after the in line filters during the first sampling time on day 4 to 146 

confirm that the infusate contained the correct concentration of GLP-1.   Measured GLP-1 147 

concentrations in the infusate were within 98.2% (±3.7, P = 0.798) of targeted concentrations. 148 

Concentrations of insulin and GLP-1 were measured using radioimmunoassays as described 149 

previously (Reynolds et al., 1989; Benson and Reynolds, 2001). The intra-assay CV averaged 150 

less than 12.5% for insulin and less than 11% for GLP-1.  Minimum sensitivities (90% of zero 151 

standard binding) of the insulin and GLP-1 assays were 0.0027 and 0.001 ng/tube, respectively. 152 

Plasma glucose concentration was measured using a colorimetric assay (#1070 Glucose Trinder, 153 

Stanbio Laboratory, Boerne, TX). Plasma NEFA concentration was measured using microtiter 154 

plates and a plate reader in a two-reaction, enzyme based assay (Wako Chemicals USA, 155 

Richmond, VA) as described by Johnson and Peters (1993). 156 

The morning of the seventh day of infusions, the lambs were transported 165 km 157 

(transport time was 100 min) to an abattoir for hypothalamus collection.  It has been previously 158 

reported (Relling et al., 2010) that there were no effects of the same transportation routine on the 159 

mRNA concentration for the same genes in the hypothalamus of similar lambs (Relling et al., 160 

2010). The hypothalamus was collected within 1 hour after arrival to the slaughter house as 161 



described by Relling et al. (2010). During hypothalamus collection, one sample from a lamb on 162 

the GLP-1 treatment was lost due to damage of the brain caused by the captive bolt used at 163 

slaughter.  164 

To measure hypothalamic mRNA concentration for NPY, AgRP and POMC, the protocol 165 

and primers used were as described by Relling et al. (2010). Briefly, RNA was extracted with 166 

TRIzol® (Invitrogen Carlsbad, CA) using procedures recommended by the manufacturer. 167 

Concentration of RNA was determined by measuring absorbance at 260 nm. Reverse 168 

transcription (RT) PCR was performed as described by Ndiaye et al. (2008). The relative mRNA 169 

concentration of NPY, AgRP, and POMC were determined by quantitative RT PCR using the 170 

DNA Engine Monitor 2 (BioRad Laboratories, Hercules, CA). Primers for NPY, AgRP and 171 

POMC were validated in sheep hypothalamic tissue by cDNA purification and sequencing. 172 

Oligonucleotide primers for NPY, AgRP and POMC were obtained from Qiagen Operon 173 

Biotechnologies (Alameda, CA). The primer sequences used are described on Table 2. The 174 

quantitative RT PCR was run for a maximum of 35 cycles, under the following conditions: 175 

denaturing at 94° C for 30 s, annealing at 60° C for 60 s, and extension at 72° C for 60 s. 176 

Concentrations of NPY, AgRP and POMC were normalized to cyclophilin B mRNA expression 177 

in the same sample to determine the relative mRNA concentrations of NPY, AgRP, and POMC. 178 

Homologous standard curves were prepared from purified NPY, AgRP, and POMC cDNA PCR 179 

products to calculate the steady-state concentration of NPY, AgRP, and POMC mRNA in 180 

triplicate wells for each sample. The PCR amplification products were electrophoretically 181 

separated on 1.5% agarose gels and visualized with ethidium bromide. For initial validation, the 182 

specific band corresponding to the size of the expected NPY, AgRP, and POMC cDNA fragment 183 



was cut and purified using the QIAquick Gel Extraction Kit (Qiagen Sciences) for sequence 184 

confirmation. 185 

The data were statistically analyzed as a complete randomized block design with repeated 186 

measurements in time using the MIXED procedure of SAS (Version 9.1, SAS Institute, Cary, 187 

NC) and a model testing the random effects of wether and block, and the fixed effect of 188 

treatment and time and their interaction. The two daily plasma samples for hormones and 189 

metabolites from the three days of sampling in each experimental period were analyzed in the lab 190 

individually but the average for each day was used in the statistical analysis. For digestibility and 191 

mRNA concentration data, a similar statistical model was used without the effect of time and its 192 

interaction. When the time by treatment interaction was significant, the slice option of SAS was 193 

used for separation of means. Fisher's protected LSD test was used for means separation at a P 194 

value of 0.05, for digestibility, mRNA concentration, and when the time by treatment interaction 195 

was not significant (P > 0.10). Trends were discussed for P values between 0.05 and 0.10. 196 

 197 

RESULTS 198 

  There was a time by treatment interaction for DMI (P < 0.05; Figure 1), due to a greater 199 

DMI for GLP-1 and control-fed wethers compared with the fat-fed wethers on day 1, but no 200 

difference in DMI on day 6 for the three treatments. Metabolizable energy intake and 201 

digestibility of DM, CP, FA and organic matter (OM) was not different among the treatments (P 202 

> 0.10; Table 3). The addition of dietary fat decreased (P < 0.05) and there was a trend for GLP-203 

1 infusion to increase (P < 0.10) NDF digestibility compared with control fed wethers. Feeding 204 

fat or GLP-1 infusion did not change plasma concentrations of insulin and glucose (P > 0.30; 205 

Table 4) compared with the control wethers. Compared with control wethers, plasma GLP-1 206 



(Figure 2) and NEFA concentrations (Table 4) increased due to additional dietary fat (P < 0.05), 207 

but were not affected (P > 0.10) by GLP-1 infusion. Hypothalamic mRNA concentrations of 208 

NPY, AgRP and POMC were not affected by treatments (P > 0.25; Table 5). 209 

 DISCUSSION  210 

 The objective of the experiment was to infuse GLP-1 to achieve a similar plasma 211 

concentration as had been previously observed in response to feeding supplemental fat (Relling 212 

et al., 2011). We hypothesized that continuous jugular vein infusion of GLP-1 (within 213 

physiological concentrations) or feeding fat would decrease DMI. A second objective was to 214 

elucidate if the decrease in DMI typically observed when feeding fat was associated with 215 

changes in mRNA concentration of the neuropeptides NPY, AgRP and POMC in response to 216 

GLP-1 or by other non GLP-1 effects of feeding fat.  217 

 In the present study there was an interaction of treatments and days on DMI. Similar 218 

amounts of fat or GLP-1 infusion tended to decrease DMI in sheep in previous studies compared 219 

with control animals (Reynolds et al., 2006; Relling et al., 2010; Relling et al., 2011). In the 220 

present study, wethers fed fat had a smaller DMI on day 1 compared with control wethers. 221 

However, fat-fed wethers had an increase in DMI over time, such that by day 6 they had the 222 

same DMI as control wethers. Also, wethers infused with GLP-1 started on day 1 with a greater 223 

DMI compared with control wethers, and then their DMI tended to decrease toward day 3. As 224 

observed in the present study, Relling et al. (2011) reported that dietary inclusion of 6% fat 225 

tended to decrease NDF digestibility in sheep. Harvatine and Allen (2006) reported that the 226 

inclusion of fat in dairy cow diets decreased ruminal digestibility, but not total tract digestibility 227 

of NDF. A possible reason for the decrease in NDF digestibility in wethers fed diets containing 228 

increased fat in the present experiment could be because of increased rate of passage, as 229 



observed in sheep fed a similar fat supplemented diet (Relling et al., 2011); however, rate of 230 

passage was not measured in the current experiment. The infusion of GLP-1 tended to increase 231 

NDF digestibility compared with control-fed wethers. Our assumption was that an increase in 232 

NDF digestibility with GLP-1 infusion would be due to a decrease in gut motility and increased 233 

retention time of fibre in the rumen and/or hindgut, allowing more time for NDF fermentation by 234 

gut microbes. Results of the present study may be because of an increase in digesta retention 235 

time, but in a previous study (Relling et al., 2011) GLP-1 infusion at the same rate had no effect 236 

on rate of passage or NDF digestibility. In addition, the effect of fat on NDF digestibility 237 

observed in the present study was opposite to the effect of GLP-1 infusion, but feeding fat 238 

increased plasma concentration of GLP-1. These observations suggest that the effects of fat on 239 

NDF digestibility were not due to an increase in GLP-1 concentration for the fat treatment.  240 

Feeding fat increased plasma GLP-1 concentration, but the infusion of GLP-1 did not 241 

change plasma GLP-1 concentration compared with control-fed wethers. As shown in Figure 2, 242 

infusion of GLP-1 tended to increase plasma GLP-1 concentration on day 4 but then 243 

concentrations decreased on day 6. The lack of response of plasma GLP-1 concentration to GLP-244 

1 infusion could be due to a decrease in endogenous secretion into blood, an increased clearance 245 

rate, or both; however, we are not aware of studies that can support this assumption. This lack of 246 

response of plasma GLP-1 concentration was unexpected and may in part explain the lack of 247 

effects of GLP-1 infusion on DMI.  However, this lack of response in the GLP-1 infused wethers 248 

does not explain the observed increase in NDF digestibility.  249 

As has been observed previously, feeding supplemental fat increased plasma NEFA 250 

concentration (Gagliostro and Chilliard, 1991; Relling and Reynolds, 2007), perhaps due to a 251 

higher plasma concentration of lipoproteins (Gagliostro and Chilliard, 1991). This increase in 252 



plasma NEFA occurred concurrently with an increase in plasma GLP-1 concentration. However, 253 

infusion of GLP-1 did not increase plasma NEFA concentration. The lack of response on plasma 254 

NEFA concentration observed in the present study and observed previously (Relling et al., 255 

2011), suggests GLP-1 infusion does not change plasma NEFA concentration. 256 

In the present study, there were no differences in hypothalamic mRNA concentrations for 257 

the neuropeptides NPY, AgRP and POMC due to feeding fat or GLP-1 infusion. It has been 258 

observed that feeding the same amount of supplemental fat deceases DMI and increases NPY 259 

and AgRP (Relling et al., 2011) in growing wethers. The reason for the lack of response of 260 

mRNA concentrations for hypothalamic neuropeptides to supplemental fat in the present 261 

experiment is not certain. In the case of the GLP-1 infusion treatment, it may have been due to 262 

the inability to achieve a sustained increase in plasma concentrations with the dose infused. 263 

However, the lack of response on hypothalamic neuropeptide mRNA concentration is also 264 

reflected by the lack of differences on DMI observed on day 6. Despite this lack of response of 265 

mRNA concentration, the actual neuropeptide concentration or secretion was not measured. It 266 

has been observed that changes in the mRNA concentration are associated with changes in the 267 

peptide concentration (Kameda et al., 2001); however, we are not aware of any study which has 268 

measured the association between mRNA concentration of the neuropeptide and the secretion of 269 

its gene product. In conclusion, glucagon like peptide-1 infusion or feeding fat did not decrease 270 

dry matter intake or affect hypothalamic neuropeptide mRNA concentrations of sheep. 271 
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Table 1  338 

Formulation and chemical composition of the control diet and fat supplemented diets  339 

Item 

Diet (% of DM) 

Control and 

GLP-1z Fat 

Ingredients   

Alfalfa meal, 17% CP 20.00 20.00 

Soy hulls 20.00 20.00 

Ground corn 48.59 43.90 

Ca salts of palm oily - 6.00 

Soybean meal, 48% CP 8.00 8.09 

Urea 0.50 0.60 

Limestone 1.50 - 

Monosodium phosphate 0.05 0.05 

Trace mineral salts 0.50 0.50 

Vitamin A (30,000 IU/g) 0.01 0.01 

Vitamin D (3,000 IU/g) 0.01 0.01 

Vitamin E (44 IU/g) 0.05 0.05 

Selenium (200 mg/g) 0.09 0.09 

Animal-vegetable fat 0.30 0.30 

Ammonium chloride 0.40 0.40 



Chemical composition   

NDF 28.01 24.68 

CP 14.96 15.75 

Ash 5.92 5.16 

Total fatty acids 2.88 7.25 

 340 
z  Intravenous GLP-1infused 341 

y Megalac®, Church and Dwight Co., Inc., Princeton, NJ.342 



Table 2. Primer sequences used for the reverse transcriptase quantitative PCR 343 

 344 

Item 

Forward 

Sequence, 5’ to 3’  

Reverse 

Sequence, 5’ to 3’ 

NPYz tcagcgctgcgacactacat gcagagactggagagcaagt 

AgRPz cctgaggaagccttattcct caggattcatgcagccttac 

POMCz agtgtcaggacctcaccacg gctgctgctaccattccga 

z  NPY = Neuropeptide Y; AgRP = Aguti-related peptide; POMC = Proopiomelanocortin. 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 



Table 3 359 

Dry matter intake (DMI), metabolizable energy intake (MEI) and digestibility of diet 360 

components  in growing wethers fed a control diet, the control diet plus 6% Ca salts of palm oil 361 

(6% Fat), or infused intravenously with 0.155 µg/kg BW/day of GLP-1. 362 

 363 

 364 

* Differs from control, P < 0.05.  365 

† Differs from control, P < 0.10.  366 

Z Time by treatment interaction (P < 0.05). 367 

  368 

Item 

Treatments 

S.E. P Control 6% Fat GLP-1 

Lambs per treatment 11 12 11   

DMI (kg/d)z 1.33 1.29 1.35 0.07 0.83 

MEI (Mcal/d) 3.44 3.73 3.58 0.19 0.68 

Digestibility (%)      

Dry matter 69.51 69.26 71.51 0.96 0.21 

Organic matter 53.34 50.79 49.74 1.45 0.22 

Neutral detergent fibre 48.38 40.31* 52.39† 1.64 0.01 

Crude protein 65.44 67.76 67.30 1.00 0.24 

Fatty acids 82.09 85.70 80.02 2.00 0.17 



Table 4  369 

Plasma hormone and metabolite concentration in growing wethers fed a control diet, the control 370 

diet plus 6% Ca salts of palm oil (6% Fat), or infused intravenously with 0.155 µg/kg BW/day of 371 

GLP-1. Due to lack of time by treatment interaction values represent average of day 1, 4 and 6.  372 

 373 

 374 

Item 

Treatments 

S.E. 

P 

Control 6% Fat GLP-1 Trtz Time TxTz 

Lambs per treatment 11 12 11     

Insulin (pM) 312 270 270 23 0.34 0.84 0.82 

GLP-1z (pM) 23 34* 25 2 0.01 0.44 0.50 

Glucose (mM) 3.63 3.55 3.57 0.09 0.73 0.22 0.20 

NEFAz (mM) 49.54 77.54* 58.58 8.81 0.08 0.97 0.46 

 375 
 376 
z  Trt= treatment effect; TxT = time by treatment interaction effect; GLP-1= glucagon-like 377 

peptide-1 (7-36) amide; NEFA= non esterified fatty acid. 378 

* Differs from control, P < 0.05. 379 

 380 

 381 

382 



Table 5  383 

Hypothalamic concentrations of mRNA in growing wethers fed a control diet, the control diet 384 

plus 6% Ca salts of palm oil (6% Fat), or infused intravenously with 0.155 µg/kg BW/day of 385 

GLP-1. 386 

 387 

Itemz 

Treatments 

S.E. P Control 6% Fat GLP-1 

Lambs per treatment 11 12 10   

NPY 0.786 0.216 0.137 0.33 0.37 

AgRP 0.200 0.031 0.046 0.09 0.40 

POMC 0.311 0.168 0.084 0.09 0.25 

 388 
 389 
z Concentrations of mRNA (relative to cyclophilin B) for neuropeptide Y (NPY), agouti related 390 

peptide (AgRP), and proopiomelanocortin (POMC). 391 

 392 

  393 



 394 

 395 

 396 

 397 

Figure 1 398 

Dry matter intake (DMI) over 6 days  in wethers fed a diet without supplemental fat (◊) a diet 399 

with the addition of 6% Ca salts of palm oil (□) or the control diet  and infused with 0.155 µg/kg 400 

BW/day of GLP-1 (7-36) amide (▲). Time by treatment interaction (P < 0.05). 401 
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 403 

 404 

Figure 2 405 

Plasma concentration of glucagon like peptide-1 (7-36) amide (GLP-1) over 6 days  in wethers 406 

fed a diet without supplemental fat (◊) a diet with the addition of 6% Ca salts of palm oil (□) or 407 

the control diet  and infused with 0.155 µg/kg BW/day of GLP-1 (7-36) amide (▲). Treatment 408 

effect (P < 0.01), time by treatment interaction (P = 0.50). 409 
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