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Abstract 

Individuals with developmental prosopagnosia (DP) sometimes experience object 

identification difficulties in addition to problems recognising faces. To better understand the 

distribution of non-face object recognition ability in this population, we administered the 

Cambridge Car Memory Test (CCMT) – a leading, standardised measure of object 

recognition ability – to a large sample of DPs (N = 46). When considered as a single group, 

the DPs scored lower than matched controls. This finding provides further evidence that 

developmental object agnosia (DOA) may be more common in DP than in the general 

population. Relative to the DPs’ face recognition deficits, however, car matching deficits 

were small and inconsistent. In fact, we observed a striking range of CCMT performance in 

our DP sample. While some DPs performed extremely poorly, many more achieved scores 

within one standard deviation of the typical mean, and several DP participants achieved 

excellent CCMT scores comparable with the best controls.  
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Introduction  

Developmental prosopagnosia (DP) is a neurodevelopmental condition associated with 

difficulties recognising familiar faces and distinguishing unfamiliar faces, that occurs in 

people with normal intelligence and typical visual acuity, and in the absence of manifest 

brain injury (Behrmann & Avidan, 2005; Duchaine & Nakayama, 2006b; Susilo & 

Duchaine, 2013). DP often runs in families indicating that the condition may have a genetic 

component (Duchaine, Germine, & Nakayama, 2007; Johnen et al., 2014; Schmalzl, 

Palermo, & Coltheart, 2008). Individuals with DP identify others using non-face cues (e.g., 

hairstyle voice, and gait) and often experience great difficulty when familiar people are met 

in unusual contexts or when they alter their appearance (Cook & Biotti, 2016; Shah, Gaule, 

Sowden, Bird, & Cook, 2015). Historically, the condition was thought to be rare 

(McConachie, 1976), but current estimates suggest that 2% of the general population may 

experience face recognition difficulties severe enough to disrupt their daily lives 

(Kennerknecht et al., 2006; Kennerknecht, Ho, & Wong, 2008).  

 

The origins of DP remain poorly understood. Cognitive theories have argued that individuals 

with DP may be less able to integrate information from disparate facial regions to form 

unified perceptual descriptions relative to typical observers (Avidan, Tanzer, & Behrmann, 

2011; DeGutis, Cohan, & Nakayama, 2014; Palermo et al., 2011). Many DPs, however, 

appear to exhibit typical markers of ‘holistic face processing’ (Biotti, Wu, et al., 2017; Le 

Grand et al., 2006; Susilo et al., 2010). At the neurological level, studies have revealed 

reduced grey matter volume in occipitotemporal cortex of individuals with DP (Behrmann, 

Avidan, Gao, & Black, 2007; Garrido et al., 2009) and have suggested atypical functional 

connectivity in high-level visual areas (Avidan & Behrmann, 2009; Lohse et al., 2016; 

Rosenthal et al., 2017). Recent studies also suggest that reduced density and coherence of the 

inferior longitudinal fasciculus, a white matter tract connecting the occipital and temporal 

lobes, may impair information exchange within the face processing network in DP (Gomez 

et al., 2015; Song et al., 2015; Thomas et al., 2009).   

  

In addition to their characteristic face recognition difficulties, some individuals with DP also 

exhibit signs of co-occurring object recognition difficulties. Individuals have been described, 

for example, who experience problems identifying cars (e.g., Biotti, Gray, & Cook, 2017; De 

Haan & Campbell, 1991; Duchaine, Germine, et al., 2007; Duchaine & Nakayama, 2005; 

Klargaard, Starrfelt, & Gerlach, 2018), bicycles (e.g., Dalrymple & Duchaine, 2014), guns 
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(e.g., Duchaine, Germine, et al., 2007; Duchaine & Nakayama, 2005), flowers (e.g., De Haan 

& Campbell, 1991), scenes (e.g., Duchaine & Nakayama, 2005), animals and tools (e.g., 

Duchaine & Nakayama, 2005; Gerlach, Klargaard, & Starrfelt, 2016). Some authors have 

argued that the incidence of object recognition difficulties in the DP population is so high, 

that the condition can be understood only in terms of a domain-general perceptual deficit 

(Gerlach et al., 2016; Geskin & Behrmann, 2017). One possibility is that DP is a 

developmental form of integrative agnosia, whereby individuals are unable integrate 

component parts into a coherent whole, that impairs both face and object recognition (e.g., 

Riddoch & Humphreys, 1987). A closely-related idea is that individuals with DP may 

experience delayed or impoverished processing of global shape information (Avidan et al., 

2011; Gerlach & Starrfelt, 2018; Tanzer, Freud, Ganel, & Avidan, 2013). 

  

Other authors reject the view that object recognition problems are a universal feature of DP. 

According to the independent disorders hypothesis (IDH; Gray & Cook, 2018), DP and 

developmental object agnosia (DOA) are best thought of as independent neurodevelopmental 

conditions that sometimes co-occur. A key prediction of this hypothesis is the existence of 

‘pure’ cases of DP and DOA; individuals who experience impaired face recognition, but 

typical object recognition, and vice versa. Consistent with this view, some DPs exhibit 

apparently typical object recognition (e.g., Duchaine, Yovel, Butterworth, & Nakayama, 

2006) and cases of DOA have been described where the individual exhibits apparently 

typical face recognition (e.g., Germine, Cashdollar, Duzel, & Duchaine, 2011). However, the 

IDH also predicts that DP and DOA co-occur, that is to say, the incidence of DOA is higher 

in DP than in the wider population, due to common genetic or environmental risk factors 

(Gray & Cook, 2018). Specifically, susceptibility to aberrant structural development of 

occipitotemporal cortex may be a common risk factor for DP and DOA (see also: Susilo & 

Duchaine, 2013).  

 

Both the IDH (Gray & Cook, 2018) and domain-general accounts (Avidan et al., 2011; 

Gerlach & Starrfelt, 2018; Tanzer et al., 2013) predict a degree of correlation between the 

face and object recognition abilities seen in large samples of observers. Under domain-

general accounts, one would expect a tight coupling between observers’ ability to identify 

faces and non-face objects; for example, an individual’s degree of impairment with faces 

ought to relate closely to their degree of impairment with objects. In contrast, however, the 

IDH predicts a weaker, idiosyncratic relationship. Although people at risk of perceptual 
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difficulties with faces may often develop co-occurring perceptual difficulties with non-face 

objects, this co-occurrence is not inevitable – some individuals may exhibit selective 

problems with either faces or objects (i.e., ‘pure’ cases).  

  

In light of these conflicting views, we sought a better understanding of the object recognition 

difficulties seen in the DP population. To this end, we examined performance on the 

Cambridge Car Memory Test (CCMT; Dennett et al., 2011) in a large sample of DPs (N = 

46) and matched controls (N = 61). The CCMT employs a 3-AFC match-to-sample format 

that mirrors that of the Cambridge Face Memory Test (CFMT; Duchaine & Nakayama, 

2006a), a standardised measure of face recognition used widely in the diagnosis of DP. In 

both tasks participants are asked to identify target items encountered in a study phase from a 

line up of three test items (target plus two lures). In both tasks, trial difficulty is varied across 

a 72-trial procedure through viewpoint manipulations and through the addition of high-

frequency visual noise. Both the CFMT and CCMT exhibit good internal reliability; for 

example, α = .88 (Bowles et al., 2009) and α = .84 (Dennett et al., 2011), respectively. 

Responses are not speeded and both tests stress accuracy1.  

 

The CCMT has been used to address a wide range of questions in cognitive neuropsychology 

(e.g., Esins, Schultz, Stemper, Kennerknecht, & Bulthoff, 2016; Klargaard et al., 2018; Shah, 

Gaule, Gaigg, Bird, & Cook, 2015), cognitive psychology (e.g., Dennett, McKone, Edwards, 

& Susilo, 2012), neuropsychiatry (e.g., Ewbank et al., 2017), and behavioural genetics (e.g., 

Shakeshaft & Plomin, 2015). To date, however, it remains unclear how DPs perform on this 

widely-used measure of object recognition ability. Several studies have described individual 

DPs who score badly on the CCMT (e.g., Klargaard et al., 2018; Palermo et al., 2017; 

Rivolta, Lawson, & Palermo, 2017; Susilo et al., 2010; White, Rivolta, Burton, Al-Janabi, & 

Palermo, 2017). However, previous comparison of matched samples has failed to reveal 

differences at the group level; for example, Shah et al. (2015; N = 15 DPs) and Esins et al. 

(2016; N = 16 DPs) found that DPs’ performance on the CCMT did not differ significantly 

from that of controls.   

   

Participants   

We describe data from 107 adults, 46 with DP (21 males; Mage = 39.4 years, SDage = 9.4 

years) and 61 typically developed (TD) controls (27 males; Mage = 37.0 years, SDage = 9.8 

years). Neither participant age [t(105) = 1.313, p = .192] nor proportion of males [X2(1) = 
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.01, p = .888] differed significantly between the two groups. Ethical approval was granted by 

the local ethics committee. The research was conducted in line with the ethical guidelines 

provided by the 6th (2008) Declaration of Helsinki. All participants provided informed 

consent and were fully debriefed after the experimental procedure. All participants were 

tested in person under controlled lab conditions. DP participants completed the CFMT first, 

followed by the CCMT. Wherever possible, DP participants completed the tests in a single 

session. Control participants completed the tests in a single session. Half of the controls 

completed the CFMT first, half completed the CCMT first. 

  

DP participants were recruited through www.troublewithfaces.org and reported lifelong face 

recognition difficulties in the absence of brain injury and psychiatric disorder (autism or 

schizophrenia). Diagnostic decisions were based primarily on participants’ scores on the 

Twenty-Item Prosopagnosia Index (PI20; Gray, Bird, & Cook, 2017; Shah, Gaule, Sowden, 

et al., 2015) and the CFMT (Duchaine & Nakayama, 2006a). The participants with DP also 

completed the Cambridge Face Perception Test (CFPT; Duchaine, Germine, et al., 2007). 

Typical participants, recruited through local subject-pools, completed the CFMT, the CCMT, 

and the PI20. None of the typical controls scored more than 60 on the PI20. No-one was 

excluded on this basis. All members of the DP sample scored at least 2 SDs below the 

typical mean on the CFMT, and at least 3 SDs above the typical mean on the PI20. Summary 

statistics for both groups are provided in Table 1 and diagnostic information for each DP is 

provided as supplementary material. The use of convergent self-report evidence and scores 

on objective, computer-based tasks may be a particularly effective approach to the 

identification and classification of DP; for example, less than 1.5% of the general population 

score below 65% on the CFMT and more than 65 on the PI20 (Gray et al., 2017).   

  

Table-1  

  

Results  

The data were analysed using ANOVA with Test (CFMT, CCMT) as a within-subjects 

factor, and Observer Sex (male, female) and Group (DP, TD) as between-subjects factors. As 

noted above, low CFMT scores formed an important part of the diagnostic evidence used to 

classify observers as DP. The fact that the DPs scored well-below typical controls on this 

measure is therefore entirely unsurprising. We include a Test factor (CFMT, CCMT), 

however, so that readers can compare the relative size of deficits seen on the face and car 

http://www.troublewithfaces.org/
http://www.troublewithfaces.org/
http://www.troublewithfaces.org/
http://www.troublewithfaces.org/
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variants of this test. Previous studies have suggested an effect of observer sex on the CCMT, 

whereby male observers typically perform a little better than females2 (Dennett et al., 2011). 

We therefore included Observer Sex as a factor to determine whether this interacts with 

Group (TD, DP). 

 

The analysis revealed a significant main effect of Group [F(1,103) = 115.194, p < .001, ηp
2 = 

.528] and a Group × Test interaction [F(1,103) =  78.121, p <.001,  ηp
2 = .431]. While 

controls generally outperformed the DPs, the difference was more pronounced on the CFMT 

(MTD = 83.56%, SDTD = 9.57%; MDP = 54.38% SDDP = 7.39%) than on the CCMT (MTD = 

73.52%, SDTD = 12.57%; MDP = 67.36% SDDP = 12.60%; Figure 1a). Planned contrasts 

revealed significant group differences on both the CFMT [t(105) = 17.174, p < .001] and the 

CCMT [t(105) = 2.506, p = .014]. We observed no main effect of Test [F(1,103) =  1.899, p 

= .171,  ηp
2 = .018], no main effect of Observer Sex [F(1,103) = 1.973, p = .163, ηp

2 = .019], 

nor a Test × Observer Sex × Group interaction [F(103) = .434, p = .512, ηp
2 = .004]. 

However, the analysis revealed a Test × Observer Sex interaction [F(1,103) =  5.063, p 

=.027, ηp
2 = .047] whereby male participants tended to score higher on the CCMT than 

females.   

  

Figure-1  

  

In light of the significant Observer Sex (male, female) × Test (CFMT, CCMT) interaction 

described above, we sought to confirm that the effect of Group on CCMT scores (TD > DP) 

was seen for both male (Figure 2a) and female (Figure 2b) observers. First, we compared the 

performance of the male controls (N = 27, Mage = 37.4 years, SDage = 9.5 years) with the 

male DPs (N = 21, Mage = 40.5 years, SDage = 10.1 years). Relative to the male controls, the 

male DPs were significantly impaired on both the CFMT [t(46) = 10.990, p < .001] and the 

CCMT [t(46) = 2.117, p = .040], but disproportionately impaired at the CFMT [F(1,46) =  

26.685, p < .001,  ηp
2 = .367]. Next, we compared the performance of the female controls (N 

= 34, Mage = 36.6 years, SDage = 10.1 years) and the female DPs (N = 25, Mage = 38.6 years, 

SDage = 8.9 years). Once again we observed a highly significant group difference on the 

CFMT [t(57) = 13.068, p < .001], and a significant Group (TD, DP) × Test (CFMT, CCMT) 

interaction [F(1,57) = 56.472, p < .001,  ηp
2 = .498]. When the analysis was restricted to 

female participants, however, the difference between the DPs and the TDs on the CCMT did 

not reach significance [t(57) = 1.502, p = .139].    
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Figure-2  

 

As expected, the variance in CFMT scores differed significantly between the DPs and 

controls [F(1,105) = 5.06, p = .03]. This likely reflects the fact that the CFMT scores of the 

DPs were tightly constrained, whilst the CFMT scores of the controls were free to vary. The 

variance in CCMT scores did not differ between the two groups [F(1,105) = .17, p = .69]. 

 

Having pooled the TD and DP groups to form a single combined sample (N = 107; Figure 

1b), we observed a modest correlation between observers’ performance on the CFMT and 

their scores on the CCMT (r = .329, p < .001, N = 107). When considered separately, this 

correlation was seen in the TD group (r = .276, p = .031, N = 61), but did not reach 

significance in the DP group (r = .215, p = .151, N = 46), possibly reflecting the limited 

range of CFMT scores. The difference between these correlation coefficients was not 

significant [Fisher’s z = .323, p = .747]. Examination of the individual differences revealed a 

striking range of object recognition ability in the DP group. At one end of the distribution, 

five individuals in the DP sample produced CCMT scores 1.64 standard deviations below the 

typical mean, and two produced scores 1.96 standard deviations below the typical mean. At 

the other extreme, however, several DPs performed very well, achieving scores comparable 

with the best controls (Figure 1c).      

  

To formally explore how many of the DPs were significantly impaired on the CCMT, we 

performed single-case analysis (Crawford, Garthwaite, & Ryan, 2011) to compare each DP’s 

CCMT performance with the TD group. In this analysis, we found that 2/46 DPs were 

classified as having significantly lower CCMT scores than the TD group. We also explored 

possible dissociations between CFMT and CCMT performance (e.g., Gerlach, Lissau, & 

Hildebrandt, 2018). Dissociations in performance between two tasks can be classified as 

putatively classical, or strong. A DP is considered to fulfil the criteria for a putatively 

classical dissociation when performance is significantly lower than TDs on the CFMT, but 

not the CCMT, and their standardised difference between the two tasks is significantly 

different from controls. Strong dissociations are fulfilled when a DP is significantly impaired 

on the CFMT and CCMT, and their standardised difference between the two tasks is 

significantly different from controls. In our sample of DPs, we found that 24/46 DPs met 
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criteria for a putatively classical dissociation, whereas only one DP met the criteria for a 

strong dissociation.  

 

General Discussion  

To better understand the distribution of non-face object recognition ability in the DP 

population, we administered the CCMT to a large sample of DPs (N = 46) and matched 

controls. Overall, we found that the DP group achieved lower scores on the CCMT than 

typical controls. This finding provides further evidence that object recognition difficulties 

may be more common in DP than in the general population. Relative to their face 

recognition deficits, however, the DPs’ car matching deficits were small and inconsistent.   

  

Some authors have proposed that DP is characterised by a single domain-general deficit that 

impairs the perception of faces and non-face objects alike (Avidan et al., 2011; Gerlach et 

al., 2016; Gerlach & Starrfelt, 2018; Geskin & Behrmann, 2017; Tanzer et al., 2013). 

Critically, this view predicts that individuals with DP should consistently exhibit difficulties 

recognising a wide range of non-face objects. For example, individuals with integrative 

agnosia appear to exhibit perceptual deficits for most types of complex visual object – 

including cars (Germine et al., 2011; Moscovitch, Winocur, & Behrmann, 1997; Riddoch & 

Humphreys, 1987).  

 

The striking range of CCMT performance seen in our DP sample is hard to reconcile with 

this view. While some DPs performed extremely poorly, many more achieved CCMT scores 

within one standard deviation of the TD mean and several DP participants exhibited 

excellent performance, achieving accuracy scores exceeding 90% comparable with the best 

controls. Typical levels of CCMT performance were common in the DP sample despite the 

fact that these individuals describe severe lifelong face recognition difficulties and all 

produced CFMT scores more than two standard deviations below the TD mean. To score 

well on the CCMT, observers must be able to identify complex visual objects across 

viewpoints, and when obscured by high-frequency visual noise. Excellent CCMT scores 

therefore suggests that a subset of DPs were able integrate local features and process global 

shape information, typically (also see: Biotti, Wu, et al., 2017; Duchaine et al., 2006; 

Duchaine, Yovel, & Nakayama, 2007; Le Grand et al., 2006; Susilo et al., 2010) 
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In contrast, the range of object recognition abilities seen in our DP sample accords very well 

with the IDH (Germine et al., 2011; Gray & Cook, 2018). Under this account, DP and DOA 

are viewed as independent conditions that sometimes occur on their own as pure cases of DP 

and DOA, but often co-occur within the same individuals due to common risk factors (e.g., 

inherited susceptibility to aberrant structural development of occipitotemporal cortex; Gray 

& Cook, 2018). Like domain-general accounts, the IDH predicts that the incidence of DOA 

is more common in DP than in the general population. Crucially, however, it predicts i) an 

idiosyncratic relationship between object and face processing abilities in DP, and ii) a subset 

of DPs with intact object perception. Both of these predictions are supported by the dataset 

described here.  

  

According to the IDH, the composition of DP samples may determine whether authors find 

evidence of group-level object recognition deficits in DP. Where samples include high or 

low proportions of DPs with co-occurring DOA, authors may be more or less likely to find 

group differences, respectively. Smaller samples of DPs may often contain too few cases of 

DP with co-occurring DOA to reveal group differences on tasks such as the CCMT (Esins et 

al., 2016; Shah, Gaule, Gaigg, et al., 2015). The idiosyncratic nature of object recognition 

deficits in DP is highlighted by the absence of a significant effect of Group (DP, TD) in our 

female participants. Due to the inconsistency of object perception deficits, large samples of 

DPs may be required to detect consistently group-level effects on object recognition tasks. 

Where observed, however, we speculate that such differences are attributable to co-occurring 

DOA, not DP per se.     

  

Compared with the CFMT, the CCMT may be less able to detect impairment at the single-

case level. One issue is that the mean score of typical controls on the CCMT (M = 73.5%) is 

a little lower than the mean typical score on the CFMT (M = 83.6%). A second issue is that 

the variability seen in typical scores is slightly greater on the CCMT (SD = 12.6%) than on 

the CFMT (SD = 9.6%). Together, however, this means that DPs need to score < 50% to 

achieve a z-score of < -1.96. Given that the CCMT is a 3-AFC task, participants’ 

performance therefore needs to approach chance levels in order to be classified as 

significantly impaired at the single-case level. Despite the fact that only a few DPs reached 

this threshold, the significant group difference seen on the CCMT suggests that mild deficits 

may be relatively common in this population (see also: Biotti, Gray, & Cook, 2019).   
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Our investigation was restricted to a single object category – cars. It remains to be seen 

whether similar findings emerge when DPs are tested with other types of object, or whether 

cars are somehow ‘special’ (e.g., Ćepulić, Wilhelm, Sommer, & Hildebrandt, 2018; Richler, 

Wilmer, & Gauthier, 2017).  However, the present results are important because problems 

recognising and distinguishing cars are amongst the most commonly reported object 

perception deficits in DP. This stimulus class therefore appears to tax object recognition 

processes that are sometimes aberrant in DP. Moreover, the CCMT has an identical format to 

the CFMT, a measure that is known to reveal the perceptual problems DPs experience with 

faces, and is just as challenging. The failure to observe clear, widespread object recognition 

deficits in our large DP sample cannot therefore be attributed to the particular stimulus class 

used, the format of the test, or the fact the task is easier.   
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Footnotes  

1The versions of the CFMT and CCMT employed here do not record response latencies. 

 

2Dennett and colleagues speculate that this may reflect the fact that male observers sometimes 

have greater knowledge of existing car manufacturers and models.   
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Figure 1 

 

Figure 1: (a) Performance of the DPs and TDs on the CFMT and the CCMT. Error bars 

denote ±1 SEM. (b) Observers’ scores on the CCMT plotted against their scores on the 

CFMT. (c) The relative performance of the 46 DPs on the CFMT and CCMT.   
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Figure 2 

 

Figure 2: Performance of the male (a) and female (b) participants on the CFMT and CCMT .    
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Table 1 

Table 1: Diagnostic information for the DP and TD samples. Scores on the Cambridge Face 

Perception Test (CFPT) indicate the number of sorting errors made in the upright condition.  

    Prosopagnosics (N = 46)     Typical controls (N = 61)  

PI20  

  

Mean (SD)   82.04 (5.84)    38.03 (8.59)  

Range   70 to 94    20 to 57  

CFMT  

  

Mean (SD)   54.38% (7.39)    83.56% (9.57)   

Range   34.72% to 63.89%    62.50% to 100.00%  

CFPT  

  

Mean (SD)   52.39 (16.20)    -  

Range   26 to 88    -  

  

  

 


