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The adaptive immune system generates an incredible diversity of antigen receptors

for B and T cells to keep dangerous pathogens at bay. The DNA sequences coding

for these receptors arise by a complex recombination process followed by a series of

productivity-based filters, as well as affinity maturation for B cells, giving considerable

diversity to the circulating pool of receptor sequences. Although these datasets hold

considerable promise for medical and public health applications, the complex structure

of the resulting adaptive immune receptor repertoire sequencing (AIRR-seq) datasets

makes analysis difficult. In this paper we introduce sumrep, an R package that efficiently

performs a wide variety of repertoire summaries and comparisons, and show how

sumrep can be used to perform model validation. We find that summaries vary in their

ability to differentiate between datasets, although many are able to distinguish between

covariates such as donor, timepoint, and cell type for BCR and TCR repertoires. We

show that deletion and insertion lengths resulting from V(D)J recombination tend to

be more discriminative characterizations of a repertoire than summaries that describe

the amino acid composition of the CDR3 region. We also find that state-of-the-art

generative models excel at recapitulating gene usage and recombination statistics in

a given experimental repertoire, but struggle to capture many physiochemical properties

of real repertoires.
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INTRODUCTION

B cells and T cells play critical roles in adaptive immunity through the cooperative identification
of, and response to, antigens. The random rearrangement process of the genes that construct B cell
receptors (BCRs) and T cell receptors (TCRs) allows for the recognition of a highly diverse set of
antigen epitopes. We refer to the set of B and T cell receptors present in an individual’s immune
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system as their immune receptor repertoire; this dynamic
repertoire constantly changes over the course of an individual’s
lifetime due to antigen exposure and the effects of aging.

Although immune receptor repertoires are now accessible
for scientific research and medical applications through high-
throughput sequencing, it is not necessarily straightforward to
gain insight from and to compare these datasets. Indeed, if
these datasets are not processed, they are simply a list of DNA
sequences. After annotation one can compare gene usage (1–6)
and CDR3 sequences. This can be a highly involved task, and
so it is common to simply compare the gene usage frequencies
and CDR3 length distributions of repertoire (7, 8), leaving the full
richness of the CDR3 sequence and potentially interesting aspects
of the germline-encoded regions unanalyzed.

An alternative strategy is to transform a repertoire to a
more convenient space and compare the transformed quantities
according to some distance. For example, several studies reduce a
set of nucleotide sequences to kmer distributions for classification
of immunization status or disease exposure (9–11), where a kmer
is a nucleotide subsequence of size k. These kmer distributions
can then be compared via sequence-based distances, but still
comprise a large space and lose important information about
where the kmer appears along the sequence. One can perform
other dimension reduction techniques such as t-SNE to project
repertoires down to an even smaller space (12), but these
projections also discard a lot of information and can be difficult
to interpret biologically.

While many biologically interpretable summaries such as
physiochemical properties exist and have been widely applied
(13–16), these are often examined at the sequence level rather
than the repertoire level.

We wish to facilitate the use of biologically interpretable
summary statistics to capture many different aspects of AIRR-seq
data. In addition to enabling comparison of different sequencing
datasets, summary statistics can also be used to compare
sequencing datasets to probabilistic models to which they have
been fitted. Namely, one can use a form of model checking that is
common in statistics: after fitting a model to data, one assesses
the similarity of the model-generated data to the real data. In
this case, we generate a repertoire of sequences from models and
compare this collection to a real-data repertoire of sequences via
summary statistics.

We are motivated to perform such comparison because
these probabilistic models are used as part of inference, and
because they are used for inferential tool benchmarking. Such
generative models are used to simulate sequences as a “ground
truth” for benchmarking inferential software (17–19), and thus
the accuracy of such benchmarks depends on the realism of
the generated sequences. Simulation tools can also be used to
generate a null distribution used to test for a specific effect, such
as natural selection (20).

Currently, there are no unified packages dedicated to the task
of calculating and comparing summary statistics for AIRR-seq
datasets. While the Immcantation framework (which includes
the shazam and alakazam R packages) contains many
summary functions for AIRR-seq data (21), it does not have
general functionality for retrieving, comparing, and plotting

these summaries. Many summaries of interest are implemented
in one package or another, but differences in functionality and
data structures make it troublesome to compute and compare
summaries across packages. Some summaries of interest, such as
the distribution of positional distances between mutations, are
not readily implemented in any package.

In this paper, we gather dozens of meaningful summary
statistics on repertoires, derive efficient and robust summary
implementations, and identify appropriate comparison methods
for each summary. We present sumrep, an R package that
computes these summary distributions for AIRR-seq datasets
and performs repertoire comparisons based on these summaries.
We investigate the effectiveness of various summary statistics in
distinguishing between different experimental repertoires as well
as between simulated and experimental data. We show that many
summaries differentiate between various covariates by which the
datasets are stratified. Further, we demonstrate how sumrep can
be used for model validation through case studies of two state-
of-the-art repertoire simulation tools: IGoR (19) applied to TRB
sequences, and partis (17, 22) applied to IGH sequences.

RESULTS

Implementation
The full sumrep package along with the following analyses can
be found at https://github.com/matsengrp/sumrep. It supports
the IGH, IGK, and IGL loci for BCR datasets, and the TRA,
TRB, TRD, and TRG loci for TCR datasets. It is open-source,
unit-tested, and extensively documented, and uses default dataset
fields and definitions that comply with the Adaptive Immune
Receptor Repertoire (AIRR) Community Rearrangement schema
(23). A reproducible installation procedure of sumrep is
available using Docker (24).

Table 1 lists the summary statistics currently supported by
sumrep, and includes the default assumed degree of annotation,
clustering, and phylogenetic inference for each summary. The
first group of statistics only requires the input or query
sequences to be aligned to their inferred germline sequences
(e.g., IMGT-aligned) and constrained to the variable region; this
coincides with the presence of the sequence_alignment
and germline_alignment fields in the AIRR schema (we
note that some of these statistics, such as GC content, do
not require an alignment in principle. However, we wished
to encourage meaningful analyses and comparisons with our
software, and thus require an alignment to avoid accidental
comparison of non-corresponding sequence regions). The
second group requires standard sequence annotations, such as
inferred germline ancestor sequences for Ig loci, germline gene
assignments, and indel statistics. The third group requires clonal
family cluster assignments. The fourth group requires a inferred
phylogeny for each clonal family of an Ig dataset. sumrep itself
does not perform any annotation, clustering, or phylogenetic
inference, but rather assumes such metadata are present in the
given dataset; in principle, one can use any tool which performs
these tasks as expected.

sumrep contains many types of summaries, including
nucleotide sequence-level summaries (pairwise distances,
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TABLE 1 | Currently supported summary statistics grouped by their respective degrees of assumed post-processing.

Summary statistic Annotations Clustering Phylogeny Implementation

Pairwise distance distribution No No No stringdist (25)

kth nearest neighbor distribution No No No stringdist

GC-content distribution No No No ape (26)

Hotspot motif count distribution No No No Biostrings (27)

Coldspot motif count distribution No No No Biostrings (27)

CDR3 length distribution Yes No No Tool-provided

Joint distribution of germline gene use Yes No No sumrep

Pairwise CDR3 distance distribution Yes No No stringdist

Atchley factor distributions Yes No No HDMD (28)

Kidera factor distributions Yes No No Peptides (28)

Aliphatic index distribution Yes No No Peptides

G.R.A.V.Y. index distribution Yes No No alakazam (21)

Polarity distribution Yes No No alakazam

Charge distribution Yes No No alakazam

Basicity distribution Yes No No alakazam

Acidity distribution Yes No No alakazam

Aromaticity distribution Yes No No alakazam

Bulkiness distribution Yes No No alakazam

Per-gene substitution rate Yes No No Tool-provided + sumrep

Per-gene-per-position substitution rate Yes No No Tool-provided + sumrep

Per-base substitution model Yes No No shazam (21)

Per-base mutability model Yes No No shazam

Positional distance between mutations distribution Yes No No sumrep

Distance from germline to sequence distribution Yes No No stringdist

V gene 3′ deletion length distribution Yes No No Tool-provided

V gene 5′ deletion length distribution Yes No No Tool-provided

D gene 3′ deletion length distribution Yes No No Tool-provided

D gene 5′ deletion length distribution Yes No No Tool-provided

J gene 3′ deletion length distribution Yes No No Tool-provided

J gene 5′ deletion length distribution Yes No No Tool-provided

VD (or VJ) insertion length distribution Yes No No Tool-provided

DJ insertion length distribution Yes No No Tool-provided

VD (or VJ) insertion transition matrix Yes No No sumrep

DJ insertion transition matrix Yes No No sumrep

V/J in-frame percentage Yes No No Tool-provided + sumrep

Cluster size distribution Yes Yes No Custom

Hill numbers (diversity indices) Yes Yes No alakazam

Selection estimates (using the BASELINe method) Yes Yes No shazam

Sackin index distribution Yes Yes Yes CollessLike (29)

Colless-like index distribution Yes Yes Yes CollessLike

Cophenetic index distribution Yes Yes Yes CollessLike

Annotation denotes whether annotation of the V(D)J germline segment is required, Clustering denotes whether clonal clustering is required, and Phylogeny denotes whether lineage tree

inference is required. “Tool-provided” means that the summary can be directly computed from the output of an annotation tool; for example, the CDR3 length distribution is exactly the

frequencies of values in the junction column of the annotated dataset. Per-gene substitution rate is defined to be the number of observed mutations in sequences assigned to that

gene, in the segment of the sequence assigned to that gene’s region, divided by the length of the segment. Per-gene-per-position substitution rate is similarly defined, but separately

computed for each position in the sequence.

hotspot motif counts, etc.), rearrangement summaries like
insertion and deletion lengths, and many physiochemical
properties applicable to the amino acid sequences of particular

receptor regions. The Atchley factors are a set of five numerical
descriptions of amino acids derived using a statistical technique
called factor analysis from a larger pool of 494 descriptors of
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FIGURE 1 | Cartoon of our summary statistic and divergence framework, and how this can be applied to validation of repertoire simulators. Steps (A,B) can be

applied to compare arbitrary datasets, while (C,D) show how sumrep can be used for model validation. (A) Most summary statistics s, e.g., GC content, yield a

distribution of values when applied to each of the sequences in a given repertoire R. (B) We can compare summary distributions using a statistical divergence D,

which takes two distributions and outputs a nonnegative scalar. (C) For a given experimental dataset, we use simulator tools to generate a corresponding set of

synthetic sequences. (D) We can compute many summaries of these repertoires yielding distributions for comparison.

amino acid biochemical properties (30). The Kidera factors
are a similarly-constructed set of ten numerical descriptions of
amino acids, which were derived using dimension reduction
techniques (31). sumrep also includes summaries to be applied
at the clonal family level (e.g., cluster size distribution) and the
phylogenetic level in the case of BCR sequences (e.g., Sackin
index distribution).

sumrep makes it easy to compare summary statistics
between two repertoires by equipping each summary with
an appropriate divergence, or measure of dissimilarity,
between instances of a summary. For example, the
getCDR3LengthDistribution function returns a
vector of each sequence’s CDR3 length, and the corresponding
compareCDR3LengthDistributions function takes
two repertoires and returns a numerical summary of the
dissimilarity between these two length distributions. The
comparison method depends on the summary, which is
discussed further in the Methods section. sumrep also
includes a compareRepertoires function which takes two
repertoires and returns as many summary comparisons as befit
the data.

Figure 1 illustrates the general framework of comparing

summary statistics between two repertoires R1 and R2. A given
summary s is applied separately to R1 and R2, which for most
summaries yields a distribution of values (Figure 1A). These two
resultant distributions can be compared using a divergence D

that is tailored to the nature of s (Figure 1B). We use Jenson-
Shannon (JS) divergence to compare scalar distributions (e.g., GC
content, CDR3 length), which is a symmetrized version of KL-
divergence, a weighted average log-ratio of frequencies widely-
used in statistics and machine learning. We use the similarly
popular ℓ1 divergence to compare categorical distributions (e.g.,

gene call frequencies, amino acid frequencies), which is a sum of
absolute differences of counts.

We have designed sumrep to efficiently approximate
computationally intensive summaries. When the target summary
is a distribution, we can gain efficiency by repeatedly subsampling
from the distribution until our estimate has stabilized. The result
is an approximation to the full distribution; by introducing slight
levels of noise, we can gain very substantial runtime performance
improvements for large datasets. This in turn allows fast, accurate
divergence estimates between dataset summaries. We outline
a generic distribution approximation algorithm as well as a
modified version for the nearest neighbor distance distribution in
the Methods section, and conduct extensive empirical validation
of these algorithms in Appendices A, B.

sumrep additionally contains a plotting function for
each univariate summary distribution. For example, the
getCDR3LengthDistribution comes with a companion
plotting function called plotCDR3LengthDistribution.
sumrep also includes a master plotting function,
plotUnivariateDistributions, which shows a
gridded figure of all univariate distribution plots relevant to the
locus in question which can be computed from the input dataset.
Currently, these plotting functions support frequency polygons
and empirical cumulative distribution functions (ECDFs).
Examples of these plots can be found throughout later sections
of this report.

Application of Summary Statistics to
Experimental Data
To examine the ability of various summary statistics to
distinguish among real repertoires, we applied sumrep to TCR
and BCR datasets performed a multidimensional scaling (MDS)
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FIGURE 2 | Plots of summary divergence MDS coordinates for data from Pogorelyy et al. (32), grouped by donor and timepoint.

analysis of summary divergences. In particular, we computed
divergences of each summary between each pair of repertoires,
stratified by covariates such as individual, timepoint, and cell
subset to form a dissimilarity matrix. We then mapped these
dissimilarity matrices to an abstract Cartesian space using MDS.

For TCR repertoires, we used datasets from two individuals
and five timepoints post-vaccination, with two replicate per
donor-timepoint value, from Pogorelyy et al. (32). Figure 2

displays plots of the first two coordinates of each replicate
grouped by donor and timepoint. We see that for almost all
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summaries, these points cluster according to donor identity,
with the CDR3 pairwise distance distribution being the only
summary that does not decisively cluster by donor. Many
summaries additionally cluster according to timepoint in the
second dimension, although the tightness of clustering varies
by summary, with some summaries (e.g., DJ insertion length
distribution) being tightly clustered by a given donor/timepoint
value and some summaries (e.g., Kidera factor 4) not obviously
clustering by donor/timepoint. Moreover, the D gene usage
distribution for each individual splits into two distinct groups
which do not correlate with timepoint, though the import of
this is more difficult to assess. Although these patterns would
require further exploration in a particular research context,
these sumrep divergences show interesting patterns when TCR
datasets are stratified by covariates.

We performed a similar MDS analysis of summary
divergences of BCR repertoires stratified by covariate, using
data from Rubelt et al. (33). We computed divergences of each
summary between each pair of a collection of datasets stratified
by five pairs of twins as well as B cell classification as memory
or naive to form a dissimilarity matrix. We then mapped these
dissimilarity matrices to an abstract Cartesian space using MDS.
Figure 3 displays plots of the first two coordinates of each donor
grouped by twin pair identity and cell type. We see that for each
summary, points can be separated according to cell subset, with
some summaries (e.g., V gene usage, AA frequencies, acidity)
clustering more tightly among cell subset, and others (e.g.,
GRAVY index, DJ insertion length) clustering more loosely. In
addition, the naive repertoires appear to bemore tightly clustered
than the memory repertoires for each summary. Finally, for
the gene usage statistics, there is a strong tendency for twins
to have higher similarity than unrelated donors, although this
tendency is not consistently observed for other statistics. For
example, points for the amino acid 2mer frequency distribution
divergences tend to have high similarity between twins, but the
GRAVY index distribution divergences do not. Thus, there seem
to also be interesting dynamics underlying sumrep divergences
when BCR datasets are stratified by covariates, and the observed
patterns merit further investigation.

Ranking Summary Statistic
Informativeness
Due to the large number of summary statistics supported by
sumrep, many of which are correlated, we sought an approach
to identify a set of maximally-informative statistics that provide
complimentary information to one another. To address this,
we employed a lasso multinomial regression treating certain
sequence-level summaries as covariates and dataset identity as
the response. The basic idea is that this regression method
cuts out all but a few predictor variables to find a smaller
collection of informative summary statistics, as a coefficient
is “allowed” to be nonzero only when the lasso deems it a
relatively meaningful predictor. As the regularization parameter
λ is decreased, more and more coefficients become nonzero,
leading to a natural ordering of summaries as the order in
which their coefficient “branches off” from zero. Then a resultant
maximally-informative set of k summaries is the set of summaries

with the k best ranks. We formalize this approach in the Methods
section (Algorithm 3).

One caveat to this approach is that we can only use
sequence-level summary statistics as covariates in order to have
a well-defined regression procedure. However, the majority of
summaries considered in this report are applied at the sequence
level. Thus, between the subset of informative sequence-level
statistics and the remaining non-sequence-level statistics, we
arrive at a considerably smaller set. Besides non-sequence-level
summaries, we also omit Kidera Factors and Atchley factors
from our analyses as these sets of statistics are orthogonal by
construction according to particular measures of amino acid
composition in their respective original contexts. This also
leads to a much smaller design matrix and a substantially
decreased runtime.

Figure 4A displays the results of applying Algorithm 3
to IGoR annotations of TRB sequences from datasets
A4_i107, A4_i194, A5_S9, A5_S10, A5_S15, and A5_S22
from Britanova et al. (34). We see that recombination-based
deletion lengths comprise four of the top five summaries,
with recombination-based insertion lengths, CDR3 length,
and various physiochemical CDR3 properties scattered over
the remaining positions. There appears to be high variability
throughout the range of rankings, with the bottom three statistics
all having a ranking of one for at least one coefficient vector.

Figure 4B displays the results of applying Algorithm 3
to partis annotations of IGH sequences from donors FV,
GMC, and IB at timepoints −8 days and −1 h from Gupta
et al. (18), downsampled to unique clonal families to avoid
clonal abundance biases and decrease algorithmic runtime. We
see that deletion lengths, insertion lengths, and CDR3 length
comprise the top six summaries, with physiochemical CDR3
properties mostly in the bottom half of rankings. In contrast
to the TCR result, there appears to be less overall variability
throughout the range of rankings, with variability highest for the
moderate ranking positions and notably lower for the top and
bottom positions.

While it is difficult to say exactly the level of correlation of
each summary by the lasso result alone, since the lasso is a
regularized version of least-squares, our intuition is that the nice
properties of least-squares combined with the lasso’s ability to
eliminate less relevant coefficients leads to a subset of covariates
that are generally informative. To validate this intuition, we
can examine distributions of particularly ranked summaries
applied to a test set of annotated repertoires not used in the
model fitting. Figure 5 displays ECDFs of the acidity (bottom-
ranked), aromaticity (middle-ranked), and V 3′ deletion length
(top-ranked) distributions for the FV, GMC, and IB donors at
timepoints +1 h, +7 days, and +28 days following an influenza
vaccination (which differ from the −1 h and −8 days timepoints
used for fitting), where the ranks are as determined by Figure 4B
for partis-annotated IGH repertoires. Visually, we see that the
acidity curves do not vary much among donors or timepoints;
the aromaticity curves have slightly more variation but are still
highly similar; and the V 3′ deletion length curves are more
distinguished between some donors (e.g., FV and GMC) as
well as some donor-timepoint interactions (e.g., +7 days and
+28 days timepoints for IB). Thus, there is visual evidence that
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FIGURE 3 | Plots of summary divergence MDS coordinates for data from Rubelt et al. (33), grouped by twin pair identity and cell type (memory vs. naive).
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FIGURE 4 | Boxplots of summary rank values taken over each dataset, in order of informativeness, as determined by the median order in which the summary

branches off from the lasso paths in Figure S8, taken over each of the six paths. (A) Summary informativeness rank boxplots using six IGoR-annotated (34) datasets

of TRB sequences. (B) Summary informativeness rank boxplots using six partis-annotated (18) datasets of IGH sequences.

the lasso scores can identify some degree of informativeness
among summaries.

Comparing Experimental Observations to
Model Simulations
sumrep can be used to validate BCR/TCR generative models,
i.e., models fromwhich one can generate (simulate) data, through
the following approach. First, given a collection of AIRR-seq
datasets, model parameters are inferred using the modeling
software tool for each repertoire, and then these parameters are
used to generate corresponding simulated datasets (Figure 1C).
Next, sumrep is used to compute the summary statistics listed in

Table 1 for each dataset and compare these summaries between
each pair of datasets (Figure 1D). Then, a score is calculated for
how well the software’s simulation replicates a given summary
based on how small the divergences of observed/simulated
dataset pairs are compared to divergences between arbitrary
observed/observed or simulated/simulated pairs.

Applying this methodology using many datasets should
give a clear view of which characteristics the model captures
well, as well as areas for improvement. As described in the
introduction, we are motivated to do this because models are
often benchmarked on simulated data, and it is important to
understand discrepancies between simulated and observed data
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FIGURE 5 | Empirical cumulative distribution functions for the bottom-, middle-, and top-ranked statistics for a validation set of partis-annotated IGH repertoires,

as determined by Figure 4B.

in order to properly interpret and extrapolate benchmarking
results. We emphasize that validating the model in this way
is different than the usual means of benchmarking model
performance: rather than benchmarking the inferential results
of the model, we benchmark the model’s ability to generate
realistic sequences.

We illustrate this approach with two case studies: an analysis
of IGoR (19) applied to TRB sequences, and an analysis of
partis (17, 22) simulations applied to IGH sequences. Both
tools are applied to separate sets of experimental repertoires,
yielding model-based annotations for each repertoire, as well
as simulated datasets from the inferred model parameters for
each experimental set. Summary divergences are applied to each
dataset, allowing for scores for each summary to be computed for
each tool.

Assessing Summary Statistic Replication
for IGoR
We apply the methodology discussed in the previous section
to TRB sequences from datasets A4_i107, A4_i194, A5_S9,
A5_S10, A5_S15, and A5_S22 from Britanova et al. (34).
Although IGoR is typically applied to non-productive sequences
in order to capture the pre-selection recombination process,
for this example application we wished to understand IGoR’s
ability to fit the complete repertoire directly without the need
for an additional selection model [e.g., (35)]. Thus, we fit
the IGoR model with all sequences (which we expect to
be dominated by productive sequences) and restricted the
simulation to productive sequences. Figure 6 contains frequency
polygons of each summary distribution for each experimental
and simulated repertoire.

Observation-based summary scores are computed using
a log ratio of average divergences (referred to as LRAD-
data, and defined in Equation 8) for a variety of TRB-
relevant summaries (Figure 7A). The LRAD-data score of
a summary will be high when simulations look like their

corresponding observations with respect to that summary, and
low when observations look more like other observations than
their corresponding simulations. We exclude summaries based
on sequence_alignment values (e.g., pairwise distance
distributions) since IGoR does not currently have an option
to output the full variable region nucleotide sequences for
experimental reads.

IGoR simulations were able to recapitulate gene usage
statistics of an empirical repertoire well, with J gene usage
frequency being the most accurately replicated, followed by
various recombination-based indel statistics. V, D, and joint
VDJ gene usage are all also well-replicated, as well as both
VD and DJ insertion matrices. Conversely, the CDR3 length
distribution was the least accurately replicated statistic among
rearrangement statistics. The Kidera factors of the CDR3 region
were also replicated well, despite CDR3 length being one of
the least accurately replicated statistics. Scores for other CDR3-
based statistics besides Kidera factors ranged from mildly good
to mildly bad, with the GRAVY index distribution being the
best CDR3-based statistic (excluding Kidera factors) and charge
distribution being the worst.

We also computed simulation-based summary scores (LRAD-
sim, defined in Equation 9) for the same datasets and simulations
(Figure 7B). The LRAD-sim score of a summary will be high
when simulations look like their corresponding observations
with respect to that summary, and low when simulations
look more like other simulations than their corresponding
observations. We still saw high scores for gene usage and indel
statistics, although the CDR3 length distribution and various
Kidera factor and GRAVY index distributions had much lower
scores. This suggests that while the average IGoR simulation
yields Kidera factor and GRAVY index distributions that look
more like the observed repertoire’s distributions than other
observed repertoires do, these simulated repertoires still tend to
produce more similar distributions to each other than to their
observed counterparts. In turn, this provides an avenue of future

Frontiers in Immunology | www.frontiersin.org 9 November 2019 | Volume 10 | Article 2533

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Olson et al. sumrep: Summary Statistics for Repertoires

FIGURE 6 | Frequency polygon plots of each univariate summary distribution for the IGoR datasets.

research for TCR generative models in which certain CDR3aa
properties are incorporated and expressed in simulated data.

Assessing Summary Statistic Replication
for partis
We applied the samemethodology to IGH sequences fromGupta
et al. (18), using datasets corresponding to the −1 h and −8 d
timepoints for each of the FV, GMC, and IB donors. Figure 8

displays frequency polygons of each summary distribution for
each experimental and simulated repertoire.

Observation-based summary scores were computed using the
LRAD-data Equation (8) for a variety of IGH relevant summaries
(Figure 9A).

Like IGoR, we see that partis simulations also excelled
at replicating gene usage and recombination statistics, while
additionally replicating CDR3 length distributions well.
However, partis struggled to recapitulate VD and DJ insertion
matrices, which it does not explicitly include in its model. This
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FIGURE 7 | Summary scores, denoted as “log(Relative average divergence)” or “LRAD,” for each statistic in the IGoR model validation experiment. For both cases, a

high score indicates a well-replicated statistic by the simulations with respect to their corresponding experimental repertoires of functional TRB sequences. (A)

LRAD-data values for each relevant TRB statistic available from IGoR or IgBLAST as determined by Equation (8). (B) LRAD-sim values for each relevant TRB statistic

available from IGoR or IgBLAST as determined by Equation (9).

contrasts with IGoR which incorporates these insertion matrices
during model fitting, and thus recapitulates these matrices well.
The other statistics yielded scores ranging from slightly to very
negative, with many mutation-based summaries like positional
distance between mutations and hot and cold spot counts being
poorly captured. The low scores of mutation-based summaries
may arise from the decision to select a single representative from

each clonal family, which itself arises from the complications in
matching clonal family abundance distributions of simulations
to data. This makes it difficult to identify the exact contributions
of these factors to the summary discrepancies. Nonetheless,
this suggests that these sorts of quantities may need to be more
explicitly accounted for in BCR generative models if more
realistic simulations are desired.
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FIGURE 8 | Frequency polygon plots of each univariate summary distribution for the partis datasets.

We also computed simulation-based summary scores (LRAD-
sim, defined in Equation 9) for the same datasets and simulations
(Figure 9B). The scores are highly similar to those seen in
Figure 9A, with some summaries seeing a moderate drop.

METHODS

Divergence
We use the Jenson-Shannon (JS) divergence for comparing
distributions of scalar quantities, which constitutes most
summaries in sumrep. The Jenson-Shannon divergence of

probability distributions P and Q with densities p(·) and q(·) is
a symmetrized Kullbeck-Leiber divergence, defined as

JSD (P || Q) :=
KLD (P||M)+ KLD (Q||M)

2
(1)

where M : = (P + Q)/2 and KLD(P||M) is the usual KL-
divergence,

KLD (P1 || P2) := EX∼P1

[

log

(

p1(X)

p2(X)

)]

. (2)
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FIGURE 9 | Summary scores, denoted as “log(Relative average divergence)” or “LRAD,” for each statistic in the partis model validation experiment. For both cases,

a high score indicates a well-replicated statistic by the simulations with respect to their corresponding experimental repertoires of productive IGH sequences. (A)

LRAD-data values for each relevant IGH statistic available from partis as determined by Equation (8). (B) LRAD-sim values for each relevant IGH statistic available from

partis as determined by Equation (9).

In the case where P and Q are both discrete distributions,
this becomes

KLD (P1 || P2) =
∑

i∈supp(P1)
p1(i) log

(

p1(i)

p2(i)

)

(3)

where supp(P) is the countable support of distribution P. Because
the discrete formulation has computational benefits over the
continuous one, we discretize continuous samples and treat them

as discrete data. By default, we use B = max
(⌈√

min(m, n)
⌉

, 2
)

bins of equal length, where m = |supp(P)| and n = |supp(Q)|,
which is designed to scale with the complexity of m and n
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simultaneously. We also discard bins which would lead to an
infinite KL divergence for numerical stability.

For counts of categorical data, we instead appeal to the sum of
absolute differences, or ℓ1 divergence, for comparison:

dℓ1 (R1,R2; c,S) =
∑

s∈S

∣

∣c(s;R1)− c(s;R2)
∣

∣ . (4)

In words, Equation (4) iterates over each element s in some
set S , calculates the count c of s within repertoires R1 and R2,
respectively, takes the absolute difference of counts, and appends
this to a rolling sum. This metric is well suited for comparing
marginal or joint V/D/J-gene usage distributions. For example,
if V , D, and J represent the germline sets of V, D, and J genes,
respectively, define usage u of gene triple (v, d, j) ∈ V × D × J

for repertoire R as

u(R; v, d, j) = #
{

s ∈ R : sv = v, sd = d, sj = j
}

, (5)

where e.g., sv = the V gene of s. Then an appropriate divergence
for the joint VDJ gene usage for repertoires R1 and R2 is

d(R1,R2; u,V ,D,J ) =
∑

v∈V

∑

d∈D

∑

j∈J

∣

∣u(v, d, j;R1)− u(v, d, j;R2)
∣

∣ .

(6)
The ℓ1 divergence is also relevant for computing amino acid
frequency and 2mer frequency distributions. Note that we can
normalize the counts to become relative frequencies and apply
(4) on the resultant scale which may be better suited to the
application, especially when dataset sizes differ notably.

Approximating Distributions via
Subsampling and Averaging
Computing full summary distributions over large datasets can
be intractable. However, we can compute a Monte Carlo
distribution estimate by repeatedly subsampling and aggregating
summary values until convergence. Algorithm 1 formalizes
this idea, appending batch samples of the full distribution d
to a rolling approximate distribution and terminating when
successive distribution iterates have a JS divergence smaller than
tolerance ε. Note that continually appending values to a rolling
vector is analogous to computing a rolling average, where the
subject of the averaging is an empirical distribution rather than
a scalar.

An alternative would be to simply compute the distribution
on one subsample of the data and use this as a proxy distribution.
The main advantage of Algorithm 1 over such an approach is
that it provides a sense of convergence to the full distribution
via the tuning parameter ε, while automatically determining the
size of the necessary subsample. The algorithm can also be tuned
according to batch size m, which sumrep takes to be 30 by
default. We conduct a performance analysis of Algorithm 1 in
Appendix A and empirically demonstrate efficiency gains in a
variety of realistic settings without sacrificing much accuracy.

Some summaries induce distributions for which Algorithm 1
is inherently ill-suited. This occurs when a summary applied to
a subset of a dataset does not follow the same distribution as

Algorithm 1: Compute automatic approximate distribution

Input: repertoire R, summary s, batch size m, convergence
tolerance ε

Output: subsampled approximation to the full distribution d of R

R0 ← subsample(R,m)
d0 ← s(R0)
n← 1
error←∞
while error > ε do:

Rsamp ← subsample(R,m)
dsamp ← s(Rsamp)
dn ← concatenate(dn−1, dsamp)
error← JSD(dn−1, dn)
n← n+ 1

return dn

the summary applied to the full dataset. For example, consider
the nearest neighbor distance of a sequence si with respect
to a multiset of sequences R (i.e., elements in R can have
multiplicity ≥ 1),

dNN(si,R) := min
s∈R\{si}

d(si, s), (7)

where d(·, ·) is a string metric (e.g., the Levenshtein distance).
If we take any subset S of R, then dNN(si, S) ≥ dNN(si,R)
∀i, since R will have the same sequences to iterate over, and
possibly more sequences, which can only result in the same or
a smaller minimum.

In this case, we can still obtain an unbiased approximate to
the nearest neighbor distance distribution using the following
modification of Algorithm 1. For each iteration, sample a small
batch B = (s1, . . . , sb) of b sequences, and compute dNN of each
si to the full repertoire R. Since each batch B computes the exact
nearest neighbor with respect to R, we get the true value of dNN
for each s ∈ B. The gain in efficiency stems from the fact that
we only compute this true dNN for a subsample of the sequences
of the full repertoire R. Thus, appending batches to a running
distribution until convergence as in Algorithm 1 will produce
increasingly refined, unbiased approximations as the tolerance
decreases. Algorithm 2 explicates this procedure.

Algorithm 2 may yield a high runtime if R is large, the
sequences in R are long, or the tolerance ε is small. Nonetheless,
we empirically demonstrate in Appendix B that in the case of
typical BCR sequence reads, even very small tolerances incur
reasonable runtimes, and when R is large, the algorithm is orders
of magnitude faster than computing the full distribution over R.

We show that the efficiency and accuracy of these algorithms
vary by summary statistic in Appendix B, and identify
appropriate defaults accordingly. Specifically, sumrep uses
ε = 0.001 for arbitrary summary approximation routines and
ε = 10−4 for getNearestNeighborDistribution.
Moreover, sumrep retrieves approximate distributions by
default only for getPairwiseDistanceDistribution,
getNearestNeighborDistribution, and getCDR3
PairwiseDistanceDistribution.
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Algorithm 2: Compute automatic approximate nearest neighbor
distance distribution

Input: repertoire R, distance d, batch size m, convergence
tolerance ε

Output: subsampled approximation to the full nearest neighbor
distribution dNN of R

d0 ← DOBATCHSTEP(R,m)
n← 1
error←∞
while error > ε do:

dsamp ← DOBATCHSTEP(R,m)
dn ← concatenate(dn−1, dsamp)
error← JSD(dn−1, dn)
n← n+ 1

return dn

function DOBATCHSTEP(R,m)
for i = 1, . . . ,m do:

si ← subsample(R, 1)
di ← dNN(si;R)

return (d1, . . . , dm)

Summary Statistic Informativeness
Ranking
To quantify the relative informativeness of various summary
statistics in distinguishing between different datasets, we perform
a multinomial lasso regression where covariates are sequence-
level summaries and the response is dataset identity. Since ℓ1
multinomial regression outputs a separate coefficient vector β

for each response value, we aggregate by taking medians of
each dataset-specific lasso ordering for each summary to get the
final score. This also yields a range of rankings to assess the
variation in scores by summary and by inferential model (e.g.,
partis, IGoR). In the case of ties, we randomize rankings to
avoid alphabetization biases or other similar artifacts. Detailed
pseudocode is provided in Algorithm 3.

This approach only works for sequence-level summaries s ∈
R
n for a dataset d of n = rows(d) sequences in order to form

a well-defined design matrix X ∈ R

(

∑D
i=1 rows(di)

)

×S
over all

datasets d = d1, . . . , dD under consideration. For example, it
is unclear how to incorporate the pairwise distance distribution,
which is not a sequence-level summary, as a covariate, since this
summary in general yields a column of a larger length than the
number of sequences. Still, as most summaries considered above
can be applied at the sequence level, this method greatly reduces
the number of summaries the user needs to examine.

Model Validation of IGoR
We used the -infer subcommand of IGoR to fit custom,
dataset-specific models for each experimental dataset. Since
we were interested in many CDR3-based statistics and IGoR
does not currently include inferred CDR3 sequences with
rearrangement scenarios, we used IgBLAST to extract CDR3s
for each sequence. For each sequence, we considered only
the rearrangement scenario with the highest likelihood as
determined by IGoR. When a list of more than one potential

Algorithm 3: Rank summary statistics by informativeness

Input: annotations datasets d1, . . . , dD, sequence-level
summaries s(·) = [s1(·), . . . , sS(·)], lasso parameters λ1, . . . , λ3

Output: A vector of ranks for the summaries

for d = d1, . . . , dD do:
Xd ← [s(d1), . . . , s(dD)]

X←







Xd1
...

XdD







y←







rep(1, rows(d1))
T

...

rep(D, rows(dD))
T







⊲ rows(di) is the number of sequences in the ith dataset
for λ = λ1, . . . , λ3 do:

(βλ
d1
, . . . ,βλ

dD
)← MultinomialLasso(X, y; λ)

for d = d1, . . . , dD do:
for s = s1, . . . , sS do:

td,s ←
min

(

min
{

λ1 ≤ λ ≤ λ3 : βλ
d,s

> 0 ∀t > λ

}

,∞
)

rd = rank(td,s1 , . . . , td,sS )

R = (rd1 , . . . , rdD )
scores = rank

(

medians1 (R), . . . , mediansS (R)
)

return scores

genes was given as the gene call, we considered only the first
gene in the list. Several fields were renamed to match the AIRR
specification when the definitions align without ambiguity. As
described in Results, we trained on productive sequences and
restricted the simulation to productive sequences.

We applied IGoR in this way to six datasets of TRB sequences
from Britanova et al. (34), which studied T cell repertoires from
donors ranging from newborn children to centenarians.

Model Validation of partis
We used partis to infer custom generative models for each
experimental dataset. We ran the partition subcommand
to incorporate underlying clonal family clustering among
sequences during inference, and then downsampled each
observed and simulated dataset so that each clonal family
is represented by one sequence. Since partis returns a
list of the top most likely annotations scenarios for each
rearrangement event, we considered only the scenario with the
highest model likelihood for each sequence. We denote the
indel_reversed_seqs field as sequence_alignment
and naive_seq as germline_alignment as they satisfy
these definitions from the AIRR Rearrangement schema. Several
other fields are renamed to match the AIRR specification when
the definitions align without ambiguity.

Before running summary comparisons, we randomly
downsample to one receptor per clonal family to get a dataset
consisting of unique clonotypes for both the observed and
simulated datasets.We do this sincepartis simulate draws
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from distributions over clonal families for each rearrangement
event as inferred from partis partition. While it is
possible to simulate multiple leaves for each rearrangement, it
is not obvious how to best synchronize this with the observed
clonal family distributions. A more involved analysis would
attempt to mimic the clone size distribution in data as closely
as possible, potentially with correlations between clone size
and other rearrangement parameters, and assess sequence-level
statistics within each clonal family. Here we opt to subsample to
unique clones and avoid abundance biases altogether.

We applied partis in this way to six datasets of IgH
sequences from Gupta et al. (18), which studied B cell repertoires
from donors prior to and following an influenza vaccination.

Scoring Summary Statistic Replication by
Model
We wish to measure how well a given statistic is replicated when
a model performs simulations using parameters inferred from
an observed repertoire dataset. One approach is to score the
statistic s based on the average divergence of observations to
their simulated counterparts when applying s(·), and the average
divergence of observations to other observations when applying
s(·). Suppose we have k experimental repertoires of immune
receptor sequences, and let Ri,obs and Ri,sim, 1 ≤ i ≤ k, denote
the ith observed and simulated repertoire, respectively. For a
given statistic s, let Ds(R1,R2) be the divergence of repertoires
R1 and R2 with respect to s. We can score a simulator’s ability to
recapitulate s from the observed repertoire to the simulated via
the following log relative average divergence (LRAD):

LRAD-data(s) := log





1
1
2 k(k−1)

∑k
i=1

∑

j 6=i Ds

(

Ri,obs,Rj,obs
)

1
k

∑k
i=1 Ds

(

Ri,obs,Ri,sim
)



 .

(8)
For a given summary s, LRAD-data will be positive if the
simulated repertoires tend to look more like their experimental
counterparts in terms of this summary than experimental
repertoires look like other experimental repertoires, and
negative if experimental repertoires tend to look more like
other experimental repertoires than they do their simulated
counterparts. In other words, LRAD-data scores how well a
simulator can differentiate s from an experimental repertoire
among other repertoires, and recapitulate s into its simulation.
Applying the log to the ratio allows for the magnitudes of
scores to be directly comparable (so that a summary with score
a > 0 performs as well as a summary with score −a < 0
performs poorly).

Another related score compares the average divergence of
observations to their simulated counterparts, and the average
divergence of simulations to other simulations. Formally,
this becomes

LRAD-sim(s) := log





1
1
2 k(k−1)

∑k
i=1

∑

j 6=i Ds

(

Ri,sim,Rj,sim
)

1
k

∑k
i=1 Ds

(

Ri,obs,Ri,sim
)





(9)

where the difference from (8) is that the divergences in the
numerator are applied to simulated-simulated dataset pairs
rather than observed-observed dataset pairs. LRAD-sim for a
given summary will be positive if simulated repertoires tend to
look more like their experimental counterparts in terms of this
summary than simulated repertoires look like other simulated
repertoires, and negative if the simulated repertoires tend to look
more alike.

These scores underlie the model validation analyses of
partis and IGoR simulations in the Results section, and
comprise the values displayed in Figures 7, 9. However, this
framework can be used to validate any immune receptor
repertoire simulator which outputs the fields compatible with the
summaries in Table 1, or more generally any set of summaries
generated by a model-based simulator that is not supported
directly by sumrep.

A feature of our methodology is that we use the same tool to
produce simulations that we used to produce the annotations. To
examine the sensitivity of this method, we performed a separate
analysis by obtaining dataset annotations from standalone
IgBLAST (36), and comparing these to simulations based on
partis annotations using IMGT germline databases. This is
discussed in detail in Appendix E; in particular, we find that
scores differ to varying extents between the tools, and argue that
while there are probably some biases when using a common
tool for annotations and simulations, this is also driven by the
differences in the nature of the tools’ specifications. We did not
perform a similar analysis for IGoR annotations since IgBLAST
was used to infer CDR3s within the IGoR workflow.

Materials
The raw data for the TCR summary divergence MDS analysis
comes from Pogorelyy et al. (32), which was postprocessed
into a suitable format for analysis. For each donor-timepoint
combination, a single blood draw was split in replicas at the level
of cell mixture.

The raw data for the BCR summary divergence MDS analysis
comes from Rubelt et al. (33); IgBLAST-preprocessed data was
downloaded from VDJServer in the AIRR format. For quality
control, sequences with a run of 3 or more N bases in the raw
sequence were discarded.

For the TCR model validation analysis, we use six datasets
from Britanova et al. (34), corresponding to labels A4_i107,
A4_i194, A5_S9, A5_S10, A5_S15, and A5_S22. For tractability
purposes, we chose the six datasets with the fewest number of
sequence reads; the number of reads from these six datasets
used in the analysis ranged from 37,363 sequences to 243,903
sequences. These datasets consist of consensus RNA sequences
assembled using UMIs. Most of these sequences are productive;
as previously described, for this example application we are
benchmarking IGoR’s ability to fit complete repertoires rather
than only non-productive repertoires.

The data for the BCR model validation analyses originated
from samples first sequenced and published in Laserson et al.
(37), although we used the Illumina MiSeq data published in
Gupta et al. (18) for our analyses. These datasets represent
repertoires of three human donors from multiple time points

Frontiers in Immunology | www.frontiersin.org 16 November 2019 | Volume 10 | Article 2533

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Olson et al. sumrep: Summary Statistics for Repertoires

following an influenza vaccination. We use datasets from time
points −1h and −8d for the FV, GMC, and IB donors for
the summary informativeness and partis model validation
analyses; the +1h, +7d, and +28d datasets for the FV, GMC,
and IB donors for the summary informativeness validation; and
the FV -1 h dataset for the approximation routine performance
analyses in Appendices A, B.

CONCLUSIONS

We have presented a general framework for efficiently
summarizing, comparing, and visualizing AIRR-seq datasets,
and applied it to several questions of scientific interest. One
can imagine many further applications of sumrep, as well
as promising avenues of research: contrasting repertoires
in the context of antigen response or vaccination design
and evaluation may shed some light on which summaries
can distinguish between such covariates; and comparing the
summary distributions of naive repertoires frommultiple healthy
individuals is likely to aid our understanding of the patterns of
variability exhibited by “normal” repertoires, which in turn may
aid the detection of repertoire abnormalities. sumrep could
also be used to evaluate the extent to which artificial lymphocyte
repertoires look like natural ones (38).

There are several other packages dedicated to detailed
summaries and visualization of immune receptor repertoires.
The tcR (39) and bcRep (40) packages for R include methods
for retrieving and comparing gene usage summaries, computing
clonotype diversity indices, and visualizing various repertoire
summaries. VDJtools (41) is a command line tool which
performs similar repertoire summarization, comparison, and
visualization tasks for TCR data. Desktop GUI-based programs
include ImmunExplorer (42) and Vidjil (43). Vidjil
is also available as a webserver, as is ASAP (44). Antigen
Receptor Galaxy (45) offers online access to many analysis
tools. These tools have a subset of the summary statistics
described here, and do not have the comparative analysis
features of sumrep. The IGoR (19) software features an
algorithm for summarizing statistics of the V(D)J rearrangement
process; however, its main focus is on learning the basic model
for non-productive T- and B-cell repertoire and it does not
provide any built-in methods for comparing inferred models
between datasets.

A natural extension of the model validation in this report
would be to assess the performance ofmany competing repertoire
analysis tools over a larger group of datasets. sumrep can be
also used to detect systemic biases between different library
preparation protocols and control for batch effects that can

confoundmeta-analysis of AIRR-Seq data.Moreover, whilemany
of the summaries are applied to the CDR3 region by default,
it would be interesting to perform separate analyses restricted
to different CDRs and framework regions, as physiochemical
characteristics of these regions can differ greatly.

Finally, although sumrep already supports the AIRR
rearrangement schema by default, we plan to thoroughly
integrate sumrep as a downstream analysis tool for any AIRR-
compliant software or workflow.
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