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ARTICLE

Miro clusters regulate ER-mitochondria contact
sites and link cristae organization to the
mitochondrial transport machinery
Souvik Modi 1,2,8*, Guillermo López-Doménech 1,8*, Elise F. Halff 1,7, Christian Covill-Cooke1,

Davor Ivankovic 1, Daniela Melandri 1, I. Lorena Arancibia-Cárcamo 1, Jemima J. Burden 3,

Alan R. Lowe 4,5,6 & Josef T. Kittler 1*

Mitochondrial Rho (Miro) GTPases localize to the outer mitochondrial membrane and are

essential machinery for the regulated trafficking of mitochondria to defined subcellular

locations. However, their sub-mitochondrial localization and relationship with other critical

mitochondrial complexes remains poorly understood. Here, using super-resolution fluores-

cence microscopy, we report that Miro proteins form nanometer-sized clusters along the

mitochondrial outer membrane in association with the Mitochondrial Contact Site and

Cristae Organizing System (MICOS). Using knockout mouse embryonic fibroblasts we show

that Miro1 and Miro2 are required for normal mitochondrial cristae architecture and Endo-

plasmic Reticulum-Mitochondria Contacts Sites (ERMCS). Further, we show that Miro cou-

ples MICOS to TRAK motor protein adaptors to ensure the concerted transport of the two

mitochondrial membranes and the correct distribution of cristae on the mitochondrial

membrane. The Miro nanoscale organization, association with MICOS complex and regula-

tion of ERMCS reveal new levels of control of the Miro GTPases on mitochondrial

functionality.
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M itochondria generate ATP to drive key cellular func-
tions, including ion pumping, intracellular trafficking
and cellular signaling cascades1,2. The mitochondrial

population are trafficked to where they are needed to meet
local energy and Ca2+ buffering demands3. Miro proteins
form complexes with the TRAK adaptors and dynein/kinesin
motors to regulate the microtubule-dependent transport of the
mitochondria4,5. Recently, an actin-dependent transport of the
mitochondria has also been linked to Miro regulation through
the recruitment and stabilization of the mitochondrial myosin 19
(Myo19) to the outer mitochondrial membrane (OMM)6,7. In
yeast, Miro exists as a single orthologue, Gem1, important for
correct mitochondrial inheritance and cellular viability8,9. In
mammals, there are two Miro family members, Miro1 and Miro2,
that share ~60% sequence identity, comprising two GTPase
domains flanking two EF-hand Ca2+-binding domains and a C-
terminal transmembrane domain that targets them to the
OMM10. Although their role in mitochondrial transport is well
established, far less is known about their interactions with other
key protein complexes located at the OMM or the inner mito-
chondrial membrane (IMM).

The mitochondrial contact site and cristae organizing system
(MICOS) located in the IMM is a large protein complex (often > 1
MDa) mainly formed by Mic60/Mitofilin, Mic19/CHCHD3,
Mic10/MINOS1, and Mic25/CHCHD611–14. Constituents of
the MICOS complex are concentrated in discrete patches on the
IMM decorating the cristae junctions15. The MICOS complex is
crucial for maintaining cristae architecture as knockdown of
MICOS components leads to mitochondria with altered
cristae morphology resulting in compromised oxidative
phosphorylation16,17. In addition, the MICOS complex acts as a
bridge between the OMM and the IMM by forming a higher
order complex with Sam50, known as the mitochondria inter-
membrane bridging complex (MIB)18. Although it is postulated
that yeast Gem1, and Drosophila dMiro, could be associated with
individual MICOS components19,20, association of mammalian
Miro proteins with intact MICOS complex and its functional role
has not yet been characterized.

Mitochondria also engage in physical interaction with the
endoplasmic reticulum (ER) through dedicated protein com-
plexes at contact sites, known as ERMES (ER–Mitochondria
Encounter Structures) in yeast or ER–Mitochondria contact sites
(ERMCS) in mammals21. Yeast Gem1 and Drosophila dMiro have
been identified as integral parts of the ERMES and ERMCS
complexes, respectively8,22. Interaction mapping in yeast estab-
lished that ERMES components and MICOS complex genes
shared a strong genetic interaction between them and also
identified similar interactions with gem119. However, the rela-
tionship between Miro proteins and the MICOS and ERMCS
complexes in mammalian cells remains largely unexplored.

By combining biochemical, super-resolution, and electron
microscopy techniques, we address here the roles of mammalian
Miro proteins in the regulation of mitochondrial cristae archi-
tecture and ERMCS in mammalian cells. Genetic ablation of both
Miro proteins in mouse embryonic fibroblasts (MEF) results in
reduced ERMCS and in the disruption of mitochondrial cristae
organization. Using Structured Illumination Microscopy (SIM)
and dual-color direct Stochastic Optical Reconstruction Micro-
scopy (dSTORM) imaging of the mitochondria, we show the sub-
mitochondrial organization of Miro proteins. Miro1 and Miro2
form discrete clusters on the mitochondrial membrane, the dis-
tribution of which closely correlate with MICOS components.
Biochemically, we show that Miro1 and Miro2 interact with
Sam50 and MICOS. Furthermore, we also show that Miro pro-
teins link MIB/MICOS complexes, spanning the inner and
OMMs, to the motor adaptor proteins TRAK1 and TRAK2. Our

data establish a role for Miro proteins in connecting the mito-
chondrial transport machinery with the MICOS complexes to
ensure the coordinated transport of both mitochondrial mem-
branes and the homogeneous distribution of cristae and cristae
junctions inside the mitochondria. Miro proteins, thus, guarantee
the appropriate supply of the mitochondrial compartments
responsible for energy production to the regions in the cell where
mitochondria are delivered.

Results
Loss of Miro1 and Miro2 alters mitochondrial ultrastructure.
We recently showed that loss of both Miro proteins in MEFs leads
to altered mitochondrial distribution and morphology6. To fur-
ther explore the effects of Miro loss on mitochondrial structure,
we performed Structured Illumination Microscopy (SIM), a
super-resolution technique that provides an optical resolution
almost twice the diffraction limit23. Using SIM, wild-type (WT)
cells expressing a mitochondrial matrix-targeted GFP (mtRoGFP)
showed a predominance of thin and long mitochondria, with
individual mitochondria having continuous GFP staining with
occasional cells presenting short and round mitochondria
(Fig. 1a, b). In contrast, ~70% of Miro1/2 double-knockout
(DKO) cells presented a discontinuous and often hollow matrix-
targeted GFP signal (Fig. 1a, b), which correlated with a pre-
dominance of shorter mitochondria with enlarged and more
rounded mitochondrial segments. The discontinuous mitochon-
drial matrix suggests a role for Miro proteins in maintaining the
architecture of the IMM. Importantly, re-expression of either
mycMiro1 or mycMiro2 in DKO cells rescued mitochondrial
matrix continuity (Fig. 1b; Supplementary Fig. 1).

To further explore the effects of depleting Miro proteins on
mitochondrial structure and morphology, we carried out ultra-
structural analysis of MEF cells using transmission electron
microscopy (TEM). In WT MEFs, the majority of mitochondria
showed normal cristae structure and a homogeneous cristae
distribution throughout the mitochondrial segments (Fig. 1c–e).
In contrast, the majority of DKO cells presented an altered cristae
architecture with frequent vesiculated mitochondrial matrix
(Fig. 1c, d). Importantly, DKO cells showed a nonuniform
arrangement of the mitochondrial cristae, with some mitochon-
drial regions having the normal density of cristae alternated with
regions that appeared enlarged and devoid of cristae (Fig. 1e).
Together, these data indicate that Miro proteins play a role in
regulating mitochondrial morphology and in the maintenance of
the mitochondrial cristae architecture.

To test whether these changes in the mitochondrial structure
could be a consequence of reduced levels of protein components
known to regulate cristae structure, we carried out western blot
analysis of lysates from three different WT and DKO MEF lines.
We did not observe any significant change in the levels of several
MICOS components tested (Mic19/CHCHD3, Mic60/Mitofilin,
and Mic27/ApooL). The OMM protein Sam50, known to closely
associate to the MICOS complex to form the MIB complex and
bridge the IMM and the OMM, also did not show any significant
change in DKO cells. In addition, we observed no changes in the
levels of proteins related to Miro transport function (TRAK1 or
TRAK2) or mitochondrial components, like ATP5α (CVα) or
Tom20 (Fig. 1f). In contrast, we report a striking fourfold increase
in the levels of Inositol 1,4,5-trisphosphate (IP3) receptor (IP3R),
a known regulator of the ER and mitochondria contact sites that
regulates Ca2+ communication between the two organelles
(Fig. 1f). Other components of ERMCS that act in coordination
with IP3R, like GRP75 and VDAC1, were also found to be
moderately upregulated, although not to a statistically significant
level (Fig. 1f).
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Loss of Miro1 and Miro2 alters ER/mitochondria commu-
nication. IP3Rs located at the ER are one of the main Ca2+-release
channels24 and upon activation by IP3 can transfer Ca2+ to the
mitochondria through a IP3R–VDAC complex25. In mammalian
cells, IP3R forms a complex with GRP75 and VDAC to maintain

ERMCS26. At steady state, IP3R levels are tightly regulated, and
alteration of IP3R expression has been implicated with changes in
ER morphology and ER Ca2+ release27,28. In addition, recent
studies have demonstrated the presence of Gem1/dMiro at
ER–mitochondria contact sites in yeast and Drosophila,
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Fig. 1 Loss of Miro is associated with altered cristae morphology. a Imaging of the mitochondrial matrix with mtRoGFP. WT and Miro DKO MEF cells were
transfected with the mitochondrial matrix-targeted mtRoGFP and imaged using structured illumination microscopy (SIM) (scale bar: 10 μm; insets: 1 μm).
b Quantification of the images shown in (a) by scoring abnormalities in matrix continuity revealed by GFP in WT, DKO, and DKO cells re-expressing Miro
proteins (n= cells; in which 32 WT, 35 DKO, 24 DKO re-expressing Miro1 and 25 DKO re-expressing Miro2 cells were assessed, obtained from three
independent preparations; One-way ANOVA, Bonferroni post hoc). c TEM images of mitochondrial cristae morphologies observed in WT and Miro DKO
MEFs (scale bar: 500 nm). d Quantification of TEM images after classification of the cells as having normal cristae morphology or an altered cristae
morphology (n= experiments; in which 54 WT and 51 Miro DKO cells were analyzed from two independent sample preparations; Student’s t test with
Welch’s correction). e Representative EM images of the mitochondria from WT and DKO cells showing the homogeneity of cristae in WT cells and the
appearance of spaces and enlargement of mitochondrial units in regions without cristae in DKO cells (scale bar: 1 μm). f Western blot analysis and
quantification of three different cell lines independently generated for each genotype (n= independently generated cell lines; three for WT and three for
DKO; Student’s t test) to analyze cellular levels of proteins related to the cytoskeleton, MICOS complex, and ERMCS. Error bars represent ± SEM.
Significance: *p < 0.05; **p < 0.01; ***p < 0.001
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respectively8,22,29. To study whether Miro accomplishes a role in
regulating the connectivity of the ER membranes, we performed a
fluorescent recovery after photobleaching (FRAP) assay in our
MEF cell lines. FRAP analysis of ER-luminal-targeted DsRed
(DsRedER) showed no significant difference in fluorescence

recovery between WT and DKO cells (Fig. 2a, b; mobile fraction
WTM ~87 ± 7.5% against DKOM ~86 ± 8.2%, Mean ± SD; Student’s
t test), with just a delay in the initial recovery time (Fig. 2a, b; t1/2
recovery time: 1.80 s ± 1.56–2.4 s for WT and 2.40 s ± 1.80–3.46 s
for DKO; median ± interquartile range (IQR), Mann–Whitney
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U test, p= 0.019). This indicates that organelle connectivity of the
ER remains overall constant upon loss of Miro.

To more specifically test whether the increase in IP3R
associates with changes in ERMCS in Miro DKO cells, we
transfected WT and DKO cells with GFPSu9 and DsRedER to label
the mitochondria and ER, respectively, and carried out
deconvolution confocal microscopy. DKO cells showed a
significant decrease in the overlapping area between the ER and
mitochondria (measured by Mander’s coefficient) (Fig. 2c, d),
which was specific to the loss of Miro as re-expression of either
mycMiro1 or mycMiro2 in DKO cells rescued the amount of
overlap between both compartments (Fig. 2c, d). This was further
confirmed using TEM by transfecting an ER-targeted HRP
construct (KDEL-HRP)30 to enhance the contrast of ER
structures and allow the identification and quantification of
ERMCS (defined by proximity of the ER and mitochondria
within 35 nm). DKO cells showed a decreased number of contacts
between the two organelles (Fig. 2e, f), confirming that Miro
proteins accomplish a role in regulating the ER and mitochondria
association. In addition, we measured the mitochondrial Ca2+

uptake upon ATP-induced Ca2+ release from ER stores (Fig. 2g).
WT cells required 9.65 s (9.65 ± 0.79 s, mean ± SEM) to reach
maximum amplitude (F/FMin= 1.44 ± 0.03-fold mean ± SEM),
while DKO cell showed a significantly delayed uptake (15.96 ±
1.27 s, mean ± SEM) and reduced amplitude (F/FMin= 1.26 ±
0.04, mean ± SEM) (Fig. 2g, h). This suggests that the ER/
mitochondrial handling of Ca2+ is severely affected as a
consequence of a decrease in ERMCS in DKO cells. We also
observed that upon treatment with ATP, there was a significantly
larger loss of Ca2+ from ER stores in DKO cells than in WT cells
(Fig. 2g). This is probably due to increased level of IP3R receptors
in DKO cells, as more IP3R may result in a significantly larger
Ca2+ release upon stimulation28.

Miro proteins associate with MICOS components. Mitochon-
drial cristae are maintained by the interplay between the MICOS
complex located at cristae junctions and Sam50 located at the
OMM31,32. Alteration of the MICOS complex proteins has
revealed their importance for the maintenance of mitochondrial
cristae ultrastructure32–34. The disruption of cristae architecture
in DKO MEFs (Fig. 1c, e) indicates a possible link between
MICOS and Miro. Indeed, immunoprecipitation of GFPMiro1
or GFPMiro2 in HeLa cells revealed robust interactions with the
core components of the MICOS complex Mic60/Mitofilin and
Mic19/CHCHD3 and with the MIB complex-forming component
Sam50, whereas an unrelated OMM protein, Tom20, did not
co-immunoprecipitate with either Miro1 or Miro2 (Fig. 3a).
Interestingly, we did not detect interaction between Miro and
Mitofusins or Mtx1, suggesting that these interactions might be
low-affinity, transient, or cell-type dependent (Fig. 3a). Control
experiments with EGFP or the mitochondrially targeted GFPSu9
did not co-immunoprecipitate any of the MICOS components
tested (Fig. 3a; Supplementary Fig. 2) confirming the specificity of
the interactions. Importantly, we confirmed endogenous asso-
ciation between Miro2 and Sam50 using specific antibodies
against Miro2 in WT mouse brains, while as expected, anti-Miro2
antibodies did not co-immunoprecipitate Sam50 in brain lysates
from Miro2 KO animals (Fig. 3b). Furthermore, Mic60/Mitofilin
was also specifically co-immunoprecipitated with Miro2 in lysates
from WT brains (Fig. 3b). We further confirmed the interaction
of endogenous Miro2 with Sam50 and Mic60/Mitofilin in situ
using a proximity ligation assay (PLA), which allows to test
association of proteins that reside in close proximity (30–40 nm)
within the same complex35. The presence of the antibody pair
showed a fourfold enrichment of fluorescent signals compared

with the single antibodies confirming that native Miro2 and
Sam50 as well as Miro2 and Mic19/CHCHD3 can be found
associated (Fig. 3c–e). Thus, these experiments indicated that
Miro proteins can be detected in a complex with key components
of the MIB/MICOS complex.

Miro localizes in discrete clusters on the mitochondrial surface.
Super-resolution imaging has shown that the MICOS complex
can form an array that appears as “discontinuous rail-like”
structures15. Since Miro proteins interact with several MICOS
components and loss of Miro results in cristae deformation, we
investigated the sub-mitochondrial organization of Miro proteins
and its relationship with the MICOS complexes. Diffraction-
limited confocal microscopy revealed that either GFP-tagged or
myc-tagged Miro proteins expressed in HeLa cells localized to the
mitochondrial network as expected (Fig. 4a). Using SIM imaging,
we observed that expression of both mycMiro1 and mycMiro2
exhibited a discontinuous staining pattern on the mitochondrial
membrane that was enriched in certain locations (Fig. 4a; Sup-
plementary Fig. 3). Importantly, endogenous Miro2 in MEFs
showed a similar discontinuous pattern, confirming that native
Miro proteins localize in discrete domains along the mitochon-
drial membrane (Supplementary Fig. 4). To investigate this fur-
ther, we took advantage of dSTORM36,37 imaging (a super-
resolution technique which provides almost sixfold higher reso-
lution than SIM) and performed correlative SIM/dSTORM38.
Using dSTORM, we observed individually resolved clusters in
mycMiro1 expressing HeLa cells along the mitochondrial mem-
brane that were not resolved under SIM imaging (Supplementary
Fig. 5). Similar nanoclusters were also observed upon dSTORM
imaging of GFPMiro1 or GFPMiro2 in HeLa cells (Fig. 4b), while
in contrast, mitochondrial matrix-targeted GFPSu9 showed a
more uniform distribution (Fig. 4b). In addition, we imaged HeLa
cells expressing low to very high amounts of GFPMiro2. Cluster
analysis based on a pairwise correlation method39 showed that
Miro protein levels in the OMM do not play a significant role in
this nanoscale organization (Supplementary Fig. 6A, B). Fur-
thermore, we performed density-based spatial clustering of
applications with noise (DBSCAN), which has been widely used
to asses clustering of various membrane proteins40. The DBSCAN
cluster map showed nanoscale domains formed by both
GFPMiro1 and GFPMiro2 in HeLa cells (Fig. 4c). We next quan-
tified the sizes of Miro clusters by two complementary methods.
First, we analyzed the cluster sizes using Ripley’s K-function41

followed by quantification of cluster sizes post reconstruction of
dSTORM images using the Feret’s diameter (longest distance
between any two points along the perimeter of each cluster).
Ripley’s K-function indicated that both GFPMiro1 and GFPMiro2
formed a cluster size around 100–150 nm (Fig. 4d). The dis-
tribution of diameters revealed clusters ranging from 50 to
250 nm (Fig. 4e). GFPMiro1 clusters were found to have a median
diameter ~100 nm, very similar to that of GFPMiro2 clusters
(Fig. 4e), both of which were much larger than the localization
precision of the instrument (marked as a red bar in Fig. 4e).
Finally, we also imaged GFPMiro2 clusters in our MEF cells and in
primary cultures of hippocampal neurons. We observed
nanocluster-like organization of GFPMiro2 in both MEFs and in
primary hippocampal neurons similar to HeLa cells (Supple-
mentary Fig. 7A, B), demonstrating that the nanoscale organi-
zation of Miro protein complexes appears to be conserved across
cell types.

The cluster organization of both Miro1 and Miro2 prompted
us to hypothesize that both Miro proteins could be interacting
partners. By co-transfecting myc-tagged and GFP-tagged
versions of Miro1 and Miro2 and performing GFP-trap
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immunoprecipitations, we observed that both Miro1 and Miro2
can interact with themselves and with each other (Fig. 4f),
suggesting that Miro1 and Miro2 multimers may form molecular
platforms in the OMM upon which other mitochondrial
molecular structures can be built.

Miro nanodomains are associated with MICOS nanoclusters.
In conventional confocal imaging, Miro and MICOS components
exhibit homogeneous staining appearing to co-localize with each
other (Supplementary Fig. 8A, B). To explore whether MICOS
clusters are closely associated with Miro nanodomains, we per-
formed dual color dSTORM in HeLa cells transfected with
GFPMiro2 and immunostained with an antibody against Mic60/
Mitofilin. Mic60/Mitofilin nanoclusters are regularly spaced and

sparser than those observed for Miro, however, both sets of
clusters appeared similar in size (Fig. 5a). Mic60/Mitofilin and
Miro2 clusters were often present in close proximity to one
another with partial overlap between them. The extent to which
the two proteins co-cluster was calculated using Van Steensel’s
cross-correlation function (CCF)42 which showed a positive peak
(Fig. 5d, e), indicating that both the clusters are positively cor-
related in the spatial domain. To test whether this correlation was
specific, we transfected GFPMiro2 and labeled with an anti-GFP
antibody and a nanobody against GFP conjugated to Alexa 647.
The correlation analysis and mean CCF values of both anti-GFP
signals showed a similar pattern to that obtained for Mic60/
Mitofilin indicating that the correlation between Miro2 and
Mic60/Mitofilin is specific (Fig. 5b, d, e). Similar results were
obtained when we calculated the nearest neighbor distance
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(NND)43 between Miro2 and Mic60/Mitofilin, which showed that
Miro clusters and Mic60/Mitofilin clusters are localized adjacent
to each other in a periodic manner (Supplementary Fig. 8C).
Similarly, GFPMiro1 clusters also positively correlated with
Mic60/Mitofilin clusters (Supplementary Fig. 8D, E). In contrast,
dual color dSTORM with GFPMiro2 and Tom20 (which we pre-
viously showed to be non-interacting with Miro proteins) showed

a significantly lower mean CCF peak when compared with
GFPMiro2 and Mic60/Mitofilin (Fig. 5c–e) consistent with the
specificity of the association between MICOS and Miro clusters.

Miro1/2 regulates the MICOS complex formation and dis-
tribution. Our data indicate that Miro proteins form clusters in
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the mitochondrial surface that associate with MICOS clusters and
interact with MICOS components and Sam50. Due to the
alterations in cristae organization observed in Miro DKO cells, we
aimed at understanding whether the loss of Miro proteins affects
the interaction between the core components of the MIB/MICOS
complexes spanning OMM and IMM. Both Mic19/CHCHD3 and
Sam50 pulled down the core components of MIB/MICOS, e.g.,
Mic60/Mitofilin, Mic19/CHCHD3, and Sam50 (Fig. 5f). These
interactions appeared conserved in the absence of Miro (Fig. 5f),
indicating that there is no gross alteration of the core MICOS
complex. PLA assays, which allows the in situ analysis of protein
interactions, revealed that in absence of Miro there was a mild but
significant decrease in the extent to which the core components of
the MIB/MICOS interact (Fig. 5g, h). This weakening of inter-
action was consistent between Sam50 and Mic60/Mitofilin, and
between Mic60/Mitofilin and Mic19/CHCHD3 (Fig. 5g, h). Thus,
while not essential for the assembly of MICOS complexes, Miro
may regulate the overall stability of at least some species of these
complexes, and its absence leads to the destabilization of parti-
cular forms of the MICOS/MIB complexes.

Next, we wanted to directly test how MICOS organization at
the IMM is affected by the loss of Miro. We carried out dSTORM
imaging after staining WT and DKO cells against the core
MICOS component Mic19/CHCHD3. In WT cells, Mic19/
CHCHD3 showed an array of dense localizations evenly
distributed throughout the entire mitochondria (Fig. 6a). In
contrast, DKO cells showed mitochondrial regions with sporadic
localizations of Mic19/CHCHD3 (Fig. 6a). In addition, DBSCAN
analysis40 in WT MEFs revealed the previously reported
formation of Mic60/Mitofilin clusters arranged in a “discontin-
uous rail-like distribution”15 (Fig. 6a, b). Importantly, in DKO
cells, this array of clusters was severely affected, with large areas
of mitochondria devoid of Mic19/CHCHD3 clusters (Red circles
in Fig. 6b). The heterogeneity of Mic19/CHCHD3 clusters
distribution correlated with an altered NND distribution in
DKO cells compared with WT (Fig. 6c). In comparison with WT
MEFs, DKO cells showed decreased shorter NND distances
(~60–110 nm), while longer NND distances (> 110 nm) were
increased (Fig. 6c).

Miro proteins link MICOS complex to the transport machin-
ery. Distribution of MICOS clusters is affected by the loss of Miro
proteins. Due to its role in mitochondrial transport, we hypo-
thesized that Miro might well serve as a link between MICOS
clusters and the cytoskeleton. To test this hypothesis, we per-
formed immunoprecipitation assays from WT and Miro DKO
cell lysates with the core MICOS components and the two TRAK
adaptor proteins. We observed a strong co-immunoprecipitation
of TRAK1 with antibodies against Mic19/CHCHD3 or Sam50
(Fig. 6d). Strikingly, TRAK1 was no longer able to co-

immunoprecipitate with Mic19/CHCHD3 or Sam50 in Miro
DKO cells, indicating that the interaction between TRAK1 and
Mic19/CHCHD3 (and Sam50) is regulated by Miro (Fig. 6d).
TRAK2 was also observed to co-immunoprecipitate with MICOS
components only in WT cells although to a lower extent than that
of TRAK1 (Fig. 6d), further supporting the Miro-dependent
interaction between TRAK1/2 and MICOS. Reciprocally, both
Sam50 and Mic19/CHCHD3 were readily detected in immuno-
precipitates using a TRAK1 antibody from WT lysates, but not
from DKO cell lysates (Fig. 6d). Thus, Miro proteins maintain an
association between the cristae structures and the motor machi-
neries through a complex containing MIB/MICOS components
and the TRAK motor adaptor proteins.

We have recently shown that TRAK proteins can localize to,
and induce the anterograde trafficking of, the mitochondria even
in the absence of Miro6. The dependency on Miro of the TRAK1/
MICOS association therefore suggested that the transport
machinery regulated by Miro ensures that the pulling forces
generated by the motors are directly applied to the MIB/MICOS
complexes to facilitate the concerted transport of both mitochon-
drial membranes. To test this, we transfected WT and DKO cells
with a version of GFP fused to the first 70 amino acids of Tom70
to target the protein to the OMM (Tom70(1–70)GFP)44 and co-
labeled endogenous Mic19/CHCHD3-positive clusters with
specific antibodies. Again, these experiments showed that the
Mic19/CHCHD3 signal distributed heterogeneously in DKO cells
with some mitochondria showing high density of Mic19/
CHCHD3 signal together with other mitochondria showing very
low signal (Fig. 6e). To force the uneven transport of membrane
compartments in our MEF models, we expressed TRAK1 and the
motor KIF5C (together with Tom70(1–70)GFP to label mitochon-
dria) and observed that mitochondria accumulated in the
periphery of the cells both in WT and in DKO cells as expected6.
Strikingly, in WT cells, the abundance of Mic19/CHCHD3
clusters matched the distal accumulation of the mitochondria,
showing higher signal in distally transported mitochondria when
compared with mitochondria that did not reach the periphery,
thus suggesting that TRAK1/KIF5C-directed trafficking co-
transported Mic19/CHCHD3-positive clusters (Fig. 6f). In
contrast, in the absence of the TRAK1/MICOS bridge mediated
by Miro, distally transported mitochondria were almost devoid of
Mic19/CHCHD3 clusters in DKO cells (Fig. 6e, f), indicating that
a critical role of Miro in regulating mitochondrial transport is to
couple the TRAK/kinesin motor machineries to the MIB/MICOS
complexes.

TRAK/MICOS complexes control the distribution of IMM
components. By linking the mitochondrial transport machinery
to MICOS clusters, Miro may coordinate the concerted transport
of the OMM with the IMM containing the complexes responsible

Fig. 4 Sub-organellar localization of Miro proteins in the mitochondria. a Widefield TIRF image of a representative HeLa cell overexpressing mycMiro1 and
immunostained with anti-myc antibody. Inset shows the super-resolution image after structured illumination (SIM) (scale bar: 10 μm; inset: 1 μm).
b dSTORM image of HeLa cells transfected with GFPMiro1, GFPMiro2, or GFPSu9. Both Miro1 and Miro2 localize to nanometer-sized clusters on the
mitochondrial surface (scale bar: 5 μm; inset: 0.5 μm). c Density-based spatial clustering of applications with noise (DBSCAN) analysis of GFPMiro1 and
GFPMiro2. Clustered localizations are represented by pseudo-color coding with localizations that are nonclustered is represented as gray pixels (scale bar:
0.5 μm). d Mean Ripley’s K-function analysis of GFPMiro1 (Red) and GFPMiro2 (Black). Transformed K-function (L(r)-r) is represented against increasing
cluster radius. The homogeneous Poisson distribution of the localizations is shown in blue (n= cells; in which 13 Miro2 and 9 Miro1 cells from three
independent experiments were used). e Size distribution of clusters formed by GFPMiro1 and GFPMiro2, respectively, in HeLa cells. After reconstruction of
dSTORM images, mean Feret’s diameter was measured using ImageJ and plotted. Red line represents localization precision of the dSTORM setup (median
Feret’s diameter; GFPMiro1= 108 nm ± 85–162 nm and GFPMiro2= 95 nm ± 67–150 nm; mean ± IQR; n= 7 Miro2 cells compromising 23707 clusters and 7
Miro1 cells compromising 22876 clusters, from three independent measurements). fWestern blot analysis of Miro1 and Miro2 interaction. HeLa cells were
transfected with GFP as a control or GFPMiro 1/2 and mycMiro1/2. Immunoprecipitation was carried out using GFP-trap agarose beads and immunoblotted
with GFP and myc antibodies
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for ATP generation. To test this hypothesis, we investigated the
relative distribution of an IMM component of the OXPHOS
system responsible for energy production (the ATPase subunit
ATP5α) and an OMM protein, Tom40. We took advantage of our
recently developed tools to accurately measure signal distribution
in cells with restricted size and shape growing in adhesive
micropatterned substrates (see Supplementary Methods for
details)6,45. We again forced the redistribution of mitochondria to
the periphery of the cells by expressing TRAK1 and KIF5C and
measured the relative distribution of Tom40 and ATP5α on
mitochondria (Fig. 7). In WT cells, both ATP5α and Tom40-
signal presented a similar distribution in the mitochondrial net-
work, consistent with a coordinated transport of both membranes
(Fig. 7a, b). In stark contrast, DKO cells showed a relative

accumulation of the OMM marker, Tom40, in the periphery of
the cells while the ATP5α signal appeared more accumulated in
more proximal structures (Fig. 7a, b). Projection of all tips from
all 32 cells imaged showed a consistent relative accumulation of
the IMM marker (ATP5α) in the periphery of WT cells with
respect to Tom40 signal, while in DKO cells the relative accu-
mulation of the OMM marker in the periphery was accentuated
(Fig. 7c, d). Furthermore, we also measured the density of signal
in mitochondria of ATP5α and Tom40 in concentric rings
radiating out from the center of the cell (MitoSholl analysis)6,46

and calculated the ratios of the normalized signals (ATP5α/
Tom40) to plot them as a function of distance (Fig. 7e). The
resulting plot shows that, in WT cells, the ATP5α/Tom40 ratio
increases toward the periphery indicating that Miro-regulated
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TRAK1/KIF5C mitochondrial transport preferentially enriches
the transported mitochondria with IMM components, perhaps by
accumulating them by the pulling forces applied onto the MICOS
complexes. In contrast, in DKO cells this ratio sharply drops in
the most distal regions of the cell (Fig. 7e), indicating that,
without Miro, TRAK-directed mitochondrial transport fails to
efficiently couple the IMM to the mitochondrial transport
pathway.

Altogether, these results suggest that Miro acts as a critical
adaptor to link the mitochondrial transport machinery to the
mitochondrial cristae organization to ensure the concerted
transport of the OMM with the IMM components to guarantee
the appropriate provision of energy to the regions where
mitochondria are delivered.

Discussion
Here, we demonstrate the nanoscale spatial organization and
protein complex formation of the Miro mitochondrial GTPases
and their dual role in regulating the formation and functionality
of the ERMCS and in connecting the MIB/MICOS complexes,
responsible for maintaining cristae architecture, to the mito-
chondrial transport pathway. Miro proteins link the TRAK motor
adaptors to the MICOS complexes to ensure the correct dis-
tribution of MICOS throughout the mitochondria and to facilitate
the coordinated delivery of both membranes during mitochon-
drial transport.

ERMCS are key structures for the regulation of Ca2+ com-
munication between the ER and mitochondria and play impor-
tant roles in the regulation of mitochondrial division and the
segregation of mitochondria and mtDNA in newly generated
mitochondrial tips47. In yeast, the Miro homolog Gem1 is asso-
ciated with the regulation of ER–mitochondria connections8. In
mammals, Miro interacts with Mitofusins and DISC1, which are
known to be associated with ERMCS48–50. Our data show that, in
addition, the absence of Miro proteins leads to a decrease in
contacts between the ER and mitochondria, which correlates with
alterations in mitochondrial Ca2+ uptake and in the intraluminal
concentration of Ca2+ in the ER. This role of Miro proteins in
maintaining the ER–mitochondrial Ca2+ homeostasis is sup-
ported by recent reports that link dMiro to the control of the
VDAC1–IP3R complexes that regulate Ca2+ communication in
Drosophila29,51. Interestingly, increased levels of IP3R have been
previously associated with increased ER Ca2+ release, which in
turn has an impact on muscle contractility, induction of apop-
tosis, and in the regulation of mitosis and that has been associated
with multiple human diseases52–54. Altered Ca2+ communication
between the ER and mitochondria due to a decrease in ERMCS
might be responsible for the increase in the protein levels of IP3R
in Miro DKO cells. This provides striking evidence for the exis-
tence of a regulatory feedback mechanism that can control the
number and composition of ER–mitochondrial contacts,
depending on the activity of the ERMCS complexes. It is worth
noting that the upregulation of IP3R might be a direct result of
altered ER-associated degradation (ERAD) at ERMCS55. IP3R
levels are controlled by ubiquitination, and the recent identifi-
cation of the E3-ubiquitin ligase, Gp78, and other ERAD-
associated proteins at ERMCS suggests that loss of ERMCS might
affect the ubiquitination and subsequent proteasomal degradation
of IP3R51,56. Our results suggest that this regulatory mechanism
may be controlled by the levels or activity of Miro proteins
although further studies are needed to uncover the molecular
targets of Miro regulation.

Combined loss of both Miro proteins disrupts the architecture
of mitochondrial cristae. This effect is reminiscent of the
impact of depleting MICOS complex components, such as

Mic60/Mitofilin, Mic19/CHCHD3, or some MICOS-associated
proteins14,57–60. Knockdown of Sam50, an OMM protein, also
results in the loss of cristae structure pointing at the key role of
the MIB and cross-talk between inner and OMMs in regulating
cristae architecture18,32. Our observations indicate a link between
Miro and MIB/MICOS, which was previously postulated by both
genetic and mass spectrometric based screens19,34. Super-
resolution imaging shows that both Miro1 and Miro2 form
nanoclusters of ~100 nm in size that are distributed throughout
the mitochondrial network, reminiscent of clusters observed with
MICOS proteins15. Moreover, dual-color dSTORM imaging
indicates a close correlation in the distribution of Miro and
MICOS protein clusters. Furthermore, we demonstrate that the
loss of Miro proteins disrupts the previously reported “dis-
continuous rail-like” distribution of MICOS complexes
throughout the mitochondria15.

The disruption of mitochondrial cristae architecture by loss of
Miro, while widespread, does not perfectly match that observed
upon deletion of MICOS components or Sam50, which are
usually described as “onion-like” membranous structures60.
Instead, the majority of the mitochondria in Miro DKO cells
presents large regions of the mitochondria with low density of
cristae which often appear vesiculated. Because proteins embed-
ded in the environment of the phospholipid bilayer are dynamic
and can diffuse laterally61, Miro proteins might provide structural
support to the MIB/MICOS complexes through the TRAK
adaptor interaction. MIB/MICOS complexes that have lost the
Miro/TRAK anchor might be subject to uncontrolled lateral
diffusion in the OMM leading to the loss of their “discontinuous
rail-like” distribution15. In addition, it is possible that MIB/
MICOS complexes that are not anchored to the cytoskeleton are
rendered less stable and dissociate to a certain extent, explaining
why we observe a small but significant decrease in the interaction
between core components of the MIB/MICOS complexes in situ
in our PLA assays.

Miro proteins are critical regulators of mitochondrial traffick-
ing from yeast to mammals5. The accepted model of mitochon-
drial trafficking presumed that Miro proteins provided a link
between the OMM and the microtubule motors kinesin and
dynein through the recruitment of the adaptors TRAK1 and
TRAK23,62–64. We have recently challenged this idea by showing
that Miro is not essential for kinesin/TRAK-directed mitochon-
drial movement, but rather regulates its activity6. In this paper,
we demonstrate that an important function of Miro proteins is to
regulate the association of the mitochondrial transport machinery
to the MICOS complexes. By regulating this association, Miro
proteins facilitate the concerted transport of both mitochondrial
membranes to the cellular regions where they are needed. These
findings are supported by a recent report linking Mic60/Mitofilin
function, a core component of the MICOS complex, to mito-
chondrial motility in Drosophila20. Although the mechanism of
such regulation remains unknown, in that work the authors
report a decrease in dMiro levels upon genetic deletion of Mic60/
Mitofilin. It remains to be tested if Miro is stabilized by the
formation of assemblies between TRAK adaptors and MIB/
MICOS complexes and whether the dissociation of these high-
order assemblies renders Miro prone to be degraded.

A major consequence of this regulation is that the mitochon-
drial cristae that are associated to the OMM through the MIB
complexes could potentially be distributed in a regulated manner
by the concerted action of Miro and TRAK proteins. Thus, by
connecting the transport machinery to the MICOS complexes,
Miro opens the door to the concept of mitochondrial regulation
by controlling the distribution of mitochondrial cristae within the
mitochondria. In addition, the direct association with the cristae
molecular architecture may provide a mechanism for the
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transport machinery to sense the functionality of the mitochon-
dria to be transported.

It has been known since the identification of the
mitochondrial-associated membranes (MAMs) from the ER that
the contact sites between both organelles are rich in enzymes
necessary for phospholipid sysnthesis65, and that ERMCS are
important communication channels for the transport of lipids66.
Therefore, together with the dissociation between MIB/MICOS
complexes from the mitochondrial transport pathway, the
decrease in ERMCS might have an impact in the lipid composi-
tion of the mitochondrial membranes and contribute to the
altered mitochondrial ultrastructure observed in Miro DKO cells.
The dual role of Miro in regulating the number of ERMCS and
the distribution of MIB/MICOS complexes has parallels with the
ER–mitochondria organizing network (ERMIONE) in Sacchar-
omyces cerevisiae67,68. ERMIONE in yeast is formed by ERMES
(ER–Mitochondria Encounter Structure) and MICOS which then
recruit the TOM complex and Sam50 and is involved in lipid
homeostasis, mitochondrial biogenesis, and maintenance of
mitochondrial morphology68. However, there is little evidence of
a structural molecular assembly in mammals that is homologous
to the yeast ERMIONE. Our work supports a central role for
Miro proteins in coordinating and integrating different mito-
chondrial functions by organizing and controlling a mitochon-
drial signaling network that includes the mitochondrial transport
pathway, the MIB/MICOS complexes and the ERMCS and that
might be the functional equivalent of the ERMIONE in
mammalian cells.

Methods
Plasmid DNA, cell culture, and transfection. GFPMiro1 and GFPMiro2 were
generated as described earlier69, while mycMiro1, mycMiro210,70, mycMfn171, and
GFPSu9 were obtained from Addgene. GFPTOM70(1–70) was generated in the lab
by cloning the first 70 residues of TOM70 into EGFP-N1 vector44. HeLa cells were
purchased from ATCC. Mouse embryonic fibroblast were generated in the lab6. All
cell lines were maintained in the DMEM medium (Gibco) supplemented with
streptomycin (100 µg/ml), penicillin (100 U/ml), and 10% fetal bovine serum. Cells
were transfected with ~5 μg plasmid DNA using nucleofection (Amaxa, Lonza AG)
according to the manufacturer’s protocol. Rat hippocampal cultures were prepared
from E18 rat embryos72,73. Cells were seed at a density of 30,000–50,000 cells/cm2

onto Poly-L-Lysine-coated coverslips and transfected at 7–9 DIV using
Lipofectamine®2000.

All experimental procedures involving animals were carried out in accordance
with institutional animal welfare guidelines and licensed by the UK Home Office in
accordance with the Animals (Scientific Procedures) Act 1986.

Immunostaining and biochemical assays. Twenty-four to forty-eight hours post
transfection, cells were fixed with 4% PFA at 37 °C for 10 min, washed, and cov-
erslips were incubated for 30–45 min in blocking solution. Coverslips were then
incubated with primary antibodies (see Supplementary Table 1 and Supplementary
Methods for details) followed by secondary antibodies diluted in blocking solution
and extensive washing to remove free fluorophores. Coverslips were further fixed
for 8 min in 4% PFA, washed, and mounted for imaging.

For co-immunoprecipitation experiments in HeLa cells, cells were lysed 24 h
post transfection in lysis buffer (50 mM Tris pH 7.5; 0.5% Triton; 150 mM NaCl;
1 mM EDTA; and 1 mM PMSF) containing protease inhibitors. The lysed samples
were incubated with GFP-trap beads (Chromotek GmBH) for 1 h. Complexes were
then washed several times and eluted with 3 × Laemmli sample buffer and western
blotted on nitrocellulose membrane.

Co-immunoprecipitation experiments in MEF cells and in brains were
performed similarly. Cells were collected and washed in PBS by centrifugation or
adult brains were dissected prior to homogenization with lysis buffer (50 mM
HEPES pH 7.5; 0.5% Triton; 150 mM NaCl; 1 mM EDTA; and 1 mM PMSF)
containing protease inhibitors. Homogenates were cleared by centrifugation at
60,000×g for 40 min. One microgram of antibody was added to 1 ml of samples
containing 2 mg of protein and incubated with rotation overnight at 4 °C. The next
day, a mix 1:1 of ProtA and ProtG-coated agarose beads were blocked in lysis
buffer containing 3 mg/ml of BSA for 1 h. After washing in lysis buffer, 20 μl of the
beads mix was added to every tube and incubated for 1 h. Beads were then washed
several times in lysis buffer and resuspended in Laemmli buffer, boiled for 5 min a
kept at −20 °C until ran in acrylamide gels. Unprocessed scans of the western blots
from the immunoprecipitation experiments in Fig. 3b and Fig. 6d are included in
Supplementary Fig. 9.

Proximity ligation assay was performed with Duolink® In Situ Red PLA
reagents according to the manufacturer’s protocol (Sigma Aldrich)49,74.

Confocal, SIM, correlated SIM, dSTORM, and 3D dSTORM imaging. Confocal
imaging was performed on a Zeiss LSM 700 confocal microscope, Structured
Illumination Microscopy was performed on Zeiss Elyra PS.1, correlated SIM, and
dSTORM imaging was performed on the same microscope with 100 × 1.46 NA oil
immersion objective. All dSTORM imaging was conducted using a custom-built
microscope and analyzed using software written in C++ and Python75. Further
details about super-resolution and electron microscopy performed in this study can
be found in supplementary experimental procedures.

Image processing and analysis. Post reconstruction, images were first corrected
for X-Y drift using one to three fiducials present in the images. Images were either
binned using 20 -nm pixel size for dSTORM and colocalization with MICOS
components. The reconstructed image was blurred with a Gaussian function with a
sigma radius of 0.75 (which translate to 20–30 nm) using ‘Accurate Gaussian blur’
plugin. For measuring the sizes of nanoclusters, first images were thresholded, and
then each particle was detected using particle analyzer algorithm followed by
particle size measurement using Feret’s diameter plugin present in ImageJ. For
colocalization of dual-color STORM images, images in 555 -nm and 647 -nm
channels were blurred equally then both channels were aligned using “Align images
FFT” plugin present within GDSC ImageJ plugin (freely downloadable from
University of Sussex) which uses a Gaussian for sub-pixel alignment. Van steensel’s
cross-correlation was calculated from the aligned images using plugin JACoP with
X-shift of 1 μm. DBSCAN and Ripley’s K-function were determined according to a
previously published protocol76.

Statistical analysis. Excel Software (Microsoft), Origin (OriginLab Corporation),
and GraphPad Prism (GraphPad Software, Inc) were used to analyze the data.
Statistical significance was calculated using two-tailed heteroscedastic Student’s
t test with Welch’s correction for parametric data with unequal variance and
Mann–Whitney U test for nonparametric data. Two-sample Kolmogorov–Smirnov
test was used to compare the distributions of nearest neighbor distances of MICOS
clusters. Statistical differences between multiple conditions were performed by one-
way ANOVA followed by Bonferroni’s post hoc tests. Normality of the data was
assessed by applying one-sample Kolmogorov–Smirnov test. Statistical significance
was pre-fixed at P < 0.05, described as *p < 0.05; **p < 0.01; and ***p < 0.001. All
values in text are given as mean ± SEM unless specified.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
All code used in this study is available from the corresponding authors upon reasonable
request.
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