
Soft Computing
https://doi.org/10.1007/s00500-019-04450-0

METHODOLOGIES AND APPL ICAT ION

On the effects of pseudorandom and quantum-random number
generators in soft computing

Jordan J. Bird1 · Anikó Ekárt1 · Diego R. Faria1

© The Author(s) 2019

Abstract
In this work, we argue that the implications of pseudorandom and quantum-random number generators (PRNG and QRNG)
inexplicably affect the performances and behaviours of various machine learning models that require a random input. These
implications are yet to be explored in soft computing until this work. We use a CPU and a QPU to generate random numbers
for multiple machine learning techniques. Random numbers are employed in the random initial weight distributions of dense
and convolutional neural networks, in which results show a profound difference in learning patterns for the two. In 50 dense
neural networks (25 PRNG/25 QRNG), QRNG increases over PRNG for accent classification at +0.1%, and QRNG exceeded
PRNG formental state EEG classification by +2.82%. In 50 convolutional neural networks (25 PRNG/25QRNG), theMNIST
and CIFAR-10 problems are benchmarked, and in MNIST the QRNG experiences a higher starting accuracy than the PRNG
but ultimately only exceeds it by 0.02%. In CIFAR-10, the QRNG outperforms PRNG by +0.92%. The n-random split of a
RandomTree is enhanced towards and newQuantumRandomTree (QRT)model, which has differing classification abilities to
its classical counterpart, 200 trees are trained and compared (100 PRNG/100 QRNG). Using the accent and EEG classification
data sets, a QRT seemed inferior to a RT as it performed on average worse by −0.12%. This pattern is also seen in the EEG
classification problem, where a QRT performs worse than a RT by −0.28%. Finally, the QRT is ensembled into a Quantum
Random Forest (QRF), which also has a noticeable effect when compared to the standard Random Forest (RF). Ten to 100
ensembles of trees are benchmarked for the accent and EEG classification problems. In accent classification, the best RF
(100 RT) outperforms the best QRF (100 QRF) by 0.14% accuracy. In EEG classification, the best RF (100 RT) outperforms
the best QRF (100 QRT) by 0.08% but is extremely more complex, requiring twice the amount of trees in committee. All
differences are observed to be situationally positive or negative and thus are likely data dependent in their observed functional
behaviour.

Keywords Quantum computing · Soft computing · Machine learning · Neural networks · Classification

1 Introduction

Quantum and classical hypotheses of our reality are indi-
vidually definitive and yet are independently paradoxical, in
that they are both scientifically verified though contradictory

Communicated by V. Loia.

B Jordan J. Bird
birdj1@aston.ac.uk

Anikó Ekárt
a.ekart@aston.ac.uk

Diego R. Faria
d.faria@aston.ac.uk

1 School of Engineering and Applied Science, Aston
University, Birmingham, UK

to one another. These concurrently antithetical, neverthe-
less infallible natures of the two models have enflamed
debate between researchers since the days of Albert Einstein
and Erwin Schrödinger during the early twentieth century.
Though the lack of a Standard Model of the Universe contin-
ues to provide a problem for physicists, the field of Computer
Science thrives by making use of both in classical and
quantum computing paradigms since they are independently
observable in nature.

Though the vast majority of computers available are clas-
sical, quantum computing has been emerging since the late
twentieth century and is becoming more and more avail-
able for use by researchers and private institutions. Cloud
platforms developed by industry leaders such as Google,
IBM,Microsoft and Rigetti are quickly growing in resources

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-04450-0&domain=pdf
http://orcid.org/0000-0002-9858-1231
http://orcid.org/0000-0001-6967-5397
http://orcid.org/0000-0002-2771-1713

J. J. Bird et al.

and operational size. This rapidly expanding availability
of quantum computational resources allows for researchers
to perform computational experiments, such as heuristic
searches or machine learning, but allows for the use of the
laws of quantum mechanics in their processes. For example,
for n computational bits in a state of entanglement, only one
needs to be measured for all n bits to be measured, since they
all exist in parallel or antiparallel relationships. Through this
process, computational complexity has been reduced by a
factor of n. Bounded-error quantum polynomial time (BQP)
problems are a set of computational problems which can-
not be solved by a classical computer in polynomial time,
whereas a quantum processor has the ability with its differ-
ent laws of physics.

Optimisation is a large multifield conglomeration of
research, which is rapidly accelerating due to the growing
availability of powerful computing hardware such as CUDA.
Examples include ant colony optimisation inspired by the
pheromone-dictated behaviour of ants Deng et al. (2019),
orthogonal translations to derive a principle component anal-
ysis Zhao et al. (2019), velocity-based searches of particle
swarms Deng et al. (2017), as well as entropy-based meth-
ods of data analysis and classification Zhao et al. (2018).

There are several main contributions presented by this
research:

1. A comparison of the abilities of dense neural networks
with their initial random weight distributions derived by
pseudorandom and quantum-random methods.

2. An exploration of Random Tree models compared to
Quantum Random Tree models, which utilise pseudo-
random and quantum-random number generators in their
generation, respectively.

3. A benchmark of the number of Random Trees in a Ran-
dom Forest model compared to the number of Quantum
Random Trees in a Quantum Random Forest model.

4. A comparison of the effects of pseudo- and true random-
ness in initial random weight distributions in computer
vision, applied to deep neural networks and convolutional
neural networks.

Although quantum, quantum-inspired and hybrid classi-
cal/quantum algorithms are explored, as well as the likewise
methods for computing, the use of aQuantumRandomNum-
ber Generator is rarely explored within a classical machine
learning approach in which an RNG is required Kretzschmar
et al. (2000).

This research aims to compare approaches for random
number generation in soft computing for two laws of physics
which directly defy one another: the classical true random-
ness is impossible and the quantum true randomness is
possible Calude and Svozil (2008). Through the application
of both classical and quantum computing, simulated ran-

dom number generation and true random number generation
are tested and compared via the use of a central processing
unit (CPU) and an electron spin-based quantum processing
unit (QPU) via placing the subatomic particle into a state
of quantum superposition. Logic would conjecture that the
results between the two ought to be indistinguishable from
one another, but experimentation within this study suggests
otherwise. The rest of this article is structured as follows.

Section 2 gives an overview of the background to this
project and important related theories and works: specifi-
cally, quantum computing, the differing ideas of randomness
in both classical and quantum computing, applications of
quantum theory in computing and finally a short subsection
on the machine learning theories used in this study. Section 3
describes the configuration of themodels as well as themeth-
ods used specifically to realise the scientific studies in this
article, before being presented and analysed in Sect. 4. The
experimental results are divided into four individual experi-
ments:
– Experiment 1—On random weight distribution in Dense
Neural Networks: pseudorandom and quantum-random
number generators are used to initialise the weights in
Neural Network models.

– Experiment 2—On Random Tree splits: The n Random
Splits for a Random Tree classifier are formed by pseu-
dorandom and quantum-random numbers.

– Experiment 3—On Random Tree splits in Random
Forests: The Quantum Tree model derived from Exper-
iment 2 is used in a Quantum Random Forest ensemble
classifier.

– Experiment 4—On Computer Vision: A Deep Neural
Network and Convolutional Neural Network are trained
on two image recognition data sets with pseudorandom
and true-random weight distributions for the application
of Computer Vision.

Experiments are separated in order to focus upon the effects
of differing random number generators on a specific model.
Explored in these are the effects of pseudorandom and
quantum-randomnumber generation in their processes, and a
discussion of similarities and differences between the two in
terms of statistics as well as their wider effect on the classifi-
cation process. Section 5 outlines possible extensions to this
study for future works, and finally, a conclusion is presented
in Sect. 6.

2 Background and related works

2.1 Quantum computing

Pioneered by Paul Benioff’s 1980 work Benioff (1980),
quantum computing is a system of computation that makes

123

On the effects of pseudorandom and quantum-random number generators in soft computing

computational use of phenomena outside of classical physics
such as the entanglement and superposition of subatomic
particles Gershenfeld and Chuang (1998). Whereas classi-
cal computing is concerned with electronic bits that have
values of 0 or 1 and logic gates to process them, quantum
computing uses both classical bits and gates as well as new
possible states, such as a bit being in a state of superposition
(0 and 1) or entangled with other bits. Entanglement means
that the value of the bit, even before measurement, can be
assumed to be parallel or antiparallel to another bit of which
it is entangled to Bell (1964). These extended laws allow
for the solving of problems far more efficiently than comput-
ers. For example, a 64-bit system (263−1) has approximately
9.22 quintillion values with its individual bits at values 1 or 0,
whereas unlike a three-state ternary system which QPUs are
often mistaken for, the laws of superposition and the degrees
of state would allow a small array of qubits to represent all of
these values at once—theoretically allowing quantum com-
puters to solve problems that classical computers will never
be able to possibly solve. Since the stability of entangle-
ment decreases with the more computational qubits used,
only very small-scale experiments have been performed as
of today. Quantum Processing Units (QPUs) made available
for use by Rigetti, Google and IBM have up to 16 available
qubits for computing via their cloud platforms.

2.2 Randomness in classical and quantum
computing

In classical computing, randomness is not random; rather, it
is simulated by a pseudorandom process. Processor archi-
tectures and Operating Systems have individual methods of
generating pseudorandom numbers which must conform to
cybersecurity standards such as NIST Barker and Kelsey
(2007). Major issues arise with the possibility of backdoors,
notably, for example, Intel’s pseudorandom generator which,
after hijacking, allowed for complete control of a computer
system formalicious intent Degabriele et al. (2016), Schneier
(2007). The Intel issue was far from a lone incident, the
RANDU system was cracked by the NSA for unprecedented
access to the RSA BSAFE cryptographic library, as well as
in 2006 when Debian OpenSSL’s random number generator
was also cracked, leading to Debian being compromised for
2years Markowsky (2014). Though there are many methods
of deriving a pseudorandom number, all classical methods,
due to the laws of classical physics providing limitation, are
sourced through arbitrary yet deterministic events Gallego
et al. (2013), such as a combination of time since n last key
press, hardware temperature, system clock and lunar cal-
endar. This arbitration could possibly hamper or improve
algorithms that rely on random numbers, since the state of
the executing platform could indeed directly influence their
behaviour.

According to Bell’s famous theorem, “no physical theory
of local hidden variables can ever reproduce all of the pre-
dictions of quantum mechanics” Bell (1964). This directly
argued against the position put forward by Einstein et. al in
which it is claimed that theQuantumMechanical ’paradox’ is
simply due to incomplete theory Einstein et al. (1935). Using
Bell’s theorem, demonstrably random numbers can be gen-
erated through the fact that observing a particle’s state while
in superposition gives a true 50/50 outcome (qubit value 0, 1)
Pironio et al. (2010). This concretely random output for the
value of the single bit can be used to build integers comprised
of larger numbers of bits which, since they are all individu-
ally random, their product is too. This process is known as a
Quantum Random Number Generator (QRNG).

Behaviours in Quantum Mechanics such as, but not lim-
ited to, branching path superposition Jennewein et al. (2000),
time of arrival Wayne et al. (2009), particle emission count
Ren et al. (2011), attenuated pulse Wei and Guo (2009) and
vacuum fluctuations Gabriel et al. (2010) are all entirely
random—and have been used to create trueQRNGs. In 2000,
it was observed that a true random number generator could
be formed through the observation of photons Stefanov et al.
(2000). Firstly, a beam of light is split into two streams of
entangled photons and noise is reduced after which the pho-
tons of both streams are observed. The twodetectors correlate
to 0 and 1 values, and a detectionwill amend a bit to the result.
The detection of a photon is nondeterministic between the
two, and therefore a completely random series of values are
the result of this experiment.

This study makes use of the branching path superposition
method for the base QRNG, in that the observed state of a
particle c at time t and the state of c are nondeterministic
until only after observation t. In the classical model, the law
of superposition simply states that for propertiesA andBwith
outcomes X and Y, both properties can lead to state XY. For
example, the translation and rotation of a wheel can lead to
a rolling state Cullerne (2000), a third superstate of the two
possible states. This translates into quantum physics, where
quantum states can be superposed into an additional valid
state Dirac (1981).

This is best exemplified with Erwin Schrödinger’s famous
thought experiment, knownasSchrödinger’sCat Schrödinger
(1935). As seen in Fig. 1, a cat sits in a box along with
a Geiger Counter and a source of radiation. If alpha radi-
ation is detected, which is a completely random event, the
counter releases a poison into the box, killing the cat. The
thought experiment explains superposition in such a way that
although the cat has two states (Alive or Dead), when unob-
served, the cat is both simultaneously alive and dead. In terms
of computing, this means that the two classical behaviours
of a single bit, 1 or 0, can be superposed into an additional
state, 1 and 0. Just as the cat only becomes alive or deadwhen

123

J. J. Bird et al.

Fig. 1 Famous Schrödinger’s Cat Thought Experiment. When unob-
served, the cat arguably exists in two opposite states (alive and dead),
which itself constitutes a third superstate Schrödinger (1935)

Fig. 2 A Bloch sphere represents the two basis states of a qubit (0, 1)
as well as the states of superposition in between

observed, a superposed qubit only becomes 1 or 0 whenmea-
sured.

A Bloch sphere is a graphical representation of a qubit
in superposition Bloch (1946) and can be seen in Fig. 2. In
this diagram, the basis states are interpreted by each pole,
denoted as |0〉 and |1〉. Other behaviours, the rotations of
spin about points ψ , φ and θ are used to superpose the two
states to a degree. Thus, depending on the method of inter-
pretation, many values can be encoded within only a single
bit of memory.

The Hadamard gate within a QPU is a logical gate which
coerces a qubit into a state of superposition based on a basis
(input) state. 0 is mapped as follows:

|0〉 �→ |0〉 + |1〉√
2

(1)

The other possible basis state, 1, is mapped as:

|0〉 �→ |0〉 − |1〉√
2

(2)

This single-qubit quantum Fourier transform is thus repre-
sented through the following matrix:

H = 1√
2

[
1 1
1 −1

]
(3)

Just as in the thought experiment described in which
Schrödinger’s cat is both alive and dead, the qubit now exists
in a state of quantum superposition; it is both 1 and 0. That
is, until it is measured, in which there will be an equal prob-
ability that the observed state is 1 or 0, giving a completely
randomly generated bit value. This is the logical basis of all
QRNGs.

2.3 Quantum theory in related state-of-the-art
computing application

The field of quantum computing is young, and thus there are
many frontiers of research ofwhich none have beenmastered.
Quantum theory, though, has been shown in some cases to
improve current ideas in Computer Science as well as endow
a systemwith abilities that would be impossible on a classical
computer. This section outlines some of the state-of-the-art
applications of quantum theory in computing.

Quantum Perceptrons are a theoretical approach to deriv-
ing a quantum equivalent of a perceptron unit (neuron)within
an Artificial Neural Network Schuld et al. (2014). Current
lines of research focus around the possibilities of associative
memory through quantum entanglement of internal states
within the neurons of the network. The approach is heavily
inspired by the notion that the biological brain may operate
within both classical and quantumphysical spaceHagan et al.
(2002). Preliminary works have found Quantum Neural Net-
works have a slight statistical advantage over classical tech-
niques within larger and more complex domains Narayanan
and Menneer (2000). A very limited extent of research sug-
gests quantum effects in a network to be the possible source
of consciousness Hameroff and Penrose (1996), providing
an exciting avenue for Artificial Intelligence research in the
field of Artificial Consciousness. Inspiration from quantum
mechanics has led to the implementation of a Neural Net-
works based on fuzzy logic systems Purushothaman and
Karayiannis (1997), and research showed that QNNs are
capable of structure recognition, which sigmoid-activated
hidden units within a network cannot.

There are many statistical processes that are either more
efficient or even simply possible through the use of Quan-
tum Processors. Simon’s Problem provides initial proof that
there are problems that can be solved exponentially faster
when executed in quantum space Arora and Barak (2009).
Based on Simon’s Problem, Shor’s Algorithm uses quantum
computing to derive the prime factors of an integer in polyno-

123

On the effects of pseudorandom and quantum-random number generators in soft computing

mial time Shor (1999), somethingwhich a classical computer
is not able to do.

Some of the most prominent lines of research in quan-
tum algorithms for soft computing are the exploration of
Computational Intelligence techniques in quantum space
such as meta-heuristic optimisation, heuristic search and
probabilistic optimisation. Pheromone trails in Ant Colony
Optimisation searches generated and measured in the form
of qubits with operations of entanglement and superposition
for measurement and state scored highly on the Tennessee
Eastman Process benchmark problem, due to the optimal
operations involved Wang et al. (2007). This work was
applied by researchers, who in turn found that combining
Support VectorMachineswithQuantumAntColonyOptimi-
sation search provided a highly optimised strategy for solving
fault diagnosis problemsWang et al. (2008), greatly improv-
ing the base SVM. Parallel Ant Colony Optimisation has
also been observed to greatly improve in performance when
operating similar techniques You et al. (2010). Similar tech-
niques have also been used in the genetic search of problem
spaces, with quantum logic gates performing genetic oper-
ations and probabilistic representations of solution sets in
superposition/entanglement, and the technique is observed to
be superior over its classical counterpart when benchmarked
on the combinatorial optimisation problemHan et al. (2001).

Statistical and Deep Learning techniques are often use-
ful in other scientific fields such as engineering Naderpour
et al. (2019), Naderpour and Mirrashid (2019), medicine
Khan et al. (2001), Penny and Frost (1996), chemistry Schütt
et al. (2019), Gastegger et al. (2019) and astrophysicsKrastev
(2019), Kimmy Wu et al. (2019) among a great many oth-
ers Carlini and Wagner (2017). As of yet, the applications of
quantum solutions have not been applied within these fields
towards the possible improvement of soft computing tech-
nique.

3 Experimental setup and design

For the generation of true random bit values, an electron-
based superposition state is observed using a QPU. The
Quantum Assembly Language code for this is given in
Appendix A; an electron is transformed using a Hadamard
gate and thus now exists in a state of superposition. When
the bit is observed, it takes on a state of either 0 or 1, which is
a nondeterministic 50/50 outcome, i.e. perfect randomness.
A VM example of how these operations are formed into a
random integer is given in Appendix B; the superposition
state particle is sequentially observed, and each derived bit is
amended to a result until 32 bits have been generated. These
32 bits are then treated as a single binary number. The result
of this process is a truly random unsigned 32-bit integer.

For the generation of bounded random numbers, the result
is normalisedwith the upper bound being the highest possible
value of the intended number. For those that also have lower
bounds below zero, a simple subtraction is performed on a
higher bound of normalisation to give a range. For example, if
a randomweight distribution for neural network initialisation
is to be generated between −0.5 and 0.5, the random 32-bit
integer is normalised between 0–1 and 0.5 is subtracted from
the result, giving the desired range. This process is used for
the generation of both PRN and QRN since they are there-
fore then directly comparable with one another and thus also
directly relative in their effects upon a machine learning pro-
cess.

For the first data set in each experiment, a publicly avail-
able accent classification data set is retrieved.1 This data set
was gathered from subjects from the UK and Mexico, all
speaking the same seven phonetic sounds ten times each. A
flat data set is produced via 27 logs of their Mel-frequency
Cepstral Coefficients every 200ms to produce a mathemati-
cal description of the audio data. A four-class problem arises
in the prediction of the locale of the speaker (West Midlands,
London, Mexico City, Chihuahua). The second data set in
each experiment is an EEG brainwave data set sourced from
a previous study Bird et al. (2018).2 The wave data have been
extracted from the TP9, AF7, AF8 and TP10 electrodes and
have been processed in a similar way to the speech in the first
data set; exception is done so through a much larger set of
mathematical descriptors. For the four-subject EEG data set,
a three-class problem arises: the concentrative state of the
subject (concentrating, neutral, relaxed). The feature gener-
ation process from this data set was observed to be effective
for mental state classification in the aforementioned study,
as well as for emotional classification from the same EEG
electrodes Bird et al. (2019a).

For the final experiment, two image classification data
sets are used. Firstly, the MNIST image data set is retrieved3

LeCun and Cortes (2010) for the MLP. This data set is com-
prised of 60,000 32 × 32 handwritten single digits 0–9, a
ten-class problemwith each class being that of the digit writ-
ten. Secondly, the CIFA-10 data set is retrieved4 Krizhevsky
et al. (2009) for a CNN. This, as with the MNIST data set,
is comprised of 60,000 32 × 32 ten-class images of entities
(eg. bird, cat, deer).

For the generation of pseudorandom numbers, an AMD
FX8320 processor is used with given bounds for Exper-
iments 1a and 1b. The Java Virtual Machine generates

1 https://www.kaggle.com/birdy654/speech-recognition-dataset-
england-and-mexico.
2 https://www.kaggle.com/birdy654/eeg-brainwave-dataset-mental-
state.
3 http://yann.lecun.com/exdb/mnist/.
4 https://www.cs.toronto.edu/kriz/cifar.html.

123

https://www.kaggle.com/birdy654/speech-recognition-dataset-england-and-mexico
https://www.kaggle.com/birdy654/speech-recognition-dataset-england-and-mexico
https://www.kaggle.com/birdy654/eeg-brainwave-dataset-mental-state
https://www.kaggle.com/birdy654/eeg-brainwave-dataset-mental-state
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/kriz/cifar.html

J. J. Bird et al.

pseudorandom numbers for Experiments 2 and 3. All of the
pseudorandom number generators had their seed set to the
order of execution, ie. the first model has a seed of 1 and the
nth model has a seed of n. Due to the high resource usage
of training a large volume of neural networks, the CUDA
cores of an Nvidia GTX980Ti were utilised and they were
trained on a 70/30 train/test split of the data sets. For the
Machine Learning Models explored in Experiments 2 and 3,
tenfold cross-validation was used due to the availability of
computational resources to do so.

3.1 Experimental process

In this subsection, a step-by-step process is given describ-
ing how each model is trained towards comparison between
PRNG and QRNG methods. MLP and CNN RNG methods
are operated through the same technique and as such are
described together; following this, the Random Tree (RT)
andQuantumRandomTree (QRT) are described. Finally, the
ensembles of the two types of trees are then finally described
as RandomForest (RF) andQuantumRandomForest (QRF).
Each set of models is tested and compared for two different
data sets, as previously described. For replicability of these
experiments, the code for Random Bit Generation is given in
Appendix A (for construction of an n-bit integer). Construc-
tion of the n-bit integer through electron observation loop is
given in Appendix B.

For the Random Neural Networks, all use the ADAM
Stochastic Optimiser for weight tuning Kingma and Ba
(2014), and the activation function of all hidden layers is
ReLU Agarap (2018). For Random Trees, K randomly cho-
sen attributes are defined below (acquired via either PRNGor
QRNG) and the minimum possible value for k is 1; no prun-
ing is performed. Minimum class variance is set to −in f
since the data sets are well-balanced, the maximum depth of
the tree is not limited and classification must always be per-
formed even if confusion occurs. The chosen Random Tree
attributes are also used for all trees within Forests, where
the random number generator for selection of data subsets is
also decided by a PRNG or QRNG. The algorithmic com-
plexity for a Random Tree is given as O(v ×nlog(n))where
n is the number of data objects in the data set and v is the
number of attributes belonging to a data object in the set.
Algorithmic complexity of the neural networks is dependent
on chosen topologies for each problem, and the complexity
is presented as an O(n2) problem.

Given n number of networks to be benchmarked for x
epochs, generally, the MLP and CNN experiments are auto-
mated as follows:

1. Initialisen/2neural networkswith initial randomweights
generated by an AMD CPU (pseudorandom).

2. Initialisen/2neural networkswith initial randomweights
generated by a Rigetti QPU (true random).

3. Train all n neural networks.
4. Consider classification accuracy at each epoch5 for com-

parison as well as statistical analysis of all n/2 networks.

Given n number of trees with a decision variable Kx (K
randomly chosen attributes at node x), the process of training
Random Trees (RT) and Quantum Random Trees (QRT) is
given as follows:

1. Train n/2 Random Trees, in which the RNG for deciding
set K for every x is executed by an AMD CPU (pseudo-
random)

2. Train n/2 Quantum Random Trees, in which the RNG
for deciding set K for every x is executed by a Rigetti
QPU (true random).

3. Considering the best and worst models, as well as the
mean result, compare the two sets of n/2 models in terms
of statistical difference.6

Finally, the Random Tree and Quantum Random Tree are
benchmarked as an ensemble, through Random Forests and
Quantum Random Forests. This is performed mainly due to
the unpruned Random Tree likely overfitting to training data
Hastie et al. (2005). The process is as follows:7

1. For the Random Forests, benchmark ten forests con-
taining {10, 20, 30 ... 100} Random Tree Models (as
generated in the Random Tree Experimental Process list
above).

2. For the QuantumRandomForests, benchmark ten forests
containing {10, 20, 30 ... 100} Quantum Random Tree
Models (as generated in the Random Tree Experimental
Process list above).

3. Compare abilities of all 20 models, in terms of classifi-
cation ability as well as the statistical differences, if any,
between different numbers of trees in the forest.

4 Results and discussion

In this section, results are presented and discussed for mul-
tiple Machine Learning models when their random number
generator is either pseudorandomly or true (quantum) Ran-
domly generated. Please note that in neural network training,
lines do not correlate on a one-to-one basis. Each line is
the accuracy of a neural network throughout the training

5 Accuracy/epoch graphs are given in Sect. 4.
6 Box-and-whisker comparisons given in Sect. 4.
7 For further detail on the Random Decision Forest classifier selected
for this study, please refer to Breiman (2001).

123

On the effects of pseudorandom and quantum-random number generators in soft computing

Fig. 3 Main learning curve experienced for 50 dense neural networks,
25with PRNGand 25withQRNG initially distributedweights in accent
classification

process, and line colour defines how that network had its
weights initialised, i.e. whether or not it has pseudorandom
or quantum-random numbers as its initial weights.

4.1 MLP: random initialisation of dense neural
network weights

For Experiment 1, a total of 50 dense neural networks were
trained for each data set. All networks were identical except
for their initial weight distributions. Initial random weights
within bounds of −0.5 and 0.5 were set, 25 of the networks
derived theirs from a PRNG, and the other 25 from a QRNG.

4.1.1 Accent classification

ForExperiment 1a, the accent classificationdata setwasused.
In this experiment, we observed initial sparse learning pro-
cesses before stabilisation occurs at approximately epoch 30
and the two converge upon a similar result. Figure 3 shows
this convergence of the learning processes the initial learning
curve experienced during the first half of the process; in this
graph, it can be observed that the behaviour of pseudorandom
weight distribution is far less erratic than that of the quantum
random number generator. This shows that the two methods
of random number generators do have an observable effect
on the learning processes of a neural network.

For PRNG, the standard deviation between all 25 final
results was 0.00098 suggesting that a classification maxi-
mum was being converged upon. The standard deviation for
QRNG was considerably larger, but statistically minimal at
0.0017. Mean final results were 98.73% for PRNG distri-
butions and 98.8% for QRNG distributions. The maximum
classification accuracy achieved by the PRNG initial distri-

Fig. 4 Full learningprocess of 50dense neural networks, 25withPRNG
and 25 with QRNG initially distributed weights in mental state EEG
classification

Fig. 5 Final epochs of learning for 50 dense neural networks, 25 with
PRNG and 25 with QRNG initially distributed weights in mental state
EEG classification

butionwas 98.8%,whereas QRNG achieved a slightly higher
result of 98.9% at epoch 49. For this problem, the differences
between the initial distribution of PRNG and QRNG are
minimal and QRNG distribution results are somewhat more
entropic than PRNG but otherwise the two sets of results are
indistinguishable from one another, and most likely simply
due to random noise.

4.1.2 Mental state classification

For Experiment 1b, the mental state EEG classification data
set was used Bird et al. (2018). Figure 4 shows the full learn-
ing process of the networks from initial epoch 0 up until
backpropagation epoch 100; though this graph is erratic and

123

J. J. Bird et al.

crowded, the emergence of a pattern becomes obvious within
epochs 20–30 where the learning processes split into two
distinct groups. In this figure, a more uniform behaviour of
QRNG methods is noted, unlike the previous experiment.
The behaviours of PRNG distributed models are extremely
erratic and in some cases, very slow in terms of improvements
made. Figure 5 shows a higher resolution view of the data
in terms of the end of the learning process when terminated
at epoch 100, a clear distinction of results can be seen and
a concrete separation can be drawn between the two groups
of models except for two intersecting processes. It should be
noted that by this point, the learning process has not settled
towards a true best fitness, but a vast and clear separation has
occurred.

For PRNG, the standard deviation between all 25 results
was 0.98. The standard deviation for QRNG was somewhat
smaller at 0.74. The mean of all results was 63.84% for
PRNG distributions and 66.45% for QRNG distribution, a
slightly superior result. The maximum classification accu-
racy achieved by the PRNG initial distribution was 65.35%,
whereas QRNG achieved a somewhat higher best result of
68.17%. The worst–best result for PRNG distribution net-
works was 62.28% and was 65.31% for QRNG distribution
networks. For this problem, the differences between the ini-
tial distribution of PRNG and QRNG weights are noticeable
and QRNG distribution results are consistently better than
PRNG approaches to initial weight distribution.

4.2 Random tree and quantum random tree
classifiers

Experiments 2a and 2b make use of the same data sets as
in 1a and 1b, respectively. In this experiment, 200 Random
Tree classifiers are trained for each data set. These are, again,
comprised of two sets; firstly 100 Random Tree (RT) classi-
fiers which use pseudorandom numbers, and secondly, 100
Quantum Random Tree (QRT) classifiers, which source their
randomnumbers from theQRNG.Randomnumbers are used
to select the n-random attribute subsets at each split.

4.2.1 Accent classification

Two hundred experiments are graphically represented as a
box-and-whisker in Fig. 6. The most superior classifier was
the RT with a best result of 86.64% and worst of 85.68%; on
the other hand, theQRTachieved the best accuracy of 86.52%
andworst of 85.62%.Best andworst results of the twomodels
are extremely similar. The standard deviation of results of the
RT was 0.19, and the QRT similarly had a standard deviation
of 0.17. The range of theRT resultswas 0.96, andQRT results
had a similar range of 0.9. Interestingly, a similar pattern
is not only found in results, but also with the high outlier
too when considered relative to the model’s median point.

Fig. 6 A comparison of results from 200 Random Tree Classifiers, 100
using PRNG and 100 using QRNG on the accent classification data set

Fig. 7 AComparison of results from 200 RandomTree Classifiers, 100
using PRNG and 100 using QRNG on the mental state EEG data set

Though an overall slight superiority is seen in pseudorandom
number generation, the two models are considerably similar
in their abilities.

4.2.2 Mental state classification

Figure 7 shows the distribution for the 200 Random Tree
classifiers trained on the mental state data set. The standard
deviation of results from the RT was 0.81, whereas it was
slightly lower for QRT at 0.73. The best result achieved by
the RT was 79.68% classification accuracy, whereas the best
result from the QRT was 79.4%. The range of results for RT
and QRT was similarly 3.31 and 3.47, respectively. Overall,
very little difference between the two models occurs. The
distribution of results can be seen to be extremely similar to
the first RT/QRT experiment when compared to Fig. 6.

123

On the effects of pseudorandom and quantum-random number generators in soft computing

10 20 30 40 50 60 70 80 90 100
90

90.5

91

91.5

92

92.5

Number of Trees in the Forest

C
la
ss
ifi
ca
ti
on

A
cc
ur
ac
y

Accent Classification Experiment

Pseudorandom
True Random

Fig. 8 Classification accuracies of tenRandomForest and tenQuantum
Forest Models on the accent classification data set

4.3 Random forest and quantum random forest
classifiers

In this third experiment, the data sets are classified using
two models: Random Forests (RF) which use a committee
of Random Trees to vote on a Class and Quantum Random
Forests (QRF) which use a committee of Quantum Trees to
vote on a class. For each data set, ten of these models are
trained, with a committee of 10 to 100 trees respectively.

4.3.1 Accent classification

The results from the accent classification data set for the RF
and QRF methods can be observed in Fig. 8. The most supe-
rior models both used a committee of 100 of their respective
trees, scoring two similar results of 91.86% with pseudoran-
domness and 91.78% for Quantum randomness. Standard
deviation of RF results is 0.5%, whereas QRF has a slightly
lower deviation of 0.43. The worst result by RF was 90.31%
classification accuracy at ten Random Trees, and the worst
result by theQRFwas similarly tenQuantumTrees at 90.36%
classification accuracy (+0.05). The range of RF results was
1.55, compared to the QRF results with a range of 1.43.

4.3.2 Mental state classification

The results from the mental state EEG classification data set
for the RF and QRF methods can be observed in Fig. 9. The
most superior model for the RF was 86.91% with a com-
mittee of 100 trees, whereas the best result for QRF was
86.83% achieved by committees of both 100 and 60 trees.
The range of QRF results was slightly lower than that of the
RF, measured at 2.34 and 2.42, respectively. Although ini-

10 20 30 40 50 60 70 80 90 100
0.84

0.85

0.86

0.87

0.88

Number of Trees in the Forest

C
la
ss
ifi
ca
ti
on

A
cc
ur
ac
y

Mental State Classification Experiment

Pseudorandom
True Random

Fig. 9 Classification accuracies of tenRandomForest and tenQuantum
Forest Models on the EEG mental state classification data set

tially considered negligible, this same pattern was observed
in the previous experiment in Fig. 8. Additionally, the stan-
dard deviation of RF was higher at 0.69 compared to 0.65 in
QRF.

Though very similar results were produced, the first QRF
best result required approximately 60% of the computational
resources to achieve compared to the best RF result. Unlike
the first forest experiment, the patterns of the two different
models are vastly different and often alternate erratically.
This suggests somewhat that the two models should both be
benchmarked in order to increase the chances of discovering
a more superior model, considering the level of data depen-
dency on the classification accuracies of the models.

4.4 CNN: initial randomweight initialisation for
computer vision

Experiments 4a and 4b make use of the MNIST and CIFAR-
10 image data sets, respectively. In 4a, an ANN is initialised
following the same PRNG and QRNG methods utilised in
Experiment 1 and trained to classify theMNIST handwritten
digits data set. In 4b, the final dense layer of the CNN is
initialised through the same methods.

4.4.1 MNIST image classification

For the purpose of scientific recreation, the architecture for
MNISTclassification is derived from the officialKeras exam-
ple.8 This is given as two sets of two identical layers, a
hidden layer of 512 densely connected neurons followed by

8 https://github.com/keras-team/keras/tree/master/examples.

123

https://github.com/keras-team/keras/tree/master/examples

J. J. Bird et al.

Fig. 10 Full learning process of 50 deep neural networks, 25 with
PRNGand 25withQRNG initially distributedweights inMNIST image
data set classification

Fig. 11 Initial (pretraining) classification abilities of 50deepneural net-
works, 25 with PRNG and 25 with QRNG initially distributed weights
in MNIST image data set classification

a dropout layer of 0.2 to prevent overfitting. All hidden neu-
rons, as with other experiments in this study, are initialised
randomly within the standard −0.5 to 0.5 range. Twenty-
five of these are generated by a PRNG and the other 25 by a
QRNG, producing observable results of 50 models in total.

Due to the concise nature and close results observed in
the full process shown in Fig. 10, two additional graphs
are presented; firstly, the graph in Fig. 11 shows the clas-
sification abilities of the models before any training occurs.
Within this, a clear distinction can be made and the starting
weights generated by QRNG are almost exclusively supe-
rior to those generated by PRNG, providing the QRNG
models with a superior starting point for learning. The dis-
tinction continues to occur throughout the initial learning
curve, observed in Fig. 12, not too dissimilar to the results
in the previous experiment. At the pretraining abilities of

Fig. 12 Initial learning curve experienced for 50 deep neural networks,
25 with PRNG and 25 with QRNG initially distributed weights in
MNIST image data set classification

the two methods of weight initialisation, dense areas can be
observed at approx 77.5% Finally, at around epochs 10–14,
the resultant models begin to converge and the separation
becomes less prominent. This is shown through both sets
of models having identical best classification accuracies of
98.64%m suggesting a true best fitness may possibly have
been achieved. Worst–best accuracies are also indistinguish-
ably close, 98.27% for QRNGmodels and 98.25% for PRNG
models, population fitnesses are extremely dense and little
entropy exists throughout the whole set of final results.

4.4.2 CIFAR-10 image classification

In the CNN experiment, the CIFAR-10 image data set is used
to train a Convolutional Neural Network. The two number
generators are applied for the initial random weight distribu-
tion of the final hidden dense layer, after feature extraction
has been performed by the CNN operations. The network
architecture is constructed as the official Keras Development
Team example for Scientific purposes in ease of recreation of
the experiment. In this architecture, one hidden dense layer of
512 units precedes the final classification output, andweights
are generated within the bounds of −0.5 and 0.5 as is a stan-
dard in neural network generation. Fifty CNNS are trained,
all of which are structurally identical except for that 25 have
their dense layer weights initialised by PRNG and the other
25 have their dense layer weights initialised by QRNG.

Figure 13 shows the full learning process of the two differ-
ent methods of initial weight distribution. It can be observed
that there are roughly three partitions of results between the
two methods, and the pattern is visually similar to the ANN
learning curve in the MNIST Computer Vision experiment.
Figure 14 shows the pretraining classification abilities of
the initial weights; distribution is relatively equal and unre-

123

On the effects of pseudorandom and quantum-random number generators in soft computing

Fig. 13 Full learning process of 50 convolutional neural networks, 25
with PRNG and 25with QRNG initially distributed weights for the final
hidden dense layer in CIFAR-10 image data set classification

Fig. 14 Initial (pretraining) classification abilities of 50 convolutional
neural networks, 25 with PRNG and 25 with QRNG initially distributed
weights for the final hidden dense layer in CIFAR-10 image data set
classification

markable unless compared to the final results of the training
process in Fig. 15; the four best initial distributions of net-
work weights, all are of that which have been generated by
the QRNG, continue to be the four superior overall models. It
must be noted, however, that the rest of themodels regardless
of RNG method are extremely similar and no other divide is
seen by the end of the process.

The six overall most superior models were all initialised
by QRNG, the best result being a classification accuracy of
75.35% at epoch 50. The seventh best model was the high-
est scoring model that had dense layer weights initialised
by PRNG, scoring a classification accuracy of 74.43%. The
worst model produced by the QRNG was that which had a
classification accuracy of 71.91%, slightly behind this was
the overall worst model from all experiments, a model ini-

Fig. 15 Learning within the final epochs for 50 convolutional neu-
ral networks, 25 with PRNG and 25 with QRNG initially distributed
weights for the final hidden layer in CIFAR-10 image data set classifi-
cation

tialised by the PRNG with an overall classification ability
of 71.82%. The QRNG initialisation therefore outperformed
PRNG by 0.92 in the best case and outperformed PRNG by
0.09 in the worst case. The average result between the two
models was equal, at 73.3% accuracy.

It must be noted that by epoch 50 the training process was
still producing increasingly better results, but computational
resources available limited the 50 networks to be trained for
this amount of time.

5 Future work

It was observed in those experiments that did stabilise, results
as expected reached closer similarities. With resources,
future work should concern the further training of models to
observe this pattern with a greater reach of examples. Exten-
sive computational resources would be required to train such
an extensive amount of networks.

Furthermore, the patterns in Fig. 9, Quantum vs Random
Forest for mental state classification, suggest that the two
forests have greatly different situational classification abili-
ties and may produce a stronger overall model if both used in
an ensemble. This conjecture is strengthened through a pre-
liminary experiment; a vote ofmaximumprobability between
the two best models in this experiment (QF(60) andRF(100))
produces a result of 86.96% which is a slight and yet supe-
rior classification ability. The forests ensembled with other
forests of their on type on the other hand do not improve.
With this discovery, a future study should consider ensemble
methods between the two for both deriving a stronger overall
classificationprocess and exploring the patterns in the ensem-
ble of QRNG- and PRNG-based learning techniques. This, at

123

J. J. Bird et al.

the veryminimum,would require the time and computational
resources to train 100 models to explore the two sets of ten
models produced in the related experiment, though exploring
beyond this, or even a full brute force of each model increas-
ing their population of forests by 1 rather than 10 would
produce a clearer view of the patterns within.

Of the most noticeable effects of QRNG and PRNG in
machine learning, many of the neural network experiments
show greatly differing patterns in learning patterns and their
overall resultswhenusingPRNGandQRNGmethods to gen-
erate the initial weights for each neuronwithin hidden layers.
Following this, further types of neural network approaches
should be explored to observe the similarities and differences
that occur. In addition to this, the architectures of networks
are by no means at an optimum, the heuristic nature of the
network should also be explored, by techniques such as a
genetic search, for it too requires the idea of random influ-
ence Bird et al. (2019b, c).

6 Conclusion

To conclude, this study performed eight individual experi-
ments to observe the effects of quantum and pseudorandom
number generators when applied to multiple machine learn-
ing techniques. Some of the results were somewhat unre-
markable as expected, but some effects presented profound
differences between the two, many of which are as of yet
greatly unexplored. Based on these effects, possibilities of
future work have been laid out in order to properly explore
them.

Though observing superposition provides perfectly true
randomness, this also provides a scientific issue in the repli-
cation of experiments since results cannot be coerced in the
same nature a PRNG can through a seed. In terms of cyber-
security, this nature is ideal Yang et al. (2014), Stipcevic
(2012), but provides frustration in a research environment
since only generalised patterns at time t can be analysed
Svore and Troyer (2016). This is overcome to an extent by the
nature of repetition in the given experiments; many countless
classifiers are trained to provide a more average overview of
the systems.

The results for all of these experiments suggest that data
dependency leads to no concrete positive or negative effect
conclusion for the use of QRNG and PRNG since there is no
clear superior method. Although this is true, pseudorandom-
ness on modern processors is argued to be indistinguishable
from true randomness, but clear patterns have emerged
between the two. The two methods do inexplicably produce
different results to one another when employed in machine
learning, an unprecedented, and as of yet, relatively unex-
plored line of scientific research. In some cases, this was
observed to be a relatively unremarkable, small and possibly

coincidental difference, but in others, a clear division sepa-
rated the two.

The results in this study are indicative of a profound effect
on patterns observed in machine learning techniques when
random numbers are generated either by the rules of classical
or quantum physics. Their effects being positive or negative
are seemingly dependent on the data at hand, but regard-
less, the fact that two methods of randomness ostensibly
cause such disparate effects juxtaposed with the current sci-
entific processes of their usage should not be underestimated.
Rather, it should be explored.

Acknowledgements The authors would like to thank Rigetti Comput-
ing for granting access to their quantum computing platform.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendices

1 Quantum assembly language for random
number generation

Note: Code comments (#) are not Quantum Assembly
Language and are simply for explanatory purposes. The fol-
lowing code will place a quanta into superposition via the
Hadamard gate and then subsequently measure the state and
store the observed value. The state is equally likely to be
observed at either 1 or 0.

#Electron zero to Hadamard gate
H 0
#Declare memory space ’ro’ of one bit
DECLARE ro BIT[1]
#Measure the qubit at 0th index of ’ro’
MEASURE 0 ro[0]

2 Python code for generating a string
of random bits

The following code generates a random 32-bit integer by
observing an electron in superposition which produces a
true random result of either 1 or 0. The result is amended
at each individual observation until 32 bits have been gen-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

On the effects of pseudorandom and quantum-random number generators in soft computing

erated. Decimal conversion takes place, and two files are
generated, a raw text file containing the decimal results and a
CSVcontaining a columnof binary integers and their decimal
equivalents.

from pyquil.quil import Program
from pyquil.gates import H

Select the lattice of Qubits
lattice = "Aspen-1-5Q-B"
Initialise QPU
qpu = get_qc(lattice)

#Place electron 0 into superposition
numbers = Program(H(0))
#Observe the superposition
getNum = numbers.measure_all()
#Print the Quantum Assembly Language
print(getNum)

compiled_program = qpu.compile(numbers)

#Length of integer to generate
numbers = 32
#How many integers to generate
toGenerate = 1

print("\n Random number of " + str(numbers) +
" bits:")

for y in range(0, 10000):
output = ""
for x in range(0, toGenerate):

#Run the code on a Quantum Processing
Unit

result = qpu.run(compiled_program)
#Observe the superposition
result = result[0][0]

output += str(result)

print("\n\n Random no." + str(y) + " is: "
+ output)

decimal = int(output, 2)

with open("numbers.txt", "a") as myfile:
myfile.write("\n" + str(decimal))

with open("random.csv", "a") as myfile:
myfile.write("\n" + str(output) + ","

+ str(decimal))

References

AgarapAF (2018)Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375

Arora S, Barak B (2009) Computational complexity: a modern
approach. Cambridge University Press, Cambridge

Barker EB, Kelsey JM (2007) Recommendation for random number
generation using deterministic randombit generators (revised). US

Department of Commerce, Technology Administration, National
Institute of .

Bell JS (1964) On the Einstein Podolsky Rosen paradox. Physics
Physique Fizika 1(3):195

Benioff P (1980) The computer as a physical system: a microscopic
quantum mechanical hamiltonian model of computers as repre-
sented by turing machines. J Sat Phys 22(5):563–591

Bird JJ, Ekart A, Buckingham CD, Faria DR (2019a) Mental emotional
sentiment classification with an EEG-based brain-machine inter-
face. In: The international conference on digital image and signal
processing (DISP’19). Springer

Bird JJ, Ekart A, Faria DR (2019b) Evolutionary optimisation of fully
connected artificial neural network topology. In: SAI computing
conference 2019, SAI

Bird JJ, Faria DR, Manso LJ, Ekart A, Buckingham CD (2019c) A
deep evolutionary approach to bioinspired classifier optimisation
for brain-machine interaction. Complexity 2019. https://doi.org/
10.1155/2019/4316548

Bird JJ, Manso LJ, Ribiero EP, Ekart A, Faria DR (2018) A study on
mental state classification using EEG-based brain-machine inter-
face. In: 9th international conference on intelligent systems. IEEE

Bloch F (1946) Nuclear induction. Phys. Rev 70(7–8):460
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Calude CS, Svozil K (2008) Quantum randomness and value indefinite-

ness. Adv Sci Lett 1(2):165–168
Carlini N,WagnerD (2017) Towards evaluating the robustness of neural

networks. In: 2017 IEEE symposium on security and privacy (SP).
IEEE, pp 39–57

Cullerne J (2000) The Penguin dictionary of physics. Penguin Books,
London

Degabriele JP, Paterson KG, Schuldt JC, Woodage J (2016) Backdoors
in pseudorandom number generators: Possibility and impossibility
results. In: Annual international cryptology conference. Springer,
pp 403–432

Deng W, Zhao H, Yang X, Xiong J, Sun M, Li B (2017) Study on an
improved adaptive PSO algorithm for solving multi-objective gate
assignment. Appl Soft Comput 59:288–302

Deng W, Xu J, Zhao H (2019) An improved ant colony optimization
algorithm based on hybrid strategies for scheduling problem. IEEE
Access 7:20281–20292

DiracPAM(1981)Theprinciples of quantummechanics, vol 27.Oxford
University Press, Oxford

Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical
description of physical reality be considered complete? Phys Rev
47(10):777

Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen UL,
Marquardt C, Leuchs G (2010) A generator for unique quantum
random numbers based on vacuum states. Nat Photonics 4(10):711

Gallego R, Masanes L, De La Torre G, Dhara C, Aolita L, Acín A
(2013) Full randomness from arbitrarily deterministic events. Nat
Commun 4:2654

Gastegger M, Schütt K, Sauceda H, Müller KR, Tkatchenko A (2019)
Modeling molecular spectra with interpretable atomistic neural
networks. In: APS meeting abstracts

Gershenfeld N, Chuang IL (1998) Quantum computing with molecules.
Sci Am 278(6):66–71

Hagan S, Hameroff SR, Tuszyński JA (2002) Quantum computation in
brain microtubules: decoherence and biological feasibility. Phys
Rev E 65(6):061901

Hameroff S, Penrose R (1996) Orchestrated reduction of quantum
coherence in brain microtubules: a model for consciousness. Math
Comput Simul 40(3–4):453–480

Han KH, Park KH, Lee CH, Kim JH (2001) Parallel quantum-inspired
genetic algorithm for combinatorial optimization problem. In: Pro-
ceedings of the 2001 congress on evolutionary computation (IEEE
Cat. No. 01TH8546). IEEE, vol 2, pp 1422–1429

123

http://arxiv.org/abs/1803.08375
https://doi.org/10.1155/2019/4316548
https://doi.org/10.1155/2019/4316548

J. J. Bird et al.

Hastie T, Tibshirani R, Friedman J, Franklin J (2005) The elements of
statistical learning: data mining, inference and prediction. Math
Intell 27(2):83–85

Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A (2000)
Quantum cryptography with entangled photons. Phys Rev Lett
84(20):4729

Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F,
Berthold F,Manfred S, Antonescu CR, Peterson C (2001) Classifi-
cation and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks. Nat Med 7(6):673

KimmyWuW,Trivedi S,Caldeira J,AvestruzC, StoryK,NordB (2019)
DeepCMB: lensing reconstruction of the cosmic microwave back-
ground with deep neural networks. In: American astronomical
society meeting abstracts# 233, vol 233

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization.
arXiv preprint arXiv:1412.6980

Krastev PG (2019) Real-time detection of gravitational waves from
binary neutron stars using artificial neural networks. arXiv preprint
arXiv:1908.03151

Kretzschmar R, Bueler R, Karayiannis NB, Eggimann F (2000) Quan-
tum neural networks versus conventional feedforward neural
networks: an experimental study. In: Neural networks for signal
processing X. Proceedings of the 2000 IEEE signal processing
society workshop (Cat. No. 00TH8501). IEEE, vol 1, pp 328–337

Krizhevsky A, Nair V, Hinton G (2009) Cifar-10 (canadian institute for
advanced research). http://www.cs.toronto.edu/~kriz/cifar.html

LeCun Y, Cortes C (2010) MNIST handwritten digit database. http://
yann.lecun.com/exdb/mnist/

Markowsky G (2014) The sad history of random bits. J Cyber Secur
Mobil 3(1):1–24

Naderpour H, Mirrashid M (2019) Shear failure capacity prediction of
concrete beam-column joints in terms ofANFIS andGMDH. Pract
Period Struct Des Constr 24(2):04019006

Naderpour H, Mirrashid M, Nagai K (2019) An innovative approach
for bond strength modeling in FRP strip-to-concrete joints using
adaptive neuro-fuzzy inference system. In: Engineering with com-
puters, pp 1–18

Narayanan A, Menneer T (2000) Quantum artificial neural network
architectures and components. Inf Sci 128(3–4):231–255

Penny W, Frost D (1996) Neural networks in clinical medicine. Med
Decis Mak 16(4):386–398

Pironio S, Acín A, Massar S, de La Giroday AB, Matsukevich DN,
Maunz P, Olmschenk S, HayesD, Luo L,Manning TA (2010) Ran-
dom numbers certified by bell’s theorem. Nature 464(7291):1021

Purushothaman G, Karayiannis NB (1997) Quantum neural networks
(QNNs): inherently fuzzy feedforward neural networks. IEEE
Trans Neural Netw 8(3):679–693

RenM,Wu E, Liang Y, Jian Y,WuG, ZengH (2011) Quantum random-
number generator based on a photon-number-resolving detector.
Phys Rev A 83(2):023820

Schneier B (2007) Did NSA put a secret backdoor in new encryption
standard. http://www.wired.com/politics/security/commentary/
securitymatters/2007/11/securitymatters_1115:2007

Schrödinger E (1935) Die gegenwärtige situation in der quanten-
mechanik. Naturwissenschaften 23(49):823–828

Schuld M, Sinayskiy I, Petruccione F (2014) The quest for a quantum
neural network. Quantum Inf Process 13(11):2567–2586

Schütt K, Gastegger M, Tkatchenko A, Müller KR, Maurer R
(2019) Unifying machine learning and quantum chemistry—a
deep neural network for molecular wavefunctions. arXiv preprint
arXiv:1906.10033

Shor PW (1999) Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Rev
41(2):303–332

Stefanov A, Gisin N, Guinnard O, Guinnard L, Zbinden H (2000) Opti-
cal quantum random number generator. J Mod Opt 47(4):595–598

Stipcevic M (2012) Quantum random number generators and their
applications in cryptography. In: Advanced photon counting tech-
niques VI, international society for optics and photonics, vol 8375,
p 837504

Svore KM, TroyerM (2016) The quantum future of computation. Com-
puter 49(9):21–30

Wang L, Niu Q, FeiM (2008) A novel quantum ant colony optimization
algorithm and its application to fault diagnosis. Trans Inst Meas
Control 30(3–4):313–329

Wang L, Niu Q, FeiM (2007) A novel quantum ant colony optimization
algorithm. In: International conference on life system modeling
and simulation. Springer, pp 277–286

WayneMA, Jeffrey ER, Akselrod GM, Kwiat PG (2009) Photon arrival
time quantum random number generation. J Mod Opt 56(4):516–
522

WeiW, Guo H (2009) Quantum random number generator based on the
photon number decision of weak laser pulses. In: Conference on
lasers and electro-optics/Pacific Rim, Optical Society of America,
p TUP5_41

Yang YG, Jia X, Sun SJ, Pan QX (2014) Quantum cryptographic algo-
rithm for color images using quantum fourier transform and double
random-phase encoding. Inf Sci 277:445–457

You X, Liu S, Wang Y (2010) Quantum dynamic mechanism-based
parallel ant colony optimization algorithm. Int J Comput Intell
Syst 3(sup01):101–113

Zhao H, Yao R, Xu L, Yuan Y, Li G, Deng W (2018) Study on a
novel fault damage degree identification method using high-order
differential mathematical morphology gradient spectrum entropy.
Entropy 20(9):682

Zhao H, Zheng J, Xu J, Deng W (2019) Fault diagnosis method based
on principal component analysis and broad learning system. IEEE
Access 7:99263–99272

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1908.03151
http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115:2007
http://www.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115:2007
http://arxiv.org/abs/1906.10033

	On the effects of pseudorandom and quantum-random number generators in soft computing
	Abstract
	1 Introduction
	2 Background and related works
	2.1 Quantum computing
	2.2 Randomness in classical and quantum computing
	2.3 Quantum theory in related state-of-the-art computing application

	3 Experimental setup and design
	3.1 Experimental process

	4 Results and discussion
	4.1 MLP: random initialisation of dense neural network weights
	4.1.1 Accent classification
	4.1.2 Mental state classification

	4.2 Random tree and quantum random tree classifiers
	4.2.1 Accent classification
	4.2.2 Mental state classification

	4.3 Random forest and quantum random forest classifiers
	4.3.1 Accent classification
	4.3.2 Mental state classification

	4.4 CNN: initial random weight initialisation for computer vision
	4.4.1 MNIST image classification
	4.4.2 CIFAR-10 image classification

	5 Future work
	6 Conclusion
	Acknowledgements
	Appendices
	1 Quantum assembly language for random number generation
	2 Python code for generating a string of random bits
	References

