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Abstract. This paper reports on the theory and experimental verification of utilising air 
damping as a soft stopper mechanism for piezoelectric vibration energy harvesting to enhance 
shock resistance. Experiments to characterise device responsiveness under various vibration 
conditions were performed at different air pressure levels, and a dimensionless model was 
constructed with nonlinear damping terms included to model PVEH response. The relationship 
between the quadratic damping coefficient ζn and air pressure is empirically established, and 
an optimal pressure level is calculated to trade off harvestable energy and device robustness 
for specific environmental conditions. 

1. Introduction 
 Microelectromechanical systems (MEMS) technology has enabled the construction of chip-
scale vibration energy harvesters with the potential for close in-package or monolithic co-integration 
with standard CMOS technology. Despite the demonstration of useful power output from MEMS 
vibration energy harvesters [1], the lack of robustness of MEMS devices due to the brittleness of 
silicon has hindered commercialisation and real-world application, as large amplitude vibrations in 
operational environments often cause cantilevered MEMS devices to fracture [2], as shown in Fig.1.  
Nonlinear air damping has been observed by Jia et al. [3] when the PVEH operates under atmospheric 
conditions, which limits the maximum displacement of the PVEH when subjected to large amplitude 
excitation. While this effect reduces the overall power output, it can also serve as a ‘soft’ mechanical 
stopper to constrain the vibration amplitude of the harvester. This in turn helps the harvesters to 
survive at high acceleration levels whereas PVEHs operating in vacuum environments fracture due to 
excessive displacement under identical drive conditions. Therefore, nonlinear air damping can 
potentially serve as a soft stopper and prevent devices from failure due to shock or other excessive 
dynamic loading. 

 
Figure 1. Picture of MEMS PVEH [1] The top left corner reveals fractured PVEH due to shock excitation. 
2. Nonlinear model 
This paper investigates the variation of maximum power output by PVEH with varying air pressure 
inside the MEMS package. The PVEH is designed by Jia et al. [3] as a cantilever with proof mass at 
the free end. The dimensions of the cantilever are 3.5mm by 3.5mm, and the proof mass is comprised 
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of an un-etched silicon substrate (400 µm). The particular device considered in this study has a proof 
mass to cantilever length ratio of 70%.  
 A dimensionless model was constructed with nonlinear damping to analytically model the time 
response of the cantilever and to verify the effect of air damping ζn on the displacement of the MEMS 
PVEH. Nonlinear dissipation of vibrating cantilevers can have several origins, such as geometric 
nonlinearities or viscous damping by the ambient medium. The equation of motion with nonlinear 
damping has been previously investigated by Ravindra [4] on soft Duffing oscillators, with the 
nonlinear damping term taken to be proportional to the pth power of the velocity of the system, in the 
form of :  

                                                                                                                                                                                                                                  (1) 
where p ≥ 1 is the nonlinear damping exponent, and αp is the corresponding damping coefficient.  

 The precise value for the nonlinear damping exponent can be determined by considering the 
physical origin of the damping effect. For MEMS devices operating in air, the cantilever is oscillating 
in a fluid, and the fluid drag force accounts for the nonlinear air damping effect in the physical model. 
The amplitude of the fluid drag force can be expressed as a quadratic function of velocity [5]. As a 
result, the response of a PVEH oscillating in air is modelled by a nonlinear-damped Duffing equation 
with a quadratic damping term as:  

                                                                              (2) 
where x is the displacement, ζ is the viscous damping, ζn is the quadratic damping representing 
nonlinear air drag, µ is the Duffing coefficient, wn is the natural frequency, A is the excitation 
displacement amplitude, w is the excitation frequency and t is the time domain.  
 The maximum displacement of the cantilever in air as a function of the nonlinear air damping 
coefficient ζn can be numerically obtained through the dimensionless model, and is shown in Fig.2. As 
seen from the figure, the maximum displacement flattens off and amplitude saturation is observed as 
the excitation increases with higher nonlinear air damping.  

 
Figure 2. Dimensionless model demonstrating excitation-displacement relationship for various values of 

nonlinear air damping ζn. As ζn increases, amplitude saturation is observed 

3. Experimental characterisation 

3.1 Experimental setup 
Characterisation experiments are performed to obtain the relationship between output power and input 
excitation for the PVEH with different air pressure levels. The experimental apparatus is shown in Fig. 
3. The PVEH is inserted onto a chip carrier, mounted to a shaker with a custom PCB, and the entire 
setup is placed in a vacuum chamber, evacuated using a vacuum pump to adjust the air pressure level 
inside the chamber. Sinusoidal excitation operating at the device resonance frequency with mean 
amplitude varying from 0.5 to 10 g is supplied to the PVEH via a function generator (Agilent 
33220A), and the operating air pressure is set to be 1, 3, 10, 200, 500 and 1000 mbar, respectively.  
 

ap !x !x
p−1

!!x + 2ζwn !x +ζ n !x !x + µx3 +wn
2x = Aw2 cos(wt)
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Figure 3. Experimental setup. 
3.2 Sinusoidal excitation 
The maximum power output of the PVEH under varying excitation levels recorded at different air 
pressure levels is shown in Fig.4. For larger excitations, lower air pressure cases have steeper slope 
between excitation and power output, whereas the slope decreases as air pressure increases. This is 
due to the diminishing displacement of the PVEH due to nonlinear damping, which results in the 
device describing amplitude saturation.  

 
Figure 4. Excitation-Power output curve with sinusoidal excitation.  

3.3 Parameters extraction  
 The relationship between power output under different air pressure levels and the quadratic 
damping coefficient in the nonlinear Duffing model can be established by nonlinear curve fitting 
using the Levenberg-Marquardt (LM) algorithm, described in [6]. The linear parameters of the 
cantilever in this study are measured and reported in [3]. The nonlinear duffing stiffness µ is derived 
from the experimental results at 1 mbar, considering the effect of nonlinear damping in rarefied 
regime negligible [7]. The parameters of the cantilever are listed in Table 1.  
					 
               Table 1. Parameters of the PVEH 

   Fig.5 Quadratic damping coefficient VS air pressure 
  
 

 wn ζ µ 

Value 215 0.0035 3.02 x 10-4 
Unit Hz 1/s N/m 
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Fig.5 demonstrates the relationship between quadratic damping coefficient and air pressure level by 
fitting the excitation-power output response of the cantilever using the LM algorithm. As seen from 
the figure, the quadratic damping coefficient increases as the ambient pressure in the vacuum chamber 
increases, which in turn reduces the maximum displacement of PVEH for the same excitation level 
conditions.  
3.4 Random vibration testing   
Apart from the sinusoidal resonant response, Fig.6 further compares the average power output for 
PVEH under different air pressure subjecting to band-limited white noise vibration. Random 
excitation experiments are performed with band-limited white noise vibration input (10 Hz to 2 kHz) 
under varying air pressure from 1 to 1000 mbar to validate utilising nonlinear damping as a soft 
stopper.  
 Fig.6 (a) illustrates the time response of the cantilever when subjected to 7 g of band-limited 
white noise (0.025 g2Hz-1). The average power response for different air pressure were 76.63 nW, 
64.48 nW, 35.07 nW, 28.85 nW and 13.39 nW, for air pressure at 1 mbar, 3 mbar, 10 mbar, 200 mbar, 
500 mbar and 1000 mbar respectively, as shown in Fig.6 (b). The experiment demonstrates that 
increasing air pressure level can effectively reduce the maximum displacement of PVEH, reducing the 
impact of high frequency shock in a stochastic excitation scenario, which prevents onset of failure by 
fracturing and serves as a protective soft stopper for PVEH employed in harsh environments. 

                   
Figure 6(a) & (b). (a) Response of PVEH driven by random excitation with   0.15 g ,1000 Hz band-limited white 

noise. (b)Average power output with varying air pressure. When pressure increased, the output voltage 
diminished from 76.63 nW to 13.39nW, verifying air damping as soft stopper for random excitation environment 

4. Design Guidelines 
In order to prevent device from fracturing, the failure limit in terms of maximum displacement of 
PVEH is derived based on the fracture strength of silicon and PVEH geometry. 
 For a simple rectangular cantilever with length l subjecting to base excitation, the static 
maximum stress and deflection of the cantilever can be derived with Euler-Bernoulli beam equation 
[8]. However, in dynamic loading scenarios, the deflection and stress fluctuates with time, also 
nonlinear stiffness and damping of the cantilever contribute to the system dynamics. 
If a sinusoidal excitation P=Aw2cos(wt) with amplitude |Aw2| is applied to the cantilever, the 
maximum deflection δl under different excitation amplitudes and air pressure levels can be solved 
numerically with the value of both linear and nonlinear parameters derived from prior experimental 
characterisation of the devices. The time response of the cantilever with nonlinear air damping is 
described in Eqn. 2, where | Aw2 | is the amplitude of the fluctuating load, and x is the deflection of the 
cantilever. 
Also under dynamic loading, the maximum bending stress of the cantilever as a function of maximum 
deflection of the cantilever can be approximated as [9]:  

                                                                                                                          (3) 
where E is the Young’s Modulus of the cantilever, I is the moment of inertia and Z is the section 
modulus of the cantilever. As seen from Eqn. 3, the bending stress is a function of maximum 
deflection of the cantilever when it is subjected to dynamic loading. The failure limit is then defined 
as the maximum sustainable deflection of the cantilever before the maximum bending stress reaches 
the fracture strength of silicon, thus for a given PVEH, the failure limit can be determined by the 

σ max =
EI
Z
δ '' (0) = 3EI

Z
δ l

l2
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geometry of the PVEH. 
 For a given environment, the excitation range can be defined as the maximum excitation 
amplitude of the cantilever before the cantilever reaches the failure limit. Based on the dimensionless 
model, the excitation range can be expressed as a function of nonlinear damping ζn when the failure 
limit is known, as shown in Fig.7. As seen from the graph, for the same excitation level, as nonlinear 
damping increases, the deflection of the cantilever decreases. As a result, the excitation range for the 
device can be extended as nonlinear damping is increased, meaning the device with higher nonlinear 
damping can be employed into environment with higher excitation range without the device reaching 
the maximum deflection and fractures with excessive dynamic stress. 
 

 
Figure 7(a)&(b). Schematic of (a) relationship between excitation range with nonlinear damping when the 

failure limit of PVEH is set to be 1 (b) Excitation range as function of ζn in the range between 0 to 2 calculated 
with the dimensionless model when the failure limit of PVEH is set to be 1, and failure limit of a PVEH based on 

the geometry of the device and fracture strength of silicon 
  
5. Conclusion and Future work 
While vacuum packaging is typically used in MEMS applications to minimise air damping, this paper 
presents a novel application of utilising air damping as a soft stopper for PVEHs. The results show 
that the excitation-power characteristic of the PVEH can be altered by varying the air pressure level. 
For larger excitation, higher air pressure reduces the power output of the PVEH, and the bounded 
PVEH displacement can prevent device failure by fracturing. As a result, the device is able to 
withstand higher excitation level before reaching the failure limit with higher air pressure, thus the 
range of input excitation can be extended at higher pressures, facilitating suitability for deployment in 
high excitation environments. The failure limit and excitation range of a rectangular cantilever with 
air damping subjecting to sinusoidal excitation is demonstrated in this study, as future work aims to 
calculate the optimized level of nonlinear damping based on device fracture limits and the excitation 
condition for a given device and deployment environment. 
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