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ABSTRACT
De-identification of electronic health records (EHR) is a vital step towards advanc-
ing health informatics research and maximising the use of available data. It is a
two-step process where step one is the identification of protected health informa-
tion (PHI), and step two is replacing such PHI with surrogates. Despite the recent
advances in automatic de-identification of EHR, significant obstacles remain if the
abundant health data available are to be used to the full potential. Accuracy in
de-identification could be considered a necessary, but not sufficient condition for the
use of EHR without individual patient consent. We present here a comprehensive
review of the progress to date, both the impressive successes in achieving high accu-
racy and the significant risks and challenges that remain. To best of our knowledge,
this is the first paper to present a complete picture of end-to-end automatic de-
identification. We review 18 recently published automatic de-identification systems
-designed to de-identify EHR in the form of free text- to show the advancements
made in improving the overall accuracy of the system, and in identifying individual
PHI. We argue that despite the improvements in accuracy there remain challenges
in surrogate generation and replacements of identified PHIs, and the risks posed to
patient protection and privacy.
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1. Introduction

The application of machine learning research using EHR has the potential to revolu-
tionise health care. There is an abundance of health data available and maximising
the utility of this data will result in improving health care, especially in patient care,
medical outcomes, surgical outcomes, risk prediction, clinical decision support and
medical diagnosis.

Use of patient data typically requires individual patient consent. For research, with-
out individual consent, the data must be de-identified such that the patient’s identity
or privacy is not breached. Obtaining individual patient consent for massive datasets
is time-consuming and is a challenging task. Hence there is a great interest in automat-
ing the de-identification process such that EHR can be used in research to improve
the health care and quality of patient care without compromising the identity of the
patient.
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There is growing interest internationally in applying big data techniques to elec-
tronic health records. However, privacy laws in many jurisdictions –including New
Zealand’s Health Information Privacy Code and the United States Health Insurance
Portability and Accountability Act (HIPAA)– require accurate de-identification of
medical documents (such as discharge summaries and electronic health records) be-
fore they can be shared outside of their originating institutions.

The sharing of records is crucial for advancing health research. For example, the
2014 Heart Disease Risk Factors Challenge involved participating research groups at-
tempting to predict heart disease risk factors in diabetic patients from longitudinal
clinical narratives. As noted above, such a challenge would not have been possible
under United States law if the narratives (1,304 medical records from 296 diabetic pa-
tients) were not de-identified first. In this case, the records were de-identified manually
by multiple medical professionals. Since most institutions will not be able to afford
the costs of manual de-identification, automating the process is crucial therefore for
sharing data and advancing health research.

We present our findings in three main groups: achievements, challenges, and risks,
associated with generating an automatic de-identification. Achievements of automatic
de-identification primarily focus on identification of PHI in EHR. Challenges are asso-
ciated with the surrogate generation and replacement. Risks outline the issues relating
to re-identification and medical correctness and usability of de-identified data.

The rest of the paper is structured such that a brief background on de-identification
is presented in section 2, achievements of recent de-identification systems in section 3,
challenges in section 4, risks in section 5 and finally a discussion in section 6.

2. Background on De-identification

De-identification is a two-step process where PHI is identified in EHR and replaced
with suitable surrogates such that patient privacy and confidentiality is not at risk.
Figure 1 provides a detailed example of de-identification of EHR, where original patient
discharge notes are de-identified. This figure also outlines the two-step de-identification
process. It is important to note that step two requires the use of appropriate surrogates
to replace the original PHI and hence automating surrogate generation is a vital step
in creating a longitudinal narrative end-to-end automatic de-identification system.
Although EHR is in the form of tabular structures (i.e. tables), free-form narratives,
and images, this study focuses on medical data in the free form longitudinal text.

De-identification should be considered a means of satisfying rather than circum-
venting the legal and ethical requirements created to protect patient privacy across
the world. Individual countries have different requirements, for example HIPAA in the
United States of America (Garfinkel (2015); Stubbs, Uzuner, Kotfila, Goldstein, and
Szolovits (2015a); Yogarajan, Mayo, and Pfahringer (2018b)), the European Union’s
new General Data Protection Regulation (GDPR) (Brasher (2018); Polonetsky, Tene,
and Finch (2016)), and New Zealand’s own health information privacy code (Health &
Disability Commissioner (2009); Office of the Privacy Commissioner (2013); Yogara-
jan, Mayo, and Pfahringer (2018a)). HIPAA is arguably the gold standard, and both
HIPAA’s regulations on Expert Determination and Safe Harbor are used as the stan-
dard benchmarks for de-identification of EHR in the form of free text. We use HIPAA’s
Safe Harbor guidelines as the basis of assessing the accuracy of the de-identification
systems (for details on HIPAA’s Safe Harbor and the 18 categories see Yogarajan et al.
(2018b)).
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Figure 1. Example of an end-to-end de-identification process.

A superior de-identification system will not only meet legal requirements but will
also help build societal consent by assuring the public that their privacy and medical
data will be protected. This consent is vital if large-scale research involving medical
records is to be accepted in the same way as, for example, Statistics New Zealand’s
Integrated Data Infrastructure. Acceptance of the latter is arguably in part due to
measures were taken by Statistics New Zealand to de-identify data (Ragupathy and
Yogarajan (2018); Statistics New Zealand (2016)).

3. Achievements

In the recent years there has been a substantial development in natural language
processing tasks, including de-identification, primarily due to the development in deep
learning (Dalianis (2018); Goldberg (2017)). Improving accuracy of de-identification of
EHR – step 1 from Figure 1 – has been the primary focus of research in this field, and
several de-identification systems have achieved remarkable success. The main reason
for such development is the EHR de-identification competitions (Kumar, Stubbs, Shaw,
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and Uzuner (2015); Stubbs, Filannino, and Uzuner (2017); Stubbs, Kotfila, Xu, and
Uzuner (2015); Stubbs and Uzuner (2015c, 2017); Uzuner and Stubbs (2015)). For a
complete review of these competitions and significance see Yogarajan et al. (2018b). It
is important to note that these competitions provide open access data which allowed
the research to grow rapidly. In addition to these competition datasets, the MIMIC
dataset (Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng,
and Stanley (2000); Johnson, Pollard, Shen, Li-wei, Feng, Ghassemi, Moody, Szolovits,
Celi, and Mark (2016)) is another open access dataset that has been used to develop
de-identification systems.

Table 1. De-identification systems summary. Machine learning indicates systems that uses machine learning tech-
niques only. Hybrid systems indicates systems that used a combination of machine learning techniques and hand
crafted rules.

Architecture De-identification system

Machine learning S1 (Zhao, Zhang, Ma, and Li (2018)),
S2 (Chen, Cullen, and Godwin (2015))
S3 (Dernoncourt, Lee, Uzuner, and Szolovits (2017)),
S4 (Yadav, Ekbal, Saha, Pathak, and Bhattacharyya (2017)),
S5 (Lee, Dernoncourt, and Szolovits (2017)),
S6 (Dernoncourt, Lee, and Szolovits (2017))

Hybrid S7 (Yang and Garibaldi (2015))
S8 (Liu, Tang, Wang, and Chen (2017))
S9 (Lee, Dernoncourt, Uzuner, and Szolovits (2016))
S10 (Dehghan, Kovacevic, Karystianis, Keane, and Nenadic (2015))
S11 (Yang and Garibaldi (2015))
S12 (He, Guan, Cheng, Cen, and Hua (2015))
S13 (Liu, Chen, Tang, Wang, Chen, Li, Wang, Deng, and Zhu (2015))
S14 (Phuong and Chau (2016))
S15 (Bui, Wyatt, and Cimino (2017a))
S16 (Jiang, Zhao, He, Guan, and Jiang (2017))
S17 (Lee, Wu, Zhang, Xu, Xu, and Roberts (2017))
S18 (Shweta, Kumar, Ekbal, Saha, and Bhattacharyya (2016))

In this section, we outline the most significant achievement of automating end-to-
end de-identification system: improving accuracy. It has been argued that as far as
de-identification is concerned, perfection cannot be achieved; however, 95% accuracy
is considered to be the rule of thumb and universally accepted value (Stubbs et al.
(2017); Stubbs, Kotfila, and Uzuner (2015)). We use 18 de-identification systems, as
outlined in Table 1, to show that several of these systems have achieved an overall
F-measure of ≥ 0.95. Also, we outline the fact that these systems have also identified
the majority of the HIPAA PHI with the F-measure of ≥ 0.95. These achievements
have been a significant milestone in automating end-to-end de-identification of EHR
and has been a significant breakthrough in this area of research.

This section will be structured such that a brief overview of the datasets will be
provided. This is followed by an outline of the systems that obtained an overall F-
measure of ≥ 0.95, and also a summary of systems that recorded F-measure of ≥
0.95 for individual PHIs. The techniques and datasets used for these results are also
outlined.
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3.1. Overview of Datasets

In this section, we provide a quick overview of the most commonly used datasets
by the 18 de-identification systems outlined in Table 1. The most commonly used
datasets were introduced by the following three competitions: the 2006 Informatics for
Integrating Biology and the Bedside (i2b2) competition (Uzuner, Luo, and Szolovits
(2007)); the 2014 i2b2/UTHealth shared task (Stubbs et al. (2015); Stubbs and Uzuner
(2015c)); and the 2016 Centers of Excellence in Genomic Science (CEGS) and Neu-
ropsychiatric Genome-Scale and RDOC Individualized Domain (N-GRID) shared task
(Stubbs et al. (2017); Stubbs and Uzuner (2017)).

The dataset for the 2006 competition included 889 unannotated discharge sum-
maries, also used for smoking challenges, manually broken into sentences and tokenised.
The dataset for the i2b2/UTHealth shared task 2014 included 2 - 5 records for each
patient over a fixed period and was obtained from two large academic tertiary hos-
pitals: Massachusetts General Hospital (MGH), and Brigham and Women’s Hospital
(BWH) ?. It includes 296 diabetics patients with 1304 longitudinal medical records
and contains three cohorts based on the diagnosis of coronary artery disease (CAD)
(Kumar et al. (2015); Stubbs et al. (2015); Stubbs and Uzuner (2015a,c)).

The 2016 CEGS N-GRID shared task used psychiatric data, making it the first ever
competition to use psychiatric intake records (Lee et al. (2017); Stubbs et al. (2017)).
The data for the 2016 competition reflected the records “as is” (Stubbs et al. (2017);
Uzuner, Stubbs, and Filannino (2017)): the state at which data was received from
the sources. Unlike other medical data, such as that of the 2014 challenge, psychiatric
data contains an abundance of information related to the patients such as places lived,
jobs held, children’s ages, hobbies, traumatic events, patients’ relatives’ relationship
information, and pet names. This makes it a much more significant challenge to de-
identify (Bui, Wyatt, and Cimino (2017b); Stubbs et al. (2017)).

MIMIC III is one the most extensive publicly available database (Goldberger et al.
(2000); Johnson et al. (2016)). It contains health records of approximately sixty thou-
sand admissions of patients in critical care units. The database includes information
such as demographics, laboratory test results, procedures, medications, and physician
notes.

Also, there were other data used by individual systems such as Chinese data by S1
and Dutch data by Menger, Scheepers, van Wijk, and Spruit (2018). Although we do
not describe these systems in this paper, it is important to note that these systems
also presented with high F-measure.

3.2. Overall F-measure of de-identification system

Table 2 presents the de-identification systems that recorded an overall F-measure of
≥ 0.95. Each entry also outlines the datasets used to obtain such results. The highest
recorded overall F-measure was obtained by S3 and S9 using MIMIC III dataset. One
possible reason for such high accuracy obtained using MIMIC III dataset could be
due to the duplicates created by cut and paste (Gabriel, Shenoy, Kuo, McAuley, and
Hsu (2018)). The i2b2 2014 is the most commonly used dataset. It is important to
point out S7 as the best performing system from the actual i2b2 2014 competition.
As shown in Table 2 there has been a substantial improvement in F-measure since the
2014 competition. Unfortunately, this might partly be due to overfitting of the now
known and freely available test set.

Table 3 provides an outline of the techniques used by the de-identification systems
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Table 2. De-identification systems with overall F-measure ≥ 0.95.

De-identification System F-measure
i2b2 2006 i2b2 2014 i2b2 2016 MIMIC III

S1 0.9879 0.9805
S3 0.9785 0.9923
S4 0.9746
S5 0.9800 0.9600
S6 0.9770
S7 0.9573
S8 0.9511
S9 0.9926

Table 3. De-identification systems with overall F-measure ≥ 0.95.

De-identification Techniques
System

S1 Recurrent neural network (RNN) + statistical text skeleton approach.
S3 RNN
S4 Conditional Random Field (CRF)
S5 Transfer Learning
S6 Artificial neural networks (ANNs)
S7 CRF + Rule based + Dictionary based
S8 CRF + Rule based
S9 Long Short Term Memories (LSTMs) + human-engineered features

in Table 2. Machine learning only systems favour deep learning approaches. Hybrid
systems with the incorporation of handcrafted rules and dictionary-based approaches
are also used by a couple of the de-identification systems to achieve high F-measure.

3.3. F-measure of individual PHIs

In this section, we provide an overview of the systems that recorded F-measure ≥ 0.95
for individual HIPAA PHIs. Where the F-measure was < 0.95, the highest recorded
score is presented. We also provide some possible issues relating to the PHIs that have
lower F-measure. This section also provides an overview of the i2b2 PHIs. These are
the additional PHIs introduced by the i2b2 2014 and 2016 competitions (Stubbs et al.
(2015); Stubbs and Uzuner (2015a,c)). Although legally, as per HIPAA rules, there
are no requirements for these additional PHIs to be de-identified, the competition
organisers argue that these extra PHIs provide more security over re-identification of
data. Since i2b2 2014 and 2016 datasets are most commonly used in the advancement
of de-identification research, we feel it is vital to also present the successes in these
additional PHIs.

Table 4 provides an overview of the systems that achieved high F-measures. It also
outlines the datasets that were used to obtain such results. Except for Fax and Device
all other PHIs have obtained an F-measure of ≥ 0.95. This is an incredible achievement
and a significant improvement to the results obtained in i2b2 competitions (Yogarajan
et al. (2018b)). Although Fax and Device recorded < 0.95 F-measure, it is important
to note that only a very few instances (< 10) were found in the datasets for both of
these PHIs. This makes improving the accuracy using machine learning approaches
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Table 4. F-measure ≥ 0.95 for HIPAA categories for de-identification. On occasions where F-measure was not ≥
0.95, the highest score is presented. CONTACT: URL and IP address; ID: BioID, Healthplan, Social Security no,
and Vehicle licence plate no; Face photo; and Any other unique code are PHIs that were not present in any of the
dataset, hence not included here.

PHI categories Sub-categories F-measure Reference Dataset
(HIPAA)

DATE Date ≥ 0.95 S2, S3, S4, S8, S10 i2b2 2014
S11, S12, S13, S18

≥ 0.95 S3, S9 MIMIC
≥ 0.95 S14 i2b2 2006
≥ 0.95 S15, S16, S17, S8 i2b2 2016

NAME All names ≥ 0.95 S3, S18 i2b2 2014
≥ 0.95 S3 MIMIC

AGE Age ≥ 0.95 S1, S3, S8, S18 i2b2 2014
≥ 0.95 S3 MIMIC
≥ 0.95 S14 i2b2 2006
≥ 0.95 S15, S16, S17, S8 i2b2 2016

CONTACT Phone ≥ 0.95 S3, S11 i2b2 2014
≥ 0.95 S9 MIMIC
≥ 0.95 S14 i2b2 2006
≥ 0.95 S17 i2b2 2016

Fax 0.80 S2 i2b2 2014
Email ≥ 0.95 S2, S10, S11 i2b2 2014

ID Medicalrecords ≥ 0.95 S11, S12 i2b2 2014
≥ 0.95 S9 MIMIC

IDNUM ≥ 0.95 S3 i2b2 2014
Device 0.80 S2, S3 i2b2 2014
License ≥ 0.95 S17 i2b2 2016

LOCATION all ≥ 0.95 S3 i2b2 2014
≥ 0.95 S9 MIMIC

very hard.
Table 5 provides an overview of the techniques used to obtain the F-measures pre-

sented in Table 4. As observed in Table 3 there is a clear increase in deep learning
methods. With a combination of handcrafted rules, de-identification systems have
achieved high F-measure for the majority of the PHI. In several cases, hand-crafted
rules only also achieve high F-measure. Good examples are License and Email, where
regular expressions work very well.

Table 6 provides an overview of F-measures for i2b2 introduced extra PHIs. These
PHIs are not part of the legal requirement as per HIPAA regulations but are addi-
tional security for ensuring that patient privacy and confidentiality are maintained.
Compared to the recorded results in the i2b2 2014 and 2016 competitions, there is a
substantial increase in the F-measure. Clearly, Organisation, Location-others, Profes-
sion and Country are the PHIs yet to reach the 0.95 F-measure. These were also the
PHIs that recorded a very low F-measure in both competitions (see Yogarajan et al.
(2018b) for details). The main issue with Country and Organisation is that the data
is very sparse. Location-others only occurs in thirteen instances in the dataset. The
sparsity of the data and the very low frequencies of same values make achieving higher
F-measures very hard. However, there is still an improvement in results compared to
that recorded in the competitions.

7



Table 5. Techniques used for the F-measures presented in Table 4 for HIPAA PHI categories.

PHI categories Sub-categories Techniques
(HIPAA)

DATE Date CRF + Rules + Dictionary (S12); Bi-LSTM (S7);
CRF + Rules + Keywords (S11);
Hidden Markov model (HMM-DP) (S2);
CRF + Rules (S10, S14, S15, S17); LSTM (S16);
RNN (S3, S18); LSTM + Rules (S9); CRF (S4)

NAME All names RNN (S3, S18)
AGE Age Bi-LSTM (S7); CRF + Rules (S14, S15, S17);

LSTM (S16); RNN (S1, S3, S18)
CONTACT Phone CRF + Rules + Keywords (S11); RNN (S3);

CRF + Rules (S14, S17); LSTM + Rules (S9)
Fax HMM-DP (S2)
Email Rules (S10, S11); HMM-DP (S2)

ID Medicalrecords CRF + Rules + Keywords (S11); LSTM + Rules (S9)
IDNUM RNN (S3)
Device HMM-DP (S2); RNN (S3)
License Rules (S17)

LOCATION all RNN (S3); LSTM + Rules (S9)

3.4. In summary

This section showed the achievements in automating de-identification research, with
substantial improvement in F-measure of identifying PHI in the overall systems and
individual PHIs (notably the HIPAA required PHIs).

4. Challenges

The biggest challenge in automating end-to-end de-identification is surrogate gener-
ation and surrogate replacement (step 2 in Figure 1). At first sight, this appears to
be superficially simple when compared to step 1. However, when one considers it in
detail, there are many complex subtleties associated with the surrogate generation
and surrogate replacement. Unlike the research towards increasing accuracy in identi-
fying PHI, as seen in section 3, this is an area where very little research progress has
been made. There have been only a few papers published in the recent years regard-
ing surrogate generation and surrogate replacement for the de-identification problem,
with the schema developed in the 2014 i2b2 competitions being the prominent one to
date (Stubbs and Uzuner (2015b); Stubbs, Uzuner, Kotfila, Goldstein, and Szolovits
(2015b)).

PHI are categorised into explicit identifiers and quasi-identifiers. Explicit identifiers
such as name, phone number and social security number are directly linked to a patient.
Quasi-identifiers such as age, gender, race and zip code are not directly connected to a
patient but can be linked to external data sources and consequently be used to identify
a patient, hence posing the same risk to patient privacy as explicit identifiers.

In this section, we present examples of standard practices used in surrogate replace-
ment and challenges faced. Automation in the surrogate generation is arguably still a
very challenging and unsolved problem.
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Table 6. The best F-measure for i2b2 extra categories for de-identification. This table includes categories not
included in Table 4, but were introduced by i2b2 competitions as additional categories (Stubbs et al. (2015); Stubbs
and Uzuner (2015a)). It also provides the techniques used to achieve these F-measures.

PHI categories Sub-categories F-measure Reference Techniques Dataset
(i2b2 extra)

NAME Doctor ≥ 0.95 S3, S4 RNN; CRF i2b2 2014
≥ 0.95 S2 LSTM + Rules MIMIC
≥ 0.95 S14 CRF + Rules i2b2 2006
≥ 0.95 S17 CRF + Rules i2b2 2016

Patient ≥ 0.95 S3, S4 RNN; CRF i2b2 2014
≥ 0.95 S2 LSTM + Rules MIMIC
≥ 0.95 S14 CRF + Rules i2b2 2006

Username ≥ 0.95 S10 Rules; i2b2 2014
≥ 0.95 S11 CRF + Rules + KW; i2b2 2014
≥ 0.95 S12 CRF + Rules + Dic i2b2 2014

LOCATION Hospital ≥ 0.95 S3 RNN i2b2 2014
≥ 0.95 S2 LSTM + Rules MIMIC

City ≥ 0.95 S3 RNN i2b2 2014
State ≥ 0.95 S3 RNN i2b2 2014

≥ 0.95 S2 LSTM + Rules MIMIC
Street ≥ 0.95 S3, S9 RNN; HMM-DP i2b2 2014

≥ 0.95 S11 CRF + Rules + KW; i2b2 2014
Zip ≥ 0.95 S10 Rules i2b2 2014

≥ 0.95 S11 CRF + Rules + KW; i2b2 2014
≥ 0.95 S12 CRF + Rules + Dic i2b2 2014
≥ 0.95 S2 LSTM + Rules MIMIC
≥ 0.95 S16 LSTM i2b2 2016

Organisation 0.82 S3 RNN i2b2 2014
Country ≥ 0.90 S3 RNN i2b2 2014

≥ 0.90 S2 LSTM + Rules MIMIC
Location-Others 0.57 S3 RNN i2b2 2014

PROFESSION Profession 0.84 S3 RNN i2b2 2014

4.1. Examples of Surrogate replacement of PHI

Table 7 provides an outline of some PHIs and the standard practices used in a surro-
gate generation while creating de-identified data. Although all of these practices are
based on hand-crafted rules and pre-compiled tables, there was also a need to do a
manual check after the data is de-identified. This is to ensure that medical correct-
ness, readability and consistency are maintained across the health data. Table 7 also
indicates where manual checking after de-identification was required. Surrogates need
to maintain the same form as the original, and where possible same internal temporal
and co-reference relationships. Also, as illustrated in Figure 1 semantic links must be
maintained, for example between LOCATION and PROFESSION.

It is important to note that it is relatively easy to create surrogates randomly and
maintain co-references for PHONE, FAX, URLs and ID (Stubbs and Uzuner (2015b);
Stubbs et al. (2015b)). Any ambiguous words appearing as part of a name, medical
term or acronym were replaced using a set of hand-crafted rules (Pantazos et al.
(2017)). This is primarily because, in medicine, it is common to have diseases, signs
and symptoms being named after the person first describing it. One such example is
“Aaron” which can refer to a name of a person, or be part of a medical term: Aaron
sign referring the pain felt in the epigastrium.
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Table 7. Common practices used in surrogate generation and replacement of PHI as outlined in (Johnson et al.
(2016); Pantazos, Lauesen, and Lippert (2017); Stubbs and Uzuner (2015b); Stubbs et al. (2015b)).

PHI Surrogate generation techniques Manual check

DATE and AGE Option 1: date shifting where all elements Yes
of dates (i.e. day, month and year) are shifted
forward by the same random number.
Option 2: distorted identifier table is used where
date, month were changed but year was kept the same.

PHONE, FAX, Randomly created surrogates. -
URLs, ID

EMAIL address Manual replacement Yes

NAME Option 1: permutation tables with existing -
identifiers are mapped to new ones with
similar frequency of occurrence.
Option 2: Mapping between letters, maintaining
name type and sex.

LOCATION Random selection of surrogates from pre-compiled Yes
list or permutation tables ensuring the type of
location is matched.

PROFESSION hand-crafted rules to select from pre-compiled list. Yes

4.2. Issues and Challenges due to Surrogate replacement of PHI

Table 7 provided an overview of techniques used in the surrogate generation and
replacement. However, there are many practical issues with some of these rules and
techniques which creates challenges in maintaining medical correctness and usability
of de-identified data in health advancement research. Moreover, it is important to note
in most cases there was a need to manually check the surrogate replaced data to ensure
consistency and accuracy is maintained across patient data.

When DATE is changed to just the year or randomly changed it removes inferrable
information such as the “season” which could result in missing any pandemic outbreak
(Li and Qin (2017)). There is a need to maintain the semantic link between the LO-
CATION and DATE to ensure such information is not missed. Also, for PHIs DATE
and AGE, medical correctness is a major issue. Birth dates have to be transformed
such that the patient age is in a similar age range. Otherwise diagnosis patterns will
become inapplicable. For example, a 20-year-old de-identified to be a 60-year-old will
cause issues in medical diagnosis.

When LOCATION such as zip code is replaced by random zip codes (even from a
pre-compiled list), geographical information is distorted. For example, a patient living
in a high socioeconomic area being moved to low decile area, or vice versa, will result
in relevant information about the living conditions and life expectancy changing. This
could mislead patient diagnosis, or miss vital information in patient care. In addition
to socioeconomic issues relating to LOCATION, there is also ethnicity information.
For example, in New Zealand, there are parts of the country, such as Northland, where
there is known to be a higher population of New Zealand’s indigenous Maori people.
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If everyone from Northland is moved to another LOCATION or spread across several
LOCATIONS, the ethnicity information is also lost in the de-identified data. It is very
challenging to ensure such information is not lost without introducing systemic bias
towards a sub-population, e.g. Maori people in the New Zealand example above.

With NAME, if the patient’s name, for example, “John”, is replaced by “Jack”, then
there is a need to ensure all of his medical records reflect this change. For instance, in
addition to the free text data that was replaced, the change must also be made consis-
tently across all of his longitudinal data, including but not restricted to his structured
data and medical images. In addition, the name change should also reflect correctly
on his family’s medical records, i.e. his wife’s records and his childrens. This does
allow the consistency and medical correctness to be maintained in de-identified data
(Pantazos et al. (2017)). The need to maintain consistency and medical correctness
makes automating de-identification a very challenging task and does require manual
checks and inputs (Pantazos et al. (2017); Stubbs et al. (2015b)). Also, in order to
maintain readability, a patient name must be replaced by a new name that looks real
and consistency should also be taken into consideration. For example, the frequency of
the name in a database needs to be consistent. A rare name occurring more frequently
will not look real.

One of the many challenges faced in de-identifying medical, free text data is am-
biguous words. In many cases, it is challenging to differentiate between an everyday
word, medical word and part of the patient name. This may result in errors with sur-
rogate replacement where for instance a medical term is replaced by a person’s name
surrogate.

4.3. In summary

This section presented common practices used in surrogate generation and replace-
ment, where most of the techniques rely on hand-crafted rules and pre-compiled tables.
We outline some of the important challenges faced in this step of de-identification and
argue that automation in surrogacy is still an open question with many obstacles to
overcome.

5. Risks

De-identified data in addition to protecting patient privacy should also meet the follow-
ing standards: medical correctness, readability and consistency across data (Pantazos
et al. (2017)). Risks around de-identification of health data can be classified into two
main areas: the risk of re-identification and the risk of losing usability, medical cor-
rectness and consistency across data. In this section, we provide a brief overview of
these two areas.

5.1. Re-identification

Re-identification is a process where a person’s identity is identified from the de-
identified data. This does result in a serious breach of patient privacy and confi-
dentiality. Explicit identifiers such as person’s name and address can be considered
obvious identifiers. However, even quasi-identifiers can result in re-identification of
a person (Johnson, De Freitas, Glicksberg, Bobe, and Dudley (2018); Li and Qin
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(2017); Sweeney (2002)). There have been many examples of such occurrences where
quasi-identifiers have been matched with external resources to identify patients. For
example, it was proven that attributes such as gender, date of birth and zip code could
be matched with external sources such as voting data to identify a patient (Li and
Qin (2017); Sweeney (2002)). Also, other examples demonstrate that a combination
of a small subset of quasi-identifiers, with or without other medical data, may even
be enough to identify the individual patient and pose serious threat to patient privacy
(El Emam, Jabbouri, Sams, Drouet, and Power (2006); Mayo and Yogarajan (2019)).

In addition to explicit identifiers and quasi-identifiers, there are also the sensitive
attributes such as psychiatric diseases, HIV, and cancer, which patients are not willing
to be associated with. Due to the specific nature of these sensitive attributes and the
need for special care facility these attributes when combined with other identifiers
makes re-identification of a patient much more feasible (Gkoulalas-Divanis, Loukides,
and Sun (2014)).

The risk of re-identification is real and can lead to serious breaches of patient pri-
vacy and confidentiality. While designing an automatic de-identification system, it is
important to consider the re-identification risk and take appropriate measures to min-
imise such risk. Also, there needs to be transparency in acknowledging such concerns.
The main questions when it comes to re-identification are:

• what is the accepted level of risk with re-identification?
• who makes that decision, the de-identification system designers, the users or the

patients?

There is no easy or correct answer to these questions, but they still need to be con-
sidered when designing a de-identification system. There is a need for human input in
making such decisions and deciding the boundaries of acceptable risk associated with
de-identification of a medical system.

5.2. Medical Correctness and Usability of De-identified Data

Maintaining medical correctness, consistency, readability and usability of data is a
difficult problem and the risks associated with this are usually overlooked. Compared
to de-identification of structured data, unstructured free text is very challenging. It
contains medical information about a patient that needs to be preserved for medical
correctness. However, it also contains personal details such as name, phone number,
family members names and other personal identifying items. Although the accuracy
of identifying PHI in such data has improved considerably, ensuring these PHI are
replaced with appropriate surrogates, and medical correctness maintained, is an open
question. This poses a great risk in using de-identified data for machine learning based
health research, as the de-identified health records may compromise the accuracy and
outcome of the resulting model. For example, accidentally replacing a word that re-
sembles a name but is not a name (maybe an abbreviation for a disease, or a disease
name itself) can result in readability and medical correctness errors (Pantazos et al.
(2017)). The hope is that the original data and the de-identified data of a particular
problem will result in the same outcome. However, there is no clear evidence that it
does. In reality, the only way to check if it does or does not, is by building models for
both versions of the data and comparing them.

Many of the surrogate replacements use randomised identifiers. However, in such
cases, the readability and consistency are compromised (Pantazos et al. (2017)). Unless
manually checked there is no guarantee these randomly replaced PHI makes much sense
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in the context and provide useful data outcomes.
Another significant risk is accidentally confusing patients. Lets say you have two

patients in the same age range, both named Anne Smith, but one presenting with
cancer and the other one with cardiovascular issues. Ensuring these two are kept sepa-
rated across all of their data, especially longitudinal data, can be very hard. This will
require using several PHI to match the person’s identity. However, in this case, there
is an increased risk of re-identification. This poses a question around confidentiality vs
verifiability, and as a result, increases the risk. This problem cannot be readily solved
by using unique identifiers (such as NHI numbers, date of birth or tax numbers) to
match narratives, as automated de-identification systems by design prune such de-
identifiers. Furthermore, HIPPAs Safe Harbor provision mandates the removal of such
unique identifiers (Garfinkel (2015); Stubbs et al. (2015a)). Similarly, New Zealands
Privacy Act and Health Information Privacy Code set strict limits on the assignment
and use of unique identifiers (Health & Disability Commissioner (2009); Office of the
Privacy Commissioner (2013)).

5.3. In Summary

This area outlined the two main risks associated with de-identification: the risk of
re-identification and the risk of losing usability, medical correctness and consistency
across data. Minimising the risk posed to patient privacy and confidentiality is vital.
The risk of re-identification must be considered a severe threat when designing a de-
identification system. The de-identified data must also maintain medical correctness,
readability and consistency. The advancement of health research using de-identified
data does rely on the usability of data and medical correctness of data. There is a
need for a manual check to ensure that the de-identified data resembles the original
data.

6. Discussion

To best of our knowledge, this is the first paper to present a complete picture of end-to-
end automatic de-identification of medical narratives. Noticeably, the majority of the
research is done on improving the accuracy of PHI identification in the overall system
and of individual PHI. We acknowledge the need for such research, and despite the
recent advancements in this area, mainly due to the use of deep learning in natural
language processing tasks, there is more room for improvement. At this stage the
minimum requirement of 95% F-measure has been met by several systems, but this is
only the minimum requirement. There is room for higher F-measures. Also, it will be
nice to take these systems to the next level, where in addition to the open access data
they use other sources of data. It will be interesting to see the adaptability of these
systems.

One of the big downfalls to these systems is that they do not outline the surrogacy
generation aspect of de-identification. However, de-identification is not just about iden-
tifying the PHI, but is also replacing the identified PHI with appropriate surrogates.
As mentioned earlier there is very little research done in this area, and clearly, there
are many challenges yet to be overcome. Also, most of the current practices are data
specific and use hand-made rules and pre-compiled tables. This is far from achieving
full automation in the de-identification problem, and there is an explicit acknowledge-
ment of the need for manual checks after surrogate replacement. We encourage for
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more research in this area, where the priority is to address some of the challenges
outlined in this paper and also to eliminate the need for manual checks.

The importance of automatic de-identification in advancing health research cannot
be emphasised enough. However, there is still a need to be aware of the risks associ-
ated with designing such systems. This will ensure that risk to patient privacy and
confidentiality is minimised while advancing the field of medicine through maximising
the potential of EHR with the use of machine learning techniques. Also, it is vital that
the medical correctness, consistency, readability and usability of data are all main-
tained such that the resulting de-identified data provides the parallel output to that
of the original data. It must be pointed out that high accuracy of de-identification is
directly proportional to medical correctness. It does become harder to maintain the
medical correctness and usability of data when achieving high accuracy becomes the
focus. Hence, de-identification of data does become a balancing act where barriers
associated with risk and benefits must both be considered. This is another area where
there needs to be more research done in proving that de-identified data is providing
the same outcomes as the original data.

The challenges and risks associated with de-identification have opened new avenues
of research in finding alternatives. One has to ask the question: “What if proper
de-identification is impossible?”. Guinney and Saez-Rodriguez (2018) proposes an al-
ternative idea for sharing confidential data called “model to data” where the flow
of information between data generators and modellers is reversed. Another idea pre-
sented by Vepakomma, Gupta, Swedish, and Raskar (2018) proposes a deep learning
model which excludes the need to share raw patient data or labels. These are merely
examples of alternatives, and are just the beginning of possibly solving the problem
of sharing and using EHR without the risk to patient privacy and confidentiality.
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