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Abstract 
High risk stocks tend to produce lower risk-adjusted returns than their lower risk 

counterparts. I take a novel look at leverage constraints as the primary driver of the anomaly, 

in exploring the impact of changing margin requirements on compensation for market 

correlation and volatility. Using a dataset from the US stock market between 1934 and 1974, I 

find that conditioned on volatility, correlation with the market reflects the additional risk 

investors seek to take on when access to additional leverage is hindered. On the other hand, 

higher volatility does not seem to play much of a role in investors adjusting for changing 

conditions for leverage. Additionally, I apply my results in the context of a Betting Against 

Correlation factor and find the returns to be largely related to leverage constraints as predicted 

by previous research. 
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Tiivistelmä 
Korkeariskisten osakkeiden riskikorjatut tuotot ovat tavallisesti heikompia kuin 

matalariskisissä osakkeissa. Sovellan tutkielmassani uutta lähestymistapaa sijoittajien 

rajoitettuun velanottoon anomalian aiheuttajana sekä tarkastelen muuttuvien 

limiittivaatimusten vaikutusta markkinakorrelaation ja volatiliteetin tuottokompensaatioon. 

Tarkastelen tutkielmassani osakkeiden tuottoja Yhdysvalloissa vuosina 1934–1974 ja näytän 

empiirisesti, että tuottojen korrelaatio markkinatuoton kanssa heijastaa sijoittajien 

pyrkimyksiä kasvattaa portfolion riskiä, kun velkavivun käyttö on rajoitettua ja volatiliteetti 

pysyy vakiona. Toisaalta yksittäisten osakkeiden volatiliteetti ei vaikuta olevan keskeisessä 

asemassa, kun sijoittajat muuttavat omistuksiaan vastaamaan eri tasoisiin velkarajoitteisiin. 
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1 Introduction

1.1 Low Risk Anomaly

The low risk effect represents one of the most persistent anomalies and unsolved puzzles

in asset pricing research. Early literature by e.g. Sharpe (1964), Lintner (1965) and

Mossin (1966) suggests that investors seeking mean variance efficient portfolios should

in equilibrium produce some form of the security market line captured by the Capital

Asset Pricing Model. Empirical findings however have been quite on the contrary since

the inception of the early models and still remarkably persist today. The security market

line turns out to be empirically flatter than implied by the CAPM with a variety of can-

didate explanations ranging from explanations based on systemic risk1 to pure behavioral

biases2.

The most commonplace explanations stem from two main categories: investors’ leverage

constraints and behavioral biases or hindrances such as the investors’ inclination for

lottery-like payoffs or the asymmetric impact of idiosyncratic volatility. The framework of

leverage constrained investors echoes a risk-based view on the anomaly. In the presence of

binding constraints to leverage, investors are not fully able to take on the level of risk they

desire on their optimal portfolios but are forced to resort to changing the composition of

their holdings rather than taking on debt. The new equilibrium for leverage constrained

investors causes increased price pressure on high risk securities, i.e. stocks with high

betas, and is then materialized by the flattening of the empirical security market line.

Not only does the new equilibrium put pressure on the higher beta assets but also reduces

the demand for assets with low betas, as most investors cannot reach their target returns

by levering up low risk stocks. The simultaneous decrease in the slope and the increase

in the intercept as leverage constraints tighten should then manifest itself as the low

risk anomaly. Recent research, most prominently (Jylhä, 2018) sheds increasing light

on the various forms the security market line takes under changing exogenous margin

constraints.

Behavioral explanations however provide a very contrarian view on the empirical failures

of the model with a spectrum of different takes. Liu et al. (2018) argue that the low risk

anomaly is a product of guilt association to beta and is in fact caused by the negative

return relation of idiosyncratic risk and limits to arbitrage. Alternatively one can take a

1see e.g. (Frazzini & Pedersen, 2014), (Asness, Frazzini, Gormsen, & Pedersen, 2016), (Jylhä, 2018)

and (Boguth & Simutin, 2018) for a recent perspective on risk and leverage constraints based explana-

tions.
2see e.g. (Stambaugh & Yuan, 2017), (Liu, Stambaugh, & Yuan, 2018) and (Bali, Brown, Murray, &

Yi Tang, 2017) for takes on the role of residual volatility and positive skewness.
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positive view on volatility in excess of the systematic risk and tie the anomalous returns

to the chase of lottery payoffs. In fact, Bali et al. (2017) show that the anomaly manifests

itself during times when high beta assets display lottery like features. Nonetheless, one

common denominator for many of the behavioral explanations is their inherent linkage to

volatility, be it idiosyncratic volatility in itself or patterns of positive skewness in returns.

Explanations related to volatility however should not particularly arise in conjunction

with changing leverage constraints.

1.2 Contribution to Existing Research

As persistent the low risk effect has been, the literature has taken quite a while to focus on

exploiting it compared to e.g. momentum by Jegadeesh and Titman (1993) or investing

on the Fama and French (1993) factors. Frazzini and Pedersen (2014) present a way of

taking advantage of the anomaly through their Betting Against Beta factor that goes long

in low beta and short in high beta assets. Their approach produces robust alphas on the

most common factor models both in the US and International equities. Consequently the

BAB factor also serves as a useful benchmark for further research in testing and validating

new candidate explanations. Asness et al. (2016) divide the BAB factor further and run

horse races between many of the common candidate variables. They come up with factors

combining in the BAB profit: Betting Against Correlation or BAC and Betting Against

Volatility or BAV. The new factors are built analogously to the BAB factor but are

relatively uncorrelated with each other allowing one to frame the source of BAB alphas

into an alias for behavioral explanations, BAV and the candidate for proxying systematic

risk, BAC.

The competing branches of explanations provide fruitful ground for further research and

bridging the gap. In my approach I provide a novel take on the phenomenon by decom-

posing the anomaly, a stock’s beta into its two components, correlation and volatility.

The alternative decomposition allows one to examine the impact of leverage constraints

in generating the low risk anomaly by distinctively different beta components. To test

the effects, I use daily and monthly stock return data from CRSP between January 1934

and December 1974 in addition to data on changes in the FED initial margin requirement

also used by Jylhä (2018).

To the best of my knowledge, none of the previous research addresses the margin impact

of the return compensation for volatility and correlation as beta determinants. The

approach by Jylhä (2018) serves as an inspiration for much of my approach but stops

short in detailing the shape of the security market line. Frazzini and Pedersen (2014)

also proxy margin constraints in the research by TED spread but end up with findings

inconsistent with their model. Asness et al. (2016) include a measure of margin debt in
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their factor horse races but only report the impact on their rank weighted portfolios that

hardly represent the properties of the full universe of stocks.

I methodologically track the roots to the anomaly from the return relation of the distinc-

tive beta components, correlation and volatility to the shape of their analogous security

market line mockups. Finally, I link the findings across all stocks to the more specific

case of the BAB, BAC and BAV factors.

My thesis holds three main contributions to the existing body of research:

1) I decompose the effects of leverage constraints on risk compensation

I apply the logic introduced by e.g. Frazzini and Pedersen (2014) and Asness et al.

(2016) in attributing the effects of exogenous leverage constraints separately to systematic

and behavioral components. Instead of using the correlation and volatility components

solely for beta- or portfolio construction, I treat them as separate positive return drivers

and construct mockups of the security market line analogously to Jylhä (2018). The

construction of the separate security market line mockups allows for closer examination

of the link between leverage constraints and the systematic as well as behavioral candidate

explanations.

2) I find that conditioned on volatility, the slope of the return compensation to market

correlation is negatively affected by tighter margin constraints

The more granular look on the beta determinants allows for studying the effects of in-

creasing either correlation or volatility while holding the other one constant. I find that

conditioned on volatility, the slope of the return compensation to market correlation is

negatively affected by tighter margin constraints entailing that market correlation reflects

the implicit leverage investors take on in lieu of financial leverage.

My findings are consistent with the ones by Jylhä (2018) to the extent that a similar, albeit

weaker, relation between market correlation and initial margin requirement persists when

controlling for volatility. To amend this view, I also find that (residual) volatility holds

no significant connection to initial margin requirements when conditioned on correlation.

Finally, the use of security market line mockups allows for a more general look at the

phenomenon as opposed to the factor approach by Asness et al. (2016).

3) I provide additional support to returns to a Betting Against Correlation factor being

related to lagged changes in leverage constraints

I find that the Asness et al. (2016) BAC factor returns between 1934 and 1974 are to

a large extent related to lagged changes in the initial margin requirement. However, I

cannot rule out the margin constraint relation in the variance portion of Betting Against

Beta or the BAB factor.
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My results on the BAC factor are consistent with Asness et al. (2016), but also provide a

second view with exogenous leverage constraints imposed by the regulator as opposed to

using broker-dealer margin debt as an endogenous proxy for leverage constraints.
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2 Theoretical Motivation and Hypotheses

2.1 Systematic Risk in the Context of the Low Risk Anomaly

The low risk effect is typically attributed to either systematic (e.g. leverage constraints)

or behavioral (e.g. lottery preferences, barriers to arbitrage) explanations. While eco-

nomically intuitive, leverage constraints as the primary driver has had little success in the

existing literature, in ruling out other explanations from the mix. Jylhä (2018) finds that

in a period ranging from 1934 to 1974, exogenous changes in US Federal Reserve’s margin

requirement have an expected effect on the shape of the Security Market Line – that is,

a flatter SML in the times of high margin requirements and a steeper slope in the times

of low margin requirements, much alike its CAPM prediction by Jylhä (2018).

Adrian, Etula, and Muir (2014) back a similar sentiment by tying their financial inter-

mediary leverage factor to a betting against beta factor and showing that the returns

comove with changing funding conditions. Additionally, Asness et al. (2016) find that

change in total margin debt held by NYSE broker dealers has a statistically significant

effect on the return to their factor mimicking poor returns when betting on systematic

risk. An inverted approach by Boguth and Simutin (2018) provides a similar conclusion.

Assuming that mutual funds are for the most part particularly constrained for leverage,

they show that high beta assets seen as instruments with a high payoff in a leverage

constrained environment, should be priced higher by constrained investors. This then

leads to the same assets delivering weaker consequent returns. Simultaneously mutual

fund managers focusing on low beta assets end up taking on leverage constraint risk but

earning abnormal returns in relation to a standard CAPM.

Mutual fund incentivization in general seems to be another amplifying factor in the re-

turn impact of leverage constraints. As fund managers are typically evaluated against a

fixed benchmark not their risk adjusted performance, the leverage constrained managers

resort to higher beta. Karceski (2002) shows that mutual fund inflows seem to follow dra-

matic market runups and returns are chased cross-sectionally to best performing funds.

The consequential incentive for mutual funds is therefore to shift their holdings towards

higher beta than indicated by e.g. the CAPM equilibrium. On a similar note, Baker,

Bradley, and Wurgler (2011) propose that institutional investors’ mandates prevent the

high-resource, smart investors from correcting prices in the market, but in fact encourage

them to invest in high-beta securities without much leverage. They also suggest that

institutional investors are incentivized by a fixed benchmark causing them to chase high

benchmark adjusted returns, particularly when the market is on the rise. The potential

implicit limitations to access to leverage drives up the demand for high risk or high beta

stocks. The smart money therefore ends up passing on superior return opportunities
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in the low-beta end of the security market line (Baker et al., 2011). Christoffersen and

Simutin (2017) report a similar conclusion among “defined contribution” mutual funds.

They show empirically that benchmarking seems to alter the behavior of leverage con-

strained fund managers and increase the demand of high beta assets in lieu of low beta

alternatives.

Addressing the leverage constraints and the systematic risk based explanation somewhat

disregards the potential behavioral and micro market hindrances at play in generating

the anomaly. Stambaugh, Yu, and Yuan (2015) argue that the poor return compensation

of high risk stocks is due to idiosyncratic volatility and primarily driven by impediments

to arbitrage. Additionally, Liu et al. (2018) set their sights on the low risk anomaly and

betting against beta. They find that controlling for idiosyncratic volatility and mispricing

makes the beta anomaly disappear, arguing that rather than being the de facto driver of

the phenomenon, beta suffers from “guilt association” in being positively correlated with

idiosyncratic volatility and therefore negatively correlated with alpha. They conclude

that the anomaly seems to be driven by short-sale frictions and mispricing caused by

idiosyncratic volatility, not by the investors seeking to bet on higher systematic risk per

se. Bali, Cakici, and Whitelaw (2011) and Bali et al. (2017) on the other hand suggest

that as market participants select a sub-optimal number of securities in their portfolios1

the poor returns to high beta assets seem to be due to the prospect of lottery-like payoffs

being correlated with market beta.

As Liu et al. (2018) also concede, leverage constraints may co-exist with other behavioral

explanations when considering alternate measures of risk such as market correlation re-

ported by Asness et al. (2016). Indeed, e.g. idiosyncratic risk as a barrier to selling short

should have little to do with changing margin requirements and vice versa. In addition

to Jylhä (2018) reporting the changing shape of the Security Market Line without distin-

guishing between the behavioral explanations, it is relevant to address the theories in the

context of the different beta determinants. The two positive beta drivers in market cor-

relation and volatility may well exhibit different return phenomena without completely

ruling each other out. While I focus on the effect of exogenous leverage constraints, a

similar approach to the behavioral explanations could benefit our understanding of the

beta-return relation and its causes.

2.2 Theoretical Framework

In a leverage constrained CAPM setting a shadow price for margin is added to the

standard equation [e.g. Frazzini and Pedersen (2014); Jylhä (2018)]. The shadow price,

1For additional perspective on investors’ lottery preferences and under-diversification see e.g. Odean

(1999), Blume and Friend (1975), Mitton and Vorkink (2007)]
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measuring the tightness of leverage or funding constraints flattens the security market

line by increasing the intercept and reducing the slope as the margin constraints increase.

I follow the approach by Jylhä (2018), in which the margin requirement m is constant

for all market participants and driven by the explicit changes in market wide margin

requirement. In this case the demand for high beta securities will be higher due to the

investors being forced to take implicit leverage through high beta assets. Simultaneously

the demand for low beta stocks becomes lower translating to higher expected returns

in the low end of the security market line. Following the theory, in the presence of no

margin requirement, implicit or explicit, the security market line becomes its standard

CAPM form. The modified CAPM can be written as follows:

Et(rs − rf ) = ψm+ βs,t[Et(rM − rf )− ψm] (1)

in which m presents the margin constraint and ψ its shadow price.

From the standard decomposition of beta one can derive an alternative definition as corre-

lation with the market return times a volatility term [e.g. Frazzini and Pedersen (2014)].

These two components jointly determine a security’s beta. If the risk-return relation is

assumed strictly positive, elevation in either of the determinants has a positive non-zero

impact on a security’s expected return. Following the logic it should be therefore possi-

ble to construct weaker but economically sound security market line mockups in which

the expected return would be positively related to either one of these two components.

Alternative beta definition can then be written as:

β̂ts
t = ρ̂

σ̂s

σ̂m
(2)

in which ρ̂ is the correlation between the stock and the market and σ̂s and σ̂m are the

respective volatilities

The alternative decomposition also allows one to address the different ways to arrive at a

similar beta. The seemingly same risk measure can be achieved through higher or lower

correlation given a different level in security volatility in relation to the market and vice

versa. This is also important in dissolving the beta anomaly; i.e. if the weak return to

high beta assets is truly driven by increased allocation to systematic risk to cope with

leverage constraints. On the other hand this allows one to examine whether investors

truly increase their allocation to beta in its traditional sense as a measure of systematic

risk or if additional returns are sought through primarily by increasing allocation to level
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of volatility in relation to the market.

If overallocation to systematic risk as proposed by Asness et al. (2016) is proxied by the

correlation component in my beta decomposition and driven by leverage constraints, it

should hold that increase in market correlation has a negative impact on risk-adjusted

returns. High correlation portfolios should therefore exhibit lower alphas on standard

factor models compared to low correlation portfolios. As argued by Asness et al. (2016),

correlation should be the term of interest for institutional investors in this alternative

beta decomposition as it represents a “pure bet on systematic risk”. Consequently in the

presence of binding margin constraints sophisticated and somewhat diversified investors

should over allocate their funds in stocks with high correlation with the market. Explicit

market-wide increase in margin constraints therefore reduces the slope and increases the

intercept in a model in which returns are driven by correlation with the market.

As beta is jointly determined by both the correlation and volatility terms, it may be

difficult to determine the impact of margin constraints on each of these terms. Following

the logic of the Betting Against Correlation factor introduced by Asness et al. (2016),

when normalized for volatility, increase in leverage constraints should lead to a weaker

return to market correlation. The impact should materialize from implicitly increasing

beta without making the stocks more attractive to volatility related or behavioral ex-

planations such as lottery preferences, idiosyncratic volatility or short-sale impediments.

Similarly, when controlling for correlation with the market, the margin impact on high

volatility stocks should not be significant if one is to assume that the volatility term is

largely related to behavioral explanations. If this were the case contrary to the factor

model view of asset pricing, it would seem that investors also resort to high volatility

stocks as a way to cope with binding leverage constraints, painting a picture of far less

sophisticated investors than proposed by the CAPM.

One important implication of the chosen time period for this study is the significantly

lower institutional stock ownership than is experienced today. As also noted by Jylhä

(2018), households held an average of 84.7 % of all US corporate equities compared to

37.3 % in 2018 and institutional investors only averaged 12.8 % compared to 46.7 %

in 2015. In addition to making the regulatory margin requirement a relevant leverage

constraint in the Jylhä (2018) paper, the low institutional ownership of stocks is likely to

have an impact on the relevant measure of risk.

Levy (1978) proposes an amended version of the CAPM to take into account the varying

maximum number of stocks held by individual investors. Based on the empirically low

numbers of individual stocks held by investors the model implies that a true measure for

systematic risk can be derived from the average constrained investor’s systematic risk

rather than the CAPM beta for each security. Levy (1978) argues that at least part
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of the investors can only hold a suboptimal portfolio with the number of stocks lower

than the mean variance efficient portfolio, but optimize their portfolio with respect to

the number of stocks they can include. This leads to lower observed beta coefficients

than implied by the CAPM and the individual stock variance playing a much more

prevalent role in determining expected returns. Merton (1987) backs this sentiment when

defining an equilibrium model in when the investors possess incomplete information in

the market; informed investors form mean variance efficient portfolios only within the

stocks of which they have information yet again resulting in suboptimal portfolios from

the CAPM perspective.

Against this backdrop, one can intuitively expect two things in noting the selected time

period. Firstly, as the number of household investors in the sample is clearly higher than

at the time of this study, the average number of securities that investors have information

on and therefore have invested in is likely to be significantly lower than today driven by

both the number of resourceful investors and the cost of acquiring sufficient information.

Secondly, given the lower number of stocks held in individual portfolios, the role of residual

risk over the CAPM implied systematic portion should be higher than today. The weight

of systematic risk as a primary driver for expected return is less and less important as the

number of stocks held decreases strengthening the role of residual stock-specific variance.

Going back to the impact of leverage constraints one would therefore expect that when

faced with leverage constraints, the investors with the least shares would be more inclined

to pursue higher returns from the volatility component of beta instead of pure systematic

risk.

2.3 Hypothesis Formulation

In coping with leverage constraints, leverage constrained investors are forced to take on

implicit leverage in the form of increasing beta [e.g. Christoffersen and Simutin (2017),

Boguth and Simutin (2018)]. My first and second propositions have to do with this

implicit leverage in relation to the my beta decomposition. Similarly to Asness et al.

(2016) I treat my correlation measure as a proxy for a pure measure of systematic risk

as it should be fairly unrelated to behavioral factors when conditioned on the volatility

term. On the other hand, the volatility term should be separate from the systematic risk

aspect, when conditioned on the correlation with the market.

Proposition 1: A security’s correlation with the market mirrors the implicit leverage that

the security offers to a diversified investor and is therefore priced higher than implied by

the CAPM.

Most households and typical mutual funds are constrained for leverage. Treating dispro-
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portionate funds allocation to higher beta assets as binding leverage constraints and a

way to substitute for taking leverage is consistent with the existing research involving

leverage constrained fund managers [e.g. Baker et al. (2011), Christoffersen and Simutin

(2017) and Karceski (2002)]. Further, as a security’s correlation with the market reflects

a stock’s exposure to systematic risk volatility held constant, it should hold that compen-

sation for tight leverage constraints would be sought from assets with higher correlation

with the market. Assuming investors still seek to construct mean-variance efficient port-

folios conditioned on their limitations to take on leverage, pure volatility should not play

much of a role. The volatility and correlation components should by definition be rela-

tively uncorrelated. By substituting beta decomposition in the constrained model one can

divide the expected return into parts related to systematic and behavioral explanations.

The correlation component acts similarly to applied leverage when comparing two assets

with similar volatility based risk profiles.

Constrained SML following Jylhä (2018) with the alternative beta decomposition can be

formulated as follows:

Et(rs − rf ) = ψm+ ρ̂t
σ̂s,t

ˆσm,t

[Et(rM − rf )− ψm] (3)

in which ρ̂t is the correlation between the stock and the market, σ̂s,t is the volatility of

stock s and ˆσm,t is the volatility of the market.

Holding volatility constant the slope of the correlation – return relation should be lowered

by higher margin constraints. This is intuitive since in my beta definition the correlation

component merely describes the exposure of stock level volatility to market movements.

This being the case, correlation with the market should be almost equally available for

all levels of volatility and therefore allow investors to pick stocks with similar volatility

but higher risk measured by beta – much like applying explicit leverage. In a world of

changing explicit leverage constraints, the possibility of investing in such stocks should

be more valuable during times of high margin requirement and therefore reflected in the

shadow price for margin constraints.

Proposition 2.1: Exogeneous margin constraints flatten the return compensation for taking

on higher correlation with the market.

Proposition 2.2: Exogeneous margin constraints flatten the return compensation for taking

on higher correlation with the market, given a set level of volatility

My second proposition is two-fold: following my first hypothesis as investors seek assets

with higher expected return from systematic risk in reacting to tightening leverage con-
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straints the impact should materialize through correlation with the market, i.e. bets on

the systematic risk. Simultaneously I recognize the potential implications of the major

shift in stock ownership from almost fully household-owned to majority being managed

by institutional investors and foreign participants. Given a fixed return benchmark, the

CAPM and the contribution by e.g. Asness et al. (2016) imply that solely systematic risk

should be sought after in optimally balancing out the leverage constraints. This however

does not seem to hold water in a world with mean variance portfolios being constructed

from a very small subset of assets. Boehme, Danielsen, Kumar, and Sorescu (2009) fur-

ther support the theories of under-diversification in finding that higher contemporaneous

idiosyncratic volatility indeed generates statistically significant positive alphas indicating

the more important role of residual variance proposed by e.g. Merton (1987).

Proposition 3.1: Leverage constraints drive BAB factor returns primarily through the

BAC factor, i.e. due to investors seeking systematic risk from market correlation.

Proposition 3.2: Market-wide changes in margin requirements do not increase demand

for behavioral, volatility related explanations to the beta anomaly.

My third proposition is a derivation of the two first ones, leaning on the central hypothesis

by Asness et al. (2016): volatility held constant, correlation with the market represents

a bet on systematic risk without the behavioral explanations linked to volatility. This

formulation also continues on the intuition presented by e.g. Frazzini and Pedersen

(2014) and Jylhä (2018) as it states that investors’ leverage constraints increase the

price pressure on high beta assets, but primarily the ones for which higher beta comes

from higher correlation with the market rather than the level of stock specific volatility

in relation to the market, a factor that can largely be mitigated in a well diversified

portfolio. From this trail of thought it then follows that if investors in fact cope with the

changing margin requirements by seeking more systematic risk through correlation with

the market, the returns to the BAC factor should reflect such behavior just as Asness

et al. (2016) argue. On the other hand, the BAV factor should have little to do with

this systematic, portfolio risk driven behavior. In the presence of market wide leverage

constraints, my first two propositions state that the shape of the volatility-return relation

should not be dependent on changing margin requirements. Therefore, to confirm the

lack of this link, I also hypothesize that returns to the BAV factor as a pure volatility

driven construct, should not be dependent on the prevalent leverage constraints.
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3 Data and Summary Statistics

As I focus on the impacts of FED’s explicit margin changes between 1934 and 1974,

the scope of my test dataset is limited to the same interval. I use the dataset on margin

changes as provided by Jylhä (2018), including 22 explicit changes in the level of minimum

margin requirement for positions in listed US equities between October 1, 1934 and

January 3, 1974. The level of initial margin requirement ranges from 40 % in November

1937 to 100% January 1946 with significant variation within the period.

I obtain daily and monthly stock returns between January 1, 1931 and December 31,

1974 from CRSP to compute running stock volatilities and correlations between the each

security and the market. Following Jylhä (2018), I only use stocks with share codes 10

and 11, listed in NYSE. AMEX and NASDAQ are established during the data period and

may therefore cause distortion in the results. I exclude all stocks with daily or monthly

returns of more than 100 % or less than -100 %. My clean dataset includes 489 thousand

monthly and 11.2 million daily observations. For market excess return, I use CRSP

value-weighted market index less a risk-free rate from Kenneth French’s website.

Table 1 reports the main characteristics of my monthly data set. The total monthly stock

data set for which one can compute relevant correlation and volatility measures covers

297 thousand total observations. Notably, the average beta in the data is around 1.15

with a standard deviation of 0.53. Taking a closer look at the determinants in correlation

and volatility, it is evident that volatility exhibits far greater maximum deviations from

the mean, but is still on par in terms of standard deviation.

Table 1: Monthly Descriptive Statistics

This table reports summary statistics on the monthly return data along with the correlation
term with the market (ρ̂) and the volatility term used in beta construction ( σ̂s

σ̂m

). Returns are
in monthly percentages. Market capitalization is reported in $ Billion. For comparability with
Jylhä (2018) Beta is computed by regressing monthly excess returns on the market return less
the risk free rate from month t− 36 to month t− 1.

Statistic N Mean Pctl(25) Pctl(75) St. Dev. Min Max

Return 296,808 0.012 −0.038 0.056 0.086 −0.565 0.970
Market Cap 296,808 0.340 0.027 0.241 1.404 0.001 50.592
Beta 296,808 1.152 0.785 1.467 0.526 −1.488 4.821
Market Correlation 296,808 0.264 0.189 0.342 0.107 −0.252 0.609
Volatility Term 296,808 3.051 2.105 3.687 1.351 0.265 15.751
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4 Empirical Methodology

In this section I discuss the empirical approach and the key methods I use to test my

hypotheses. First I briefly gloss over the key estimates I use to further study the impact

of margin constraints including estimating correlation, volatility and beta. Second I

run through my methodology for testing the overall impact margin constraints have on

the security market line and analogously constructed security line mockups based on

volatility and correlation. Thirdly, I elaborate on my methodology in isolating the effect

of the initial margin requirement within portfolios constructed by sorting on correlation

and volatility. Finally, I present the construction of BAB, BAC, and BAV factors in my

setting and their connection to the preceding tests.

4.1 Correlation, Volatility and Beta

I use daily return data to estimate the volatility and correlation terms. For volatilities I

apply a a one-year rolling window and use a longer three-year window for correlations.

Similarly, I use overlapping three day returns to estimate correlation and one day log

returns for volatilities. I run the volatility estimation through rolling periods of 250

trading days and use 750 trading days for correlation to account for slower movement. In

constructing the correlation and volatility terms I only include companies for which the

data covers at least one rolling period at a daily frequency. To build my first beta estimate

I utilize the correlation and volatility terms as discussed earlier and following Vasicek

(1973) I also apply time series shrinkage towards the cross-sectional mean ˆβXS
t .

β̂t = wi
ˆβTS
t + (1− wi)

ˆβXS
t (4)

In which, following Frazzini and Pedersen (2014), I apply constant values of wi = 0.6 and
ˆβXS
t = 1, across all stocks to maintain comparability

To distinguish between the effects of the correlation and volatility terms, each month

t, I sort all stocks independently into five quantiles on my correlation and volatility

measures based on the values in the end of month t − 1. The summary statistics for

the sorted portfolios are presented in table 2. Within the highest and lowest correlation

portfolios the mean correlation with market return varies between 0.17 and 0.37 with

the with the minimum and maximum being -0.12 and 0.52 respectively. For volatility

the relative variation is far greater with mean values ranging from 1.76 to 4.25 when

scaled for market volatility. As is expected, the independently estimated beta increases
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monotonically in going up the portfolios constructed by both correlation and volatility.

Notably, the higher the correlation portfolio, the lower the mean volatility term resulting

a 11 % volatility difference between the high and low correlation portfolios. This is also

evident in the negative Pearson correlation between the correlation and volatility terms of

-0.07 in monthly data. However this relationship is not quite as evident when looking at

the portfolios constructed by sorting on volatility as the mean market correlation remains

rather close in all quantiles.

The standard deviation in betas, between quantiles, seems to be quite strongly driven by

variation in the volatility term. In table 2 Panel A, the standard deviation of the monthly

beta estimates is driven by the increasing volatility term as correlation decreases. The

same effect is visible in panel B, in which standard deviation in betas doubles going from

the lowest volatility portfolio to the highest.

Table 2: Summary Statistics on Portfolios Sorted on Correlation and Volatility

This table presents the summary statistics on portfolios sorted independently on correlation with
the market and volatility in relation to market volatility between 1934 and 1974. Correlation
is computed over a 750 trading day rolling window using overlapping three-day log returns.
Volatility is estimated from a rolling window of 250 daily log returns for both each stock and the
market. I compute the portfolio beta independently be regressing each stock’s monthly excess
returns from t− 36 to t− 1 over the corresponding market excess returns proxied by the CRSP
value weighted index less the risk free rate.

Panel A: Sort on Correlation

Cor PF Mean Cor Max Cor Min Cor Mean Vola Mean Beta SD Beta

1 0.17 0.31 -0.12 2.94 0.80 0.53
2 0.24 0.37 0.13 2.87 1.02 0.50
3 0.28 0.40 0.17 2.86 1.16 0.49
4 0.31 0.44 0.20 2.81 1.25 0.46
5 0.37 0.52 0.23 2.62 1.31 0.42

Panel B: Sort on Volatility

Vola PF Mean Vola Max Vola Min Vola Mean Cor Mean Beta SD Beta

1 1.76 4.24 0.26 0.28 0.75 0.32
2 2.26 4.88 0.97 0.28 0.93 0.36
3 2.66 6.10 1.20 0.27 1.07 0.40
4 3.17 7.40 1.38 0.27 1.25 0.45
5 4.25 30.88 1.55 0.27 1.56 0.59
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4.2 Margin Level Impact on Returns to Correlation and Volatil-

ity

In order to estimate the potential effects of changing margin regulation on the return

compensation I follow the approach by Jylhä (2018) and adapt the methodology to my

more granular setting. In addition to estimating the security market lines for each month,

I construct two distinct security market line mockups based on the two beta components:

correlation with the market and volatility. I then study the impact of changing margin

requirements on the return compensation of each of the terms individually.

The methodology for betas, correlation and volatility consists of three stages. First, each

month I sort the stocks into portfolios based on betas, correlation and volatility (depend-

ing on which I treat as the return driver in each model) to create maximum measure

spread in the test assets. In the second stage I regress the cross-sectional returns on

the portfolio betas, correlations and volatilities, again depending on the sorting variable.

This results in a time series of security market line intercepts and slopes for beta, and

“security market line mockups”. Finally, I regress the security market line (or mockup)

intercept and slope on the prevailing margin requirement to study the final effect of the

exogeneous margin requirements.

To distinguish between different levels in the variable in question, each month I sort the

stocks into 20 equally sized portfolios based on the variable level (beta, correlation or

volatility). For each of the portfolios I estimate the monthly variable values: I regress

monthly portfolio returns in excess of the risk free rate on the market excess return from

month t-36 to month t-1 to following Jylhä (2018) to obtain portfolio level betas. I

estimate correlation with the market similarly to individual stock level returns, i.e. using

a 750 day rolling window and three-day log returns. Similarly, the volatility estimate

comes from a 250 day rolling window of daily returns. I then obtain the security market

line (or mockup) estimates each month by regressing the portfolio excess returns on

the ex-ante betas (or mockup drivers) from the second stage. These regressions yield

estimates for the SML intercept and slope for each month. The SML (mockups) from

the second stage takes the form:

repf,t = interceptt + slopet ˆγpf,t−1 + et (5)

in which ˆγpf,t−1 stands for the each of the one-month lagged variables of interest in each

of the models, i.e. beta, market correlation and volatility.

Lastly, having obtained the estimates for intercept and slope from the second stage, I
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study the impact the initial margin requirements have on the shape of my SML and

SML mockups. I follow the methodology by Jylhä (2018) in regressing the intercept

and slope coefficients from the second stage on the lagged initial margin requirement as

well as additional controls including e.g. contemporaneous market return. Similarly to

Jylhä’s setting, the coefficient b1 should be positive and coefficient b2 should be negative

if margin constraints drive up the cross-sectional price for additional risk. The third stage

regressions yield the margin level impact on the previously estimated intercept and slope.

margint−1 stands for the one-month lagged initial margin requirement and Xt presents

a vector of the additional control variables in the setting.

interceptt = a1 + b1margint−1 + c1Xt + u1,t (6)

slopet = a2 + b2margint−1 + c2Xt + u2,t (7)

4.3 Initial Margin Requirement and Portfolios Sorted on Volatil-

ity and Correlation

In order to further analyze how the impact of margin constraints materializes with respect

to correlation with the market and volatility I run similar analogous security market line

mockups for both correlation and volatility but aim to eliminate the effects of the other

contemporaneous determinant of beta. To achieve this distinction, in the beginning of

each month I sort the stocks in five equal size portfolios on one-month lagged correla-

tion and volatility. Table 2 reports the summary statistics on the independently sorted

portfolios. Then, within each portfolio, I perform the three-stage process similarly to the

methodology applied to the full sample. This is to minimize the undesired spread in the

other determining variable, i.e. to limit the impact of volatility on beta when studying

the effects of correlation with the market. Additionally, this is also to maintain some

comparability to the BAC and BAV factors introduced by Asness et al. (2016), albeit

without dimension arising from rank-weighing within the different quantiles.

4.4 BAB, BAC and BAV

I decompose the BAB-factor following Asness et al. (2016) by creating two portfolios,

BAC and BAV. BAC goes long (short) in stocks with low (high) correlation with the
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market return, while matching the volatility of its constituents. BAV goes long (short) in

stocks with low (high) estimated volatility and similarly tries to match the correlations

between the long- and short legs. These factors then represent the two determinants of

the BAB factor, while excluding the effect of each other.

More specifically, I construct the BAC factor by first sorting the stocks into five quantiles

based on their volatility estimate in the previous month. In each of the volatility quantiles

I rank the stocks based on their correlation with the market, and place them in two

portfolios: high- and low market correlation. The stocks are then assigned weights based

on their rank – stocks with highest correlation stocks receiving the most weight in the

high correlation portfolio and low correlation stocks receiving the most weight in the

low portfolio. Further, the portfolios are re-balanced by in the beginning of each month

and levered to have a beta of one during formation. The BAC factor is then the equal-

weighted average of the five portfolios. I apply the same methodology form the BAV

factor, but reverse the roles (first sort stocks by correlation, then rank by estimate of

volatility). Portfolio weights are then given by:

w
Q
H = kq(zq − z−q)+ (8)

w
Q
L = kq(zq − z−q)− (9)

in which zq is an n(q) ∗ 1 vector of correlation ranks within each volatility quantile.

The two factors aim to explain the returns to a BAB factor from two distinctive directions,

systematic risk and volatility. Figure 1 reports the cumulative returns to each of the

factors during the period. Notably, until the end of 1950’s, the BAB factor performance

is very much hand-in-hand with the BAV factor return with little to no cumulative gains.

From this moment onwards the balance between the determinants changes visibly as

the BAB factor catches up with BAC during the 1960’s and early 1970’s. Figure 1 also

illustrates the relation between these three factors: changes in BAB return are determined

by both the correlation and variance parts with changing weight across time. I also verify

this relation by regressing the BAB factor return on both of its analogous determinants,

BAV and BAC and present the results in table 3. The BAB factor generates a statistically

insignificant intercept of 4 bps and loads heavily on both the BAC and BAV factors as is

expected with an adjusted R2 of 0.78. Also, as we just observed from figure 1, the BAV

factor seems to be the more dominant determinant of the BAB returns in the period.
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Motivated by this decomposition it seems then relevant to study the potential impacts

of margin constraints on both of these factors.

Figure 1: Cumulative Returns in the Period from BAB, BAC and BAV

Table 3: BAB Factor Regressed on BAC and BAV

This table reports the BAB factor as a linear combination of a Betting Against Variance (BAV)
and Betting Against Correlation (BAC) factors. I construct BAC and BAV following the logic
presented by Asness et al. (2016). The factors are rank-weighed with e.g. in the case of BAC,
the factor going long in low and short in high correlation assets, the highest beta receive sthe
highest rank in the short leg and vice versa for lowest correlation in the long portfolio. Monthly
alphas are in relation to total price (percentage / 100). T-statistics for each of the coefficients
are in parentheses

Dependent variable:

BAB Factor Return

Constant 0.0004
(0.546)

BAV 0.829
(37.898)∗∗∗

BAC 0.562
(15.219)∗∗∗

Observations 456
R2 0.777
Adjusted R2 0.776

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Findings

This section presents the empirical findings from the tests introduced in the previous

section. In addition to the quantitative outcomes I discuss the theoretical and practical

implications of my findings as well as how they tie into my initial hypotheses. Addi-

tionally I include the potential limitations for my approach. First, I address the overall

performance of the beta coefficient, correlation and volatility as return drivers in the

cross-section as well as their relevance and scalability given the time period. Secondly,

I discuss the overall impact of the margin requirement on beta, correlation and volatil-

ity. Thirdly, I expand the analysis by eliminating the effects of volatility and correlation

on each other by performing the same tests within sub-samples sorted on each of the

variables. Finally, I examine the performance of the BAB, BAC and BAV factors in the

context of how the margin constraints impact seems to materialize.

5.1 Return Compensation by Beta Component

Table 4 reports the Fama and French (1993) three-factor alphas on portfolios sorted on

correlation with the market and volatility. The results for both sorts back the overall

sentiment presented in much of the literature surrounding the low risk anomaly. Low

returns being much more prevalent in the high risk end of the portfolios is reflected in

both sorts, in line with beta level empirical findings of e.g. Frazzini and Pedersen (2014)

and Liu et al. (2018) as well as sorts on correlation and volatility between 1926 and 2015

by Asness et al. (2016).

Correlation in particular seems to have an asymmetric, primarily negative effect on (Fama

& French, 1993) three-factor alphas. High correlation deciles 8-10 all produce statistically

significant negative alphas on a 5% level, albeit averaging only around 10 bps per month.

The respective t-statistics range between -2.4 and -2.0. At the same time, as correlation

with the market increases, the stocks’ loading on the SMB factor increases monotonically,

having a positive effect on the returns in all deciles.

Volatility plays a similar role in return compensation, but with an even more robust

implications on the produced alphas. In addition to the negative effect witnessed when

sorting on correlation, volatility portfolios exhibit both statistically significant positive

alphas in the low end and negative alphas in the high end of the volatility spectrum.

Deciles 1-3 with the lowest ex-ante volatility estimates produce positive alphas between

10 and 20 bps with respective t-statistics between 3.2 and 2.6. At the same time, the effect

is inverse when it comes to high volatility stocks, as also found by e.g. Ang, Hodrick,

Xing, and Zhang (2006) and Ang, Hodrick, Xing, and Zhang (2009) with regards to high

idiosyncratic volatility as well as Bali et al. (2017) in arguing for lottery demand as the
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primary driver for the phenomenon. Volatility deciles also exhibit different behavior in

terms of loadings on SMB – deciles 1-3 all have a substantial negative relation to the

SMB factor entailing that the low volatility deciles consist primarily of larger firms.

The return patterns in the full sample are in line with my first hypothesis of correlation

having a negative impact on returns as it reflects the implicit leverage an investor can

take on. What is more, despite carrying lower variance, shorter tails and smaller beta

spread, the negative return impact of correlation is noticeable in the full sample without

normalizing the somewhat inverse effects of the negatively correlated volatility. More-

over, the negative trend in both beta determinants echoes similar findings when sorting

with beta, but more importantly confirms the key roles of both variables in seemingly

contributing to the low risk anomaly in the full sample.

Table 5 reports the monthly Fama and French (1993) three-factor alphas when sorting

independently on both correlation and volatility. The results are much more messy when

both variables are included with no clear, uniform trends in the sample. What is notable

however, is that in the intersection of the highest correlation portfolio and the two high-

est volatility portfolios, the alphas are particularly negative at around -60 and -70 bps,

while in the three lowest volatility portfolios the alphas are significantly closer to zero.

This relation however, does not manifest itself in the full sample for either of the beta

determinants. Contrary to the what the longer data period used by Asness et al. (2016)

exhibits, independent sorts with both of the beta determinants reveal little of the relative

importance between the two in being the underlying cause of the low risk anomaly.
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5.2 Margin Impact on Beta Constituents and SML Mockups

Results in table 6 strongly resemble the findings by (Jylhä, 2018) in a similar setting.

Aligning with expectations, the results show a flattening effect on the security market

line as binding margin constraints tighten. Margin level has a statistically significant

positive effect on the security market line intercept and an even stronger negative effect

on the slope.

For the main contributions of this study I set my sights on the initial margin regulation’s

impact on the returns on the beta determinants, correlation and volatility. In the full

sample correlation with the market exhibits somewhat puzzling results. The initial margin

requirement in month t − 1 has a significant negative impact on the intercept with a t-

statistic of -3.5 in the model (1) and -2.4 in model (2). The effect is contrarian to the

impact on beta compensation and close to on par in robustness.1Additionally, on the

contrary to the impact on beta, the contemporaneous market return holds statistically

significant explanatory power on the intercept whereas the security market line intercept

should not by definition be dependent on the market return. In table ?? model (2) the

market return coefficient holds a t-statistic of 10.0 and has a positive effect on correlation’s

return compensation. Constructing security market line mockups based on correlation

and volatility however changes the dynamics of the line ever so slightly. In the case of the

traditional security market line, the beta coefficient should capture the variation driven

by the market return, rendering the intercept term to capture other hypothetical return

drivers. This is not the case with either of my additional SML mockups as the other beta

component is not captured by the variable of interest.

With slope for correlation the story is also different from the full security market line.

Initial margin regulation in t−1 has a statistically significant positive impact on the slope

in table 7 panel A model (4). While the effect of margin requirements does not materialize

in model (3), the model in itself explains little of the variation in slope with an adjusted R2

of 0.3% compared to 5.4% in model (4). Therefore, in violation of my second hypothesis

in the full sample, not only do the higher margin requirements decrease the intercept of

the SML mockup, but in fact also steepen the slope. The change in the shape of the line

is not consistent with investors allocating more funds to higher correlation assets to cope

with leverage constraints as it is when examining beta.

Same analysis for volatility in table 7 panel B shows the for the most part non-significant

dependence on margin constraints. Models (1) and (2) for the intercept show no statistical

significance for initial margin. In model (3), without the inclusion of contemporaneous

market return, the initial margin requirement seems to have a negative effect on the slope

1Higher statistical significance in model (1) with t-statistics of -3.5 vs. 2.9. Lower in model (2) with
-2.4 and 2.9 respectively.
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of the SML mockup. However, this is also rendered insignificant when including market

return in model (4).

Neither of the two determinants alone show conclusive evidence of being the bearer of the

SML flattening force of leverage constraints. Further, neither is this empirical evidence

in favor of what Asness et al. (2016) argue to be the driver of Betting Against Correlation

profits.2Still, there are potential hindrances to the results I present in this section. As also

shown in table 2, the variation in betas between the high and low correlation quantiles is

lower than when sorting for volatility. A direct practical implication of the beta spread

is that the risk measured by beta is exacerbated more by changes in volatility than by

correlation with the market. Therefore, as correlation goes down, volatility goes up in

disproportionate amount, translating to potentially weaker returns to lower correlation

assets and higher returns to high correlation assets driven by volatility rather than the

properties of the correlation term.

2Section 5.4 takes a closer look on BAB, BAC and BAV performance during times of different margin
requirements.
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Table 6: Margin Regulation Impact on SML

This table presents the results of regressing the monthly security market line’s slope and intercept
on the lagged regulatory margin requirement. I estimate the portfolio betas following Jylhä
(2018) and regress the monthly excess returns on the monthly market return less the risk free
rate from the month t− 36 to month t− 1. Security Market Line intercepts and slopes for each
month are estimated by regressing monthly portfolio returns on portfolio betas. Monthly t-
statistics are reported in parentheses and 5% confidence level is highlighted in bold. The sample
period ranges from 1934 to 1974.

Dependent variable:

Intercept Slope

(1) (2) (3) (4)

Constant −0.012 −0.012 0.039 0.013
(−2.127)∗∗ (−2.074)∗∗ (3.781)∗∗∗ (2.183)∗∗

Margin 0.026 0.026 −0.055 −0.027
(2.917)∗∗∗ (2.876)∗∗∗ (−3.543)∗∗∗ (−2.940)∗∗∗

Market Return −0.006 1.024
(−0.183) (28.685)∗∗∗

R2 0.020 0.020 0.029 0.672
Adjusted R2 0.017 0.015 0.027 0.670

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Margin Regulation Impact on Returns to Correlation and Volatility

This table presents the results of regressing the monthly security market line mockups’ slope
and intercept on the lagged regulatory margin requirement. I use daily return data to estimate
the volatility and correlation terms. For volatilities I apply a a one-year rolling window and
use a longer three-year window for correlations. Similarly, I use overlapping three day returns
to estimate correlation and one day log returns for volatilities. I run the volatility estimation
through rolling periods of 250 trading days and use 750 trading days for correlation to account
for slower movement. The SML mockups are built analogously to Jylhä (2018), but by treat-
ing correlation and volatility as the return drivers. Panel A reports the results from treating
correlation as the primary return drive and Panel B from applying the same logic to volatility.
Monthly t-statistics are reported in parentheses and 5% confidence level is highlighted in bold.
The sample period ranges from 1934 to 1974

Panel A: SML mockup based on correlation

Dependent variable:

Intercept Slope

(1) (2) (3) (4)

Constant 0.065 0.039 −0.053 −0.079
(4.402)∗∗∗ (2.908)∗∗∗ (−1.842)∗ (−2.768)∗∗∗

Margin −0.079 −0.049 0.063 0.093
(−3.516)∗∗∗ (−2.389)∗∗ (1.444) (2.176)∗∗

Market Return 0.825 0.831
(9.960)∗∗∗ (4.752)∗∗∗

R2 0.030 0.223 0.005 0.058
Adjusted R2 0.027 0.219 0.003 0.054

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel B: SML mockup based on volatility

Dependent variable:

Intercept Slope

(1) (2) (3) (4)

Constant 0.007 −0.007 0.015 0.003
(0.948) (−1.170) (2.882)∗∗∗ (0.743)

Margin −0.005 0.012 −0.018 −0.005
(−0.441) (1.246) (−2.337)∗∗ (−0.712)

Market Return 0.457 0.366
(11.707)∗∗∗ (14.153)∗∗∗

Observations 403 403 403 403
R2 0.0005 0.256 0.013 0.343
Adjusted R2 -0.002 0.252 0.011 0.339

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.3 Margin Impact on Sorted Portfolios

The results of my precedent analysis merely exhibit either weak or contradictory findings

to much of my second hypothesis. However, the analysis does not fully take into account

the jointly determined nature of beta; different combinations of volatility and correlation

can and do produce betas of similar levels. As shown in section 5.1, residual variance

seems to play a disproportionate role in comparison to what is implied by the mean

variance framework. Therefore, treating correlation and volatility as independent return

drivers may entail substantial issues with noise caused by the other determinant. To

mitigate this concern, I repeat the precedent analysis while also controlling for volatility

(correlation) in estimating the effect of margin requirements correlation (volatility). The

methodology allows one to isolate the outcome of increasing beta through either one of the

components keeping the other one close to constant. Additionally, the approach allows

for a more analogous setting to the Betting Against Correlation factor construction in

attempting to standardize the effects of volatility, albeit still value weighting the stocks

as opposed to the rank weights used in Asness et al. (2016). The consequent results

from regressing the intercept and slope on the margin requirement across portfolios are

presented in table 8.

As stated in my hypothesis 2.2, conditioning on volatility produces a flatter SML mockup

for correlation even if this may not manifest itself in the full sample due to noise or

any similar weakening of the pure measure by changes in volatility. Further analysis

on portfolio level provides more encouraging results in favor of this proposition: the

negative return relation of volatility seems to trump the more delicate return driver in

correlation. Initial margin requirement has a monotonically decreasing effect on the slope

of my security market line mockup as volatility decreases. The increasing initial margin

requirement has a statistically significant negative effect on my correlation security market

line mockup in three out of the five volatility portfolios with t-statistics between -2.4 and

-3.1. What is more, in the lowest volatility portfolio the initial margin requirement has

a statistically positive impact on the intercept on a 5% level with a t-statistic of 2.3.

Contrary to the full sample the second hypothesis still holds partially in flattening the

SML mockup when correlation is treated separately from volatility. The flattening impact

however does not span the full sample.

The high volatility portfolio however behaves very differently with the margin level having

a negative impact on the intercept. While unintuitive in some respects, this may be

due to the smaller correlation spread in the high volatility portfolio. Alternatively, this

may exhibit a lottery-demand based explanation. Positively skewed stocks tend to be

correlated with high ex-ante volatility and in demand for such stocks’ correlation with

the market plays an inverse role in that increased correlation with the market should
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(a) By Correlation Quantile (b) By Volatility Quantile

Figure 2: Beta Composition Across Volatility and Correlation Quantiles

not have anything to do with lottery-like payoffs but still increases the total risk of the

stocks.

Conditioned on correlation the impact of initial margin requirement on returns to volatil-

ity is rendered insignificant across all quantiles. This result is also in favor of my second

hypothesis in that (residual) volatility does not seem to play much of a role in compen-

sating for tighter leverage constraints. While the effect is not completely unequivocal

when sorting on volatility, the opposite is true for sorting with correlation: the impact

of t − 1 initial margin requirement on the security market line mockup for volatility is

blatantly ambiguous or non-existent.

Figure 2 demonstrates the beta decomposition across the correlation and volatility quan-

tiles. Sorting on volatility produces a wider beta spread in spite of the declining level of

correlation as volatility increases. This together with table 2 demonstrates the somewhat

divided nature of beta in this decomposition. The negative correlation between the two

determinants is clearly visible in both graphs but seems to have a stronger impact on the

total beta when sorting on correlation. The level of correlation with the market is partic-

ularly low in the highest volatility portfolio: as volatility increases the level of correlation

with the market becomes less and less important in determining a stock’s beta risk and

therefore these slight changes in systematic risk warrant lesser attention from investors

seeking to increase their market risk exposure.
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Table 8: Margin Impact on Portfolios Sorted on Volatility and Correlation

This table presents the results of regressing the monthly security market line mockups’ slope
and intercept on the lagged regulatory margin requirement. Intercept and slope are constructed
within each correlation and volatility quantile. Correlation with the market is treated as the
positive return driver when sorting for volatility and vice versa. The correlation and volatility
quantiles are rebalanced in the beginning of each calendar month based on the estimates at
the end of month t − 1. Panel A presents the regression results for volatility sorted portfolios
when treating market correlation as the return driver. Panel B presents the results when sorting
for correlation and treating volatility as the return driver. Monthly t-statistics are reported in
parentheses. The sample period ranges from 1934 to 1974.

Panel A: Sort on Volatility

Intercept Slope

Constant Margin Constant Margin

Low −0.030 0.046 0.122 −0.166
(−2.251)∗∗ (2.301)∗∗ (3.468)∗∗∗ (−3.120)∗∗∗

2 −0.013 0.026 0.110 −0.156
(−0.853) (1.126) (2.792)∗∗ (−2.619)∗∗

3 −0.008 0.017 0.127 −0.173
(−0.466) (0.641) (2.610)∗∗ (−2.359)∗∗

4 0.024 −0.020 0.072 −0.114
(1.366) (−0.737) (1.397) (−1.480)

High 0.083 −0.097 −0.049 0.049
(4.142)∗∗∗ (−3.206)∗∗∗ (−0.858) (0.574)

Panel B: Sort on Correlation

Intercept Slope

Constant Margin Constant Margin

Low 0.001 0.003 0.017 −0.021
(0.107) (0.204) (2.243)∗∗ (−1.802)∗

2 0.000 0.007 0.017 −0.024
(0.011) (0.375) (1.602) (−1.449)

3 0.023 −0.028 0.007 −0.007
(1.491) (1.199) (0.740) (−0.482)

4 0.037 −0.049 −0.002 0.007
(2.055)∗∗ (−1.810)∗ (−0.254) (0.529)

High 0.033 −0.040 −0.002 0.005
(1.756)∗ (−1.417) (−0.235) (0.348)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.4 BAB, BAC and BAV Performance and Leverage Constraints

Table 9 reports the results on regressing the BAB factor return on Fama and French

(1993) common risk factors and the change in initial margin requirement. Negative

change in margin requirement characterizes the observed SML movement towards its

CAPM prediction when market-wide margin constraints are relaxed. This measure is

particularly interesting as it indicates the magnitude of change towards a known reference

model as opposed to varying levels of flatter security market line estimates. During the

period I classify changes in margin level into three categories: most negative, neutral and

most positive with one third of all the changes in each.

The lagged changes in initial margin requirement reflect the perceived changes investors

have to deal with in allocating their funds, in that large changes, either positive or

negative should warrant for more dramatic moves in the following period. Relaxing the

margin requirement substantially in this context should therefore restate the security

market line more towards its CAPM prediction and release the price pressure on high

beta assets. The declining demand in the following period should materialize in the

market in two ways: lower returns to high beta assets and higher returns to low beta

assets as the disproportionately low demand somewhat neutralizes. I use and indicator

for changing margin levels in the simple regressions in lieu of margin level due to the

disproportionately small variation in a monthly setting. Change in the strictness of the

constraints is also a relevant in assessing the impact of a portfolio readjustment process

attributed to changing leverage constraints.

The Betting Against Beta factor performance is in line with previous research (by e.g.

Frazzini and Pedersen (2014) and Liu et al. (2018) given pure BAB performance) and

the flattening of the security market line in response to tighter leverage constraints.

The BAB factor delivers a 0.5% monthly alpha in both the pure CAPM and an FF3

model specifications with respective t-statistics of 3.7 and 4.2. Large relaxing changes

in the margin requirement increase the returns to the BAB factor in both models (3)

and (4). The margin change indicator generates positive t-statistics of 2.9 and 2.3 in the

two models rendering simple CAPM alpha insignificant on a 5-% level. The Fama and

French (1993) three-factor alpha however still persists, indicating that there may be more

variables at play in producing the robust BAB risk-adjusted returns to the BAB factor

as documented in models (1) and (2).

The BAC factor exhibits similar behavior as documented by Asness et al. (2016) in pro-

ducing positive monthly alphas of around 20 bps in models (1) and (2) with respective

t-statistics of 2.7 and 2.9. As expected, the first two models capture the strong perfor-

mance of BAC across the full period against standard CAPM and Fama and French (1993)

models. My third proposition states that the impact of exogenous margin constraints on
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BAB materializes primarily through the correlation component, as investors adjust their

portfolios mainly through changing portfolio allocations to systematic risk. In testing the

behavior, similarly to my previous regressions on the BAB factor, I include the negative

margin change variable in measuring the impact of easing up margin regulation. Models

(3) and (4) in table 10 show varying degrees of margin impact. In model (3), regressing

the BAC return only on the contemporaneous market return, relaxing the market-wide

margin requirement does not exhibit statistically significant explanatory power over the

BAC return. However, including the full Fama and French (1993) factors shows an impact

with on par significance when comparing to regressing the full BAB factor on the same

explanatory variables. In model (4) the BAC factor only loads on SMB and negative

margin change on statistically significant levels. The result is in line with proposition 3

and at the same time driven by one of the basic properties of BAC, firm size. Larger

firms tend to be more correlated with the market, as they also represent a more sizable

chunk of the market index as a whole. An intuitive direct implication of model (4) is that

BAC represents a bet against large firms that attract funds in the presence of margin

constraints.

As far as profitability goes, the BAV factor outperforms BAC by delivering monthly

alphas of around 40 bps as opposed to 20 bps with BAC. Models (1) and (2) without the

change in margin constraints show robust negative loading on the market return as well

as SMB and HML factors. Peculiarly, in models (3) and (4) the behavior with regards

to change in leverage conditions is opposite to BAC. In model (3), including only the

market excess return, relaxing the prevalent margin requirement has a positive effect of

similar magnitude as with BAB. Including the Fama and French (1993) risk factors in

turn renders the effect statistically insignificant. The results with BAV in model (3)

are consequently somewhat puzzling in the light of my findings in section 5.3, as the

level of margin requirements does not seem to play a role in determining returns to

volatility.

This behavior in the results seems to come down to model selection. The impact of

changes in initial margin requirement is of nearly the same statistical robustness both in

model (3) between BAB and BAV as well as in model (4) between BAB and BAC. Ap-

plying the methodology to BAB produces similar results for both of the models, implying

that the negative margin change variable has indeed a statistically significant effect on

the BAB return, even reducing the model (3) alpha’s t-statistic down from 3.7 to 1.8.

However, taking a closer look with BAC and BAV, a linear combination of which approx-

imates BAB to a high degree, we can see that the effects are highly dependent on the

applied model. This dependency on the model seems like a minor pain point – the varia-

tion shifts notably between the CAPM and Fama and French (1993) three factor model

when including the additional SMB and HML factors. Bear in mind that the correlation
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term used in BAC is positively correlated with market return. It is then evident in model

(3) that market return should not by definition have a positive impact on the BAC factor

return. Including other common risk factors changes this picture drastically, reducing

the t-statistic on market return down to -0.2. With BAV the change is not as dramatic,

but still rather noticeable. The negative impact of market return is clearly reduced and

attributed more to SMB and HML factors. Including the two also renders the effect of

margin requirement changes insignificant. The closer look at expected factor loadings

then provides some encouraging support in favor of the effects realizing through BAC

rather than BAV. To an extent, these results then echo the hypothesis by Asness et al.

(2016) in higher correlation being a proxy for stocks attractive for adjusting for contraints

to leverage and BAC being a relevant vehicle for profiting from these properties.

Table 9: BAB Factor Performance with Margin Constraints

This table reports the performance of the BAB factor when regressed on FF3 risk-factors and
negative initial margin change. I construct BAB, BAC and BAV following the logic presented by
Frazzini and Pedersen (2014) and Asness et al. (2016). All factors are rank-weighed with, in the
case of BAB, the factor going long in low and short in high beta assets, the highest beta receives
the highest rank in the short leg and vice versa for lowest beta in the long portfolio. Monthly
alphas are in relation to total price (percentage / 100). T-stats for each of the coefficients are
in parentheses.

Dependent variable:

BAB Factor Return

(1) (2) (3) (4)

Alpha 0.005 0.005 0.003 0.004
(3.716)∗∗∗ (4.167)∗∗∗ (1.798)∗ (2.483)∗∗

Market Return −0.310 −0.189 −0.316 −0.197
(−10.768)∗∗∗ (−6.111)∗∗∗ (−11.018)∗∗∗ (−6.354)∗∗∗

SMB −0.340 −0.324
(−6.772)∗∗∗ (−6.433)∗∗∗

HML −0.144 −0.151
(−3.033)∗∗∗ (−3.180)∗∗∗

Neg. Margin chg 0.009 0.007
(2.929)∗∗∗ (2.385)∗∗

R2 0.203 0.302 0.218 0.311
Adjusted R2 0.202 0.298 0.215 0.305

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: BAC and BAV Factors Performance with Margin Constraints

This table reports the performance of BAC (Panel A) and BAV (Panel B) factors when regressed
on FF3 risk-factors and negative initial margin change. I construct BAC and BAV following the
logic presented by Asness et al. (2016). The factors are rank-weighed with e.g. in the case of
BAC, the factor going long in low and short in high correlation assets, the highest beta receives
the highest rank in the short leg and vice versa for lowest correlation in the long portfolio.
Monthly alphas are in relation to total price (percentage / 100). T-statistics for each of the
coefficients are in parentheses.

Dependent variable:

Factor Return

(1) (2) (3) (4)

Panel A: BAC

Alpha 0.002 0.002 0.002 0.001
(2.706)∗∗∗ (2.918)∗∗∗ (1.730)∗ (1.423)

Market Return 0.081 0.001 0.080 −0.004
(4.172)∗∗∗ (0.037) (4.089)∗∗∗ (−0.200)

SMB 0.264 0.274
(7.781)∗∗∗ (8.055)∗∗∗

HML 0.029 0.025
(0.903) (0.774)

Neg. Margin chg 0.003 0.004
(1.249) (2.314)∗∗

Panel B: BAV

Alpha 0.004 0.004 0.002 0.003
(2.657)∗∗∗ (3.483)∗∗∗ (1.222) (2.512)∗∗

Market Return −0.345 −0.138 −0.349 −0.141
(−11.816)∗∗∗ (−5.117)∗∗∗ (−11.980)∗∗∗ (−5.200)∗∗∗

SMB −0.628 −0.622
(−14.398)∗∗∗ (−14.133)∗∗∗

HML −0.168 −0.171
(−4.062)∗∗∗ (−4.117)∗∗∗

Neg. Margin chg 0.007 0.003
(2.204)∗∗ (1.070)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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6 Conclusion

Leverage constraints provide an economically intuitive explanation for the low risk anomaly

– investors that cannot use leverage to sufficiently adjust their risk to suit their appetite

have to resort to riskier securities. Yet, despite recent efforts in the existing literature by

e.g. Jylhä (2018), it seems that there may still be other explanations at play. With data

from the US stock market ranging between 1934 and 1974, I take a more granular look on

the low risk anomaly and the changing shape of the security market line in dividing beta

into its systematic (correlation with the market) and behavioral (volatility) parts.

I find that conditioned on volatility, the return compensation to market correlation is

negatively affected by tighter margin requirements, as predicted by previous findings

by e.g. Jylhä (2018), Frazzini and Pedersen (2014) and Asness et al. (2016). In line

with previous research I propose that this negative relationship represents the ’implicit,

non-financial leverage’ that investors are forced to take when constrained for financial

leverage. I also show empirically that this relation only holds when considering the part

of beta that represents systematic risk, i.e. correlation with the market, as opposed

to seeking to increase portfolio risk from higher volatility in relation to the market.

While volatility and behavioral factors may still manifest themselves in producing at

least parts of the anomaly, as proposed by e.g. Stambaugh and Yuan (2017) and Bali

et al. (2017), there seems to be little overlap with my findings on the effect of tighter

leverage constraints.

Further, I tie my results to the papers by Frazzini and Pedersen (2014) and Asness et

al. (2016) in applying the logic in the context of Betting Against Beta, Betting Against

Correlation and Betting Against Variance. My findings provide additional support for

the BAC factor profit being largely related to the lagged changes in system-wide margin

requirements. However, I cannot fully rule out leverage constraints having an impact also

on the variance portion of BAB.

The alternative decomposition of beta into correlation and volatility provides intriguing

possibilities for further research. One of the clear avenues has to do with expanding

the data set – I use the same data on the FED mandated margin requirements in the

U.S. as Jylhä (2018). Even though this choice of data provides a market-wide take on

the pure exogenous changes in margin requirements, it would be valuable to repeat the

analysis during a longer time period to capture the vast changes in stock ownership and

information availability in the stock market. Secondly, using alternative indicators, such

as the margin debt held by NYSE broker dealers applied by Asness et al. (2016), would

help shed light on return variability with more continuous changes and within shorter

time frames. Finally, decomposing beta and the security market line into systematic and
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behavioral risk may help address to relative importance of the systematic and behavioral

factors at play bridging the gap between the two schools of thought.
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