
 

 

 

 

Linda Sederholm 

   

STRUCTURAL AND MAGNETIC PROPERTIES OF B SITE 
ORDERED DOUBLE PEROVSKITES 

 

Master’s programme in Chemical, Biochemical, and Materials Engineering 

Major in Functional Materials 

 

Master’s thesis for the degree of Master of Science and Technology 

Submitted for inspection, Espoo, 30 September, 2019 

 

Supervisor Prof. Maarit Karppinen 

Instructors Dr Girish Tewari 

 Dr Divya Srivastava 

 

  



 

 

 

Aalto University, P.O. BOX 11000, 00076 AALTO 

www.aalto.fi 

Abstract of master's thesis 

 

Author Linda Sederholm 

Title of thesis Structural and magnetic properties of B site ordered double perovskites 

Degree Programme  Master’s programme in Chemical, Biochemical, and Materials 

Engineering 

Major  Functional Materials  

Thesis supervisor Prof. Maarit Karppinen 

Thesis advisor(s)  Dr. Girish Tewari and Dr. Divya Srivastava 

Date 30.09.2019 Number of pages 81 Language English 

Abstract 

Perovskites (𝐴𝐵𝑂3), and especially double perovskites (𝐴′𝐴′′𝐵′𝐵′′𝑂6) provide an 

exceptionally versatile template for chemical substitution and fine-tuning of physical and 

chemical properties, including magnetic interactions. The geometry of B-site ordered double 

perovskites especially supports useful magnetic interactions, from ferromagnetism to exotic 

ground states such as half-metallicity and frustrated spin states. However, the vast space 

of hypothetic perovskite compositions poses a challenge in finding the elemental 

combinations with optimal properties. New methods are needed for wide-field screening of 

possible compositions to identify regions of interest.  

This thesis provides a thorough review of the structural and compositional considerations 

of B site ordered inorganic oxide double perovskites needed for understanding their 

magnetic behaviour, including distortions, ordering effects, and physical and chemical 

pressure. The mechanisms of magnetic ordering and the appearance of exotic ground 

states are presented through theory and examples. Emphasis is put on the correlation 

between stoichiometry defined geometric parameters and magnetic superexchange 

interactions. Multivariate analysis is presented as a novel method for using these 

correlations to predict the magnetic behaviour of new phases, and find new candidates for 

ferromagnetic behaviour by a statistical approach.  

The relationship between chemical composition and structural parameters is experimentally 

investigated in the (𝐵𝑎1−𝑥𝑆𝑟𝑥)2𝐶𝑜𝐼𝑟𝑂6 perovskite series, in which chemical pressure is 

introduced by A site substitution, inducing a structural transition from hexagonal to cubic 

perovskite. Furthermore, a close structural examination of 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 is performed by 

comparing experimental data with the calculated optimal structure, as found by density 

functional theory, providing new information on the phase composition. Finally, the 

magnetic ground state of 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 is predicted by both density functional theory and 

multivariate analysis, and the results of the two methods are compared. 
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Sammandrag 

Perovskiter (𝐴𝐵𝑂3), och särskilt dubbelperovskiter (𝐴′𝐴′′𝐵′𝐵′′𝑂6) erbjuder en särdeles 

mångsidig startpunkt för kemisk substitution och finjusteringar av fysikaliska och kemiska 

egenskaper, inklusive magnetisk växelverkan. B-positionsordnade dubbelperovskiters 

geometriska struktur möjliggör särskilt användbara magnetiska beteenden, från 

ferromagnetism till exotiska grundtillstånd såsom halvmetalliska och frustrerade 

spintillstånd. Den ofantliga rymden av hypotetiska perovskitsammansättningar utgör 

emellertid en utmaning i sökandet efter grundämneskombinationer med optimala 

egenskaper. Nya metoder krävs för att på bred front genomsöka de möjliga 

kombinationerna och identifiera områden av intresse.  

Detta diplomarbete erbjuder en grundlig presentation av strukturella och sammansättnings-

mässiga aspekter av B-positionsordnade dubbelperovskiter som är relevanta för att förstå 

dessa materials magnetiska beteende, inklusive förvridningar, kemisk ordning, och 

fysikaliskt samt kemiskt tryck. Mekanismerna bakom magnetisk ordning och uppkomsten 

av exotiska grundtillstånd presenteras per teori och exempel. Korrelationen mellan 

stökiometriskt definierade geometriska parametrar och magnetisk utbytesväxelverkan 

betonas. Multivariabelanalys presenteras som en ny metod för utnyttjande av dessa 

korrelationer för att förutspå magnetiskt beteende hos nya faser, och hitta nya kandidater 

för ferromagnetism per statistisk analys. 

Förhållandet mellan kemisk sammansättning och strukturella parametrar utforskas 

experimentellt i perovskitserien (𝐵𝑎1−𝑥𝑆𝑟𝑥)2𝐶𝑜𝐼𝑟𝑂6, i vilken kemiskt tryck introduceras per 

substituering i position A, vilket föranleder en strukturförändring från hexagonal till kubisk 

perovskit. Vidare utförs en noggrann utvärdering av strukturen hos 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6, i form av en 

jämförelse mellan experimentella data och den beräknade optimala strukturen, som erhålls 

med hjälp av täthetsfunktionalteori (density functional theory, DFT). Således erhålls nya rön 

gällande strukturens fassammansättning. Slutligen förutspås det magnetiska 

grundtillståndet hos 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 med hjälp av både DFT och multivariabelanalys, och de två 

metodernas utlåtanden jämförs.  

 

Nyckelord: perovskit, elpasolit, B-positionsordning, kemiskt tryck, magnetiska 

egenskaper 
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1 Introduction  

The perovskite material class is named after the perovskite mineral, 𝐶𝑎𝑇𝑖𝑂3, which was discovered 

in the Ural mountains in Russia in 1839 by German mineralogist Gustav Rose, and named after the 

Russian nobleman Lev Perovski. Its crystal structure was first described by Goldschmidt [1] in 1926, 

and investigated years later using X-ray diffraction. [2,3] The ideal perovskite is cubic, and highly 

tolerant for substitutions: almost any naturally occurring, stable ion can be incorporated in the 

structure, including small-molecule organic ions. [4–6] The number of possible perovskite 

compositions, even after limiting the calculations to chemically and structurally plausible B site 

ordered double perovskites, circles around an astounding ~1014 possibilities. [7] Hopes are high that 

several of the as-yet-untried compositions would reveal superior properties. Perovskite phases have 

been suggested for a wide selection of applications, from sustainable energy harvesting and storage, 

to novel data storage and computing technology based on spin behaviour (spintronics). [4,8,9] A sister 

phase of perovskites has gained fame for one of its members expressing superconductivity at 

relatively high temperatures, namely 𝑌𝐵𝑎3𝐶𝑢3𝑂7+𝛿. [10] 

A widely investigated perovskite variation is the double perovskite, in which one or both cation sites 

holds a 1:1 ratio of two species. Ordered B site double perovskites, also known as elpasolites, have 

the chemical formula 𝐴2𝐵′𝐵′′𝑂6 and present an excellent template for fine-tuning of magnetic 

interactions. Useful properties include multiferroic phases and ferromagnetic conductivity [11], and 

frustrated magnetic ground states such as spin liquid, spin glass, and spin ice. [12–15] The appearance 

of these exotic behaviours is highly sensitive to small changes in bonding distances and bond angles, 

as well as element and charge distribution, which can be controlled by adjustments in the chemical 

composition and synthesis parameters. Mismatched ionic radii are compensated by distortions of the 

perovskite structure, which, at its most severe, alters the atomic connectivity and replaces the 

perovskite lattice with a hexagonal phase. Application of pressure can restore the perovskite 

structure by altering effective ionic radii. [16] 

A central concept in this thesis is chemical pressure, which can imitate physical pressure in some cases 

and induce a phase transition from hexagonal to cubic structure, [17] enabling wanted magnetic 

interactions which are not available in the hexagonal structure. The theoretical understanding of the 

perovskite structure, gained in the first part of this work, is applied experimentally in the synthesis 

and structural analysis of the series (𝐵𝑎1−𝑥𝑆𝑟𝑥)2𝐶𝑜𝐼𝑟𝑂6, which transforms from hexagonal to cubic 

as the chemical pressure is adjusted by A site substitution. In 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6, the magnetic interactions 
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affect the crystal structure, which is investigated computationally using density functional theory 

(DFT), and compared to the experimentally obtained structure. 

Furthermore, multivariate analysis (MVA) is presented as a novel method for predicting magnetic 

ordering and novel candidates for ferromagnetic perovskite compositions. As traditional theory-

based methods are too slow for wide-field screening and too complex for a reverse-engineering 

approach, statistical methods provide a novel tool for fast identification of possible compositions of 

interest. In this work, the magnetic structure of 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 is predicted by MVA and compared to the 

magnetic ground state obtained by DFT, supporting the tactic of using blind-to-theory chemometrics 

for finding hitherto unknown correlations between phase parameters and material properties.  

The study is limited to inorganic B site ordered double perovskites with oxygen on the anion site, 

omitting the large classes of organic and hybrid organic-inorganic perovskites, non-oxide perovskites, 

and cationic substitution on the A site, aside from its use for controlling chemical pressure.   
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LITERATURE REVIEW 

 

2 The perovskite structure 

The ideal perovskite unit cell is described by the formula 𝐴𝐵𝑋3, where A and B are cations and X is an 

anion, most commonly oxygen. The model unit cell is cubic with an ideal side length 𝑎0 = 3.905 Å 

and 𝑃𝑚3̅𝑚 symmetry, and can be drawn up by placing the A cations in the corners, the B cation in 

the centre, and the X anion positioned on the centre of all six faces of the cube, as illustrated in Figure 

1a. The B cation has a fixed coordination of 6, and in the standard depiction, the B cation and X anions 

are grouped together into octahedral 𝐵𝑋6 units. An alternative and more frequently used standard 

setting thus shows the structure as a lattice of corner-sharing 𝐵𝑋6 octahedra with the A cations 

placed in the 12-coordinated intermediate sites, shown in Figure 1b. 

 
Figure 1. The standard depiction of the ideal perovskite unit cell uses two alternative settings: a) centred on 
the B cation, and somewhat more frequently, b) centred on the A cation.  

Despite a varying level of covalence in the bonding regime, the perovskite structure is often assumed 

ionic for the purpose of description. A vast majority of perovskite phases are metal oxides, but other 

chemical species can also be incorporated into the perovskite structure. In addition to oxygen, the 

anion site accepts other chalcogens down to tellurium, halogens down to iodine, nitrogen, and even 

small-molecule anions [1,4,7,18,19]. The clear preference for oxygen is combinatorically explained by 

the ionic radius and charge of the O-2 ion. For the halogen anions, the range of cation oxidation states 

is limited to only +1 or +2, severely limiting the number of cation combinations available for halide 

perovskites. Nitride perovskites are limited by the high charge density of the 𝑁3− ion, forcing the 

cations into exceptionally high oxidation states, in which most cations are too small for the B site. 

With a chalcogenide on the X site, the range of allowed cation oxidation states on the B site is the 

widest, stretching from +1 to +5. However, the ionic radii grow relatively large already with the 𝑆−2 

ion, severely restricting the cation combinations that fulfil the requirements of the perovskite 

B A 
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structure for all chalcogenides except oxygen. Between the cations, the A site retains a strong 

preference for holding the less charged, often larger species, and is therefore limited to oxidation 

states +1…+3.[1]  

The structure is highly tolerant for substitutions. Although both cation sites are able to host multiple 

chemical species at once, binary substitutions of recognizable stoichiometry are predominant. The 

term double perovskite is used for phases where one or both of the cation sites consists of a 1:1 

distribution of two elements, either ordered or disordered. In case of an ordered phase, the unit cell 

is expanded to accommodate the full pattern. Figure 2 depicts a specific case of double perovskites, 

called elpasolites, where the B site is doubled with a 1:1 stoichiometry and is rock salt ordered. Ideally, 

the structure thus expresses 𝐹𝑚3̅𝑚 symmetry. A closer discussion on substitution stoichiometry and 

ordering of co-occupied sites is provided in chapter 3.  

 
Figure 2. The elpasolite structure makes a special case of double perovskites with a rock salt ordered B site, 
written 𝐴2𝐵′𝐵′′𝑂6. The unit cell is expanded to accommodate the full pattern, which is equivalent to eight 
times the single perovskite unit cell.  

When splitting a lattice site into two or several parts, the question arises in which order the elements 

sharing the site should be reported. With no clear and consistent physical or chemical differences 

between split sites, human convenience motivates the order in which site-sharing species are 

reported. In lack of global rules to dictate nomenclature, several local customs have evolved. A 

common praxis separates ordered and disordered perovskites by multiplying the compound formula 

into the 𝐴′𝐴′′𝐵′𝐵′′𝑂6 form only for ordered double perovskites1. For disordered perovskites, lower-

index equations of type 𝐴′1−𝑥𝐴′′𝑥𝐵′1−𝑦𝐵′′𝑦𝑂3 are commonly used, and are especially practical when 

both sites are unequally substituted. Enclosing site-sharing species in brackets as (𝐴′𝐴′′)(𝐵′𝐵′′)𝑂3 

can be clarifying when multiple species are involved, and for annotating sample series of varying 

                                                      
1 Or other multiplicity depending on co-occupant ratios, such as 𝐴′𝐴′′2𝐵′𝐵′′2𝑂9 or 𝐴′𝐴′′3𝐵′2𝐵′′2𝑂12. 
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ratios between the bracket-enclosed species. Following the customs of inorganic chemistry, the 

species of lower charge is written first: if the ions hold the same charge, the order is determined by 

the minimal, or else the maximal available oxidation state. Ultimately, atomic number decides the 

order between elsewise identical ions. However, deviations from these principles are frequent, and 

can for example be motivated by the logic of the experiment. A typical case is doping, in which case 

the dopant is often written after the default occupant of the site.  

 

2.1 Phase stability 

In order to evaluate whether a given elemental combination is viable for forming a perovskite phase, 

a selection of parameters derived from the ionic radii of the suggested species have been developed. 

Theoretical ion sizes considering both ion charge and coordination environment have been presented 

by Shannon [20] and remain the most widely used. Stable phase formation also requires suitable 

bonding environments for all species in the phase, considering both bond lengths and coordination 

number. The coordination environment can be evaluated by bond strain investigations, comparing 

the structurally suggested bond lengths and number of bonds to the preferred bond lengths and 

availability of bonding electrons. Depending on the electron structure of the ion, a certain 

coordination number might be preferred over another. Especially the d-block metals, which 

incorporate d-orbitals in bond formation, can be sensitive to the geometry of the coordination 

environment as a direct consequence of the spatial distribution of the valence orbitals. [7] 

2.1.1 Tolerance parameter and fitness factor 

Assuming a rigid-sphere model, the ideal perovskite structure can be investigated geometrically in 

order to find the internal proportions of the ionic species in the ideal structure case, where all species 

are in contact with one another without leaving any ion free to rattle in its site. This geometrical 

restriction is normally reformulated into the Goldschmidt tolerance factor t, based on structural 

concepts first presented by Goldschmidt in 1926. [21] The equation for 𝑡 is presented in Equation 1, 

which yields 𝑡 = 1 for the ideal perovskite phase. Accounting for substitutions, �̅�𝑛 denotes the 

weighed-average ionic radius of all species occupying the site 𝑛.  

 𝑡 =
�̅�𝐴 + 𝑅𝑋

√2 ∙ (�̅�𝐵 + 𝑅𝑋)
 Equation 1 
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The Goldschmidt tolerance factor can be used to predict whether the ideal perovskite structure will 

form, if it will be distorted, or if the atomic connectivity is broken by too severe mismatch of ionic 

radii. As neither the ionic radii nor the rigid-sphere model is exact, a phase of ideal or near-ideal 

perovskite can form even if the calculated tolerance parameter is not precisely equal to unity. Thus, 

phases with tolerance parameters larger than one have been found, despite the theoretical 

stipulation that a too large A cation will destabilize the structure. Generally, the range of perovskite 

formation determined from reported phases is around 0.85 … 1.07 with the vast majority of 

compounds appearing within the 0.93 … 1.01 range. [12 SI] 

A more detailed model for the allowed ion radii combinations has been developed by Filip et.al [1]. 

Adding a closer consideration of the octahedra, represented by the octahedral factor 𝜇, average 

octahedral factor �̅�, and octahedral mismatch 𝛥𝜇 (Equation 2 a-b), allows the construction of a space 

of stability for double perovskites. The space is drawn up by the parameters 𝑡, �̅�, and 𝛥𝜇, and is 

presented in Figure 3. 

a) 

 

b) 

 

Figure 3. a) The space of stability for B site ordered double perovskite formation, drawn up in the (t, µ, Δµ) 
space, with experimentally successful (blue) and unsuccessful (red) perovskite syntheses marked with dots. 
b) The boundaries of the space are illustrated in the projection to the base of the stability space, with the 
limits expressed with dashed lines: chemical limits (CL), octahedral limit (OL, stretch limit (SL), and tilt limits 
(TL) (left). Theoretical secondary stretch limits (SSL) are also included. (Reprinted from ref [1], fig 1e and 2.) 

 

 𝜇 =
𝑅𝐵

𝑅𝑋
 → �̅� =

�̅�𝐵

𝑅𝑋
 Equation 2a 

 𝛥𝜇 =
|𝑅𝐴 + 𝑅𝑂|

2 𝑅𝑋
 Equation 2b 
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The limits of the space of stability are derived from a geometric analysis, and yields four groups of 

limiting factors: [1]  

1) The stretch limit dictates the maximal size of the A 
cation as touching all 12 of its surrounding X anions, 
and translates into the upper boundary for t 

𝑡 ≤ 1, equivalent to 

𝑅𝐴 + 𝑅𝑋 ≤ √2(𝑅𝐵 + 𝑅𝑋) 

2) The tilt limit dictates the maximal tilting of adjacent 
octahedra as when their equatorial X anions touch, 
and translates into a lower limit for t 

𝑡 ≥ �̈�𝜇/√2 (𝜇 + 1) 

3) The octahedral limit dictates the minimum size of the 
B cation as allowing all 6 of its surrounding X anions to 
touch, and defines the lower boundary 

√2(𝑅𝐵 + 𝑅𝑋) < 2 𝑅𝑋 

(�̅� ≥ √2 − 1 + 𝛥𝜇) 

4) The chemical limit dictates the upper bounds of t and 
�̅� based on the reality of the smallest available anion 
and largest available cations (X = 𝐹−, A = 𝐶𝑠+, B = 𝐹𝑟+ 
& 𝐴𝑐3+ for a double perovskite) 

𝑡 ≤ (𝑅𝐶𝑠+ 𝑅𝐹−⁄ + 1) √2⁄ (𝜇 + 1) 

�̅� ≤ (𝑅𝐹𝑟+ + 𝑅𝐴𝑐3+) 2𝑅𝐹−⁄  

The tilt limit is dependent on a piecewise function �̈�𝜇, which takes into consideration that the axial 

tilt angle 𝜃 and the axial rotation 𝜑 (Figure 4) dominate the tilt limit in different regimes of the 

octahedral factor 𝜇, thus setting a limit for the ratio 𝜌𝜇 (Equation 3). Subsequently, the tilt limit 

divides into two equations defined by �̈�𝜇, as �̈�𝜇 = 0.44�̅� + 1.37 (TL1) and �̈�𝜇 = 0.73�̅� + 1.13 (TL2). 

Detailed mathematical derivations of these functions can be found in reference [1], SI.  

 

Figure 4. Axial tilt 𝜃 and rotation angle 𝜑 for calculating the limits of the space of stability, with 𝜃 given as 
absolute angle to the c-axis, and 𝜑 as the rotational component in the ab-plane.  

 

 𝜌𝜇 =
𝑅𝐴 + 𝑅𝑋

𝑅𝑋
 Equation 3 

If the A site cation is too small for its site, indicated by both the form factor and the tolerance 

parameter taking a value below unity, distortions must be introduced to retain the atomic 

𝜃 

𝜑 
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connectivity. Discussed further in Chapter 2.2, octahedral tilting is the dominating mode of 

deformation. Accompanying distortions of the unit cell parameters break the cubic symmetry of the 

ideal phase. In order to predict not only formability, but also the symmetry of the phase formed, 

further attention is given to the ratio of cation radii by Teraoka et.al [22]. Based on a simple 

Pythagorean analysis of the ionic radii of an ideal single perovskite, the fitness factor 𝛷 can be 

formulated, as presented in Equation 4.  

 𝛷 =
√2 �̅�𝐴

(�̅�𝐵 + 𝑅𝑋)
 Equation 4 

As with the Goldschmidt tolerance factor, increasing deviations from unity signifies increasing 

severity of deformations. Above 𝛷 = 1.00 phases tend to be cubic; this distorts to tetragonal 

for  1.00 > 𝛷 > 0.93; orthorhombic is found for  0.93 > 𝛷 > 0.90; and below 𝛷 ≈ 0.90 monoclinic 

and lower symmetries dominate. Various distortions can affect the symmetry of phases and induce 

axial tilting even when the value of 𝛷 would indicate a higher symmetry.  

Slightly oversized A ions induce tetragonal symmetry by stretching the c-axis. However, larger A 

cations will break the perovskite structure, since there are no further modes of distortion that could 

compensate for octahedra being forced apart. Instead, a too large strain on the B-O-B bonds will 

convert the structure to a hexagonal phase. The transformation is best visualized by depicting the 

ideal perovskite structure in a hexagonal setting, in which the layers of 𝐵𝑂6-octahedra along the cubic 

planes (1 1 0)𝑐 take on a cubic close packing with an A-B-C stacking sequence. The transition from 

cubic to hexagonal structure is gradual with increasing oversizing of the A cation, altering the stacking 

sequence of single layers by introducing hexagonally stacked layers with increasing frequency. 

Various sequences are possible, and the phases are named according to the periodicity of the 

stacking. [23] The similarity between cubic perovskite and two examples of its hexagonal sister phases 

are illustrated in Figure 5.   

The ratio between octahedral and hexagonal 𝐴𝑂3 layers depends on the extent of the ion radii 

mismatch. A hexagonal stacking alters the interconnectivity of 𝐵𝑂6 octahedra, introducing face-

sharing at the hexagonally stacked oxygen layers that make up the interface between layers of 

octahedra. This creates 90° B-O-B bonding angles as the B cations are brought closer to each other. If 

the repulsion between too-close B cations is strong, the hexagonal phase can be destabilized. Some 

B cations can form pairwise metal bonding to counteract the electrostatic repulsion, such as in 

𝐵𝑎𝑅𝑢𝑂3 [23], while in other cases strain is relieved by introducing patterns of B site vacancies in the 

face-sharing layers of octahedra. [25]  
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Figure 5. Comparison of the structures of ideal cubic double perovskite (left), and two hexagonal perovskites, 
12-layered 12R (middle) and 10-layered 10H (right). The stacking of each oxygen layer is shown along the side 
of each hexagonal structure, H for hexagonal and C for cubic stacking. All structures are seen along (1 1 0)𝑐 
for similar orientation of octahedra. (Figure adapted from ref [24]) 

2.1.2 Bond valence sum 

The concept of bond valence sum (BVS) presents a rough method for evaluating whether the bonding 

in a suggested phase is viable or not, and which bond might be strained or unstable. Such information 

helps predict whether a phase will form, degrade, or present distortions. The BVS method is based 

on Pauling’s rules for ionic coordination [26], which state that the valence 𝑉 of an atom must be equal 

to the sum of the valences of its bonds (𝑣𝑖) (Equation 5). Atomic valence is determined by the number 

of electrons available for bonding in the atom’s valence shell. Each bond’s valence can be calculated 

based on the measured bond length 𝑅𝑖. This is shown in Equation 6, where 𝑅0 stands for the ideal 

bond length when the atom has valence 1, and 𝑏 is an empirical parameter, often taking values close 

to 0.37 Å. The values of these parameters are dependent on bonding regime and can be found in 

literature.2  

 𝑉 = ∑ 𝑣𝑖 Equation 5 

 
𝑣𝑖 = exp (

𝑅0 − 𝑅𝑖

𝑏
) Equation 6 

                                                      
2 Tabulated values for 𝑅0 and 𝑏 in different bonding regimes are provided online and kept up-to-date by the International 
Union of Crystallography. [140] 
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If the calculated bond valence sum does not match the valence of the atom in question, it is said to 

be overbonded (𝑉 < ∑ 𝑣𝑖) or underbonded (𝑉 > ∑ 𝑣𝑖). Small mismatches in calculated values can be 

expected since the tabulated values are not precise, and bonding regimes are open for interpretation. 

Notable mismatches, however, indicate an unstable phase or a need for distortions for the phase to 

be stable, for example adjustment of the atomic positions, to find an arrangement that better fulfils 

the valence requirements of the atom. This can include a rearrangement of neighbouring atoms, 

leading to altered coordination numbers. Some elements can also accept bonding mismatch and 

adapt mixed valence states, discussed further in Section 3.3.  

 

2.2 Structural distortions 

As the aristotype perovskite poses strict boundaries for the ratios of the ionic species, perovskites of 

ideal structure are in minority. When ionic radii do not match perfectly, distortions are introduced to 

compensate for the mismatch and restore stable bonding. In total, three types of distortions are 

possible in perovskites: octahedral tilting, cation displacement, and structural distortions of the 

octahedra. Subsequent secondary distortions affect the lattice parameters and crystal system. 

Distorted variants, called hettotypes, thus dominate the perovskites, the majority of which are 

defined by tilting of the 𝐵𝑂6-octahedra. [27] Depending on chemical composition, ion radii and 

bonding preferences, a multitude of octahedral tilting patterns are possible. Cation site 

displacements are also common and often accompany other distortions, such as structural 

deformation of the octahedra.  

Several systems for describing and predicting the consequences of distortions of the octahedral 

lattice have been devised. The most famous classification system, discussed further below, was 

developed by Glazer in 1972 and refined by Burns and Glazer a few decades later. [28,29] A twin 

classification was developed in Russia by Aleksandrov around the same time. [30] In the 1990-es 

Thomas and Beitollahi developed a method based on polyhedral analysis, better adapted for cases 

where cations are displaced from their ideal sites. Lacking a classification notation, this method 

focuses more on the mathematical perspective of structural analysis. [31–33]  

Introducing distortions to the perovskite structure, symmetry is often reduced, and the crystal system 

changed. Thus, the unit cell parameters need to be expanded to accommodate the full pattern of the 

altered structure. For ease of comparison, a pseudocubic description with the 𝐵𝑂6-octahedra at the 

corners is used also for perovskites of non-cubic symmetries, for which other settings would be the 

default. This description allows the construction of a reduced unit cell, which corresponds to the 
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single perovskite unit cell and represents an average of the structure per would-be single perovskite 

formula 𝐴𝐵𝑂3. In the case of double perovskites, the cation sites are assumed homogenously co-

occupied for the purpose of creating the idealized reduced-cell model and calculating its unit cell 

parameter 𝑎𝑐. The reduced-cell parameters are used for comparing unit cell volume and degree of 

distortion from the ideal pattern of the obtained real structure. [8]  

2.2.1 Octahedral tilting and the Glazer notation 

Due to the interconnectivity of the 𝐵𝑂6-octahedra, complex patterns arise when tilting is introduced 

to the perovskite lattice. A notation for consequently categorizing the numerous patterns was 

developed by A. M. Glazer in 1972 [28], subsequently named the Glazer notation. Taking the ideal 

cubic perovskite lattice as its starting point, the glazer notation describes the aberration of the 

octahedra from the ideal orientation, in terms of rotations around each of the principal unit cell axes, 

which are defined by the crystallographic directions as 𝑎 = [1 0 0], 𝑏 = [0 1 0], and 𝑐 = [0 0 1]. The 

notation is thereby locked to the atomic pattern of the structure, retaining its descriptive power for 

perovskites of non-cubic symmetry. As a rotation around the “𝑎”-axis will obviously introduce a 

displacement of the atoms in the 𝑏𝑐-plane, shifting the directions of the “𝑏” and “𝑐” axes, the tilting 

operations do not make an Abelian group3. The effects of this can, however, usually be neglected, as 

tilt angles in perovskites rarely exceed 15°. Beneath this limit, statistical error dominates over the 

imprecision of assuming initial axis orientation for each subsequent operation.   

The octahedral interconnectivity means any tilt of one octahedron is constrained to introduce an 

equal but opposite rotation in all adjacent octahedra in the equatorial plane of the rotation. Along 

the axis of rotation, tilting is not geometrically enforced to propagate. Thus, the tilt propagation in 

each case is symbolically defined by introducing an upper index, which defines whether the tilting of 

the adjacent octahedron follows (“+”), reverses (“-“), or goes extinct (“0”) along the given axis. With 

the letters for the unit cell axes 𝑎, 𝑏 and 𝑐 annotating the tilt around each axis, the generic Glazer 

notation thus takes the form 𝑎⬚𝑏⬚𝑐⬚. Geometrically, ten possible combinations of tilt operations 

are created, presented in Table 1. 

Table 1. The ten fundamental combinations of Glazer tilting.   

3 tilts 𝑎+𝑏+𝑐+ 𝑎+𝑏+𝑐− 𝑎+𝑏−𝑐− 𝑎−𝑏−𝑐− 

2 tilts 𝑎0𝑏+𝑐+ 𝑎0𝑏+𝑐− 𝑎0𝑏−𝑐−  

1 tilt 𝑎0𝑏0𝑐+ 𝑎0𝑏0𝑐−   

0 tilts 𝑎0𝑏0𝑐0    

                                                      
3 An abelian group is defined as a group of operations that commute, i.e. produce the same outcome regardless of the 
order in which they are performed.  
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The Glazer notation always reports the tilt of the axes in the “𝑎, 𝑏, 𝑐” order. If the extent of the tilt is 

equal for several axes, the letter of the former is repeated at the position of the latter. Considering 

this, the number of mathematically possible tilt systems expands to 23, of which some turn out non-

viable in reality. A group theoretical analysis performed by Howard et.al [27] reduces the number of 

possible tilt systems to 15, leaving out eight tilt systems found to exhibit higher symmetry than their 

corresponding space groups. In practice, eleven of these tilt systems have been found to occur in 

perovskites, of which five systems dominate by encompassing ca 97% of all tilted perovskites: 

𝑎0𝑎0𝑎0, 𝑎0𝑎0𝑐−, 𝑎0𝑏−𝑏−, 𝑎−𝑎−𝑐+, and 𝑎−𝑎−𝑎−, illustrated in Figure 6. Of these, 𝑎−𝑎−𝑐+ appears 

to be the most common. [34–36]  

 

Figure 6. The five most common tilting systems, viewed at an angle along the c axis in a cubic model. These 
five tilting systems are interrelated by making up the most common progression of tilt systems upon 
increasing distortion, as determined by Vasala et.al [7].  

The Glazer notation presents a simplified model for describing structural distortions and 

rearrangements taking place during phase transitions, and thus assists the prediction of phase 

transitions as a function of temperature or pressure. As the tilting patterns directly affect the crystal 

symmetry, the evolution of space group assignment with increasing distortions can be anticipated. 

The most common progression upon decreasing tolerance factor is shown in Figure 6. All tilt systems 

originate in the undistorted 𝑎0𝑎0𝑎0 aristotype, from which hettotypes of increased distortion are 

derived. The hettotypes settle into three groups, defined by possible transitions between symmetries. 

These interrelationships have been explored by Howard et.al [27] and a schematic representation of 

the hettotype hierarchy is presented in Figure 7. The space group presented for each hettotype is the 

highest-symmetry alternative, which is often further lowered in real perovskites due to additional 

distortions or ordering of the cation sites.  

Increasing distortion 

Decreasing tolerance parameter 

 𝑎0𝑎0𝑎0 

𝑎0𝑎0𝑐− 

𝑎0𝑏−𝑏− 𝑎−𝑎−𝑐+ 

𝑎−𝑎−𝑎− 
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Figure 7. Interrelationships between tilting patterns with their adherent highest-symmetry space groups. 
Lines represent possible direct transition paths, dashed lines mark the transitions that are required to be 
first order based on Landau theory [37]. The five most frequently occurring space groups are marked blue. 
(Figure adapted from references [27] and [29] Table A9.1)  

Examining the different tilt systems, a handful of shorthand rules can be formulated for determining 

symmetry changes and correlations between tilts and changes in unit cell parameters:  

▪ For an axial ratio a/c < 1, two superscripts will be “+” and the third one “0” 

▪ For an axial ratio a/c > 1, two superscripts will be “0” and the third one “+” or “-“ 

▪ For superscripts “0” and “+”, all mirror planes perpendicular to the twist axis are 

preserved 

▪ If two or all superscripts are “0” or “+”, the unit cell will be orthogonal 

▪ If all tilts are equal in magnitude, all principal (pseudo)axes will be equally contracted 

▪ If all superscripts are “-“, all three pseudo-axes will be inclined to one another 

▪ With exactly two “-“ superscripts, those two pseudo-axes will be inclined to each other 

and orthogonal to the third one 

The Glazer notation is limited to tilting patterns encompassing maximum two layers of 𝐵𝑂6-

octahedra along either crystallographic direction, and thus works best for perovskites with either 

homogenous or 1:1 alternating B site chemistry. For other cases, including compound tilt systems, 

the notation needs modifications and the descriptions become very complex; these cases are not 

discussed here. In itself, the Glazer notation does not consider the chemistry of the A site, but the 

adaption of a tilting pattern can be affected by the stoichiometry of the A site. A few of the Glazer 

patterns also especially support ordering of the A site by creating unequal A site environments: 

𝑎+𝑎+𝑎+, 𝑎+𝑎+𝑐−, 𝑎0𝑏+𝑏+, and 𝑎0𝑏+𝑏−. [28,34–36] Factors affecting the ordering of double 

perovskites are discussed further in chapter 3.  
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2.2.2 Ion displacements and octahedral distortion 

Octahedral distortions are usually secondary effects, caused by ionic displacements or bonding 

preferences. Both the A and B site cations can cause distortions due to preferences for bonding 

angles, bonding distances, and degree of covalence. Additionally, some tilting systems unavoidably 

introduce octahedral distortions based on geometrical restrictions, although these are rare. [38,39] 

One factor affecting octahedral symmetry is the electronic structure of the B site cations. Among the 

transition elements, partial formation of π-bonds over the B-O-B connection can stabilize 180° 

bonding when high charge of the B site affects the charge distribution over oxygen. However, if the B 

site cation is from the p-block, the availability of π-bonding is affected. In a 180° B-O-B bond with 

highly charged B-cations on either side, oxygen cannot be stably polarized, thereby angled bonds are 

favoured for maximized polarizability of the oxygen site. [7]  

The Jahn-Teller (JT) effect, first described by Jahn and Teller in 1937, is an intrinsic tendency of certain 

ionic species to adopt asymmetric bonding environments. The effect is based on the electronic 

structure of the ion, which contains an unstable degeneracy. By distorting the structure, the 

degenerate orbitals are given different environments and the degeneracy is lifted, providing an 

unambiguous lowest-energy electron distribution. [40] Several transition metals present JT-active 

ions, famous among them are Cr+2,  Mn+3, Fe+2, and Cu+2. In an octahedral environment, the d-

orbitals of these ions split into two subsets: two eg-orbitals and three t2𝑔-orbitals. Ions where the 

degeneracy arises from the t2𝑔-orbitals are more numerous, since the number of possible ambiguous 

electronic configurations is larger. On the other hand, JT-distortions caused by degenerate eg-orbitals 

tend to be stronger, and more often resistant to phase transitions. Thus, high-spin and low-spin 

configurations of the same ion can express JT-activity of different strength depending on the 

environment. The difference in strength is explained by the different geometries of the orbital groups, 

of which the eg-orbitals are better positioned to interact with surrounding species in the octahedral 

environment. Depending on the electron configuration, the JT-effect will distort the coordination 

octahedron, either by an elongation or by a contraction of one of the principal axes, as shown in 

Figure 8. Elongation of one axis is preferred in most cases, since this distortion places two of the t2𝑔-

orbitals at the lowest energy level. The opposite distortion is favoured only in cases when the 

degeneracy is induced by a single-electron situation in the t2𝑔-orbitals, and is often very weak. There 

is some debate whether the appearance of square-planar coordination complexes could be modelled 

as extreme cases of axial JT-elongation, in which the axial bonds are discarded altogether in favour of 

the equatorial bonds. [41] 
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Elongation: high-spin 𝐹𝑒4+ Compression: low-spin 𝐹𝑒4+ 

 
 

Figure 8. The effect of Jahn-Teller distortion on the electron configuration and electron orbital energies in 
the case of axial elongation (left) and contraction (right), as exemplified by the high-spin and low-spin 
versions of 𝐹𝑒4+, respectively.  

 

Similar effects can also be imposed on a structure externally, inducing a JT-like distortion without the 

presence of a JT-active ion. This mechanism holds interesting possibilities in the design of complex 

electromagnetic functionality, such as switchable ferroelectricity, which has been presented as a 

pathway for controlling magnetic order using electric fields. Since JT-distortions are linked to orbital 

ordering, electric manipulation of orbitals could be used to induce antiferrodistortive distortions and 

improper ferroelectricity, as described by Varignon et.al [42]. Other exotic properties such as metal-

insulator transitions can also be associated with extrinsically induced JT-distortions. JT-like distortions 

tend to express a transition temperature 𝑇𝐽𝑇, above which the asymmetric behaviour is lost due to 

thermally induced rapid fluctuations of the direction of distortion. [43]  

Ferroelectric cation displacement is another intrinsic effect caused by the electron configuration, 

which can arise from a lone electron pair effect. Among the p-block semimetals, several ions present 

a lone s-electron pair in its valence shell, for example Pb+2 and Bi+3. Due to the lone electron pair, a 

spherical description of the ion is no longer valid. Adjusting the bond lengths to minimized energy 

creates an asymmetric environment, which in the octahedral coordination expresses as an elongation 

of one axial bond and out-of-plane displacements of the equatorial bonds. When the charge 

environment of the 𝐵𝑂6-octahedron is no longer symmetric, the material becomes polarizable. 

Simultaneously, the octahedron affected can be geometrically distorted. [44] Whether a material 

containing polarized octahedra can express overall polarizability is dependent on the overall 
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symmetry of the structure. Thus, the Glazer tilting systems can predict the appearance of physical 

properties to some extent, in cases where the behaviour depends on crystal symmetry.  

Geometrical distortions of the octahedra can also be induced by the A site cation in cases where A is 

undersized and tolerates reduced coordination numbers. Tension on the A-O bonds caused by the 

small A ion can displace the oxygen ions to enable shorter A-O bonds, in exchange for a reduced 

coordination. Most frequently CN(A) is reduced from 12 to 8, but in certain extreme cases square 

planar coordination can appear. The appearance of square planar A sites is more favoured in certain 

tilting systems, such as 𝑎+𝑎+𝑎+,  where ¾ of the A sites can become square planar if the tilting is 

large enough. [44] On the other hand, the larger the A cation, the more flexible the bonding to oxygen, 

allowing compounds with larger average cation radii to better compensate for mismatches and retain 

a more symmetric structure. Thus, octahedral distortions due to bonding preferences are more 

frequent in compounds of lower atomic weight. [7]  
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3 Cation ordering in B site ordered double perovskites 

When introducing substitution at a given site in a structure, the baseline assumption is a random but 

overall homogenous distribution of the substituent element. For certain combinations and suitable 

stoichiometric ratios of co-occupants, ordering into long-range regular patterns may appear. Various 

patterns are possible at both the A and B cation sites, and can appear both independently and in a 

mutually reinforcing manner. Driving forces for the splitting of a crystallographic site into two or 

several unequal sites are Coulombic repulsion, ion size differences, and bonding preferences. At the 

B site, the two first dominate the ordering dynamics, while A site ordering is strongly affected by 

bonding preferences and bonding symmetry. This is one reason why the B site adapts ordered 

patterns considerably more willingly than the A site. [44] 

Assuming a 1:1 occupation ratio of a binary occupied cation site, there are three fundamental 

patterns for cation ordering in the cubic perovskite lattice. In a rock salt (RS) arrangement, the 

elements alternate in all three directions, thus the pattern can be interpreted as zero-dimensional 

(0D). Layers of same-species sites alternate along the [1 1 1] direction. Similarly, the columnar 

pattern (1D) alternates along the [1 1 0] direction, and the layered arrangement (2D) alternates only 

along [1 0 0]. [44] The patterns are presented in Figure 9. 

   
Figure 9. Regular ordering patterns for 1:1 B site ordered double perovskites. From left to right, layered, 
columnar, and rock salt (RS) patterns, with elemental alternation following directions [0 0 1 ], [0 1 1], and 
[1 1 1], respectively. Crystallographic lattice planes are shown to emphasize the geometry of the patterns.   

Among the B site ordered double perovskites, the RS pattern of ordering dominates overwhelmingly. 

The number of RS-ordered 𝐴2𝐵’𝐵”𝑂6 compounds is so large that they have been defined as a 

separate subclass of perovskites, called elpasolites. [1] The high occurrence of the RS pattern arises 

from cooperative contributions of Coulombic forces and ionic radii. Unless the charge difference 

between the two B site occupants is negligible, electrostatic repulsion will promote an arrangement 

that maximizes the distance between the stronger charged species. Similarly, ions of notably different 

sizes will generate lattice strain, which is relieved by minimizing the number of similar species in 

neighbouring octahedra. Mostly due to the induced lattice strain, very few compounds express the 

layered arrangement and even fewer are columnar, as both arrangements require deformation of 
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the octahedra. All compounds expressing the layered arrangement have been found to contain a JT-

active species or other special behaviour. Only one case with columnar arrangement has been found, 

allowing very few conclusions to be drawn. The compound in question also expresses doubling of the 

A site, which can affect B site order. [7]  

Ordered phases of 2:1 or higher molar ratio on the B site are significantly less common than the 

equimolar elpasolites. Arrangements mimicking the RS-order are encouraged by the same 

mechanisms, promoting the formation of layers along [1 1 1]. Phases where the minority species is 

the stronger charged dominate, the most common charge distribution being 𝐴3
+3𝐵′2

+2𝐵"+5𝑂9. With a 

2:1 stoichiometry, layer sequences of B’-B’-B” are stabilized by the presence of B cations supporting 

octahedral distortions, such as JT-active species and concerted cation displacements in the majority 

layers. Another possibility is the formation of regular RS-order, where one site is purely occupied by 

the majority species and the other dominated by the minority species. The mixed-chemistry site is 

rarely ordered within itself. The highest ratio for which long-range order appears is 3:1, which tends 

to adapt arrangements with alternating majority-pure and disordered, 1:1-mixed layers. The 

incentive to order is, however, weaker than for the lower ratios. [36,44]  

Introducing order at a split crystallographic site will inevitably have consequences for the symmetry 

of the crystal. As the appearance of order introduces an inequality of the sites, symmetry elements 

relating neighbouring B sites are destroyed and symmetry is lowered. With respect to symmetry, the 

introduction of RS-order at the B site is directly comparable with the introduction of octahedral tilting 

patterns. As discussed previously in Chapter 2.2.1, octahedral tilting introduces equal alteration of 

every second octahedron along each plane of twisting, giving rise to a RS-pattern of equally vs 

oppositely twisted octahedra. This has been well illustrated above in Figure 6, where the 

orientationally unequal sites have been given different colour. Just as in the case of tilting patterns, 

all space groups appearing for ordered perovskites are subgroups of the aristotype space group 

𝑃𝑚3̅𝑚, which in the very simplest case of B site splitting into an untilted RS pattern is automatically 

transformed into 𝐹𝑚3̅𝑚. [38]  

Whether B site order is favourable or not can be predicted by so-called stability field maps, as 

developed by Davies et. al [44]. Similar in idea to the maps predicting perovskite formability, the 

stability field maps are drawn up by plotting the charge difference against the size difference of the 

two B site species. Different stoichiometries and arrangement patterns present different 

requirements for favouring order, giving each stoichiometry its own map. The cooperative behaviour 

of charge difference and differing ionic radii shows especially well in the stability field map for 1:3 

stoichiometry, in which the lower limit for ordering is a slope (Figure 10).  
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Figure 10. Stability field map for B site ordering with 1:3 B site stoichiometry. The cooperative influence of 
charge difference and size difference is evidenced by the tilted lower limit of the ordered zone (grey). Labels 
annotate B site chemistry of the perovskite-suitable stoichiometry. (Reprinted: ref [44] Figure 21) 

 

The presence of B site ordering can be evaluated by X-ray diffraction (XRD), by checking for specific 

reflections only present in the XRD patterns of ordered compounds. Namely, the (1 1 1)𝑐 reflection, 

which in orthorhombic setting is equivalent to the (1 1 0)𝑜𝑟 reflection family, is allowed only in RS 

ordered compounds, which belong to space group 𝐹𝑚3̅𝑚. In disordered compounds, this reflection 

goes extinct due to the increased symmetry of the simplified structure, which can be modelled as a 

single perovskite of space group 𝑃𝑚3̅𝑚. A weakness of the method is the small risk of mistaking a 

disordered compound for an ordered one if the compound expresses strong octahedral tilting, since 

this induces RS-patterning of the 𝐵𝑂6-octahedra by geometry. The effect is, however, much weaker 

than with true B site ordering, and can be ruled out if the expected phase has a high tolerance 

parameter. [36]  

 

3.1 Degree of order  

The discussion has thus far assumed long-range ordering to be perfect and complete. In most cases, 

however, ordering will be disrupted by defects, divided into domains, or partially inhibited by kinetic 

and thermodynamic effects. Depending on the stoichiometry and pattern of ordering, the incentives 

for ordering vary in strength. The overall degree of ordering is expressed by the order parameter S, 

defined in Equation 7, in which 𝑔(𝐵) describes the amount of B cations holding correct site 

occupancy. At perfect disorder, half of the B ions will have taken the wrong site and the equation 

yields zero, while S=1 annotates perfect order.  

Ordered 
perovskite 

Disordered 
perovskite 

Not perovskite 
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 𝑆 = 2 𝑔(𝐵) − 1 Equation 7 

The dominating driving force for ordering at ambient conditions is charge difference. Electrostatic 

repulsion is expressed by the Madelung energy, which is proportional to the charge difference 

squared. Thus, with increasing charge differences at the same crystallographic site, electrostatic 

repulsion quickly becomes a dominating contributor to the total energy of the system. Considering 

RS-ordering with a 1:1 compositional ratio on the B site, order is always favourable when the charge 

difference is larger than two. With a charge difference of precisely two, about half of the phases are 

ordered, with ion sizes difference stepping in as a second promotor for ordering. As these incentives 

are cooperative, a precise value for the necessary size difference cannot be defined. The prevalence 

of order increases gradually between 7% and 17% differing radii and a charge difference of two. A 

size difference of 35% compared to the smaller ion practically renders disorder impossible, even when 

the B site species have the same charge. [7,44]  

For phases with 1:2 and 1:3 stoichiometry, order is induced by the same mechanisms as for 1:1 

stoichiometry, but stronger incentives are needed. The notably lower prevalence of ordered phases 

impedes precise determination of threshold values for charge and size differences, but charge 

differences of minimum three appear to be necessary. Additionally, geometric considerations weigh 

in, and other effects might dominate the ordering incentive, such as the availability of concerted 

cation displacements and asymmetric bonding. The predictive power of the tolerance factor is also 

altered the more complex the stoichiometry of the doubled site becomes. [44]  

The kinetic and thermodynamic prerequisites for the appearance of cation order are diffusion and 

entropy. With increasing temperature, diffusion is promoted, but entropy is simultaneously 

increased. Two critical temperatures for order-disorder phase transitions can thus be found: the 

kinetic limit 𝑇𝑘 presents the temperature below which diffusion of at least one of the species is 

inhibited by lack of thermal energy, and the entropic threshold 𝑇𝑆 sets the maximum temperature 

above which entropy will overpower the incentives for ordering. Combining the kinetic and entropic 

limits for ordering, three possibilities present themselves: 1) highly ordered at all temperatures 

when 𝑇𝑘 ≪ 𝑅𝑇 ≪ 𝑇𝑆; 2) controllable ordering when 𝑇𝑘 < 𝑇𝑆 and both fall within a manageable 

temperature range, and 3) permanently blocked with 𝑇𝑘 > 𝑇𝑠 at any temperature. In the second 

regime, final degree of ordering can be controlled by synthesis conditions and thermal treatments. 

[7,45] These mechanisms have been thoroughly investigated by Sahknenko and Ter-Oganessian [46], 

and developed into a statistical method for predicting which of the three groups a given composition 
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will belong to, and at what temperature range ordering could be expected, taking into account that 

both 𝑇𝑘 and 𝑇𝑆 are sensitive to pressure. The effects of pressure are returned to in Chapter 3.4. 

The kinetic limit for ordering is strongly linked to the physical barriers for diffusion, and thus strongly 

influenced by the relative ionic sizes and distortedness of the phase. A smaller species on the A site 

provides less of a barrier for diffusion between the B sites, lowering the energy barrier for 

neighbouring B cations to swap sites. Simultaneously, a smaller A site cation forces the B sites closer 

together which enhances the effect of charge differences. Reducing the tolerance parameter by A 

site substitution can thus promote ordering at the B site, but has the side effect of increasing 

distortions and altering bond angles and symmetry of the phase, in a similar manner to the application 

of pressure (further discussed in Chapter 3.4). [7] As different synthesis methods provide different 

kinetics and growth mechanisms, choice of synthesis method can sometimes influence the formation 

of cation order. However, since the differences in phase formation mechanisms are multiple and their 

interactions unkclear, the precise effects of method choice cannot yet be well predicted.  

Bonding preferences can support ordering, for example if one of the site co-occupant is noticeably 

more electronegative, in which case ordering will lessen bond strains by allowing polarization of 

oxygen. Adverse effects are however also possible, as competing phases with the same stoichiometry 

can provide a preferable bonding environment for some compositions. One example is the pyrochlore 

phase, which appears as a growing impurity with increased synthesis time and thus presents an 

unwanted side-effect of the synthesis conditions needed for allowing cation order to appear. 

Substitution of one cation site can alter the bonding structure on the other by the same mechanism 

of electron competition, since effective electronegativities are influenced by the electronegativity of 

nearby atoms. This effect can be seen e.g. in the sister perovskites 𝐶𝑎2𝑀𝑛𝑊𝑂6 and 𝑆𝑟2𝑀𝑛𝑊𝑂6, in 

which the longer Mn-O bonds are found in the Ca-compound. [47] Another bonding effect can be 

seen in the case of oxygen deficient phases, where the species more tolerant of reduced coordination 

tends to accumulate on sites adjacent to the vacancy, mutually reinforcing long-range patterns of 

vacancies and cations or the formation of domains. [48,49]  

 

3.2 Ordering defects  

The nucleation and growth of the ordered phase follows the same thermodynamic principles as other 

phase transformations. Order expresses a preference for growing along the [1 1 1] direction of the 

pseudocubic setting. This is explained by the geometry of the direction, as every site ‘next up’ is 

surrounded by three already-ordered adjacent sites. A direct consequence of phase nucleation is the 
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formation of inverse order domains, called antiphase domains. These can form based on either ionic 

site distribution or octahedral tilting patterns, or both, in which case domain boundaries tend to 

coincide. This type of defect system has been experimentally observed and investigated in 

𝑆𝑟2𝐹𝑒𝑀𝑜𝑂6 [50], in which the degree of ordering can be controlled by adjusting the cooling rate 

during synthesis. The defect type associated with the antiphase domains is the antisite border, at 

which the lattice strain is increased by the pairwise arrangement of similar B sites. If diffusion is not 

kinetically blocked, antisite switches can appear and drive the minority phase towards extinction over 

time. The higher the phase boundary energy, the stronger the incentive to convert the minority 

phase. Perovskites with B site cations differing drastically in both size and charge can be assumed 

practically antisite-free. When ordering is interrupted prematurely, for example by rapid cooling, 

superstructures containing various degrees of ordered zones inhabiting an overall disordered 

structure can form. The ordering parameter 𝑆 does not distinguish between such ordered/disordered 

compound phases and phases rich in antisite defects or domains. [50,51]  

Isolated instances of pairwise switched sites, called antisite defects may also appear by thermal 

excitations, or as stacking faults during phase formation. An isolated antisite defect causes notable 

strain on the lattice, driving an alternative route for antisite domain formation via defect clustering. 

[52] If the lattice strain is too high and diffusion rates too low, this behaviour can however be blocked, 

stabilizing the appearance of antisite point defects even in the most readily ordered elpasolites.  

 

Figure 11. 2D depiction of ordering defects in double perovskites. To the left, two antisite defects encircled 
in yellow. To the right, an antiphase domain encircled in orange. 

 

As with all crystalline solids, classical defects such as Schottky defects and Frenkel pairs will occur in 

perovskites, presenting a pathway to the occurrence of ordering defects. Antisite defects also take 

place between the A and B sites, although in noticeably lower rates than within either site. The 
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mechanics of site swapping have been most closely studied in phases where antisite defects are of 

harm, such as 𝑃𝑏(𝑍𝑟, 𝑇𝑖)𝑂3.[53] The formation of cation antisites from Frenkel pair defects has been 

modelled in 𝐵𝑎𝑇𝑖𝑂3 and 𝑆𝑟𝑇𝑖𝑂3 [52]. Site swapping can also occur because of bonding preferences 

when ion sizes are suitable. A sample series where site redistribution is induced by substitution is 

𝐵𝑎𝐿𝑎𝐵′𝑇𝑒𝑂6 with 𝐵 =  𝑁𝑎 → 𝐾 → 𝑅𝑏. The substitution results in 𝐿𝑎+3 relocating to the B site as the 

average radius of the substitute species increases and exceeds the radius of 𝐿𝑎+3 itself. [54] True 

cation mixing is seen in 𝐶𝑎2𝐿𝑛𝑅𝑢𝑂6 with 𝐿𝑛 = 𝑌, 𝐿𝑎 − 𝐿𝑢, where the entire series of 𝐿𝑛+3 ions 

expresses willingness to mix with the A site. Across the series, the extent of 𝐶𝑎2+/𝐿𝑛3+ site swapping 

follows a radius-dependent trend with a large change in preference towards the B site taking place 

over 𝑇𝑚 → 𝐸𝑟 → 𝑌 → 𝐻𝑜 → 𝐷𝑦 → 𝑇𝑏. [55,56] 

Domains of differing composition can form when segregation is energetically favoured. An altered 

chemistry on the A-site, discussed further in Chapter 4.1, can be a driving factor. In 𝐴𝑇𝑖𝑂3 with the A 

site divided between 𝐿𝑖+, 𝑁𝑑3+, and vacancies 𝑉𝐴
′′, domains of 𝐿𝑖𝑁𝑑𝑇𝑖2𝑂6 and 𝑁𝑑2𝑉𝐴

′′𝑇𝑖3𝑂9 tend to 

form in a ratio determined by the A site chemistry. The domain distribution arranges into a 

superstructure with nanometre-scale features and long-range checkerboard-type pattern, the 

periodicity of which can be tuned by adjusting the A site stoichiometry. [57]  

 

3.3 Charge disproportionation and charge ordering  

Charge disproportionation is a rare behaviour seen only for a handful of ions, for example 𝐹𝑒+4 and 

𝐴𝑢+2. Both have a charge in between two oxidation states with energetically more optimal electron 

structures, sufficiently lower in overall energy to counterbalance the increased Madelung energy of 

disproportionation. Ions with electronic structures close to 𝑑0, 𝑑5, or 𝑑10 occupancy are more 

susceptible to charge disproportionation due to the energetic benefits of d-orbital contraction. 

Crystal field splitting induced by the coordination environment can promote charge 

disproportionation as a way of avoiding energetically unfavourable Jahn-Teller distortion. This is an 

especially strong driving factor in the case of gold. Thus, phases formally containing iron or gold ions 

with the aforementioned charges are likely to actually present equimolar amounts of 𝐹𝑒+3/+5 and 

𝐴𝑢+1/+3 ions. [36,41,58]   

Charge ordering appears fast, and readily adapts long range ordering when the conditions are 

favourable. Atomic diffusion is not required, but minor structural adjustments might occur to 

accommodate changing ionic radii. With no need for diffusion, the lower kinetic limit does not apply. 

Instead, the lower thermal limit is defined by the energy barrier of tunnelling between cation sites. 
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The upper limit of ordering, founded in entropy, remains relevant for charge ordering, cancelling out 

charge differences when thermal excitation rates become too high. For example, the charge 

disproportionation of 𝐶𝑎𝐹𝑒𝑂3 only persists up to ca 17°C (290 K), above which all iron cations express 

equal charge of +4. The related phases 𝐶𝑎𝐶𝑢3𝐹𝑒4𝑂12 and 𝐿𝑎𝐶𝑢3𝐹𝑒4𝑂12 present similar, 

temperature-dependent charge disproportionation of iron. [36,59,60] Driven only by electrostatic 

repulsion, charge ordering always takes on the rock salt pattern in cubic lattices.  

In double perovskites with different elemental ions sharing the B site, charge disproportionation can 

have curious consequences for cation ordering. In 𝐶𝑎2𝐹𝑒𝑀𝑛𝑂6 [49], iron has an overall charge of +4 

and disproportionates spontaneously to 𝐹𝑒+3/+5. With the B site occupied by two different elements 

with noticeably different ion radii, an RS-ordering between the two would be expected, but due to 

the charge disproportionation a layered order is instead preferred. The explanation lies in the charge 

distribution, which is the most homogenous when the 𝐹𝑒+3/+5 ions are concentrated into layers of 

chequered order. If the B site was to adopt an RS-ordering, a homogenous charge distribution would 

be geometrically impossible.  

Charge transfer reactions do not need to follow integer values. For example, 𝐵𝑎𝐵𝑖𝑂3 [58,61], 

𝐶𝑎𝐹𝑒𝑂3 [62], and 𝑌𝑁𝑖𝑂3 [63] all present partial disproportionation of the B site ion, with a clear 

splitting into two electronically unequal sites of non-integer charge. In fact, a majority of charge 

disproportionation cases result in non-integer charges, and charge transfer can also take place 

between elementally different species at the B sites. Several compounds express mixed-valence 

oxidation states, which can be interpreted as a case of partial charge transfer between the B site 

species. The amplitude of the charge transfer varies with degree of elemental ordering. One example 

is the double perovskite 𝐿𝑎2𝑀𝑛𝐶𝑜𝑂6, which experiences partial-to-complete charge transfer, from 

near complete 𝐶𝑜+2/𝑀𝑛+4 in the ordered case to a charge distribution much closer to 𝐶𝑜+3/𝑀𝑛+3 

in the disordered case. [45] Similarly, in 𝑆𝑟2𝐹𝑒𝑀𝑜𝑂6 the valence of iron fluctuates with the degree of 

ordering of the local environment. Antisites and antiphase boundaries consequently present 

𝐹𝑒+3/𝑀𝑜+5 while the ordered regions show various levels of 𝐹𝑒+2/+3/𝑀𝑜+5/+6 valence mixing. The 

change in charge distribution drives a structural transition from cubic to tetragonal when the 

molybdenum content is increased from 25% to 33%. [64–67]  

 

3.4 Physical and chemical pressure   

The effect of external (physical) pressure on the perovskite structure can be described in terms of an 

alteration of the tolerance parameter. As mentioned, the rigid-sphere model assumed for calculating 
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the tolerance parameter is not strictly correct, and the effective ionic radii shrink when the structure 

is compressed. Due to their electron structure, larger ions are more easily compressed than smaller 

ones, and thus application of an external pressure can act to lower the effective tolerance parameter 

when A site ions are compressed more than B site ones. By this mechanism, compositions with 

tolerance parameters above one, that form hexagonal phases at ambient conditions, can in some 

cases form a cubic perovskite phase if subjected to high pressure. [16] Similarly, distortion systems 

are affected by pressure, as the internal proportions between bond lengths are altered. As bond 

compression depends on both bond participants and the magnitude of the applied pressure, the 

effect of pressure on distortive behaviour is extremely difficult to predict. Whether pressure will 

increase or decrease distortions is currently best predicted by assessing the chemical nature of the 

bond participants. Most phases will distort more under pressure as the effective tolerance parameter 

is decreased. Phases containing asymmetric ions, such as Jahn-Teller active cupper, are more likely to 

adapt less distorted structures under pressure as the asymmetric ion is forced to adopt a more 

symmetric environment. [7] 

Due to differences in preferred bond lengths, external pressure can sometimes assist the appearance 

of cation order within the 𝐵′𝐵′′𝑂6-lattice. Chemical bonds tolerate stretching better than 

compression, so in a disordered lattice, minimal lattice strain is more easily achieved by stretching 

the bonds between adjacent smaller B site ions, rather than compressing the bonds between adjacent 

larger ones. This results in a natural contraction of the unit cell parameters when a phase becomes 

ordered. The phenomenon is bidirectional, as further compression of the bonds between adjacent 

large ions will significantly enhance the incentive for ion size-driven ordering. On the other hand, 

compression of interatomic distances counteracts ordering by hampering diffusion, which relies on 

sufficient interatomic space. Added together, these effects allow only a small number of cases where 

moderately applied pressure can contribute to the appearance of B site ordering. [68–70]  

Although bonds prefer stretching over contraction, stretching of bonds will give rise to a counter-

force directed towards contracting the bond back to its optimal length. In a lattice of stretched-out 

bonds, the forces of all stretched bonds add together to form an intrinsic, contractive force known by 

the term chemical pressure. Chemical pressure can act similarly to an external pressure in terms of 

influencing structural distortions, cation ordering, and magnetic interactions (discussed further in 

Chapter 5). Contractive lattice strain is regularly introduced in perovskites as A site substitution, 

introducing a smaller but equally charged cation to a fraction of the sites. Common substitution pairs 

are 𝑁𝑎+ 𝐾+⁄ , 𝐶𝑎+2 𝑆𝑟+2⁄ , and 𝑆𝑟+2 𝐵𝑎+2⁄ . [71,72]   
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Although assumed similar in all aspects except for size, there are always some differences in chemical 

behaviour between substitution pairs, such as electronegativity and bonding. This can have 

noticeable influence on the physical behaviour of the material. One such example is the 

𝐶𝑎+2/𝑆𝑟+2/𝐵𝑎+2 trio, in which barium has a notable preference for higher-symmetry structures as 

compared to strontium, which in turn promotes higher symmetry than calcium. When seeking to alter 

crystal structure by substitution with this pair, this effect can potentially obstruct analysis by 

introducing uncertainty as to whether the phase transition observed is more dependent on changed 

tolerance parameter, or different bonding preferences. [73,74] 
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4 Non-stoichiometry  

4.1 A site substitution and ordering 

Altering of the A site stoichiometry is a common trick for tuning the tolerance parameter and thereby 

octahedral tilting patterns of perovskite phases. Although this act technically splits the A-site, it is 

often assumed to remain homogenous if the applied stoichiometry does not present low-integer 

ratios that would promote ordering. This is especially the case when the functional behaviour stems 

from a doubled B-site and its degree of ordering, in which case the ‘starting point’ stoichiometry is 

often described as being doped at the A site by the other species. This kind of doping is often done 

assuming the default and dopant ions are identical in all aspects but size, as mentioned above in 

Chapter 3.4. However, as differences between even the most similar pair of ions do go beyond size, 

the effects of substitution also go beyond simple alteration of the geometrical parameters of the 

phase. Even the most chemically similar pair of ions, take the commonly used 𝐶𝑎2+ 𝑆𝑟2+⁄  or 

𝑆𝑟2+ 𝐵𝑎2+⁄  pairs for example, will at the very least differ in electronegativity in addition to ionic 

radius. This influences the bonding of the entire phase, as Coulombic repulsion is a determining factor 

for electron mobility. [75] Additionally, the assumption of retained homogeneity of a doped A site 

hides behind it the real possibility of ordering of the A site species. Since electrical conductivity is also 

promoted by regular patterns of the electrical potential, A site ordering can influence the 

electromagnetic behaviour of a phase even when the A site is assumed not to contribute.  

Unlike the B site, the A site does not prefer 1:1 stoichiometry for ordering, but rather prefers 1:3 

stoichiometry. The fundamental difference between the A and B sites regarding ordering aptitude 

lies in their bonding to oxygen. Each oxygen ion is surrounded by two axially placed B cations and four 

equatorially placed A cations. With an ordered B site, the RS pattern allows the intermediate oxygen 

to find its optimal distance to each B ion along the B’-O-B’’ line in every direction. However, the same 

ordering at the A site would place oxygen in an inversion-symmetric square planar arrangement. In 

this geometry, finding a position with optimal bonding distances to both species simultaneously is 

impossible. This makes RS-ordering at the A site highly unfavourable, effectively blocking its 

appearance in the real world. A similar situation appears for a large fraction of the oxygen sites in a 

columnar pattern. Thus, the A site strongly prefers a layered arrangement. [36] The comparative 

rarity of B site ordered perovskites with stoichiometry other than 1:1 can be similarly explained, as 

other ordering patterns create unequal environments for the A site, as well as several different 

oxygen environments. [44]  
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With a substituted A site, unequal A sites can become favourable. Certain octahedral tilting patterns 

especially promote ordering of differently sized A site ions, due to the strong effect of tilting on the 

bonding distances. Often, one site is singled out for being notably larger than the others, explaining 

the relatively high preference of the A site to order in a 1:3 stoichiometry. Four systems have been 

found to stabilize A site ordering, as mentioned in Section 2.2.1, by creating A sites of considerably 

differing size. The four systems supportive of A site order, 𝑎+𝑎+𝑎+, 𝑎+𝑎+𝑐−, 𝑎0𝑏+𝑏+, and 𝑎0𝑏+𝑏−, 

are presented in Figure 12 with the differently sized A sites highlighted. [36]  

 

Figure 12. The four Glazer tilting systems promoting A site order. Polyhedra depict the A site environment 
as drawn up by the closest situated oxygen sites, with different colours representing differently shaped sites. 
The reduction in coordination number with shrinking bonding distances to oxygen is clearly visible, and 
shown especially for the 𝑎+𝑎+𝑎+ system (leftmost) in which severe tilting can effectively reduce the 
coordination of ¾ of the sites to square-planar coordination, while the fourth site remains a perfect 
icosahedron for a perfectly cubic phase.  

Co-substitution can stabilize ordering at both sites simultaneously, as A site ordering and RS-ordering 

at the B site can reinforce each other through enhanced octahedral tilting systems. Generally, the B 

site orders more easily, enhancing the incentives for ordering at the A site. Co-ordering is most 

common for 1:3 + 1:1 stoichiometry, in which case the B sites prefer RS ordering and the A site a body 

centred cubic (BCC) pattern for the minority species. Examples include 𝐶𝑎𝐶𝑢3𝐺𝑎2𝑆𝑏2𝑂12 and 

𝐶𝑎𝐶𝑢3𝐶𝑟2𝑆𝑏2𝑂12 [36], and 𝐶𝑎𝐶𝑢3𝐹𝑒2𝑆𝑏2𝑂12 [76], the last of which is also a rare example of the A 

site ordering more readily than the B site. For 1:1 stoichiometry, columnar ordering can be promoted 

by the 𝑎0𝑏+𝑏− tilting pattern, while layered ordering is to be preferred in very weakly tilted or 

untilted structures.  

 

4.2 Oxygen stoichiometry  

The perovskite tolerance for variations in stoichiometry extends further than simple substitution of 

atomic species. All sites tolerate varying types of deviations in stoichiometry, mainly vacancies and 

substitution, but the oxygen site is especially flexible in accommodating vacancies. In fact, most 

perovskites phases contain less oxygen than indicated by the reported formula. Oxygen deficiency is 

𝑎+𝑎+𝑎+ 𝑎+𝑎+𝑐− 𝑎0𝑏+𝑏+ 𝑎0𝑏+𝑏− 



 

29 

 

especially common in phases incorporating cations with several preferred oxidation states, as these 

give the phase flexibility regarding charge distribution. The oxygen content can have significant 

influence on properties, especially electromagnetic behaviour and ion conductivity, and is therefore 

an important parameter in perovskite chemistry. Oxygen intercalation/elimination reactions in 

perovskites can occur at temperatures as low as 100-300°C, considerably lower than the ca 1000°C 

temperatures regularly needed in perovskite synthesis. [77] Final oxygen content of a perovskite 

mainly depends on two parameters during synthesis: oxygen availability and cooling rate. Most 

perovskites are synthesized in solid state surrounded by a gas atmosphere, in which case oxygen 

content is controllable by directly adjusting the oxygen partial pressure of the synthesis atmosphere. 

In closed system syntheses, an oxygen donator material such as 𝐾𝑀𝑛𝑂4 must be added. When using 

encapsulated synthesis methods, excess oxygen can be removed by reducing gases such as 𝐻2 or 𝐴𝑟, 

or by sacrificial materials such as elemental carbon. [8]  

The oxygen non-stoichiometry of perovskites has been intricately studied in 𝑆𝑟𝐶𝑜𝑂3−𝛿, in which 

cobalt readily transitions between 𝐶𝑜2+ and 𝐶𝑜3+. With decreasing oxygen content, the symmetry of 

the originally cubic phase changes to tetragonal and then orthorhombic, with maximal oxygen 

deficiency 𝛿 ≈ 0.7. Investigations have shown that the oxygen intercalation/elimination reaction 

follows a gas intercalation mechanism mediated by the oxygen vacancy network. Upon entering the 

material, 𝑂2 is first converted to superoxide 𝑂2
−, and then reductively split and incorporated in the 

perovskite structure. Thus, the oxygen content varies with depth in oxygen deficient grains, leaving 

the core closer to 𝑆𝑟𝐶𝑜𝑂3 in stoichiometry than the surface. [77,78]  

Anion site vacancies can induce accumulation of the more vacancy-tolerant cation species into 

patterns when the site-sharing species have different bonding preferences. Brownmillerite (𝐴2𝐵2𝑂5) 

can be seen as a limit case for oxygen vacancy ordering into alternate 𝐵𝑂3-planes, with alternating 

rows of oxygen missing along [1 0 0]. This strongly promotes a layered order in case of two different 

B site species. [48,49] Severe oxygen deficiency in 𝑆𝑟𝐶𝑜𝑂3−𝛿 leads to the formation of a 

brownmillerite phase at 𝛿 = 0.5, which can be converted to a perovskite by heating in a strongly 

oxidizing environment. [79] Sub-brownmillerite levels of oxygen leads 𝑆𝑟𝐶𝑜𝑂3−𝛿 into a 

nanostructured arrangement of brownmillerite-like domains. [78] 

Reversible oxygen uptake/release can be used for oxygen storage in solid materials. Several 

perovskites express promise for this application, among them 𝐿𝑎𝐶𝑜𝑂3 and doped or undoped 

𝐿𝑎𝑀𝑛𝑂3. The flexibility in oxygen content allows for both deficient and overloaded states, depending 

on the elemental composition. 𝐿𝑎𝑀𝑛𝑂3 can support both cases, depending on the dopants at the A 
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and B sites. [80] For example, B site 𝑅ℎ-doped 𝐿𝑎𝑀𝑛𝑂3+𝛿 can accommodate up to 𝛿 = 0.15 of excess 

oxygen by means of a small structural change, which is reversible at 400°C. [81] 

Oxygen vacancies can sometimes co-exist with cation vacancies. Ordered and stoichiometric B site 

vacancies supported by oxygen vacancies present as layered absences in quadruple perovskites 

𝐴4𝐵′𝐵′′2𝑂12−𝛿, named the 12L perovskites. The structure of the 12L phase is that of a layered B site 

ordered double perovskite, in which alternating B’ layers are vacant. [82] The structure can also form 

in a hexagonal polymorph [83] and take on various other periodicities [84]. 
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5 Magnetic properties 

The cubic or near-cubic perovskite structure provides an excellent template for tuneable magnetic 

interactions. With highly substitution-tolerant cation sites situated at a suitable distance of ca 4 Å 

from one another, the number of possible combinations of magnetic and non-magnetic ions is vast, 

enabling a wide spectrum of different magnetic arrangements and behaviour. Magnetic interactions 

can occur between so-called Kramer’s ions, i.e. ions containing unpaired electrons, giving the ion a 

nonzero magnetic moment. [85] Both the A site and the B site can hold Kramer’s ions, but due to the 

wider range of allowed oxidations states, the number of magnetic ions available for the B site is 

considerably larger.  

Interactions between nearby situated spins allow cooperative magnetic behaviour to manifest. 

Electron spin interactions appear from the combined effects of Coulombic repulsion and the Pauli 

principle, dictating that no two electrons can share the same quantum state. There are four 

fundamental regimes of spin alignment and overall magnetic behaviour: 1) ferromagnetic (FM) 

materials contain all-parallel alignment of unpaired spins, and produces an intrinsic magnetic field; 2) 

antiferromagnetic (AFM) ordering results in zero net magnetization, as equal numbers of parallel and 

antiparallel spins cancel each other out; 3) in ferrimagnetic (FiM) materials a part of the spins are 

arranged antiparallel to the rest, but do not cancel out; and 4) paramagnetic (PM) behaviour appears 

when all spin interactions are too weak to induce alignment between neighbouring spins. [86]  

The division of the magnetic ordering regimes into four main systems is practical when discussing 

only external qualities of materials, but becomes insufficient for the purpose of designing and 

controlling the finer magnetic interactions of novel materials. On the atomic scale, endless variations 

in spin alignment patterns and magnetic behaviour are possible, and depend on lattice topology and 

the extent of elemental order in the material. The selection of spin alignment patterns presented 

below constitutes only a part of all possibilities, encompassing the systems most relevant for the 

perovskite and elpasolite lattices.  

 

5.1 Magnetic ground states 

The preferred magnetic pattern in a phase is called its ground state. Ferromagnetic alignment is the 

simplest ground state, expressing variation only in the extent of alignment and elemental 

composition. As all aligned spins are unidirectional and mutually reinforcing, net magnetization is the 

sum of the aligned partitions of all contributing spins, regardless of the chemical identities of the 
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contributing species. The FM ground state can thus include either one or both B subsites, with the 

former case being more common due to the rarity of FM coupled ion pairs. One example of an FM 

compound is 𝐿𝑎2𝑍𝑛𝑀𝑛𝑂6 [87] (Figure 13, left) which holds only one magnetic B site species. 

Ferrimagnetic alignment follows lattice topology and elemental composition in determining which 

part of the spins will be arranged parallel, and which will be antiparallel. The majority of FiM 

compounds contain magnetically unequal atoms or ions with oppositely arranged spins. As the 

magnetic moment of one species is larger than that of the other, they generally do not cancel out 

despite the opposing alignment4, such as in 𝐿𝑎2𝑁𝑖𝐼𝑟𝑂6 [88], shown in Figure 13. In materials 

containing only one magnetically contributing element, unequal lattice sites can induce unequal 

distribution of spins. FiM behaviour in 𝑃𝑏2𝐹𝑒𝑁𝑏𝑂6 and 𝑃𝑏2𝐹𝑒𝑇𝑎𝑂6 arise from magnetically equal 

𝐹𝑒3+ ions, which add up to a FiM behaviour due to the geometry of their partially ordered 

arrangement5. [89] The most famous ferrimagnet, spinel magnetite 𝐹𝑒3𝑂4, is a mixture of the two 

cases. In magnetite, iron is distributed over two different sites at a ratio of 1:2 in which it expresses 

different oxidation states, and thereby different magnetic interactions. [86] In some cases, FiM can 

be canted, leading to a weak net magnetization perpendicular to the axis of opposed alignment. 

  
Figure 13. Model visualizations of FM (left) and FiM (right) ground states. The FM ground state is shown for 
𝐿𝑎2𝑍𝑛𝑀𝑛𝑂6 in which only 𝑀𝑛4+ is magnetic, and the FiM ground state for 𝐿𝑎2𝑁𝑖𝐼𝑟𝑂6 in which oppositely 
aligned 𝑁𝑖2+ and 𝐼𝑟4+ do not cancel out. For clarity, only the B site cations are shown. (Figures drawn based 
on refs [87,88], respectively.) 

Antiferromagnetic (AFM) alignment is reminiscent of FiM, but the oppositely arranged spins are 

equimolar and of the same species, leading to a perfect cancelling-out of the net magnetic moment. 

Depending on lattice, AFM can take on a multitude of different up/down patterns called ground 

states. In order to accommodate the full pattern of the ground state, the magnetic unit cell often 

contains several crystallographic unit cells. The possible patterns in an RS ordered double perovskite 

                                                      
4 In compensated ferrimagnetism, oppositely aligned spins are numerically balanced to cancel out. [141]  

5 This is known as Lieb-Mattis-type ferrimagnetism, as described by Lieb and Mattis. [142]  
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depend on if whether all B-sites are involved (cubic arrangement) or only one (tetragonal 

arrangement). Possible magnetic ground states patterns for cubic arrangement have been labelled A 

to G, with B representing FM arrangement, by Wollan and Koehler [90]. These include the patterns 

seen for ion ordering, corresponding to A-type (layered), C-type (columnar), and G-type (RS-order). 

AFM patterns concerning only one B site typically arrange in a layered manner following the 

crystallographic directions [1 0 0] (type I), [1 1 1] (type II), or  [1 2 0] (type III). Type III is an example 

of an arrangement in which the magnetic unit cell contains two crystallographic unit cells. [7] All these 

patterns are presented in Figure 14. More complex AFM patterns are also possible, such as screw-

type AFM in which spin alignment follows a fourfold screw axis [91], and superstructures of multiple 

fundamental patterns, for example D-E and G-F [90]. Similar to FiM, AFM arrangements can also be 

canted and present a sidewise net magnetization. [86]  

 
Type I 

 
 

Type II 

 

 

 

 

Figure 14. Left: the three types of AFM patterns found in RS ordered double perovskites when only one B 
site is concerned. Right: the fundamental cubic lattice AFM types as defined by Wollan and Koehler. For 
most of these patterns, multiplication of the cell shown is required to include the full magnetic pattern.  

A common parameter for comparing magnetic behaviour is magnetic susceptibility 𝜒. The magnetic 

susceptibility describes how a material will adapt spin ordering in response to being subjected to a 

magnetic field. The absolute value of 𝜒 describes the magnitude of the ordering as a function of the 

applied field strength, and the sign determines the direction of the alignment.  

Although paramagnetic materials express no net magnetization nor preference of spin alignment, 

paramagnets should not be confused with nonmagnets. Nonmagnetic materials are characterized by 

G F 

E D 

C A Type III 
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their lack of unpaired spins, thus presenting no magnetically polarizable constituents. Paramagnetic 

materials contain unpaired electrons, which are too weakly coupled to align spontaneously, but which 

can react to the application of an external magnetic field, i.e. their magnetic susceptibility is nonzero. 

A special case of paramagnetism is diamagnetism, which is the only case where the induced spin 

polarization aligns antiparallel to the external magnetic field i.e. 𝜒 < 0. Diamagnetic response can 

never be larger than annulment of the applied field, limiting the strongest diamagnetic susceptibility 

to 𝜒 = −1. [86,92] This can only be achieved in superconductors, in which diamagnetism is a 

consequence of induced electrical screening currents [93] rather than electron-orbital interactions. 

Superparamagnetic magnetization is only limited by the maximal number of unpaired spins that can 

be incorporated in any given structure, and is currently achieved in nanostructures of intrinsic strong 

ferromagnets such as magnetite.[94]  

 

5.2 Temperature and transitions 

The appearance of magnetic order is dependent on temperature. Thermodynamics prevent spins 

from ever being permanently fixed in one direction, and with rising temperature, thermal fluctuations 

gradually decrease the average extent of alignment until thermally induced random spin flipping 

overpowers any magnetic arrangement. Thus, every material has a magnetic transition temperature 

above which it becomes paramagnetic; for ferro- and ferrimagnets this is called the Curie 

temperature (𝑇𝐶), and for antiferromagnets, the Néel temperature (𝑇𝑁). Some ferromagnets can 

express weak magnetization above 𝑇𝐶  due to transient formation of local alignment, called the 

Griffiths phase.[95] More complex magnetic transitions are also possible, and can be connected to 

structural phase transitions. [4,68,86,92]  

The magnetic susceptibility of both FM, FiM and AFM materials follow the Curie-Weiss law above the 

Curie/Néel temperature. The Curie-Weiss temperature or Weiss constant 𝛩 is commonly used as a 

measure of whether FM or AFM interactions dominate the overall magnetic behaviour. FM occurs 

when 𝛩 has a positive value, and AFM when 𝛩 is negative. For the critical value 𝛩 = 0 the interactions 

are perfectly balanced, resulting in exceptional magnetic behaviour, returned to in Chapter 5.4. The 

absolute value of 𝛩 corresponds with the ordering energy and thus gives an indication of the magnetic 

ordering temperature, which indicates the strength of the magnetic ordering. The value of 𝛩 is found 

by plotting the reciprocal molar magnetic susceptibility (𝜒𝑛
−1) against temperature and extrapolating 

the slope of the paramagnetic section to the intersection with the temperature axis. [24,96]  
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5.3 Spin exchange interactions 

The quantum mechanical operations provide multiple types of spin exchange interactions, of which 

the three most common ones are direct exchange, double exchange, and superexchange. Direct 

exchange requires very close proximity of magnetic ions, and involves electron hopping between 

overlapping orbitals. Magnetic behaviour in 3d-metals is well described by direct exchange, but in the 

perovskite lattice, the distance between cations exceeds its effective range and other mechanisms 

dominate. Double exchange also involves electron hopping between ions holding both localized and 

delocalized electrons, and requires the participating elements to support mixed valence states. 

Following Hund’s rule, electron hopping is only allowed between ions when the hopping electron’s 

spin can be preserved, i.e. when the localized spins in the adjacent ions are parallel. Thus, double 

exchange always induces parallel alignment of neighbouring spins. The double exchange interaction 

is very sensitive to bond angles, as even a small misalignment requires readjustment of the spin 

alignment for the exchange to take place. At 90° misalignment, double transfer hopping is completely 

blocked. Double exchange can take place in perovskites but is not common. [86]  

Superexchange is the predominating exchange mechanisms in oxides, including perovskites, and 

leaves all involved spins localized. Spin alignment is communicated via so-called 𝐽-coupling, which 

connects spins via virtual electron transfers mediated by chemical bonds. 𝐽-couplings can extend over 

several atoms, expanding the complexity of the system and introducing coupling competition. 

Superexchange interactions can be either ferromagnetic (𝐽 > 0) or antiferromagnetic (𝐽 < 0) across 

any given pair of coupled spins. The strength and sign of 𝐽 is mostly determined by electron orbital 

occupancy and degeneracy, interatomic distances, and bonding angle. The extensive set of 

interconnected rules have been developed into a set called the Goodenough-Kanamori rules [97,98], 

which successfully help predict the strength and sign of 𝐽 in cases where magnetic anions interact via 

an intermediate nonmagnetic anion. The Goodenough-Kanamori rules have been reformulated by 

Anderson, forming a set of rules often referred to as the Goodenough-Kanamori-Anderson rules that 

better fit the description of perovskites. These are frequently recited as: [86] 

1) Strong AFM interaction will appear for M-O-M bonds at 120°-180° angles, when both 

hold singly occupied 3d-orbitals pointed at each other, with large orbital overlap and 

large hopping integrals 

2) Weak FM interactions will appear for M-O-M bonds at ∼90° angles, when both hold 

singly occupied 3d-orbitals that have zero overlap due to symmetry 

3) Weak FM interactions will appear for M-O-M bonds where one atom holds a singly 

occupied 3d-orbital which overlaps with the other atom’s empty or doubly occupied 

orbital of the same type 
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The rules emphasize the acute effect of bond angles on the strength of the interaction. Changes in 

bonding angles associated with structural phase transitions can thus have dramatic effects in systems 

with competing AFM interactions. As orbital overlap integrals are often large and rarely zero, AFM 

interactions dominate in superexchange.  

J-couplings weaken with distance, leaving two dominating coupling types within either B sublattice: 

nearest-neighbour (NN) and next-nearest neighbour (NNN). Interspecies couplings taking place 

between the sublattices are discussed further down. Examining the cubic perovskite setting, NN 

couplings are found along the face diagonals, and NN couplings along the unit cell axes. Theoretically, 

spins can couple throughout the crystal, but beyond the third-nearest neighbour interactions become 

negligibly weak, as well as difficult to calculate. In distorted perovskites, coupling strengths will differ 

depending on their geometrical position in the unit cell, and J-constants must thus be given separately 

for every inequivalent ion pair. Lower indices are used to annotate different J-coupling constants, 

defined case-by-case based on the lattice and its magnetic interactions. Prediction of extended 

superexchange is still imprecise, and computational methods are required for solving the magnetic 

state of systems containing multiple unequal and conflicting 𝐽-couplings. [99] The most dominant four 

couplings in an orthogonal perovskite are shown in Figure 15. 

  
 

Figure 15. J-couplings in a double perovskite unit cell, shown in orthogonal setting for clarity. To the left, 
atom-to-atom J-coupling interactions numbered. To the right, the nearest-neighbour (NN) pathway shown 
in blue (oxygen shortcut in paler blue), and the next-nearest-neighbour (NNN) pathway shown in yellow.  

An additional exchange type can take place in systems already connected by superexchange. This 

weak, antisymmetric interaction is known as the Dzyaloshinski-Moriya interaction, or 𝐷-coupling. It 

can occur in materials with low symmetry, between spins laying in the plane perpendicular to the 

highest-symmetry axis, and results in a minuscule, parallel canting of AFM arranged spins. Thus the 

Dzyaloshinski-Moriya interaction can induce weak ferromagnetic moments in otherwise 

antiferromagnetic materials, with 𝐷 ca two orders of magnitude smaller than 𝐽. [86]  

𝐽1 

𝐽2 

𝐽3 𝐽4 
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The choice of spin pattern is determined by competitions between orbital spin interactions in the 𝑡2𝑔 

and 𝑒𝑔 orbitals, of which 𝑒𝑔 takes the higher energy in an octahedral crystal field. Both types of 

orbitals take part in superexchange interactions over the linear M-O-M-bond, and the strength of 

interaction is extremely sensitive to changes in distance. In shorter bonds, 𝑒𝑔 orbitals become 

compressed and their superexchange becomes weaker, allowing 𝑡2𝑔 superexchange to dominate. 

Thus, minuscule differences in bonding distances can have determining effects on spin pattern, and 

are especially influential in the choice of spin pattern in AFM compounds. Whether the interaction is 

AFM or FM depends on whether the occupancy of the orbitals on either side of oxygen are the same 

or not. Uneven occupancy of the 𝑒𝑔-orbital where one of them is empty promotes FM coupling, while 

most other combinations allow for AFM. [43]  

Another requirement for superexchange is that the interacting orbitals must match in energy. In B 

site ordered double perovskites, the different B site species can couple magnetically to each other 

only if both are Kramer’s ions and the magnetically active orbitals are of comparable energy. When 

the energy difference grows, orbital overlap rapidly decreases and the strength of the coupling 

weakens. [7,100] Consequences of this, with regard to choice of elements, are more closely discussed 

in Chapter 5.4. The requirement for orbital overlap also illuminates the effect of bonding angle on the 

strength of magnetic interactions. Since the electron density of the 𝑡2𝑔 and 𝑒𝑔 orbitals varies spatially, 

ion placements must structurally match the spatial arrangement of the orbitals. In a bent bond, the 

oppositely placed p-orbitals of oxygen cannot simultaneously overlap both B site ions’ orbitals 

perfectly, and the magnetic interactions are weakened. Both FM and AFM couplings are negatively 

affected by increased bending, but at different rates, allowing the adjustment of bonding angles to 

be deterministic of magnetic ordering regime in some cases. One example is the 𝐴2𝑁𝑖𝑂𝑠𝑂6-series, 

where altering the A site chemistry by 𝐶𝑎 → 𝑆𝑟 → 𝐵𝑎 gradually decreases the octahedral tilting, 

allowing FM interactions to strengthen, without the also-strengthened AFM interactions rising to 

domination. [101]  

The electromagnetic environment of the 𝐵′𝑂6-octahedron is not spherosymmetric, but provides 

different energies for different spin alignments. Thus, spin alignment cannot follow any 

crystallographic direction, but will prefer an alignment corresponding with a local energy minimum, 

called an easy axis. The directions of the easy axes depend on magnetic species, distortions, and unit 

cell parameters, and can change with temperature. [86,102] Canted magnetic alignments can be 

explained by non-parallel easy axes in adjacent 𝐵′𝑂6-octahedra, for example due to octahedral tilting.  
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5.4 Complex magnetic behaviour 

B site ordered double perovskites express multiple types of complex behaviour. Complex behaviour, 

including multiple magnetic transitions, can occur both when the cations interact and when they 

arrange independently from one another. The doubled B site presents an extended chemical 

variability and increased amount of possible magnetic exchanges within the same phase. Including 

the A site, three interpenetrating lattices of cations are available, and all can hold magnetic species. 

Whether they interact or not depends on whether they are able to couple magnetically. Aside from 

the requirements of proximity and possession of unpaired electrons, magnetic interaction between 

two atoms also necessitates the spins to inhabit overlapping energy levels. If the energy of the orbitals 

holding the magnetically active unpaired spins are on a comparable level, they can couple, but if they 

differ significantly coupling is inhibited. Consequently, magnetic couplings are often strongest 

between chemical species of the same period, and weaker or even unavailable between 3d/5d 

transition metal pairs. [100,103,104]  

An example of independently ordering B site sublattices as a consequence of orbital energy mismatch 

is RS ordered 𝑆𝑟2𝐶𝑜𝑂𝑠𝑂6. [103] Here, both the cobalt and osmium ions adopt AFM arrangements, 

but at different temperatures. This independent behaviour is explained by the significant difference 

in energy between the 𝑡2𝑔 orbitals of 𝑂𝑠6+ and 𝑒𝑔 orbital of 𝐶𝑜2+, leading to dominance of the longer-

distance M–O–M’–O–M couplings. Upon cooling, both metals first adopt interpenetrating, long-range 

AFM order of locally fluctuating spins, then cobalt spins freeze in a type II AFM pattern which later 

becomes canted, and finally osmium settles in a complex canted AFM ground state. A structural 

transition is associated with the ordering of osmium. [103,105]  

Magnetic interactions between the A and B sites are rare, but can occur when occupied by chemically 

similar species. In (𝑁𝑎𝑀𝑛3)𝑀𝑛4𝑂6, complex behaviour arises from a combination of magnetic 

interactions between A and B site 𝑀𝑛+3 ions, and 𝑀𝑛+3/+4 charge ordering of the B site. [106] Several 

A/B double perovskites present magnetic interactions between magnetic species on one A and one B 

site. The most prominent series contain cupper as a majority element at the A site, for example 

𝐶𝑎𝐶𝑢3𝐹𝑒2𝑆𝑏2𝑂12 [96] and 𝐶𝑎𝐶𝑢3𝐹𝑒2𝑁𝑏2𝑂12 [76] , both of which express antiferromagnetic coupling 

between cupper and iron. Exchange between all three sites is also possible and has been recently 

documented in ferrimagnetic 𝐿𝑛2𝐶𝑜𝐼𝑟𝑂6 with 𝐿𝑛 = 𝐸𝑢, 𝑇𝑏, 𝐻𝑜. [107] 

In RS-ordered B site sublattices, AFM-coupling can cause geometric frustration as a result of the 

tetragonal lattice arrangement. If all distances are equal, no overall optimal arrangement of spins is 

available: the ground state is degenerate. The frustrated magnetic structure can remain mobile, 
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forming a spin liquid phase of infinitely fluctuating spins, or freeze in a spin ice or spin glass phase. In 

the spin glass phase spins pair up into pairs of opposing alignment, which in turn align randomly 

between themselves, locking the material into one of the available ground states at random. The 

formation of a spin glass phase is aided by the availability of distinct easy axes, into which the spins 

settle pairwise below the spin freezing temperature 𝑇𝐺. [12–15] Several spin glass perovskites have 

been found, for example 𝑆𝑟2𝐶𝑎𝑅𝑒𝑂6.[108] A variation of spin glass is spin ice, in which longer-range 

interactions between spin pairs reduce the number of degenerate ground states. In spin ice, the 

frozen spins express long-range order, similar to the proton distribution in aquatic ice. Contrary to 

spin glass, application of a magnetic field will promote spin freezing in spin ice. The most famous spin 

ice compound is pyrochlore 𝐷𝑦2𝑇𝑖2𝑂7. [109] Perovskite examples are still being sought.  

Frustrated spin phases may also occur in the border regime between different types of AFM ground 

states, for example columnar (C-type) and Néel (G-type) AFM, which have been examined for the 

appearance of spin liquid behaviour. [110] There are several examples of spin glass phases appearing 

as a result of adjusting chemical pressure. Substitution with 𝐶𝑎+2 in the place of 𝑆𝑟+2 on the A site 

of series 𝐴2𝐶𝑜𝑂𝑠𝑂6 results in a transition from AFM to FiM behaviour, with a small window for spin 

glass behaviour when the Ca/Sr ratio is around 1:1. The critical parameter is the evolution of the 

bonding angle B’-O’-B’’, which determines what exchange interactions will dominate. Spin glass 

arrangements appear for both of the weakly coupled B-sublattices, adding a doubling of the spin 

freezing temperature (𝑇𝐺1=32 K, 𝑇𝐺2=13 K) to the complexity of the phase. [72] The sister series 

𝐴2𝐹𝑒𝑂𝑠𝑂6 undergoes a similar structure-magnetic transition [111] and could potentially express 

similar behaviour.  

Charge disproportionation presents an interesting pathway to magnetic transitions. As magnetic 

behaviour depends on valence electron structure, the same atom may express different magnetic 

interactions at different oxidation states, as has been seen in 𝐶𝑎𝐶𝑢3𝐹𝑒4𝑂12. Upon cooling, the 𝐹𝑒4+ 

ion becomes unstable around 210 K and disproportionates into 𝐹𝑒3+/𝐹𝑒5+, inducing a small 

structural rearrangement and a drastic change in behaviour from an electrically conducting 

nonmagnetic state to an electrically insulating FiM state, where all iron spins are parallel and cupper 

is antiparallel. [112] 

Mixed-valence cations can promote ferromagnetic interactions through double exchange between 

degenerate electronic ground states. The perovskite (𝐿𝑎, 𝐶𝑎)𝑀𝑛𝑂3 contains both 𝑀𝑛3+ and 𝑀𝑛4+ 

ions, where the distribution of oxidation states results in a ground state degeneracy. Transitions 

between the ground states require local charge transfer between ions, which in turn requires 

ferromagnetic polarization of the d-orbitals holding the itinerant electron. Thus, the electrical 
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conduction of mixed-integer oxidation states is linked to spin polarization, which is sometimes 

expressed only at low temperatures. [113] The spin-polarized conductors are closely related to half-

metals, introduced theoretically by de Groot et.al. in 1983. [114] In half-metals, the electronic density 

of states (DOS) is asymmetric, with the most drastic difference at the Fermi level, where one spin 

channel is discontinuous and the other continuous. This allows materials to simultaneously express 

both ferromagnetism in the localized spin channel and metallic conduction in the itinerant channel, 

with the additional feature of the electric current being perfectly spin-polarized. [113] Among the 

earliest examples of ferromagnetic half-metallicity in perovskites is 𝐿𝑎0.7𝑆𝑟0.3𝑀𝑛𝑂3, which shows an 

itinerant majority spin channel and a localized, FM aligned minority spin channel. Above 𝑇𝐶  the phase 

becomes paramagnetic and completely insulating. [115] Several other compounds have been 

predicted half-metallic, among them a mixed rutile 𝐶𝑟½𝑉½𝑂2, which was experimentally shown not 

to form with the required oxidation states, but which provides an excellent example of the 

asymmetric density of states seen in half-metals (Figure 16). [116]  

 

Figure 16. The predicted density of states of 𝐶𝑟4+
½𝑉+4

½𝑂2, clearly showing the asymmetric 
distribution of the spin-up and spin-down channels. At the Fermi level (E=0eV), the continuous 
nature of the spin-up channel provides spin-up polarized metallic conduction, while the 
discontinuous spin-down channel renders electrons localized and allows ferromagnetic 
magnetization. Reprinted from ref [116]. 

 

 

5.5 Effects of cation ordering 

The degree of cation ordering drastically changes the distribution of different chemical environments, 

altering bonding and bonding-derived physical properties of the material. Magnetic interactions are 

especially strongly affected, with several magnetic ground states highly reliant on an unbroken RS-

ordered B site lattice. This is easily understood by revisiting the various possible J-couplings, shown 
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in Figure 15. When antisite B ion defects are introduced, the J-couplings in their vicinity are drastically 

altered, leading to different dominating interactions than in the rest of the crystal. Another effect of 

order is the regular pattern it creates for the electronic potential landscape. The presence (or 

absence) of a periodic potential can affect electric conductivity in a decisive manner. One example is 

𝑆𝑟2𝐹𝑒𝑀𝑜𝑂6 in which half-metallicity has been predicted for the perfectly ordered case. [50]  

Since AFM interactions are stronger and more common, many FM compounds rely on B site order for 

avoiding AFM couplings of adjacent same-species ions. One such example is 𝐿𝑎2𝑀𝑛𝐶𝑜𝑂2, which 

expresses a strong change in magnetic behaviour depending on the degree of order at the B site. In 

its ordered state, all nearest-neighbour interactions are of 𝑀𝑛4+-𝐶𝑜2+ type, a rare case of strong FM 

coupling. Introducing randomly distributed antisite defects, the increasing number of AFM-coupled 

same-species ions on adjacent sites presents an interruption that gains influence until it percolates 

and becomes dominant. [45,117] 𝐿𝑎2𝑍𝑛𝑀𝑛𝑂6 behaves similarly, as the FM behaviour stems from 

FM-couplings over nonmagnetic 𝑍𝑛2+ ions. [87] Even in cases where the magnetic interactions 

include the A site does the degree of order play a crucial role. In 𝐶𝑎𝐶𝑢3𝐹𝑒2𝑁𝑏2𝑂12 strong magnetic 

coupling between 𝐶𝑢2+ and 𝐹𝑒3+ make the compound ferrimagnetic, but only when the B site is 

ordered. When order of the B site is disrupted, magnetic order of the A site is destroyed as well, 

despite the A site retaining its 1:3 BCC ordering regardless of the state of the B site. The degree of 

order at the B site can be finely tuned by adjusting the cooling rate of the last stage of synthesis, thus 

prematurely disrupting the diffusion process that enables ordering. [76] 

A special case where the disruptive influence of disorder could be exploited is linked to the search for 

a spin liquid phase in perovskites. This has been employed in 𝑆𝑟2𝐶𝑢(𝑇𝑒, 𝑊)𝑂6 by introducing disorder 

in the nonmagnetic B subsite only, taking advantage of the influence of the valence orbitals of the 

intermediate ion in the B’-O-B’’-O-B’ superexchange system. In this compound, 𝐶𝑢2+ makes up the 

AFM coupled magnetic sublattice, in which different superexchange pathways come to dominate 

depending on whether the nonmagnetic site is occupied by 𝑇𝑒6+ or 𝑊6+. Mixing these two together 

in a random distribution introduces confusion in the superexchange interactions, promoting magnetic 

frustration, which is required for a spin liquid ground state. [75] 
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PREDICTIVE METHODS 

 

6 Multi- and megavariate analysis in chemometrics 

Chemometrics is the science of applying mathematical tools for describing and analysing real-world 

chemical systems. The field was established in the 1970-es with the introduction of computers in 

chemistry, allowing for faster mathematical analysis of measurement data and application of 

statistical methods for recognizing trends, correlations, and deviations in measurements. In contrast 

to most computational methods, chemometrics does not require a phenomenological model of the 

data to be analysed. This blindness to theory allows application of chemometric methods on complex 

systems and data that does not fit any known model, and can even be used to find new variable 

correlations and thus aid model development. Today, chemometric methods are widely used in 

industry for automatic process supervision, regulation, and quality control, e.g. by correlating 

upstream process parameters with downstream analytic data. [118]  

One tool in chemometrics is multivariate data analysis (MVA or MVDA), an expansion of linear 

regression analysis of two-dimensional data into systems with multiple variables. Compared to the 

number of observations 𝑁, the number of variables is allowed to be high, even larger than the number 

of observations. MVA variables are divided into two types; predictor variables (𝑥𝑖) that define the 

state or setup of a system, and response variables (𝑦𝑖) that describe the behaviour. These are often 

spoken of as the X-variables and the Y-variables, and the spaces drawn up by each group are called 

the 𝑘-space and 𝑚-space, for 𝑘 X-variables and 𝑚 Y-variables, respectively. The rank of the dataset is 

determined by the total number of independent variables. A specialized version of MVA, adapted for 

cases where part of the variables are interdependent, is called megavariate analysis (MgVA). The 

term ‘MVA’ is often used to refer to both cases. [118] 

The fundamental tools of MVA treat all variables as independent X-variables, i.e. the dataset is 

assumed to be full rank (𝐾 = 𝑘). This can be illustrated as a matrix X of width 𝑘 and height 𝑁. Key 

functions include multiple linear regression (MLR) for finding multidimensional correlations, linear 

discriminant analysis (LDA) for describing the importance of each variable, and factor analysis (FA) 

and principal component analysis (PCA), which are both used for finding the main correlations, but 

employ mathematically different methods. Classical MVA is well suited for separating groups of 

similar but uncorrelated observations described by uncorrelated variables. A weakness of treating all 

variables as independent is the possibility of detecting false or exaggerated correlations between 
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variables. Caution is thus needed when drawing conclusions about systems that lack an established 

theoretical description. [118] 

For systems containing variables that are known to be linked in an 𝑦 = 𝑓(𝑥) manner, MgVA methods 

are preferred. With some variables already linked to each other in the input data, the effective rank 

of the dataset is reduced (𝐾 < 𝑘). This can be visualized as a matrix X of width 𝑘 and height 𝑁 which 

correlates to a matrix Y of width 𝑚 and height 𝑁. The most important functions in MgVA are 

projection methods that aim to reduce the complexity of the dataset by compressing the original 

variables into a smaller set of new variables, called principal components (PC:s). Fundamental 

methods are principal component analysis (PCA) and partial least square projections to latent 

structures (PLS), which can be combined with additional methods forming e.g. PLS discriminant 

analysis (PLS-DA). The primary methods PCA and PLS are described in more detail below. [118] 

Since projection methods are sensitive to the numerical values of the data points, pre-processing of 

the data is required to assure that all variables are given equal emphasis in the analysis. This means 

normalizing each variable and translating the value of each data point onto a standardized scale. 

Various normalization methods are available. The simplest one is unit scaling whereby each 

observation for a given variable is linearly transferred to a 0 … 1 range. However, this makes it 

sensitive to divergent extreme data points. A more anomaly-tolerant method is unit variance scaling, 

in which the variables are scaled to equal variance (unit variance 𝜎 = 1). Following normalization, the 

data is mean-centred by setting the mean value of each variable to zero. [118] 

Although MVA and MgVA are developed for numerical data, methods are available for including 

qualitative variables as well, for example synthesis method. Qualitative variables are most commonly 

incorporated for describing classes, i.e. pre-known groupings of observations, but can also be treated 

as model-making variables. In that case, they need to be translated to numerical values, which is 

generally done by splitting the qualitative variable into a set of binary variables, one for each value of 

the original variable. [118] 

 

6.1 Principal component analysis 

The main principle of principal component analysis (PCA) is transforming the raw data into a new data 

set of lower dimensionality, while simultaneously finding correlations among the original variables. 

PCA can be performed on any set of independent variables, and is thereby applicable both for 

datasets containing only X-variables and for sets with both X- and Y-variables: in the latter case, PCA 

is only performed on the X-variables and its results compared to the Y-variables. [118] 
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PCA is performed on the normalized and mean-centred data by adding principal components (PCs) to 

the model one by one, until the model can no longer be improved. Each PC is added to the 

multidimensional data plot along the direction of largest variance that is perpendicular to all 

previously added PC:s, and must pass through the mean point of all variables (set to the Origin by the 

mean-centring). The plane drawn up by any combination of two PC:s is called a model plane. Each 

data point is given a new set of coordinates determined by its projection onto the model planes of 

the projection space (T-space) drawn up by the PC:s. These new coordinates are called scores, and 

their values are described by score vectors 𝑡𝑖 which replace the PC:s to make the basis for the new 

setting. [118] The process is visualized in Figure 17a. 

   

Figure 17. Geometrical interpretation of the process of adding PC:s to a dataset of rank K=3. From left to 
right, the data is first normalized and mean-centred around the Origin (red dot). The first PC is fitted along 
the direction of largest variance, and each sequential PC is then added along the direction of highest 
remaining variance that is perpendicular to all previous PC:s. Finally, the observations (yellow dots) are 
projected onto the PC:s to give their scores in projected space (blue dot). (Figure adapted from ref [118] fig. 
3.12-3.14, page 40-41) 

As the PCA model consists of significantly fewer score vectors than the original number of variables, 

some data on the original position of each data point will be lost. The distance of each data point to 

its projected position in T-space is collected in the residual matrix E. Mathematically, the original data 

X is reformulated in the PCA model as  X = 1 ∙ x̅′ + T ∙ P′ + E , where the 1 ∙ x̅′ term represents the 

normalization and mean-averaging operation. The residual matrix can be useful for analysing 

divergent data points and determining outliers, as described below. [118] 

Since the variance and linearity of variance is reduced for every added PC, the first few score vectors 

tend to contain the majority of useful information on the system. Plotting two score vectors against 

each other yields a scores plot, in which the original observations appear as described by their new 

coordinates. Examination of the scores plots can reveal information on groups, trends, and divergent 

observations. Major contributors to the positioning of each observation in the scores plot can be 

found in the loading plot, set up by the loading vectors 𝑝𝑖 which make up the loading matrix P. The 
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loading vectors describe the contribution of each original X-variable in the formation of the score 

vectors, and help determine which of the original variables contribute the most to separating 

observations in a given score plot. The loading plots also reveal correlations between original 

variables, with strongly correlated variables placed close together across multiple plots, and variables 

of low importance placing near the Origin. Of similar use is the variable importance plot (VIP) which 

describes the overall contribution of each variable for drawing up the model. High contributors hold 

values above 1, moderate contributors have values 0.5 … 1, and variables with <0.5 weight are 

considered unimportant. The contribution of each original variable on the T-space positioning of an 

individual observation can also be separately examined, e.g. for determining if its position might be 

influenced by a missing data point. [118] 

 

6.2 Partial least square projections to latent structures 

PLS is closely related to PCA, but especially adapted for cases with both multiple X-variables and 

multiple Y-variables. While finding principal components and correlations within the X-variables, PLS 

simultaneously does the same for the Y-variables. The ability of the method to find correlations in 

complex datasets and vague or approximate relationships between the X- and Y-variables makes PLS 

reminiscent of thermodynamic models, which often describe macroscopic behaviour without 

connecting to microscopic theory. This ‘blindness’ to theory makes PLS especially useful for analysing 

complex phenomena lacking an overall-valid theoretical model, or for providing further support for a 

suggested theory. [118] 

The principle of PLS is closely reminiscent to PCA, with the dominating difference being the inclusion 

of a Y matrix in the original dataset. This means that every observation is described as a point in two 

different spaces: the k-space defined by the X matrix, and the m-space defined by the Y matrix. As 

PC:s are added to the model, the position of each observation must be considered in both spaces 

simultaneously, meaning the orientation of the PC:s in k-space are affected by the shape of the point 

swarm in m-space. In other regards, PC:s are added by the same principles as in PCA, but the rule of 

orthogonal PC:s only applies to k-space. [118] 

With two variable spaces to transform, the PC:s will translate into two sets of scores in the projected 

model. The score vectors replacing the Y matrix are named 𝑢𝑖, and are created pairwise with the score 

vectors 𝑡𝑖 being generated from the X matrix. Plotting 𝑡𝑖 and 𝑢𝑖  against each other reveals whether 

the correlation found between the predictor variables and response variables is linear or follows 

some other mathematical trend. The contribution of each variable to the model is described by the 
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weight vectors, denoted 𝑤∗ and 𝑐 for the X- and Y-variables respectively. In other aspects, 

interpretation of the PLS data is highly reminiscent of PCA and similar conclusions regarding trends, 

groups and outliers can be drawn. Mathematically, the data reformulation in PLS can be described by  

{
 X = 1 ∙ x̅′ + T ∙ P′ + E 
 Y = 1 ∙ y̅′ + U ∙ C′ + F 

 

where F denotes the residual matrix for the projection of the Y-variables. Due to the inner relation 

between X and Y,  Y = 1 ∙ y̅′ + T ∙ C′ + G (where G is another residual matrix) also holds. The 

increased mathematical complexity of PLS means that missing and aberrant data points are better 

tolerated than in PCA. [118] 

 

6.3 Model quality and outliers 

The mathematical requirement of orthogonality between all PC:s results in a limit to the number of 

PC:s, as the rank of the model cannot exceed the rank 𝐾 of the original dataset (i.e. the number of X-

variables). For a good model, however, the number of PC:s needs to be considerably lower than 𝐾. 

The optimal number of PC:s is determined by following the evolution of two parameters, 𝑅2 and 𝑄2, 

as PC:s are added to the model. Both are given as a value between zero and one. The goodness of fit 

parameter 𝑅2 (explained variation) describes the extent to which the model explains the dataset, and 

the goodness of prediction 𝑄2 (predicted variation) expresses the accuracy of the model’s 

predictions. 𝑅2 and 𝑄2 can also be investigated separately for each X-variable, revealing which 

variables are well explained by the model and which are not. [118] 

The optimal rank of the model is determined by simultaneously maximizing the values of  𝑅2 and 𝑄2 

while keeping their difference at a minimum. The value of 𝑅2 will inherently approach one as more 

PC:s are added, but 𝑄2 tends to undergo a fluctuating increase and then drop off sharply. Hence, 𝑄2 

is considered more critical, and the optimal amount of PC:s is found where the value of 𝑄2 stops 

increasing or the difference between 𝑄2 and 𝑅2 grows too large. For an acceptable model, both 

parameters should express values > 0.3, while values of 𝑄2 > 0.5 are considered good, and values 

of 𝑄2 > 0,9 is deemed excellent. [118] 

Outliers and misleading data points can be detected by examination of score plots, loading plots, and 

plotting the data in the residual matrix. Score plots are often analysed by adding confidence limits 

such as Hotelling’s 𝑇2, which appears as an ellipse around the mean point of the given score plot. 

With a given confident limit, often taken as 95% by default, that fraction of observations should lie 

inside the confidence ellipse and the remaining ones not far outside it. Data points falling far outside 
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the confidence ellipse are potential outliers and deserve closer examination. Moderate and strong 

outliers are separated by their behaviour across multiple plots, as well as the distance to model plot, 

which is based on the sum of the observation’s residuals stored in the residual matrix. Data points 

that deviate consistently across multiple plots as well as in the sum of residuals can be concluded 

strong outliers, while moderate outliers only deviate across some plots but does not present an 

aberrant sum of residuals. Strong outliers can potentially have strong leverage on the entre model, 

affecting the positioning of PC:s and shifting the confidence ellipse. Closer examination of strong 

outliers can reveal justifications for exclusion of the observation, e.g. if it is found that the aberrant 

behaviour stems from a possibly erroneous measurement. [118] 
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7 Density Functional Theory  

Density functional theory (DFT) is a material modelling method, in which material parameters are 

calculated in a theory-based manner. This bottom-up approach is called first principles modelling or 

ab initio calculations, referring to the construction of data based purely on fundamental models of 

the physics at play in the structure, and not at all on experimental measurements. In the case of DFT, 

modelling is based on quantum mechanics, i.e. the mathematical description of quantum particles’ 

properties and interactions. The core of the method is the famous Schrödinger equation in its 

complex, many-body form. [119] The Schrödinger equation was first presented by Schrödinger 

himself in 1926 [120], and describes the discrete behaviour of the energy of matter particles. Due to 

its complexity, the equation can only be truly solved for a system with maximum two particles. Larger 

systems can only be approximately solved employing one of several tactics for mathematical 

simplification of the problem, with sequential corrective terms. These methods consume vast 

amounts of computational power, requiring the use of supercomputers for any structures of higher 

complexity as the computational power needed scales approximately cubically with the number of 

atoms included in the simulation. [119] 

In DFT modelling, the Schrödinger equation is used for solving the electron density of the valence 

electrons in a given landscape of atoms. The goal of DFT is to find the optimal parameters for a given 

structure, for example bond angles and bond lengths, and then analyse the energy landscape for this 

model. Direct results from the calculations are electronic density distribution and total energy of the 

system. Extractable data include dielectric constant, piezoelectric behaviour, polarizability, electronic 

band structure, phonon modes, heat capacity, and optical properties. The structure of optimal energy 

is found by an iterative process, where the free parameters are adjusted in a systematic way for each 

iteration until the calculations repeatedly yield a result within the given error margins. For example, 

structural optimization is performed by adjusting the positions of the atoms based on the previous 

iteration’s energy landscape, until the calculated energy converges at a minimum. [119] 

Mathematically, there are several ways of applying DFT for a simulation, and different software adapt 

different algorithms. The core tactic is plotting the atoms as a rigid grid of potential wells, and 

calculate the behaviour of their valence electrons in the established landscape of positive ions. This 

is called the clamped nuclei approximation and is employed for solid materials where atoms can be 

assumed ‘clamped down’ i.e. locked into their position in space. Modern calculations employ ionic 

pseudopotentials, treating the atom nucleus and its core electrons as a single unit. Treating the 

nucleus and core electrons as a single unit is motivated by the negligible participation of the core 
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electrons in interactions that determine material properties. The valence electrons are assumed to 

be perfectly independent particles, whose freedom to move throughout the system is only limited by 

the potential landscape of the ion grid. Such neglect of the Coulombic repulsion between electrons 

might seem crude, but has been shown to result in electron behaviour in agreement with the 

fundamental rule of electron energy states being filled up from the lowest energies and allowing only 

single occupancy of each state. The identity of each filled-up energy level combined with the 

calculated spatial electron density reveals how localized the electrons around each ion are, in turn 

producing the other physical and chemical properties of the material. [119] 

The key to a good DFT model lies in the way the ionic pseudopotential is mathematically described 

and how the electron density over the material is calculated. As the best theoretical model for the 

potential well around a nucleus or ion leads to extremely heavy calculations, different mathematical 

shortcuts are used to enable calculation of larger systems. The simplest method for approximating 

local electron density is the local density approximation (LDA). Today, ultra-soft pseudopotentials 

such as the projector augmented wave (PAW) method are widely used. Other common tools include 

the Perdew-Burke-Ernzerhof (PBE) functionals for the exchange correlations and the generalized 

gradient approximation (GGA) for framework. Several different simplifications, derivations, and 

corrective measures have been developed for these, for example the ones described by Xu et.al. [121] 

and Perdew et.al [122,123]. A more thorough introduction to the various details of DFT can be found 

in the book by Feliciano Giustino [119] as well as other sources. 
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EXPERIMENTAL 

 

8 Objective 

Among magnetic materials, the ferromagnetic ground state is the most useful one for technological 

applications. Unfortunately, antiferromagnetic coupling is considerably easier to achieve, rendering 

antiferromagnetic behaviour overwhelmingly more common than ferromagnetic. One of the central 

goals for predictive methods is thereby finding candidates for ferromagnetic materials with 

sufficiently high magnetic ordering temperatures to be useful. As theory-based predictive methods 

are unsuitable for wide-range screening, more blunt methods based on statistical modelling have 

been tried [16,124] but their application is still far from widespread. Investigations with high-precision 

simulation methods have frequently pointed out strong candidates for wanted magnetic states only 

for them to be discovered to form other phases in reality. A frequent occurrence with perovskites is 

the formation of the hexagonal perovskite phase instead of the cubic structure that might produce 

the wanted magnetic interactions.  

In this work, the influence of composition on structure is evaluated in a series of samples with varying 

A site chemistry, which imitates the influence of applying pressure to a hexagonal perovskite phase 

in order to induce a transition to cubic perovskite structure. Transformation from hexagonal to cubic 

structure under pressure has proven successful before [17], and is suggested to have similar effects 

on the hexagonal phases 𝐵𝑎2𝐶𝑜𝐼𝑟𝑂6 [24] and 𝐵𝑎2𝐶𝑟𝑅𝑒𝑂6 [125]. Both of these are members of FM 

perovskite families, and are predicted possibly FM in their cubic form. [126] Here, chemical pressure 

is introduced in 𝐵𝑎2𝐶𝑜𝐼𝑟𝑂6 by partial substitution of Ba with Sr, which is chemically similar to Ba but 

ca 10% smaller. A series of six samples with 20% increments in the molar fraction of Sr is produced 

and structurally evaluated to find the point at which the structure transforms from hexagonal to cubic 

perovskite.  

Two mathematical methods for predicting magnetic behaviour are applied and evaluated. Density 

Functional Theory (DFT) is theory-based and gives reliable predictions for specific compositions, while 

Multivariate Analysis (MVA) is blind to theory and can provide quick and rough estimates on 

properties based on simple structural data. These are applied together in order to predict the 

magnetic behaviour of 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6, a phase reported AFM in the 1990-es [127–131]. The phase 

presents a rare case of nonmagnetic 𝐼𝑟3+ on the B site. As data on its structure is lacking in detail, 

𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 is also synthesized and examined structurally. Previous syntheses [128–132] have mainly 
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mentioned 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 only as the end sample of substitution series (𝐶𝑎1−𝑥𝐿𝑎𝑥)2𝐹𝑒𝐼𝑟𝑂6 and 

(𝑆𝑟1−𝑥𝐿𝑎𝑥)2𝐹𝑒𝐼𝑟𝑂6, with emphasis on the behaviour of the other members of the series. Since phase 

purity has been reported a challenge in these investigations, special attention is given to solve the 

phase composition of the synthesized sample. Unfortunately, the magnetic behaviour could not be 

measured and compared to the predictions due to technical problems.  
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9 Methods  

9.1 Experimental 

Seven samples were synthesized: one standalone 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 sample and a six-membered 

(𝐵𝑎, 𝑆𝑟)2𝐶𝑜𝐼𝑟𝑂6-series, in which the ratio of the A site was varied in steps of 20 mol-%. Samples 

were prepared using a solid-state synthesis route. Stoichiometric quantities of 𝐿𝑎2𝑂3 (pre-dried 

overnight at 900°C), 𝐹𝑒2𝑂3, and 𝐼𝑟𝑂2 versus 𝐵𝑎𝐶𝑂3, 𝑆𝑟𝐶𝑂3, 𝐶𝑜𝑂, and 𝐼𝑟𝑂2 were weighed up and 

manually ground together in a mortar before undergoing repeated heating under ambient pressure, 

in air. For 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6, precursors were ground for 1h and heated in powder form three times, first to 

900°C for 24 h, then to 1050°C for 39h, and finally to 1100°C for 24h, with intermediate grindings. All 

members of the (𝐵𝑎, 𝑆𝑟)2𝐶𝑜𝐼𝑟𝑂6-series underwent identical treatment of grinding the precursor 

mixture for 20-25 min and then heating in powder form to 1150°C for 24h, performed twice with an 

intermediate grinding. All heating programmes were set to heating/cooling rates of max 200°C/h.  

Phase purity and structural parameters were determined by X-ray powder diffraction (XRD) 

performed on a PANalytical XPert PRO diffractometer in Bragg-Brentano setup, using cupper Kα1-

radiation and a scanning range from 10° to 70° 2𝜃. Rietveld refinements were performed in Match! 

software (v. 3.4.2) [133] with FullProf [134]. In complement to FullProf, unit cell parameters were 

refined manually using Bragg’s law and visualization software VESTA (v. 3.4.3) [135] for matching 

simulated and experimentally obtained XRD patterns.  

 

9.2 Predictive calculations 

Multivariate analysis was performed using the Simca P+® software v.11.5 [136]. Data was collected 

from publications printed during 2009-2019, consisting of 86 individual observations of AFM and FM 

samples. In order to mitigate statistical bias arising from the order in which B site co-occupants were 

reported, each observation was duplicated with the B site occupants switched around. Parameters 

included in the input data are listed in Appendix I, with X-variables in Table 11 and Y-variables in Table 

12. Based on the input data, three models were created: one PLS model each for the AFM and FM 

compounds separately, and one combined PLS model. The sample of interest was entered into the 

data with dummy values for the Y-variables and AFM/FM group affiliation, in order to make the 

sample show up in the predictions plot.  

DFT calculations were performed using Quantum Espresso software v.6.3 [137]. Atom potentials were 

modelled with the PAW method, with PBE exchange correlations and GGA framework. The K-point 
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grid was set to 7x7x7 with Monkhorst-Pack sampling centred around the Γ-point. Energy cut-off was 

set to 90 Ry and zero-Kelvin temperature assumed. The starting point structure was given in the 

orthorhombic setting, with parameters adapted from data provided by refs [128–132] (details are 

given in Appendix I, Table 13) and assuming perfect RS ordering of the B site. The structure was set 

to relax by the vcrelax function, which allows adjustment of both atomic positions and all unit cell 

parameters. Three cases were considered: nonmagnetic, ferromagnetic, and type II 

antiferromagnetic, the latter two assuming magnetic activity of the Fe site only. The most stable 

ground state of the three was found by comparing the total energies of the obtained structures.  
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10 Results and discussion 

10.1 Structure of (Ba,Sr)2CoIrO6  

The XRD-patterns of the six-membered series (𝐵𝑎, 𝑆𝑟)2𝐶𝑜𝐼𝑟𝑂6 show clear evolution of unit cell 

parameters as the Ba/Sr ratio is changed. The 𝑆𝑟-end of the series shows clear preference for cubic 

structure, with a gradual transition to hexagonal symmetry taking place about midway through the 

series. In the middle of the series, the two phases coexist. Phase fractions for these compounds were 

estimated based on relative heights for the strongest peak of each phase, assuming equal 

contribution of the superpositioned hexagonal (1 1 0)ℎ + (1 2 0)ℎ + (2 1 0)ℎ peak as compared to 

the cubic (2 2 0)𝑐 peak. Calculated unit cell parameters and phase ratios are presented in Table 2. 

 
Table 2. Unit cell parameters for samples of the (Ba1−𝑥Sr𝑥)2CoIrO6 series. Phase fraction X is approximated 
for dual-phase samples, and tolerance parameter t is calculated based on Shannon ionic radii.  

Sample 

(ratio) 
t 

Cubic / rhombohedral phase Hexagonal phase 

X (%) Order a (Å) α (°) X (%) Order a (Å) c (Å) γ (°) 

x = 1.0 0.982 100 High 7.8390 90.21 - - - - - 

x = 0.8 0.994 100 High 7.8636 90.00 - - - - - 

x = 0.6 1.006 ~87 High 7.8915 90.00 ~13 ? ~5.61 ~13.85 120 

x = 0.4 1.017 ~5 ? ~7.9 90.00 ~95 Yes 5.61 13.69 120 

x = 0.2 1.029 - - - - 100 Yes 5.683 14.092 120 

x = 0.0 1.041 - - - - 100 Yes 5.72 ~14.22 120 

 

For the three dominatingly cubic samples, B site order could be determined by the appearance of the 

(1 1 1)𝑐 peak around 19.5° 2θ, but this peak is too weak to appear for the Ba/Sr 6:4 sample due to 

its low content of cubic phase. Surprisingly, the end sample 𝑆𝑟2𝐶𝑜𝐼𝑟𝑂6, which was expected to be 

cubic, is found to be distorted, as evidenced by the splitting of the (2 0 2)𝑐 and (4 2 2)𝑐 peak series. 

Axial distortions can be immediately excluded due to the unsplit appearance of the (2 0 0)𝑐 peak 

series, leaving an angularly distorted pseudocubic structure as the only alternative. The asymmetric 

splitting indicates rhombohedral symmetry rather than monoclinic, which would produce 

symmetrical triplet peaks. Thereby the cubic phase is concluded to undergo an equal distortion of all 

unit cell angles for the 𝑆𝑟2𝐶𝑜𝐼𝑟𝑂6 sample.  

The hexagonal phase was matched to a perovskite-related structure of face-sharing octahedra with 

an ordered B site and 6-layer stacking of 𝐵𝑂6-layers along the hexagonal c-axis. [138] Hexagonal 

symmetry is expected, as the tolerance parameter for the Ba-end sample is found to be greater than 

one, and 𝐵𝑎2𝐶𝑜𝐼𝑟𝑂6 has previously been reported hexagonal. Known structures of 𝐵𝑎2𝐶𝑜𝐼𝑟𝑂6 and 
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its single perovskite sister compounds express various stacking sequences, including 12L and 5L 

[24,139]. Ordering of the B site can be concluded by peaks (1 0 0)ℎ and (0 0 3)ℎ appearing around 

18° - 19° 2θ, only allowed for ordered compounds.  

Although the proposed 6L structure matches the dual-phase compounds well, it still leaves some 

peaks unexplained and with mismatching intensities in the two Ba-richest samples. The unexplained 

peaks could not be matched to any realistic impurity nor to the sample holder, despite being relatively 

strong, for example the peak around 46.5° - 47° 2θ. It is likely that in these two samples, the 𝐵𝑂6-

octahedral stacking follows a different sequence than described by either model examined here. A 

gradual transformation from cubic to hexagonal structure by increasingly dominating hexagonal 𝐵𝑂6-

octahedral layers would explain the appearance of a series of evenly spaced peaks only for the Ba-

richest two samples.  

A comparison of all XRD-patterns in full width (2𝜃 = 10° - 70°) is seen in Figure 18, and an enlargement 

of the main peaks is shown in Figure 19. The hexagonal model structure, developed from powder 

diffraction data reported by Negas et.al. [138], is shown in Figure 20 alongside the previously reported 

structure, and its structural parameters are given in detail in Appendix II.  

 

Figure 18. XRD patterns of the (𝐵𝑎1−𝑥𝑆𝑟𝑥)2𝐶𝑜𝐼𝑟𝑂6 series, normalized according to the highest peak (splitting 
accounted for in Sr-end sample) and plotted from 10° to 70° 2θ.  
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Figure 19. Excerpts of Figure 18, showing the evolution of the main peak (2 2 0)𝑐 to (1 1 0 )ℎ (left), and 
the (2 0 0)𝑐 peak, which remains unsplit to the Sr-end sample (right). An independent peak group 
associated with the hexagonal phase is marked with stars, and an unidentified peak, appearing at 46.5°-
47° for the Ba-richest two samples only, is encircled in black.  

 

 

Figure 20. Assumed structure of the hexagonal phase in the Ba-rich end of the (Ba, Sr)2CoIrO6 
series (left) compared to the previously described structure of Ba2CoIrO6 (right). Structures drawn 
based on data provided by references [138] (PDF data sheet) and [24], respectively.  
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10.2 Structure of La2FeIrO3 

Analysis of the 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂3 XRD pattern indicates the presence of two perovskite phases, of which 

one in clear majority, and traces of precursor impurities (lanthanum oxide and iron oxide). A 

mysterious peak at 2𝜃 = 28.30° was identified to originate from the silicon sample holder. Structural 

parameters for both perovskite phases were ultimately calculated manually after repeated failure of 

Rietveld refinement to converge. Due to the multiple small peaks caused by the impurity phases and 

silicon sample holder, determination of whether the perovskite phases are cubic or near-cubic 

remains imprecise. Modelling the majority phase as orthorhombic provides explanations to a larger 

number of the small peaks, but some of these peaks could also be explained by the presence of 

remnant precursors. The absence of a strong (1 1 1)𝑐-peak around 2𝜃 = 19° in the XRD pattern 

indicates a lack of long-range B site order. Only a very vague peak is found, which could originate in 

impurities. The XRD pattern with peaks marked according to the orthorhombic model for the majority 

phase is shown in Figure 21, and calculated unit cell parameters are presented in Table 3. 

 

Figure 21. XRD pattern of La2FeIrO3. A (B) mark the majority (minority) perovskite phases, Si marks the peaks 
caused by the sample holder, and L (F) mark the impurity phases lanthanum oxide (iron oxide). 

 
Table 3. Unit cell parameters of the different phases, given by manual calculation based on XDR data. Cell side 
lengths are scaled to a double perovskite unit cell. Phase fractions are approximate volume fractions of the 
total perovskite phase content, which totals ca 95% of the sample.  
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10.3 DFT calculations of La2FeIrO3 

The unit cell parameters obtained by DFT calculations for the orthorhombic phase are slightly larger 

than the ones derived from the XRD data, and vary slightly depending on the given magnetic ordering. 

Simulated diffraction patterns match the majority phase peaks of the experimental pattern perfectly, 

aside from the (1 0 1) + (0 1 1) peak pair at ca 19,5°, which is absent in the experimental data due 

to the lack of B site order in the synthesized sample. Interestingly, the AFM structure stands out as 

noticeably larger than the other two, and triclinic instead of monoclinic. The unit cell parameters 

obtained by DFT are given in Table 4. 

 
Table 4. Unit cell parameters given by DFT calculations. Octahedral tilt is given as deviation from the linear 
bond along the given unit cell direction. 

Magnetic 
order 

Unit cell side lengths (Å) Unit cell angles (°) 

a b c α β γ 

None 5.57465 5.57136 7.89535 90.0000 89.7019 90.0000 

FM 5.57744 5.57462 7.89850 90.0000 89.7037 90.0000 

AFM 5.58851 5.58113 8.02326 89.9999 89.7056 89.9999 

 

DFT calculations conclude noticeable octahedral tilting of 𝑎−𝑏−𝑐+ type, with rotation angles up to 

15°. The symmetry splitting in AFM results in two unequal environments per unit cell for each cation, 

which is reflected in the tilting of the B site octahedra as a slight difference in tilting angles. The 

octahedral tilting angles are shown in Table 5. 

Table 5. Extent of octahedral tilting in the structural models given by DFT, expressed as deviation of the bond 
direction from the given crystallographic direction. For the AFM compound, angles are given separately for the 
unequal sites.  

Magnetic order 
FeO6 tilt (°) IrO6 tilt (°) 

φ (ab) φ (-ab) φ (c) φ (ab) φ (-ab) φ (c) 

None 13.4046 14.0362 15.1937 12.7289 13.2326 14.4221 

FM 13.0001 13.2433 14.7290 12.7168 12.8562 14.4226 

AFM 
13.2646 13.5208 14.4470 12.9663 13.1129 14.3348 

13.5194 13.2916 14.4616 13.1112 12.9927 14.3215 

 

The octahedral tilting results in strong distortion of the La site, with four bonds considerably longer 

than the remaining eight in nonmagnetic and FM compounds, while the AFM compound singles out 

three deviantly long bonds. This indicates that the effective coordination of La might be lowered, 

which is supported by BVS calculations suggesting strong overbonding for 12-coordinated La. 

Reducing the coordination to eight also yields considerably lower values for the tolerance parameter 

and fitness factor, which in turn explains the strong tilting. It also provides a better fit with the 

obtained BVS values for the B site ions, since without a reduced oxidation state of 𝐿𝑎, the suggested 
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combination of 𝐹𝑒3+ and 𝐼𝑟4+ would not be allowed. A combination of reduced coordination of 𝐿𝑎 

and partial charge transfer between all cation sites allows for a compound with oxidation states in 

close agreement with BVS values obtained for the AFM compound, as shown in Table 6.  

 
Table 6. Comparison of BVS values and suggested charge structure based on bond distances given by DFT 
calculations. Oxygen is assumed to be precisely -2 in all charge sum calculations. *The charge of CN=8 is used 
for lanthanum.  

Ion BVS (non) BVS (FM) BVS (AFM) Suggested charge 

La (CN=12) (3.141) (3.108) (3.035)   

La (CN=9) (2.943) (2.903) (2.838)  2.80 

La (CN=8) 2.847 2.794 2.728 2.67  

Fe (CN=6) 3.116 2.889 2.765 2.75 2.70 

Ir (CN=6) 4.620 4.146 3.898 3.91 3.80 

Sum 1.430* 0.622* 0.119* 0 0 

 

The proposed charge transfer presents several possible explanations for the phase segregation seen 

in experimental data. Phase segregation can occur based on differences in charge, bonding, and ionic 

radii. 𝐹𝑒3+ and 𝐼𝑟4+ have near-identical radii and insufficient difference in charge to induce B site 

ordering, let alone phase segregation. However, the proposed charge transfer between 𝐼𝑟3/4+ and 

𝐿𝑎2/3+ yields a combination of charges and ionic radii well suited for the formation of a cubic minority 

phase 𝐿𝑎𝐼𝑟𝑂3. Calculated ionic radii, tolerance parameter, and fitness factor of this phase with 

different charge distribution, as compared to the majority phase, are presented in Table 7.  

Table 7. Structural parameters of the proposed cubic minority phase La2+Ir4+O3. The ionic radius of 𝐿𝑎2+ was 
estimated as the mean of 𝐵𝑎2+ (1.42 Å) and 𝐿𝑎3+ (1.19 Å) of coordination number CN = 8, and radii of mixed-
valence ions were calculated as the weighted average of their integer-valence sister ions. 

Phase r(La) r(Fe) r(Ir) r(O) t f-f 

𝐿𝑎2+𝐼𝑟4+𝑂3 1.29  - 0.625  1.4  0.939 0.992 

𝐿𝑎2.5+𝐼𝑟3.5+𝑂3 1.225 - 0.653 1.4 0.904 0.978 

𝐿𝑎2.75+
2𝐹𝑒2.75+𝐼𝑟3.75+𝑂3 1.193 0.645  0.653 1.4 0.895 0.801 

 

Antiferromagnetic ordering of the compound is supported by DFT calculations, which gives the lowest 

total energy for the structure with type II AFM spin alignment for the Fe site. This is in line with the 

structural data from the calculations, where the BVS values calculated based on the AFM compound 

data provide the best match for a realistic charge distribution that follows the rule of charge neutrality 

(Table 6). The calculated energies as compared to the nonmagnetic compound are given in Table 8, 

together with the calculated absolute magnetic moments µ𝑎𝑏𝑠.  
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Table 8. Energies of La2FeIrO6 with different given magnetic order in the Fe site, as calculated with DFT 
assuming perfect B site ordering and no magnetic contribution from iridium. The absolute magnetic moment 
is given per double perovskite unit cell (four unit formulas/cell). 

Order E (Ry) M-NON (Ry) M-NON (eV) AFM-FM (eV) µ(abs) (µB/u.c.) 

NON -4435.92565 0 0 - 0 

FM -4436.03005 -0.10440 -1.42047 0 10 

AFM (Type II) -4436.03742 -0.11177 -1.52073 -0.10025 9.6 

 

It is worth noting that the DFT calculations assumed the iridium site to be perfectly nonmagnetic. This 

holds true for 𝐼𝑟3+ in low spin, where the six electrons are evenly paired up in the 𝑡2𝑔 orbitals. The 

fraction of potentially magnetic 𝐼𝑟4+ in the case of mixed valences also remains small and unlikely to 

have much impact on the overall magnetic behaviour.  

 

10.4 Multivariate analysis of La2FeIrO3  

Multivariate analysis yields acceptable goodness-of-fit parameters for all three PLS models (AFM, FM, 

and combined), presented in Table 9. Reasonably clear trends are visible in the t/t score plots and t/u 

plots, and the prediction plots present visible linear correlations. No frequent outliers are identified, 

although the small number of observations in each class results in more widespread distributions 

overall and lowers the precision of the models.  

Table 9. Model fitness parameters for multivariate analysis PLS of FM and AFM compounds, both separately 
and combined in one model.  

Model A Observations R2X R2Y Q2(cum) 

AFM (Class 1) 3 80 0.568 0.531 0.342 

FM (Class 2) 1 92 0.24 0.37 0.305 

AFM+FM 3 172 0.404 0.425 0.274 
 

The sample 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 fits reasonably well with both of the separately calculated PLS models, 

somewhat grouping together with other Fe-containing compounds. Separation between FM and AFM 

compounds is varyingly discernible across score plots in the combined model, being most clear in the 

t1/t3-scores plot and t-to-u plots, in which 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 frequently places more towards the AFM 

group. Predicted values for all y-variables differ noticeably between the separate models for FM and 

AFM compounds, while the predicted values given by the combined model correspond closely with 

the average of the values from the separate models (Table 10). The larger absolute value of the Weiss 

temperature given by the AFM model indicates stronger incentive for ordering if the compound was 

to be AFM, but stands in contradiction to the predicted magnetic ordering temperatures, which are 
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higher in the FM model. This contradiction is unsurprising as one of the models should be a bad fit 

for the compound in question and thus present illogical predictions. Comparing the plots for 

predicted Weiss temperature, the combined model presents the most clearly linear trend and 

separation between AFM and FM groups. Based on this plot, shown in Figure 22, 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 should 

be antiferromagnetic.  

Table 10. Predicted values for overall paramagnetic transition temperature 𝑇𝐶/𝑇𝑁, independent magnetic 
ordering of the B site 𝑇𝐵, Weiss temperature 𝛩, and paramagnetic magnetization µ, for each model 
respectively. The values of the combined model compare well with the average value for the separate models. 

Class 𝐓𝐂/𝐓𝐍 (K) 𝐓𝐁 (K) 𝜣 (K) 𝝁 (𝛍𝐁) 

AFM 116 130 -340 2.3 

FM 214 207 156 4.8 

^ mean 165 168.5 -92 3.55 

BOTH 160 165 -118 4.8 

 

 

Figure 22. Reported vs predicted Weiss temperatures (Kelvin) given by the combined PLS model. AFM 
compounds are marked with black squares, and FM compounds with red diamonds. The location of 
𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 on the predicted axis is encircled in green.  
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11 Conclusions and suggestions  

Magnetic ordering in perovskites is highly sensitive to structural parameters, which can be finely 

adjusted by modifications in chemical composition. The acute effect of doping on the formation and 

structure of the perovskite phase has been demonstrated in the (𝐵𝑎1−𝑥𝑆𝑟𝑥)2𝐶𝑜𝐼𝑟𝑂6 series, which 

undergoes a transition from hexagonal to cubic as 𝐵𝑎2+ is replaced by the smaller 𝑆𝑟2+. The 

transition is attributed to increasing chemical pressure as the average size of the A site ion decreases, 

and takes place around 𝑥 ≈ 0.4 … 0.6 as a gradual replacement of the hexagonal phase. The 

emergent phase is initially cubic, but surprisingly becomes distorted towards the 𝑆𝑟2𝐶𝑜𝐼𝑟𝑂6 end 

sample, which is found to be rhombohedral. This stands in contradiction to previous reports, which 

have described 𝑆𝑟2𝐶𝑜𝐼𝑟𝑂6 as cubic. The precise structure of the hexagonal phase remains unknown, 

as a series of peaks in the 𝑥 = 0.0 and 𝑥 = 0.2 samples remain unexplained by any of the previously 

reported structures of 𝐵𝑎2𝐶𝑜𝐼𝑟𝑂6 [24]. Further work is thereby needed to determine the precise 

structure of the hexagonal phase and the details of the biphasic composition around the transition 

from hexagonal to cubic structure.  

For comparison, a similar series could be synthesized for 𝐵𝑎2𝐶𝑟𝑅𝑒𝑂6, which presents a very similar 

case to 𝐵𝑎2𝐶𝑜𝐼𝑟𝑂6 regarding tolerance parameter and 3d/5d-type assembly of elements. Due to the 

challenging chemistry of rhenium oxide, this sample could not be included in this study. Synthesis of 

𝑅𝑒-containing samples requires mitigating the evaporation of volatile 𝑅𝑒2𝑂7 above 350°C and careful 

control of the synthesis atmosphere. 

Synthesis of 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 has produced a sample containing two perovskite phases, in contrast to 

previous reports which only identify one perovskite phase containing small amounts of precursor 

impurities. [128–132] The perovskite phases are identified as an orthorhombic majority phase and a 

cubic minority phase, the latter of which has not been identified before. Similar to previous reports, 

neither phase show signs of B site ordering. Optimization of the majority phase by density functional 

theory (DFT) calculations yields a slightly more expanded structure with considerably stronger 

octahedral tilting than previously described, which could be explained by the lack of focus on 

𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 in the previous studies. Bond valence sum (BVS) calculations based on the structural data 

provided by DFT suggest mixed oxidation states for all cation species, which has not been suggested 

before. As the sample contains iron, it would be possible to obtain further data on the charge 

distribution by Mössbauer spectroscopy.  

The magnetic ground state of 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 is predicted to be antiferromagnetic by both multivariate 

analysis (MVA) and DFT, which is in agreement with the one experimental investigation found in 
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literature. [128,129,131] While MVA is unable to differentiate well between ordered and disordered 

compounds of the same stoichiometry, DFT can only evaluate the perfectly ordered phase for a given 

type of magnetic ordering. A previous DFT study on 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 has indicated that the AFM and FM 

ground states could be very close in energy. [132] Further investigations, including experimental 

analysis of the synthesized sample, are needed to shed more light on the magnetic behaviour of 

𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6.  
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12 Summary 

The magnetic behaviour of B site ordered perovskites is acutely influenced by structural parameters 

such as bond distances and bonding angles. Chemical composition is a determining factor for the 

structural parameters, and thereby presents a convenient pathway for controlling magnetic 

interactions. Incommensurate ionic radii introduce distortions that alter the strength of competing 

superexchange interactions, which determines magnetic ordering. Severely mismatched ionic radii 

can break the perovskite atomic interconnectivity and replace it with a hexagonal structure. Chemical 

substitution with a smaller species introduces chemical pressure, which can induce a phase 

transformation that restores the cubic perovskite structure. In the (𝐵𝑎1−𝑥𝑆𝑟𝑥)2𝐶𝑜𝐼𝑟𝑂6 series, 

𝐵𝑎2𝐶𝑜𝐼𝑟𝑂6 forms a hexagonal phase due to 𝐵𝑎2+ being slightly too large for its site. In this report, 

substitution of 𝐵𝑎2+ with 𝑆𝑟2+ in (𝐵𝑎1−𝑥𝑆𝑟𝑥)2𝐶𝑜𝐼𝑟𝑂6 has been found to induce a gradual phase 

transition to cubic around 𝑥 ≈ 0.4 … 0.6 via a hexagonal/cubic biphasic structure. Additionally, the 

end sample 𝑆𝑟2𝐶𝑜𝐼𝑟𝑂6 is found to be distorted in a rhombohedral manner, in contrast to previous 

reports of  𝑆𝑟2𝐶𝑜𝐼𝑟𝑂6 which describe it as cubic.  

New investigations of the structure of 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 indicate the presence of a cubic perovskite minority 

phase, which has not been previously reported. The majority phase matches an orthogonal, 

antiferromagnetic phase found by density functional theory (DFT), with noticeably stronger 

octahedral tilting than described previously. Further investigations are needed to determine the 

precise compositions of the two perovskite phases and the mechanisms for their segregation.  

Bond valence sum (BVS) calculations based on the structure found by DFT suggest mixed valence 

states for all cation species in 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6, presenting a novel description of its charge distribution. 

This could potentially affect the magnetic properties of the phase, as the previously assumed charge 

distribution involves the nonmagnetic 𝐼𝑟+3 ion. Multivariate analysis is a promising novel tool in the 

search for novel compositions of interest. In a novel approach for predicting magnetic ordering, 

multivariate analysis predicts 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 to be antiferromagnetic. The same conclusion is reached by 

DFT, supporting the idea that ‘theory-blind’ statistical methods can be used for predicting properties 

based on chemical parameters alone.  However, due to methodological weaknesses in the current 

work, further investigations are required to determine the definitive magnetic ordering of the 

compound and verify the predictions of each method.  
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14 Appendices  

Appendix I. Variables in MVA 

Table 11. Input variables for multivariate analysis by MVA, their meaning, values, and calculated importance 
for the model. These served as the X-variables in the model. 

 

Variable Parameter  Values  
Variable 

importance score 

norm-a   
norm-b  
norm-c 

Unit cell parameters normalized to pseudocubic 
setting 

numeric 0.35 … 0.69 

par-alpha  
par-beta  

par-gamma 
Unit cell parameters α / β / γ numeric  ~1.20 

c/a Pseudocubic ratio c/a numeric 1.11 
V(red) Unit cell volume (cubic normalized) numeric 0.53 
%d(V) Unit cell volume compared to ideal volume numeric 0.48 
ch(A) Charge of the A site numeric 1.08 
ch(B’)  
ch(B’’) 

Charge of the B sites (absolute) numeric 0.44 

d-ch(B) Charge of the B sites (difference) numeric 1.28 
r(A)  
r(B’)  
r(B’’) 

Radii of cations A and B  numeric 0.21 … 0.60  

m-r(B) Radius of B sites (average) numeric 0.44 
d-rB Radius of the B sites (difference; absolute) numeric  0.76 

%d-rB Radius of the B sites (difference; percentual) numeric 0.85 
t-par Tolerance parameter numeric 0.56  

f-f Fitness factor numeric  0.58 
X(A)  
X(B’)  
X(B’’) 

Electronegativity of the A / B sites numeric 0.37 … 0.65  

m-X(B) Electronegativity of the B sites (average) numeric 0.62  
d-X(B) Electronegativity of the B sites (difference) numeric 0.59  
Ei(A) Ionization energy of the A site (absolute) numeric 1.24 
Ei(B’)  
Ei(B’’) 

Ionization energy of the B sites (absolute) numeric 0.42  

m-Ei(B) Ionization energy of the B sites (average) numeric 1.13 
d-Ei(B) Ionization energy of the B sites (difference) numeric 1.33 

order-deg Degree of B site order numeric 1.26 
f(A)  
d(A)  
d(B’)  
d(B’’) 

Valence electrons in the f / d orbitals integer 0.42 … 0.64  

magn A 
magn B’ 
magn B’’ 

Magnetic behaviour of A & B sites 
AFM / FM / 
PM / NULL 

0.35 … 0.63 

2.27 …  2.42 

syn-T max Maximal synthesis temperature numeric 0.69  
syn-t(h) Synthesis time integer 0.36 

A-O  Bond distances to oxygen numeric 0.39 … 0.60  
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B’-O  
B’’-O 

BVS A-O  
BVS B’-O  
BVS B’’-O 

Bond valence sums of cations numeric 0.18 … 0.33  

%m-dev(BOB) 
Deviation from 180° of average B-O-B bond angle 

(fraction) 
numeric 0.47  

 

Table 12. Input variables for multivariate analysis by MVA, their meaning, values, and calculated importance 
for the model. These served as the Y-variables in the model. 

 

Variable Parameter  Values  

T(weiss) Weiss temperature of the sample numeric 

T-trans 
T-trans(B’) 
T-trans(B’’) 

magnetic transition temperature for the 
whole sample and the separate B site ions, 

respectively 
numeric 

µeff 
effective total magnetic moment of the 

sample 
numeric 

 

Table 13. The structure of 𝐿𝑎2𝐹𝑒𝐼𝑟𝑂6 given as the starting point for DFT calculations. The structure is given in 
semiorthorhombic setting with lattice parameters 𝑎 = 5.5360 Å, 𝑏 = 5.5604 Å, 𝑐 = 7.8249, and 𝛽 = 89.80° 

 

Atom x y z occupancy  

La 0.5148 0.4817 0.2541 1 

La 0.4852 0.5183 0.7459 1 

La 0.9852 0.9817 0.2459 1 

La 0.0148 0.0183 0.7541 1 

O1 0.2359 0.1971 0.0361 1 

O1 0.7641 0.8029 0.9639 1 

O1 0.2641 0.6971 0.4639 1 

O1 0.7359 0.3029 0.5361 1 

O2 0.236 0.7807 0.0274 1 

O2 0.764 0.2193 0.9726 1 

O2 0.264 0.2807 0.4726 1 

O2 0.736 0.7193 0.5274 1 

O3 0.5647 0.0024 0.255 1 

O3 0.4353 0.9976 0.745 1 

O3 0.9353 0.5024 0.245 1 

O3 0.0647 0.4976 0.755 1 

Fe 0 0.5 0 1 

Fe 0.5 0 0.5 1 

Ir 0.5 0 0 1 

Ir 0 0.5 0.5 1 
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Appendix II. Structure of (Ba,Sr)2CoIrO6  

Table 14. Atomic positions for the hexagonal structure shown in Figure 20. The positions are given for the 

disordered compound with space group P6̅m2, from which the ordered compound is derived by alternating 
the identity of the B site ions in layers along the c direction. The proposed structure of the hexagonal phase is 
developed from data given by Negas et.al. [138].  

 

Atom Wyckoff x y z 

Ba 1 1 a 0.0000 0.0000 0.0000 

Ba 2 1 d 0.3333 0.6667 0.5000 

Ba 3 2 i 0.6667 0.3333 0.3333 

Ba 4 2 h 0.3333 0.6667 0.1670 

Co / Ir 1 2 g 0.0000 0.0000 0.2500 

Co / Ir 2 2 g 0.0000 0.0000 0.4170 

Co / Ir 3 2 i 0.6667 0.3333 0.0830 

O 1 3 j 0.5000 0.5000 0.0000 

O 2 3 k 0.8333 -0.8333 0.5000 

O 3  6 n 0.1670 -0.1670 0.3333 

O 4 6 n 0.8333 -0.8333 0.1670 

 

 


