
Aalto University

School of Science

Master’s Programme in Life Science Technologies

Ville Kolehmainen

ML-based predictive beam selection for
high-velocity users in mMIMO systems

Master’s Thesis
Espoo, September 26, 2019

Supervisor: Ph.D. Riku Linna
Advisor: M.Sc. Orod Raeesi

Aalto University
School of Science
Master’s Programme in Life Science Technologies

ABSTRACT OF
MASTER’S THESIS

Author: Ville Kolehmainen

Title:
ML-based predictive beam selection for high-velocity users in mMIMO systems

Date: September 26, 2019 Pages: ix + 90

Major: Complex Systems Code: SCI3060

Supervisor: Ph.D. Riku Linna

Advisor: M.Sc. Orod Raeesi

The amount of mobile subscribers is growing each year and service is constantly
required in increasingly difficult conditions. Notably, high-speed trains are an
example of an environment where the extremely high velocities cause difficulties
in obtaining sufficient signal quality. As the user equipment (UE) is constantly
changing its position, the base station (BS) must adapt to this movement and
predict the transmission direction in advance to mitigate the loss in signal quality.

In this thesis, we study the application of machine learning algorithms for predic-
tive beam selection. Beam selection is a process where the BS selects a suitable
downlink beam out of a finite set of beams, which is called a grid of beams
(GoB). We create a simulation environment where UEs move along a pre-defined
path with scattering mirrors placed in random locations and measure the re-
ceived signal gain in the downlink direction. The baseline algorithm is defined
as a persistent model, in which the BS uses the optimal beam based on the feed-
back from the UE from the previous time step for downlink transmission. The
baseline performance is compared with Long short-term memory (LSTM), Multi-
layer perceptron (MLP), Support vector machine (SVM), Naive Bayes (NB) and
Kalman filter (KF).

In the experiments, we find that the baseline algorithm performance deteriorates
when UE velocity, or number of scatterers or antennas is increased. When ma-
chine learning is used for predictive beam selection, the achieved gain averaged
over velocities from 100 to 1500 km/h is around 2-35% higher compared to the
baseline, depending on the number of scatterers and antennas. We also provide
results of the empirical time complexities of the algorithms, allowing comparison
between accuracy and time complexity. The results are promising, but further
research is required to validate the concept in real-world communication systems.

Keywords: machine learning, telecommunications, beamforming, neural
networks, Kalman filter, massive MIMO, millimeter-wave, 5G

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Master’s Programme in Life Science Technologies

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Ville Kolehmainen

Työn nimi:
Koneoppimispohjainen ennakoiva keilanvalinta nopeasti liikkuville käyttäjille
mMIMO-systeemeissä

Päiväys: 26. syyskuuta 2019 Sivumäärä: ix + 90

Pääaine: Complex Systems Koodi: SCI3060

Valvoja: FT Riku Linna

Ohjaaja: DI Orod Raeesi

Mobiiliverkkojen käyttäjämäärä kasvaa jatkuvasti ja palvelua vaaditaan yhä vaa-
tivammissa ympäristöissä. Esimerkiksi luotijunissa suuret nopeudet hankaloit-
tavat riittävän vahvan signaalin tarjoamista. Kun käyttäjät vaihtavat sijain-
tiaan jatkuvasti, täytyy tukiaseman sopeutua tähän liikkeeseen ja ennakoida
lähetyssuunta, jotta signaalinlaatu pysyy halutulla tasolla.

Tässä diplomityössä tutkitaan koneoppimismenetelmien soveltamista ennakoi-
vaan keilanvalintaan. Keilanvalinnassa tukiasema valitsee sopivan lähetyskeilan
mahdollisten keilojen joukosta. Kokeellisessa osuudessa luomme sirottavia peilejä
sisältävän simuloidun ympäristön, jossa käyttäjät liikkuvat ennalta määritettyä
polkua pitkin. Käyttäjät mittaavat signaalinvoimakkuutta tietyin väliajoin ja
raportoivat sopivan lähetyskeilan tukiasemalle. Koneoppimisalgoritmien suori-
tuskykyä keilanvalinnassa verrataan malliin, jossa edellisen ajanhetken mittaus-
ten perusteella voimakkain keila valitaan käytettäväksi seuraavassa mittauspis-
teessä. Vertailtavat koneoppimisalgoritmit ovat Long short-term memory -verkko
(LSTM), monikerroksinen perseptroniverkko (MLP), tukivektorikone (SVM),
Naiivi Bayesin luokitin (NB) ja Kalman-suodin (KF).

Tuloksista nähdään, että verrokkimallin suorituskyky heikentyy, kun käyttäjien
nopeutta tai peilien tai tukiaseman antennien määrää kasvatetaan. Koneoppimi-
salgoritmeillä saavutetaan 2-35% verrokkimallia suurempi signaalinvoimakkuus,
kun tarkastellaan keskiarvoistettuja tuloksia 100 ja 1500 km/h nopeuksien välillä.
Tuloksissa tarkastelemme myös algoritmien suoritusaikoja, mikä mahdollistaa
vertailun mallien tarkkuuden ja aikakompleksisuuden välillä. Tulokset ovat lu-
paavia, mutta lisätutkimusta vaaditaan konseptin toimivuuden varmentamiseksi
oikeissa mobiiliverkoissa.

Asiasanat: koneoppiminen, tietoliikennetekniikka, keilanmuodostus, neu-
roverkot, Kalman-suodin, massiivi-MIMO, millimetriaallot,
5G

Kieli: Englanti

iii

Acknowledgements

First, I want to thank my advisor Orod Raeesi and supervisor Riku Linna
for great guidance and detailed feedback throughout the process. I also want
to thank my co-worker Niko Väisänen and members of Nokia L1 Machine
Learning guild, who provided very valuable advice in the technical aspects
of the thesis.

I want to thank my co-workers in the Beaver team and all other thesis workers
in Nokia 5G L1-low for peer support and for the entertaining lunch discus-
sions throughout the year.

I want to thank my family for all the support and for providing me with the
opportunity and willingness to pursue higher education. Finally, I want to
thank my girlfriend for bearing with me during the more difficult parts of the
thesis writing process and for motivating me all the way to the finish line.

Espoo, September 26, 2019

Ville Kolehmainen

iv

Abbreviations and Acronyms

ARIMA Autoregressive integrated moving average
BPTT Backpropagation through time
COMP Coordinated multipoint
CQI Channel quality indicator
CV Cross-validation
BS Base station
EB Eigen-beamforming
eMBB Enhanced mobile broadband
GoB Grid of beams
HSDPA High Speed Downlink Packet Access
HSR High-speed railway
HST High-speed train
ICT Information and communication technology
ITU International Telecommunications Union
KF Kalman filter
LOS Line-of-sight
LSTM Long short-term memory
LTE Long Term Evolution
MAP Maximum a posteriori
MIMO Multiple-input multiple-output
MISO Multiple-input single-output
MLP Multi-layer perceptron
mMIMO Massive multiple-input multiple-output
mMTC Massive machine-type communication
mmWave Millimeter-wave
MRT Maximum-ratio transmission
NB Naive Bayes
NR New Radio
ReLU Rectified Linear Unit

v

RF Radio frequency
RNN Recurrent neural network
RZF Regularized zero-forcing
SIMO Single-input multiple-output
SINR Signal-to-noise-plus-interference ratio
SISO Single-input single-output
SNR Signal-to-noise ratio
SVM Support vector machine
TDD Time Division Duplex
UE User equipment
URLLC Ultra-reliable and low-latency communication
XOR Exclusive OR
ZF Zero-forcing

vi

Contents

Abbreviations and Acronyms v

1 Introduction 1

2 Background 3

2.1 5G . 3

2.1.1 Use cases . 5

2.2 SISO/MIMO . 8

2.2.1 Massive MIMO . 9

2.3 Radio propagation in mmWave bands 10

2.4 Beamforming . 12

2.4.1 Grid of beams . 14

2.4.2 Beam management . 16

2.5 Machine learning . 17

2.5.1 Neural networks . 20

2.5.2 Time series analysis . 26

2.5.3 Hyperparameter optimization 27

2.6 Related research . 29

3 Methods 31

3.1 Kalman filter . 31

vii

3.2 Neural networks . 33

3.2.1 Multi-layer perceptron (MLP) 33

3.2.2 Long short-term memory (LSTM) 34

3.3 Support vector machine . 35

3.4 Naive Bayes classifier . 36

4 Implementation 39

4.1 Simulation environment . 39

4.1.1 Channel model . 41

4.1.2 Simulation parameters 42

4.2 Data . 43

4.2.1 Gain data . 43

4.2.2 Index data . 44

4.2.3 Data pre-processing . 45

4.3 Experiments . 45

4.3.1 Scenario 1: Line of sight 47

4.3.2 Scenario 2: Scattering environment 47

4.3.3 Training and testing phase 49

4.3.4 Baseline solution: persistence model 49

4.3.5 Algorithm implementations 50

5 Evaluation 53

5.1 Metrics . 53

5.2 Scenario 1 . 54

5.2.1 1x16 antenna array . 54

5.2.2 1x8 antenna array . 57

5.2.3 1x32 antenna array . 59

5.3 Scenario 2 . 61

viii

5.3.1 5 scatterers . 61

5.3.2 25 scatterers . 63

5.4 Average results . 65

5.5 Algorithm time complexities 67

5.6 Learning curves . 67

6 Discussion 71

7 Conclusions 74

A Random search results 83

B Grid search results 89

ix

Chapter 1

Introduction

Mobile communications has become an important part of our lives in the
21st century. In 2019, there are 5.1 billion unique mobile subscribers and
3.6 billion mobile internet users in the world [25]. These numbers amount to
67% and 47% of the global population, respectively. Around 700 million new
mobile subscribers are expected by 2025 and most of the growth is expected to
come from Asia Pacific and Sub-Saharan Africa [25]. Mobile communications
is not only necessary for voice calls and entertainment but also for crucial
services. For example, the banking industry has adopted mobile devices
as a new platform in the recent decades. In addition to human-centric use
cases, the new fifth generation (5G) mobile networks are aimed towards more
efficient machine-to-machine communication, which is required for upcoming
inventions such as self-driving cars.

While self-driving cars require constant network availability and reliability,
even more difficult conditions exist for high-speed trains (HST) where travel
velocities are higher. Ai et al. [3] state that velocities lower than 200 km/h
can often be assumed stationary in terms of the wireless channel. On the
other hand, the fastest train as of 2019 is the Shanghai Maglev, capable of
a velocity of 431 kilometers per hour [27]. As high-speed railways (HSR) are
becoming more common, the operational requirements of mobile networks
are growing. In HSR conditions, handovers happen frequently because of the
high velocity [3]. The existing wireless communication systems perform very
poorly at such high velocities, which is why more efficient solutions are being
researched [35]. While higher velocities introduce difficulties for wireless
communication, the demand for service in such conditions is also increasing.
Tang et al. [65] report that in a survey of 901 HSR passengers in China, 96%
of the respondents use information and communication technology (ICT)

1

CHAPTER 1. INTRODUCTION 2

during the travel and most passengers also spend some of the travel time
working. For these reasons, the research for more efficient network solutions
is important.

Millimeter-wave beamforming technology has been studied as a solution for
high data usage scenarios, such as the ones in HSTs [30]. Beamforming allows
antenna arrays to transmit a beam so that the beam pattern is concentrated
towards the receiver. This will reduce interference between users and allow
higher data rates. Millimeter-wave (mmWave) on the other hand refers to
the usage of the millimeter-wave spectrum, which corresponds to frequency
bands from 28 GHz to 300 GHz. Using beamforming together with the
extremely high frequencies of millimeter-wave bands allows high data rates
and low interference between users.

Using very narrow beams allows higher data rates but introduces a drawback.
The beams need to be directed accurately towards the receiver and with nar-
rower beams this becomes increasingly difficult. The high velocities of HSTs
further increases the challenge of pinpointing the beam without service inter-
ruptions. In this thesis, we investigate the problem in the context of a grid
of beams (GoB). A GoB is a predefined set of beamforming vectors, which
form a grid of beams such that each small area around the base station (BS)
is served by a different beam. Furthermore, we use the term beam selection
to signify the process where a user equipment (UE) chooses a suitable beam
from the GoB. We assume a baseline solution for beam selection such that
the BS always selects the best beam based on the feedback from the UE from
the previous time step. In this thesis we evaluate the efficiency of machine
learning algorithms for performing predictive beam selection, where instead
of choosing the previous best beam, the best beam for the next time step is
predicted beforehand.

The thesis is organized as follows. We begin by presenting the background
of 5G, beamforming and machine learning in Chapter 2. In Chapter 3, we
explain the methods that are used for performing predictive beam selection.
Chapter 4 continues by describing how the methods and the simulation envi-
ronment in the experimental part of this thesis are implemented. In Chapter
5, we present the simulation results. Chapter 6 is where we analyze the re-
sults and discuss the significance of the findings. Finally, in Chapter 7, we
conclude the preceding chapters and provide ideas for future research.

Chapter 2

Background

2.1 5G

Mobile communications has developed from analogue mobile devices of the
first generation (1G) to the latest fourth generation (4G) in a relatively short
period of time. The growth in data rate has been rapid and the upcoming
fifth generation of mobile communications attempts to meet the growing de-
mands to allow even higher capacities. The performance goals of 5G networks
are very ambitious - the aim is to increase the capacity 1000-fold, allow con-
nections for at least 100 billion devices, and achieve a data rate of 10 Gb/s
for individual users. As an example of why such high data rates are needed,
an 8K (3D) video with 100-fold compression requires a data rate of 1 Gbps.
In addition to providing a communication platform for regular consumers,
5G attempts to allow connectivity between machines and devices as well,
which will facilitate the era of Internet of Things. While Figure 2.1 shows
the evolution of mobile communications of the first four generations, the tar-
get year for standardizing 5G networks was set to 2020 by the International
Telecommunications Union (ITU). [72]

What kind of factors are the motivation behind the need for a new generation
of mobile networks? Xiang et al. [72] list the following three key elements:
First, the amount of data traffic will increase by more than 200 times from
2010 to 2020 and a massive 20000 times growth is expected from 2010 to
2030. Second, the amount of devices other than smart phones continue to
increase in numbers. These new devices, such as wearable devices, also re-
quire connectivity. Finally, the variety in available services will develop and
the emergence of new kinds of services will result in a demand for better

3

CHAPTER 2. BACKGROUND 4

Figure 2.1: The evolution of mobile communication generations up to 2010s
[15].

network capabilities.

To meet these demands, 5G (titled often as 5G NR, where NR stands for New
Radio) will need to provide technological and architectural benefits over the
previous 4G LTE (Long Term Evolution) networks. Shafi et al. [56] mention
the following main advancements that are expected to increase the network
capacity:

• Increased bandwidth. The 5G network will utilize higher frequen-
cies than the previous generations. The older generation networks use
bands less than 6 GHz, while 5G traffic is going to reside in both sub-
6GHz bands and higher bands up to 100 GHz.

• Massive MIMO antenna arrays at the base station. Using higher
frequencies and shorter wavelengths allow antennas to be packed more
tightly into arrays, which in turn can provide increased spatial mul-
tiplexing and array gain. The amount of base station antennas can
reach numbers up to 1024, when mmWave bands are in use. MIMO
(Multiple-Input Multiple-Output) is introduced in Section 2.2.

• Advances in MIMO. Multiple users can be served simultaneously
with the use of 2D antenna arrays and multi-user precoding. This
holds for both azimuth and elevation angles.

• Network densification. 5G networks will contain smaller but more
numerous cells, thus making the network denser. Network densification
will also introduce other-cell-interference (interference between cells),
but techniques such as coordinated multipoint (COMP) can be utilized

CHAPTER 2. BACKGROUND 5

to mitigate this effect. Narrower beamwidth in 5G antenna arrays may
also reduce interference.

• New waveforms. Because of the larger numbers of devices connected,
new waveforms are required to overcome the overhead associated with
scheduling and resource request/grant signaling.

In addition to the above mentioned factors, Dahlman et al. [15] list also:

• Ultra-Lean Design. In the current mobile communication technolo-
gies there are always-on signals, which mean transmissions in the net-
work regardless of the amount of user traffic. 5G will aim to improve
in this regard by employing different techniques e.g. improving the
cell search procedure, which corresponds to the UE acquiring time and
frequency synchronization with the cell and detecting the cell ID [16].
Minimizing the amount of always-on signals is beneficial, because they
impose penalties in the achievable network energy performance and
cause other-cell-interference.

• Forward Compatibility. Based on the experience from transitions
between previous generations, 5G NR will follow some basic design
principles in order to facilitate forward compatibility to following gen-
erations. These principles include maximizing the amount of time and
frequency resources that can be left blank or utilized in the future,
minimizing always-on signals and confining signals for physical layer
functionalities to specific time/frequency resources.

• Beam-Centric Design. Beamforming (defined in Section 2.4) is uti-
lized not only for data transmission but also for control plane procedures
such as initial access. Control plane procedures and initial access are
related to functions that govern network operations, e.g. which cell and
beam are suitable for a particular UE.

2.1.1 Use cases

The early visions for 5G networks have identified high level use cases in
order to specify what types of scenarios and devices should be supported by
the upcoming network. ITU Radiocommunication Sector (ITU-R), a radio
communication sub-unit of the ITU, specifies three distinct use cases for 5G
based mainly on the data rate and the amount of devices communicating [54]:

CHAPTER 2. BACKGROUND 6

Enhanced mobile broadband (eMBB), massive machine-type communication
(mMTC), and ultra-reliable and low-latency communication (URLLC). An
overview of these use cases can be seen in Figure 2.2, but we provide here
also explanations of each category:

• eMBB. This use case aims to improve the mobile broadband, which en-
tails the human-centric network activities such as accessing multi-media
content. Performance improvements are intended for both hotspot and
wide-area cases. In hotspot cases, areas with high user density and
amount of users need to be served, whereas in wide-area cases, the
data rate requirements are less strict, but user mobility is higher.

• mMTC. Massive amounts of devices need to connected, but the ex-
pected data volume is relatively low and delay sensitivity is not critical.
Smart cities are an example of a use case in this category.

• URLLC. High throughput, low latency and availability are essential
criteria in this use case. An example use case is a self-driving car.

Figure 2.2: 5G high-level use cases [54].

CHAPTER 2. BACKGROUND 7

While the aforementioned use cases capture the high-level distinction between
different communication types, in this thesis, we are mostly interested in
specific challenging scenarios, which require mobility. In mobility scenarios,
the receiving and/or the transmitting end is not stationary, but rather travels
at some velocity and thus successful communication requires adapting to the
movement. As examples of specific use cases, Xiang et al. [72] list deployment
scenarios in which a 5G mobile network needs to provide at least partial
operation for:

• Indoor hotspots

• Dense urban

• Urban macro

• Rural

• High speed

• Extreme rural for the provision of minimal services over long distances

• Extreme rural with extreme long range

• Urban coverage for massive connection

• Highway scenario

• Urban grid for connected car

Many of the listed deployment scenarios involve mobility. In this thesis, we
are interested in the high speed and highway scenarios. In order to improve
the throughput in high mobility scenarios, we evaluate the use of predictive
machine learning algorithms for performing beam selection, which means se-
lecting a suitable beam in terms of signal quality. The problem is caused
by limitations in the time constraint for selecting a new beam. High mobil-
ity scenarios emphasize this problem, because travelling at higher velocities
causes the distance between successive beam selections to be larger. Beam-
forming and beam selection are specified more precisely in Section 2.4.

CHAPTER 2. BACKGROUND 8

2.2 SISO/MIMO

The more traditional way of transmitting data wirelessly involves only a
single antenna in the transmitting end and a single antenna in the receiving
end. This type of setup is called SISO, which stands for Single-Input Single-
Output. Although the use of multiple antennas was considered already in
the early ages of wireless transmission, most of the progress has been made
in the last 20 years with MIMO (Multiple-Input Multiple-Output) systems
being invented in the mid-1990s [55].

The antenna configuration options do not stop at SISO and MIMO. It is
also possible to use one antenna in the transmitting side and multiple receiv-
ing antennas or vice versa. These configurations are called SIMO (Single-
Input Multiple-Output) and MISO (Multiple-Input Single-Output), respec-
tively. The amount of receiving ends is also often denoted by using the
prefix Single-User (SU) or Multi-User (MU). Figure 2.3 shows these different
MIMO schemes. The bottom middle and bottom right pictures depict sce-
narios where MU-MIMO is extended to multiple cells. These different cells
can either interfere with each other or work in cooperation.

Figure 2.3: Different transmission schemes [55].

CHAPTER 2. BACKGROUND 9

MIMO was adopted for the first time in cellular mobile networks standard in
the Release 7 version of HSDPA (High Speed Downlink Packet Access) [55].

Benefits of using multiple antennas [55]:

• Diversity gain. Because there are multiple antennas, a MIMO sys-
tem mitigates the effect of multipath fading. Multipath fading is a
phenomenon that occurs when a signal travels through multiple paths,
which can cause these multipath signals to arrive at the receiver in
unequal phase.

• Array gain. Beamforming or precoding can be used to concentrate
energy to a specific direction. This results in a gain increase and allows
users located in different directions to be served simultaneously.

• Spatial multiplexing gain. Multiple data streams can be transmit-
ted in parallel with spatial multiplexing.

In the simulation experiments of this thesis we will focus on Single-User
Multiple-Input Single-Output scenario. The reason for this choice is that
we need multiple input antennas to enable beamforming in the base station,
but the receiving end (UE) is easier to model with a single antenna. The
solutions proposed in this thesis could also be expanded to MIMO systems
where beamforming is also performed on the UE side. This would require the
use of predictive algorithms for also predicting suitable uplink beam on the
UE side, whereas now we are only focusing on predicting downlink beams.

2.2.1 Massive MIMO

Expanding on the MIMO concept, massive MIMO (mMIMO) was proposed
in [38]. Massive MIMO is a technology that allows communication via an-
tenna arrays with a massive number of antenna elements. It is defined in [72]
as a multi-user MIMO system with M antennas and K users per BS, where
M >> K. The operation mode is usually Time Division Duplex (TDD) and
linear processing is used in downlink and uplink. The reasoning for using
TDD and linear processing is based on three principles: First, the use of
linear processing provides a near-optimal spectral efficiency when M >> K.
Second, when sending pilot sequences for channel estimation, using TDD
mode requires only a sequence length of K irrespective of M . Finally, the
inter-user interference will approach zero as M → inf, because of a prop-
erty called asymptotic favorable propagation. This property arises from the

CHAPTER 2. BACKGROUND 10

orthogonality of UE channel vectors, which can be hard to achieve when
it comes to its limits. However in practice, a rich scattering environment
between BS and UEs can facilitate favorable propagation.

In practice, mMIMO can offer many benefits. Capacity can be increased 10-
fold while simultaneously improving energy efficiency. Since mMIMO arrays
are built using a massive amount of antenna elements, they allow the use of
inexpensive low-power amplifiers instead of using few high-power amplifiers.
The large number of antennas also makes mMIMO systems more robust
against failure and unintended or intentional jamming. Moreover, mMIMO
systems reduce the latency on the air interface by offering diversity gain to
combat against multipath fading. [31]

However, several limiting factors also exist, for instance pilot contamination.
Pilot signals are sent by UEs to gain information on the channel character-
istics. In an ideal situation these pilot signals are orthogonal, which sets an
upper bound on the number of supported UEs which is equal to the number
of available orthogonal signals. If multiple UEs share the same pilot signal,
pilot contamination can cause interference in downlink signals directed to
those UEs that use the same pilot signal. It is also not guaranteed that
the assumptions on favorable propagation are fulfilled, which may create
unwanted interference on the system. [31]

2.3 Radio propagation in mmWave bands

As stated in Section 2.1, higher-than-ever frequency bands are necessary for
5G networks, because of the massive amount of unused bandwidth and also
to enable data rates in the range of gigabits per second. However, there are
certain challenges that must be taken into account when transmitting data
in higher frequency bands as opposed to the sub 6 GHz bands that are cur-
rently heavily utilized. For example, due to the combination of high carrier
frequency, wide bandwidth and high transmit power, power amplifiers can
cause severe nonlinear distortion. In indoor environments, interference man-
agement is required to avoid interference among UEs. Finally, user mobility
poses challenges for mmWave propagation: as the UEs move, the channel
state changes, loads within the cell fluctuate and handovers are more fre-
quent. [45]

Roh et al. [50] address the concerns that have been raised about utilizing
mmWave frequency bands in mobile networks. A common misunderstanding

CHAPTER 2. BACKGROUND 11

is that higher frequency waves suffer a greater propagation loss in free space
as opposed to lower frequency waves. This misunderstanding can however
be debunked by inspecting the Friis equation [18]:

Pr = Pt +Gt +Gr + 20 log(
c

4πRf
)[dBm] (2.1)

where Pr is the receive power in unobstructed free space, Pt is the transmit
power, Gt and Gr are the transmit and receive antenna gains, respectively,
R is the distance between the transmitter and receiver in meters, f is the
carrier frequency, and c is the speed of light. Now, at the first glance the
receive power seems to be inversely proportional to the carrier frequency
squared but this is the case when Gt and Gr remain unchanged. However,
the antenna gains are proportional to the frequency squared given a fixed
physical aperture size. Thus, at fixed aperture size it is possible to send and
receive more energy at higher frequencies, although through narrower beams.

Even if free space propagation is not problematic for mmWave frequencies,
there are differences when considering scattering and penetration through
materials. Pi and Khan [49] investigated these differences and found that
mmWave signals do not penetrate most solid materials well. Thus, 5G net-
works may need to employ other solutions, such as femtocells or Wi-Fi, to pro-
vide sufficient connection quality indoors. Femtocells are home base-stations,
which feature a short range and low cost and power requirements [10].

In Figure 2.4, we can see how signals with different frequencies (and thus
wavelengths) suffer penetration loss and attenuation when propagating through
foliage or rain. In the case of rain the attenuation ramps up quickly when
frequency approaches 50 GHz.

A larger factor in overcoming these problems is beamforming. Beamforming
allows the energy of the transmitting antenna to concentrate on a narrower
beam pattern and thus increase the signal strength considerably towards
certain directions only. This is very important in order to achieve a sufficient
signal strength even at cell edges. The theory of beamforming is discussed
more thoroughly in Section 2.4.

CHAPTER 2. BACKGROUND 12

Figure 2.4: Millimeter-wave propagation characteristics: a) foliage penetra-
tion loss; b) rain attenuation [49].

2.4 Beamforming

In beamforming, multiple antenna elements are used in conjunction to trans-
mit a single directed output signal y. Beamforming has proved to be an
essential technology to enable a high data rate communication in the last
generations of mobile networks and is a fundamental enabler for 5G net-
works. In this section we will discuss the theory of beamforming and link
it to the context of mobile networks. We start by defining analog and digi-
tal beamforming, and then proceed to discuss hybrid beamforming, which is
considered as a solution for the future massive MIMO systems.

To first explain analog beamforming, let us consider an antenna array with
J antenna elements. The phase and amplitude of the signal to antenna
element j is manipulated with a beamforming weight wj ∈ C1×1. A beam-
forming weight is a complex float number defining the amplitude and phase
modulation to a specific antenna element.

The total output signal y at time step k is given by [68]:

y(k) =
J∑

j=1

w∗jxj(k) (2.2)

The output signal y is thus a superposition of the modulated input signals
and creates a pattern according to destructive and constructive interferences.
Wisely-chosen beamforming weights allow the pattern to form a narrow beam

CHAPTER 2. BACKGROUND 13

that focuses most of the energy towards the desired direction. However,
usually there is a side-effect of forming sidelobes that are smaller than the
mainlobe but still significant enough to cause some of the signal to “leak”
into other directions. The sidelobes can be diminished using a technique
called tapering. In tapering the antenna elements in the center of the array
are excited more than those near the edge [36].

As seen in Figure 2.5, the setup in digital beamforming is slightly different
to that of analog beamforming. Instead of taking a weighted sum of the
input analog signals as in analog beamforming, the different streams are
digitized with A/D-converters and processed individually using a processor.
The advantage is that the information about each signal is retained unlike
in analog beamforming [63]. However, digital beamforming requires an RF
chain per each antenna array, which makes it very costly to implement in
mMIMO systems.

Figure 2.5: Structural differences between digital and analog beamforming
techniques [63].

Hybrid beamforming, as its name states, is a hybrid of analog and digital
beamforming techniques. In Figure 2.6, we can see a structural view of a
mMIMO system with hybrid beamforming at the transmitting and receiving
ends. With the massive amount of antenna elements in mMIMO systems,
hybrid beamforming can provide results comparable to fully digital beam-
forming if the number of RF chains at the transmitting and receiving end

CHAPTER 2. BACKGROUND 14

is greater than or equal to twice the number of data streams [61]. However,
hybrid beamforming is more effective in terms of costs and power consump-
tion than fully digital beamforming, which makes it an attractive choice as
a mMIMO beamforming solution.

Figure 2.6: Hybrid beamforming structure [61].

Adnan et al. [2] studied the effects of inter-element spacing on large antenna
arrays. When spacing between antenna elements d was less than half of
the wavelength, the directivity of the antenna array was considerably low,
while spacing equal to or greater than λ/2 resulted in a higher antenna
array directivity. This is an important factor when designing antenna arrays
for the use of mMIMO applications, and the advantage is of course that the
extremely short wavelength allows antenna elements to be packed compactly,
providing even greater array gains.

2.4.1 Grid of beams

In a grid of beams (GoB), pre-defined sets of beamforming vectors are utilized
to produce diverse beams that together can cover a desired spatial sector
around the base station. We use the term beam index to denote the ordinal
number of each beam in the grid. The beams may be narrow beams that
are pin-pointed to serve users in a specific direction or sector beams, which
cover a wider area but do not allow as high data rates as narrow beams.
To serve users in multiple directions, the weights are alternated such that
during different time frames, different beams are active. In literature, the
term codebook-based beamforming is also often used interchangeably with grid
of beams, but in this thesis, we will only use the term grid of beams.

In Figure 2.7, we can see an illustration of a grid of beams with evenly spaced
beams. The design of a grid of beams is not limited to contain only evenly

CHAPTER 2. BACKGROUND 15

spaced symmetrical beams, but it is also possible to construct a grid with
beams that have uneven widths and directions. However, in this thesis, we
will focus on an evenly spaced grid of beams with equal widths for simplicity.

Figure 2.7: Grid of beams [53].

Although we focus on GoB in this thesis, there exist alternative linear pre-
coding techniques for implementing beamforming. Maximum-ratio transmis-
sion (MRT) is a technique that maximizes the array gain for transmission
but interference to other UEs is not mitigated [33]. Zero-forcing (ZF) on the
other hand is based on the principle of nulling all interferences between sym-
bols and UEs. Because of the interference suppression, ZF is computationally
more complex than MRT. Regularized zero-forcing (RZF) shares properties
from both MRT and ZF by adding a regularization constant which controls
the tradeoff between array gain and interference suppression. In the case
of SU-MIMO there is no interference between UEs and it is possible to use
eigen-beamforming (EB). Eigen-beamforming gives the optimal beamform-
ing weights (for the single user) and they are obtained by taking the right
singular vectors of the channel matrix. [34]

CHAPTER 2. BACKGROUND 16

2.4.2 Beam management

There is a certain periodical procedure governing which beams are allocated
to which UEs at given time slots. This process is called beam management
and Giordani et al. [20] describe the categories under which different beam
management procedures can be organized as:

• Beam sweeping. A spatial area is covered with a set of beams, which
are transmitted and received according to pre-specified intervals.

• Beam measurement. The received signal at the BS or UE is mea-
sured and the signal quality is evaluated according to some metric, e.g.,
signal-to-noise ratio (SNR).

• Beam determination. A suitable beam is selected at the BS or UE
based on the beam measurements. In this thesis, we use the term beam
selection instead of beam determination.

• Beam reporting. A procedure where the UE sends information about
the beam measurement and determination steps.

The exact implementation of beam management process depends on the mo-
bile communication network. For example, some systems may conduct the
beam measurements at the BS-side and some systems in the UE-side [20].
Nevertheless, the consequence of the beam management procedure is that
there is a lag between UE determining the suitable beam and BS sending
data in downlink. In the simulation environment of this thesis, we do not
follow the above described beam management steps strictly, because we do
not simulate the individual processes such as beam sweeping. We rather de-
termine the suitable beam directly by evaluating the strength of each beam
in the GoB simultaneously (details in Chapter 4). However, we are interested
in the total time interval between the each beam selection instance, because
this time interval governs how often a suboptimal beam is selected due to
UE moving between beam measurement and beam selection.

In addition to the beam selection time interval, the UE velocity plays a role in
determining the severity of using outdated beams. If we set the beam selec-
tion interval as constant, then increasing UE velocity increases the distance
between beam selection points. The same also holds if we set UE velocity
as constant and increase the beam selection interval. Thus, these variables
are interchangeable in the context of the outdated beam selection problem
and we can focus on UE velocity as the variable of interest. Naturally, the

CHAPTER 2. BACKGROUND 17

problem is prominent for high speed trains because of the very high velocities
they can achieve.

2.5 Machine learning

One way to define machine learning is to say that it refers to the automated
detection of patterns in data [57]. Many of the common applications that
we use in our every day life utilize machine learning algorithms to detect
patterns and lessen the amount of manual work required from humans. These
applications include for example search engines, anti-spam software, face
detection and voice recognition. A common denominator for popular machine
learning applications is the complexity of patterns that need to be detected,
which makes it impossible for traditional computer programs that rely on
explicit sets of rules to solve the task. In contrast, machine learning enables
the creation of programs that are able to solve the task by learning from
data. [57]

The amount of available data has grown and is estimated to continue to grow
at a staggering rate: Gantz and Reinsel [19] estimate that the size of the dig-
ital universe will increase by 50-fold from the year 2010 to 2020, as seen in
Figure 2.8. Digital universe is a measure of “all the digital data created,
replicated, and consumed in a single year” [19]. As the digital universe has
been expanding and growing, a similar trend has been ongoing in computa-
tional capacity. Gordon Moore made an empirical observation in 1965 that
the component density of integrated circuits doubles every year [42]. This
observation has afterwards been titled Moore’s law, and it has since held
its ground for a good 40 years [66]. These growth trends in the amount of
data available and computational capacity together with the maturation of
the field have facilitated the research interest and successful application of
machine learning in recent decades [9].

Instead of feeding the raw data alone for machine learning algorithms to
learn from, feature extraction may be conducted. Feature extraction is a
process that extracts a set of new features from the original features through
some functional mapping [71]. Features in turn are pieces of information that
represent the data on a higher level [21]. So, in layman terms feature extrac-
tion is used for representing the dataset in a way that captures the essential
qualities of interest. For example, when building a recommendation system
for predicting cesarean delivery, the system does not get all the information
about the patient as input, but instead the doctor inputs only the relevant

CHAPTER 2. BACKGROUND 18

Figure 2.8: Size of the digital universe [19].

information to the algorithm such as the presence or absence of uterine scar
[21]. In this way, the system will be able to recommend cesarean delivery
based on the chosen features.

However, carefully choosing representative features manually has become
comparatively less effective since the emergence of representative learning
and in particular deep learning [32]. Representative learning allows the ma-
chine to automatically discover the relevant features needed for successful
learning of the task. Deep learning methods fall under the representation
learning umbrella and the term is used to signify methods with multiple lev-
els of simple non-linear modules that each transform the raw input data into
increasingly abstract levels [32]. Deep learning has provided excellent results
in problems with high-dimensional data, such as image recognition, speech
recognition and natural language processing [32]. The success of deep learn-
ing is no surprise when taking into account the data explosion we discussed
above.

Marsland [37] divides machine learning into four categories of supervised
learning, unsupervised learning, reinforcement learning and evolutionary learn-
ing. We provide here explanations of each of the categories:

• Supervised learning: A training set of examples is available for the
algorithm to learn from. The training set contains X → Ytarget pairs,
i.e., correct responses Ytarget for each input X. Based on the training
set, the algorithm attempts to generalize and respond correctly to all
possible inputs. [37]

CHAPTER 2. BACKGROUND 19

• Unsupervised learning: Only inputs X are provided, i.e., correct
responses Ytarget are not included and the algorithm tries to identify
similarities between inputs [37]. An example of unsupervised learning
is clustering, where inputs are classified into clusters [26].

• Reinforcement learning: When the algorithm responds incorrectly,
it gets notified of the wrong answers. However, no information about
how to correct the behaviour is provided and the algorithm must ex-
plore different possibilities based on the feedback until a correct answer
is found. [37]

• Evolutionary learning: In biological evolution, organisms are able
to adapt to their environment in order to survive and breed. Some ma-
chine learning methods utilize the idea of evolution to perform learning.
Fitness is used to give a score to the current solution and the model
candidate with the highest fitness is chosen from a population of mod-
els. [37]

Training, validation and test data are important concepts for supervised ma-
chine learning. Training data Dtrain = (Xtrain, Ytrain) is a subset of the
whole dataset D = (X, Y), which is used for the initial training of the
machine learning model. This accounts for fitting the parameters of the
model such that the function F is able to produce y from x. Validation data
Dvalid = (Xvalid, Yvalid) acts as a preliminary evaluation for the model and it
is used to tune the hyperparameters of the model. Hyperparameters are those
parameters of the model that are not adapted by the learning algorithm itself
[21], for example the number of nodes in a hidden layer of a neural network.
Finally, test data Dtest = (Xtest, Ytest) is used to estimate the generalization
error of the model. Generalization error is defined as the expected error on
new, unseen data, and it represents the model’s capability of performing on
previously unobserved inputs [21]. A low generalization error is a desired
quality from machine learning models because a good performance only on
training data does not help much after the model has been deployed into
production, which means exporting the trained model to the environment
where it produces outputs on new data. It is important that Dtrain and Dtest

are disjoint, i.e., Dtrain

⋂
Dtest = Ø, so that the performance is not tested

on the same data that was used for training. Otherwise the performance
estimate is biased and does not represent the performance for unseen data.

It is also possible to use cross-validation for testing the model performance.
In cross-validation, the dataset is split into randomly chosen subsets called
folds. In each split, the training is then conducted using some of the folds and

CHAPTER 2. BACKGROUND 20

the rest of the folds are used for testing the performance. A common cross-
validation scheme is k-fold cross-validation, where the dataset is split into
k non-overlapping subsets. The k splits are then iterated over, and on each
iteration one of the subsets is used for testing and the rest k − 1 subsets are
used for training. Each subset is thus used exactly once for testing and the
average test score is reported as the cross-validation score. Cross-validation
uses the available data more efficiently compared to a held out test set but
it is computationally more expensive. When the test set is small, there can
be statistical uncertainty about the estimated test score, in which case cross-
validation can provide a more accurate estimate. [21]

Depending on the nature of the task, supervised machine learning problems
can be divided into regression and classification. In regression, the goal is to
find a functional relationship between the input values x and output values
y [57]. This can mean for example learning a linear model between x and
y, after which we can predict output values for unseen inputs. An example
of a problem that can be considered regression is learning a relationship
between the height and weight of people. In classification, the target value
is a discrete class label denoting that the particular target instance belongs
to one or more of the available k classes. If the classes are not numerical by
nature, e.g., an animal is categorized into cat, dog or cow, they need to be
converted into numerical labels. A popular choice for this conversion is one-
hot encoding (also called 1-of-N encoding), where each target y is represented
as a vector of length k such that only one element of the vector is 1 and the
rest are 0 [37]. For example, we would represent the animal classes above as
cat→ [1, 0, 0], dog → [0, 1, 0] and cow → [0, 0, 1].

2.5.1 Neural networks

Neural networks are nature-inspired computational machines that can be
used to solve various machine learning tasks. In a nutshell, a neural network
is a network of nodes called neurons that are connected to each other with
certain weight values. By carefully choosing the network weights through
a training process, a neural network is capable of approximating a function
F that produces output values y from input values x. To understand how
modern neural networks work, we will start by introducing the concept of a
perceptron as explained in [43].

Perceptron was devised by Frank Rosenblatt in 1958 [52]. A perceptron takes
j binary input values x1, x2, ..., xj and outputs a binary value by multiplying

CHAPTER 2. BACKGROUND 21

each input xi by a weight wi. Mathematically, this can be written as f(x) =
b+
∑j

i=1wi ∗xi, where x is the input vector x1, x2, ..., xj and b is a bias term.
A perceptron will fire (i.e., the perceptron is in active state) if its output f(x)
is larger than 0, and thus a higher bias term increases the baseline sensitivity
for the perceptron to fire. The output value of a firing perceptron is 1, and
0 in case of the perceptron not firing, which we can write as:

f(x) =

{
0 if w · x+ b ≤ 0
1 if w · x+ b > 0

(2.3)

A function such as the one described above is called an activation function.
The perceptron activation function is very simple and can easily lead to
situations where a slight change in the weighted input will cause the output
to change from 0 to 1 or vice versa. If we change the linear activation
function to something smoother, the neural network is able to learn non-
linear functions. A popular choice is a sigmoid activation function, which is
calculated as follows:

f(x) =
1

1 + e−(w·x+b)
(2.4)

To get a visual idea of what a smoother activation function looks like, we
may look at Figure 2.9. The middle part of the sigmoid function is close to
linear but extreme values get squashed to 0 or 1.

In addition to the linear and sigmoid activation functions, other options also
exist. Rectified Linear Unit (ReLU) is a neuron that uses the rectified lin-
ear activation function, which we can see in Figure 2.10. ReLU is a default
recommendation in modern neural networks and yields a nonlinear transfor-
mation when applied to the output of a linear transformation [21]. Given an
input x, the output of ReLU is 0 when x < 0 and equal to x otherwise. The
reader is referred to, e.g., [46] for a comprehensive list of different activation
functions.

The linear neurons, perceptrons, are linear classifiers which means that a
single layer of perceptrons is only able to form a linear classification boundary
between two classes. If the classes are not linearly separable then the training
of the single layer perceptron will fail [22]. A common example of this is the
Exclusive OR problem (XOR), explained in, e.g., [22] and [37]. In the XOR
problem the input values are either 0 or 1 and the output classes are also 0
or 1. The output class is 1 only when exclusively one of the inputs is 1. We

CHAPTER 2. BACKGROUND 22

Figure 2.9: Sigmoid activation function.

Figure 2.10: Rectified linear activation function.

CHAPTER 2. BACKGROUND 23

can see a table and a plot depicting this in Figure 2.11. Supposing we want
to create a classifier that outputs the correct class given any of the four data
points, a single layer perceptron is unable to solve this because there does
not exist a line (linear decision boundary) that can separate the two classes.
The problem is solvable when a second layer of perceptrons is added to the
network, giving rise to another decision boundary [22]. This second layer of
perceptrons (or any other neurons) is called a hidden layer, which we will
cover in more detail in Section 2.5.1.

Figure 2.11: A table and plot of the XOR input-target values [37].

The training process in neural networks involves setting the weights w be-
tween the neurons such that the network produces the desired output values
y from inputs x. To achieve this, the network may be trained using the back-
propagation algorithm . Considering a single input-output pair (x, y), which
we call one training example, the backpropagation algorithm can be broken
down into the following four steps according to [51]:

• Feed-forward computation. Input values x are presented to the net-
work and output values ŷ for each layer are calculated. The derivatives
of activation functions for each neuron are also stored.

• Backpropagation to the output layer. Partial derivatives with
respect to the total error E are calculated for the output layer weights.
Total error denotes how far off the outputs ŷ calculated in the previous
step are from the targets y (the desired output values).

• Backpropagation to the hidden layer. Continuing from the output
layer backwards towards the input, partial derivatives with respect to
E are calculated for hidden layer weights. All possible backwards paths
for each weight must be taken into account.

CHAPTER 2. BACKGROUND 24

• Weight updates. After all partial derivatives have been calculated,
the network weights are updated by taking a step towards the negative
gradient, where negative gradient means the opposite direction of the
partial derivative. The step size is governed by learning rate α. The
smaller the learning rate is, the smaller are also the changes to the
weights in each iteration.

The calculation of gradient is straightforward for weights in the last layer,
but as we move from the output layer towards the input, the derivative
chain rule must be applied. When all training examples in the training
set Dtrain = (Xtrain, Ytrain) have been used once to train the network using
the above described procedure, one epoch is completed [51]. Another often
mentioned term in literature is batch size. Batch size governs how many
training examples are used for calculating the weight updates before applying
the sum of all updates on the weights [51].

As we have now a general idea of how the individual building blocks and
the training process of neural networks work, we may move on to discussing
different architectural choices. The architecture of a neural network describes
how the neurons are connected to each other. In this thesis, we will focus
on the division between feed-forward neural networks and recurrent neural
networks.

Feed-forward neural networks

Feed-forward neural networks are defined by the fact that there are no loops
in the connections between neurons [43]. More precisely, the output values
from the previous layer are used as an input to the next one, i.e., they are
always fed forward. The amount of layers in a feed-forward network can vary.
If there are layers between the input and the output layers, these additional
layers are called hidden layers. Hidden layers are called hidden, because the
training data does not show the desired output values of these layers [21].

As an example of a feed-forward network with hidden layers, we may look at
Figure 2.12. The network contains 6 input neurons, two hidden layers with 4
and 3 neurons respectively, and 1 output neuron. The sizes of these layers can
vary and depend on the nature of the task that is being solved. For example,
consider a regression task where we want to predict the price of a car based
on three input variables: build year, manufacturer and color. How should
the network structure be defined? We need one input layer node for each
input variable and a single output node because our desired result is a single

CHAPTER 2. BACKGROUND 25

real number. Choosing the amount of hidden layers and their sizes is more
flexible, and has no stone-set rules. Ultimately, it is up to the experimenter
to compare different structures and attempt to find the best one. This can
be done by training different models and comparing their accuracies over a
validation data set. The term for this process is hyperparameter optimization
and it is defined more precisely in Section 2.5.3.

Figure 2.12: Feed-forward neural network with two hidden layers [43].

Recurrent neural networks

Recurrent neural networks (RNN) work differently from previously intro-
duced feed-forward neural networks. RNNs are specialized in learning se-
quential data and their architecture can vary a lot based on the application.
For example, RNNs can be used for predicting the next word in a sentence
on a word-by-word basis. Another application could use the whole sentence
as an input and classify it into a category.

To get an intuitive understanding on RNNs, we follow the explanation of
recurrent neural networks from [21]. In Figure 2.13, we can see a simple
graph of a recurrent neural network. On the left hand side, the network is
depicted in a recursive notation where the black square represents a lag of
one time step. On the right hand side the network is unfolded in time to
a more detailed form. Node h(t) represents the hidden state at time t and
we can see that it is obtained by combining the input x(t) and the previous

CHAPTER 2. BACKGROUND 26

hidden state h(t−1). This network has no outputs, but they could be defined
for each time step or alternatively a single output node after the very last
time step.

Figure 2.13: Recurrent neural network with no outputs [21].

RNNs can be trained using a special case of the backpropagation algorithm
called backpropagation through time (BPTT) [70]. BPTT involves backprop-
agating the unfolded network starting from the last time step towards the
first time step. When RNNs are used for learning long-term dependencies, a
problem arises from the fact that calculating the gradients via BPTT results
into long multiplication chains. This tends to cause the gradients to vanish
or explode, making it hard or impossible to train the network. The vanishing
and exploding gradient problem was detailed in [4]. Specialized RNNs to pre-
vent this problem have been devised, including the Long short-term memory
(LSTM) network, which is described in more detail in Section 3.2.2.

2.5.2 Time series analysis

Time series are sets of observations which are measured sequentially through
time. The observations may be continuous or discrete. In continuous time
series there is no interval between subsequent observations, e.g., continuous
temperature measurements, while discrete time series observations are sepa-
rated by a certain interval, e.g., daily bank account readings. Discrete time
series may be inherently discrete, aggregated over a period of time or sampled
from continuous series. [11]

Bontempi et al. [7] state that the origins of time series analysis are in lin-
ear statistical methods, such as autoregressive integrated moving average
(ARIMA) models. We do not go into the details of ARIMA here, but a
well-known book covering time series analysis based on ARIMA models is
available in [8]. In the last two decades, machine learning has become more

CHAPTER 2. BACKGROUND 27

common in the field of time series analysis. These machine learning methods
are characterised by their data-driven and black-box nature, where the anal-
ysis is not based on choosing suitable parameters to statistical models, but
rather learning the stochastic dependency between the past and the future
[7]. As specified in Section 2.5.1, RNNs are particularly suited for time series
data, not to forget that with appropriate pre-processing, feed-forward neural
networks are capable of handling sequential data as well.

According to Chatfield [11], the objectives of time series analysis can be
divided into description, modelling, forecasting or control :

• Description. The data is described using summary statistics (e.g.,
mean and standard deviation) or graphical methods.

• Modelling. A suitable statistical model is used to describe the data-
generating process.

• Forecasting. Future values of the time series are estimated. Note that
the term prediction is often used interchangeably with forecasting.

• Control. A process is controlled using forecasts. The process can be,
e.g., an industrial process.

In this thesis, we will focus on time series forecasting, where the next value of
a time series is being forecasted based on past values at each time step. This
can be formulated as both a classification or a regression task, depending
on the available data. Index data corresponds to a time series of integer
values that determine the selected beam index of a UE in a grid of beams.
Gain data corresponds to a multivariate time series of gain measurements
from the UE to each beam in the grid of beams. Index data and gain data
are described in more detail in Sections 4.2.2 and 4.2.1, respectively. When
index data is used, we formulate the problem as classification where the next
beam index is being classified. When beam gain data is used, the task is
formulated as regression because the gain values are continuous by nature.
The optimal beam is then decided by choosing the beam whose predicted
gain is the largest.

2.5.3 Hyperparameter optimization

Hyperparameter optimization is the process of finding suitable hyperparam-
eter values for machine learning algorithms. The choice of hyperparameters

CHAPTER 2. BACKGROUND 28

can yield performance from chance to state-of-the-art [6]. Often the results
may be satisfactory with out-of-the-box models, but improvements of several
percentages can be obtained by tuning the hyperparameters of the model. It
is also possible that the model will converge to a very poor solution if hyper-
parameters are severely ill-suited. The tuning may be conducted manually
from beginning to end, which in some cases is the best way to go if there
are few hyperparameters and the experimenter has a clear intuition of the
effect of each hyperparameter on the model performance [21]. Manual search
is also the fastest way to get initial results and in practice does not require
any effort on setting up the search. However, in practice this will quickly
turn infeasible as the search space grows. In this context, search space refers
to the different hyperparameter combinations, which can increase when new
hyperparameters are included in the search space or when more values are
tried.

Automated hyperparameter optimization techniques include grid search and
random search. In grid search, different hyperparameter combinations are
tried until all possible pre-defined combinations have been used to train the
algorithm and evaluated against a validation set. In random search, the dif-
ference is that only n hyperparameter combinations are tried, and each one
is drawn randomly without replacement from a pre-defined distribution of
hyperparameters. Drawing without replacement means that the same hy-
perparameter combination will not be drawn again after the first encounter.
Grid search has the advantage that given enough time, the optimal solution
within the grid is always found. However, in practice this sort of exhaus-
tive search is often too time/resource consuming, and random search may
very well produce better results. To illustrate this, we use an example from
[5] as seen in Figure 2.14. Consider a situation where we want to optimize
f(x, y) = g(x) + h(y) by taking nine trials over the two hyperparameters x
and y. It can be noted that the objective function f(x, y) ≈ g(x), since y
(the parameter on the left side of the box) has little effect on sum. In this
case, grid search will spend considerable amount of time iterating three times
over the same value of x and only changing y, which will effectively waste
resources. The random search can explore the relevant parameter space more
thoroughly and possibly find a better solution as a result.

There are also more sophisticated methods for hyperparameter optimization.
For example, Bayesian optimization, is a more intelligent method and allows
a heuristic search over hyperparameter distributions by sequentially evaluat-
ing the performance in those areas of the search space, where there is more
uncertainty about the value of the optimizable function f . The reader is re-

CHAPTER 2. BACKGROUND 29

Figure 2.14: An illustration of grid and random search with two hyperpa-
rameters [5].

ferred to [60] for more information on Bayesian optimization. In this thesis,
we use a combination of grid search and random search for hyperparameter
optimization.

2.6 Related research

Phan-Huy and Hélard [48], Sternad et al. [62] and Sui et al. [64] have studied
an approach called predictor antenna for enhancing the transmission quality
for UEs in moving vehicles. A predictor antenna is placed on the roof in the
front with one or more actual antennas following it. The predictor antenna
will receive a signal and the quality of this signal can be used to predict the
channel characteristics in a following time step.

Figure 2.15: Predictor antenna concept [64].

However, the concept of predictor antennas differs from the one presented
in this thesis in that it is used for predicting the channel characteristics and

CHAPTER 2. BACKGROUND 30

not for beam selection. Moreover, we are proposing a solution that does
not require the assistance of external hardware but solves the beam selection
task algorithmically. Predictor antennas appear as an attractive solution
for large-scale transport such as high-speed trains, as one predictor antenna
enhances the user experience of multiple passengers. External hardware is
still a very strict requirement and it may take years before a sufficient amount
of vehicles are equipped with predictor antennas. Thus, it is important to
also look for solutions that may not perform as well but do not require any
external hardware.

Chapter 3

Methods

In this chapter, we discuss the methods we use for predictive beam selection.
The methods are described on a general level with mathematical details only
where we find them necessary for understanding the ideas.

3.1 Kalman filter

Kalman filter is an algorithm for estimating unknown variables given related
observations over time. Originally, Kalman filter was introduced by Rudolf
Kálmán in [28]. A concise introduction to Kalman filtering with derivations
of all the necessary equations is available in [23]. Here, we refer to [69] for
summarizing the details of Kalman filtering on a higher level.

Kalman filter estimates the state vector xk of a discrete-time controlled pro-
cess based on the evolution of the state from previous time step and from
new measurements added to the model [69]. The state evolution without ad-
ditional knowledge from new measurements can be described with the linear
stochastic difference equation, which is written as:

x̂−k = Ax̂k−1 +Buk + wk−1 (3.1)

where k is the time index, A is the state transition matrix, B is the control-
input matrix, u is the control input and w is the process noise vector. x̂−k
denotes the a priori state estimate of x at step k given knowledge of the
estimated process before step k and x̂k denotes the a posteriori state estimate

31

CHAPTER 3. METHODS 32

of x at step k given a measurement zk. To break down the meaning of these
variables, we list their short explanations:

• A: Relates the state at previous time step xk−1 to the state at current
time step xk

• u: The optional control input denotes the known deterministic effects
on the system. Such inputs can be, e.g., steering angle, throttle setting,
or braking force. [17]

• B: Relates the control-input u to the state x. For example the magni-
tude of the effect of throttle setting on velocity [17].

• w: Gaussian noise with distribution p(w) ∼ N(0, Q), where Q is the
process noise covariance.

While Equation 3.1 describes the state evolution without taking into account
measurement updates, we need another equation to include the knowledge
about system state from new measurements z:

zk = Hxk + vk, (3.2)

where H is the measurement matrix and vk is the measurement noise.

• H (measurement matrix): Relates the state xk to the measurement zk.

• vk (measurement noise): Gaussian noise with distribution p(v) ∼ N(0, R),
where R is the measurement noise covariance.

Figure 3.1 summarizes the two steps in the Kalman filter algorithm: The
time update and the measurement update. We leave the derivations out but
offer here intuitive explanations of the calculations during the two steps.

Time Update

• The state is projected ahead, meaning that as time passes forward, the
state is updated according to the state transition matrix and control-
input matrix.

x−k = Ax̂k−1 +Buk (3.3)

CHAPTER 3. METHODS 33

• The error covariance is projected ahead. The estimate of the error is
changed due to time passing forward, i.e., we may be more uncertain
about the state because more time has passed since the last measure-
ment.

P−k = APk−1A
T +Q (3.4)

Measurement Update

• Kalman gain Kk is calculated. Kalman gain governs the weighting be-
tween measurements and predictions. As R approaches zero, the mea-
surement zk is trusted more and as P−k approaches zero, zk is trusted
less.

Kk = P−k H
T (HP−KH

T +R)−1 (3.5)

• Estimate is updated with measurement zk.

x̂k = x̂−k +Kk(zk −Hx̂−k) (3.6)

• Error covariance is updated.

Pk = (I −KkH)P−k (3.7)

Kalman filter is a relatively light-weight algorithm meaning that it does not
consume a lot of hardware resources. Another advantage is the recursive
property, which means that Kalman filter does not require the entire history
of observations to produce estimates, but rather the new observations are
updated into the model iteratively. [17]

3.2 Neural networks

3.2.1 Multi-layer perceptron (MLP)

Multi-layer perceptrons (MLP) are feed-forward neural networks, which con-
tain an input layer, one or more hidden layers and an output layer [22].
Nielsen [43] points out that the term perceptron in MLP may be confusing,

CHAPTER 3. METHODS 34

Figure 3.1: Kalman filter operation scheme [69].

since MLP is often used to refer to feed-forward neural networks that con-
sist of, e.g., sigmoid neurons instead of perceptrons. Nevertheless, in this
thesis, we use MLP to signify feed-forward neural networks with any kind of
neurons.

3.2.2 Long short-term memory (LSTM)

Long short-term memory (LSTM) networks were proposed in [24]. LSTMs
expand on “vanilla” RNNs by introducing internal recurrence in addition to
the outer recurrence found in RNNs. The internal recurrence is governed by
a set of gates, which control the information flow inside the LSTM cell.

In Figure 3.2, we can see a block diagram of an LSTM. The mathematical
details of the gates are explained in [21], but we summarize their higher level
meaning here:

• Forget gate. Controls the self-loop (internal recurrence) weight.

• External input gate. Controls how input values are accumulated to
the internal state.

• Output gate. Controls how the output value is acquired from the
internal state.

CHAPTER 3. METHODS 35

All of the gates use sigmoid units, while the input can have any squashing
non-linear unit. This means that each gate and the input squash the values
to a range from 0 to 1. Compared to simpler RNN architectures, LSTMs
have been shown to learn long-term dependencies more easily. [21]

Figure 3.2: Block diagram of LSTM [21].

3.3 Support vector machine

The modern version of support vector machine (SVM) was introduced in
[14]. SVMs can be used for classification and regression, but let us consider
first a classification problem with only two classes that are linearly separable.

CHAPTER 3. METHODS 36

According to Cortes and Vapnik [14], SVMs attempt to solve the problem
by transforming the input vectors into a higher dimensional feature space
and finding a linear hyperplane that separates the classes. It is possible that
there are multiple hyperplanes that separate the classes, but SVM finds the
optimal hyperplane. Cortes and Vapnik [14] defines the optimal hyperplane
as a linear decision function with maximal margin between the vectors of
the two classes. The maximal margin leaves a gap between the classes such
that the vectors closest to the vectors of the other class are separated by a
distance that is as large as possible. The vectors nearest to this margin are
called support vectors, where the algorithm gains its name from.

Figure 3.3: Optimal margin and optimal hyperplane in the case of a linearly
separable problem. Support vectors are marked with grey squares [14].

3.4 Naive Bayes classifier

To understand the Naive Bayes classifier, we follow [41]. Naive Bayes clas-
sifier is based on the famous Bayes theorem. Assuming we are trying to
calculate the probability of a hypothesis h being true using data D, Bayes
theorem provides a way for doing this based on prior probability, the proba-
bility of observing D and the probability of observing D given h. To clarify
the terminology, prior probability P (h) represents any knowledge about the
probability of h being true without taking into account the actual data.

CHAPTER 3. METHODS 37

Bayes theorem is written as:

P (h|D) =
P (D|h)P (h)

P (D)
, (3.8)

where P (D|h) is the conditional probability of obtaining data D given that
h is true, P (h) is the prior probability of h being true and P (D) is the
prior probability of obtaining the data D regardless of h. The outcome
P (h|D) is the posterior probability, which denotes the probability of h being
true after we have observed D. Supposing that we have multiple candidate
hypotheses H, the Bayes theorem can be used to calculate a maximum a
posteriori (MAP) hypothesis, which represents the hypothesis that has the
highest posterior probability:

hMAP = arg maxh∈H P (h|D) (3.9)

To mold the Bayes theorem into classification context, we can think of the
hypotheses as clauses whether a given instance belongs to some class v ∈
V . Let us consider a training dataset, which contains instances that are
represented by tuples of attributes (a1, a2, ..., an) and a target value v. If
we now encounter a new instance described by (a1, a2, ..., an), but with an
unknown target value, the Bayesian approach for classifying the instance is
to calculate the MAP estimate of each v:

vMAP = arg maxvj∈V P (vj|a1, a2, ..., an) (3.10)

By using Bayes theorem, the above equation becomes:

vMAP = arg maxvj∈V
P (a1, a2, ..., an|vj)P (vj)

P (a1, a2, ..., an)

= arg maxvj∈V P (a1, a2, ..., an|vj)P (vj) (3.11)

To calculate the MAP estimates, we can estimate the probabilities P (vj) and
P (a1, a2, ..., an|vj) from the training dataset. The prior probability P (vj)
is rather simple to estimate - we only need to calculate the frequency of
each target value vj in the training data. However, obtaining a reliable
estimate of P (a1, a2, ..., an|vj) would require a very large training set to be
practically feasible, since the number of different combinations is the number

CHAPTER 3. METHODS 38

of possible (a1, a2, ..., an) tuples times the number of possible target values
V . The Naive Bayes classifier results from assuming that the probabilities of
individual attributes are independent of each other so that we can multiply
them together, i.e., P (a1, a2, ..., an|vj) =

∏
i P (ai|vj). Thus, we can write

the classifier as:

vNB = arg maxvj∈V P (vj)
∏
i

P (ai|vj) (3.12)

Chapter 4

Implementation

In this chapter, we describe how the simulation experiments are implemented.
This includes information about the simulation environment and its limita-
tions. We will also cover the qualities and structure of the data that are used
for the beam prediction.

4.1 Simulation environment

The simulation environment for the experiments in this thesis is based on
the one introduced in [67]. More precisely, the geometric channel model and
scattering environment specified in the previous work are used as a basis for
simulating multipath propagation of radio waves. Furthermore, we limit the
environment such that only one UE is modelled at a time. This means that
no inter-user interference is taken into account.

For modelling a rectangular antenna array with isotropic antennas, we use the
Phased Array Toolbox in MATLAB [39], [40]. The beamforming vectors are
calculated using the same toolbox. The beamforming vector w is defined for
each beam in a grid of n beams, where each neighbouring beam is separated
by an angle defined by αspacing.

In Figure 4.1 we can see a simple illustration of the simulation environment.
The figure shows the UE path and a base station with a grid of beams. The
simulation parameters are described in Section 4.1.2.

39

CHAPTER 4. IMPLEMENTATION 40

Figure 4.1: An overview of the simulation environment. Note that in this
figure there are only 6 beams in the GoB, while in the simulation there are
22, 43, or 86 beams, depending on the number of antenna elements in the
BS.

CHAPTER 4. IMPLEMENTATION 41

4.1.1 Channel model

A detailed explanation of the channel model and its theoretical background
is available in [67]. Here, we describe the model shortly in the context of this
thesis and explain the slight modification that was carried out on the model.

First, considering only a single transmit antenna and a single receiver antenna
(SISO), we can write the channel response over all available multi-paths as:

h =
∑
k

10−Lk/20 exp(−dk
λ
× 2πi), (4.1)

where k represents one path, and dk and Lk are the length and path loss of
the kth path, respectively.

For the MIMO case, the channel matrix H , which describes the channel
response from each transmit antenna to each receiving antenna, can then be
written as:

H =

h11 · · · h1m · · · h1M
...

. . .
...

. . .
...

hn1 · · · hnm · · · hnM
...

. . .
...

. . .
...

hN1 · · · hNm · · · hNM

 ,

where hnm is the channel response between transmit antenna n and receiving
antenna m, and N and M are the total amount of transmit and receive
antennas, respectively. In the experiments of this thesis we use a MISO
setup, where M = 1 and N is varied.

The channel model in [67] takes into account a line-of-sight (LOS) path and
up to nscatterers paths that propagate via reflections from scatterers. Line-of-
sight path means a path through which the signal can propagate unobstructed
from transmitter to receiver. We expand the model in this thesis by adding a
constant path, which ensures that the received signal power is not completely
zero even if the LOS-path and every scatterer path is unavailable. We assume
this a realistic addition when serving UEs in high mobility conditions, e.g.,
near railways or highways, because such open environments often do not
contain large buildings, which would be present in urban environments. Long
gaps in the received signal would also make gain based beam prediction
infeasible.

CHAPTER 4. IMPLEMENTATION 42

4.1.2 Simulation parameters

There are several parameters in the simulation environment that affect, for
example, how scatterers are generated and how fast the UEs are travelling.
In this section, we describe the role of each simulation parameter and present
the parameter values that are used in the experiments of the thesis.

• dt: Delta time, which governs how many seconds corresponds to one
time step

• nantennaRows: Number of rows in the antenna array

• nantennaCols: Number of columns in the antenna array

• αspacing: Angle spacing in grid of beams

• nscatterers: Number of scatterers in the environment

• wscatterers: Scatterer width

• µv: Mean of UE velocity distribution

• σv: Std. of UE velocity distribution

• dpath: UE travelling path distance from BS (origin) in X-direction

• lpath: UE travelling path length

Table 4.1 shows the parameter values that we use across all experiments.
In short, Scenario 1 involves varying the amount of antenna columns while
the number of scatterers is kept at 0. In Scenario 2, we fix the antenna
array but vary the number of scatterers. Velocity is varied from 100 km/h
to 1500 km/h in all experiments and the rest of the parameters are kept
constant. Velocities of over 1000 km/h may sound extreme, but due to
how the simulation is implemented, the UE velocity and dt are actually
interchangeable: The UE moves a distance specified by its velocity during
one time frame in the simulation, which leads to the fact that doubling the
value of dt has the same effect as doubling velocity in terms of distance
travelled between beam measurement points. Thus similar results can be
achieved, e.g., by doubling the delta time (dt = 0.2) and halving the velocity
(µv = 50, 100, ..., 750 km/h). While it would be interesting to study for
example the effect of dpath on the results, we limit the amount of different
parameter combinations due to time and computing resource limitations.

CHAPTER 4. IMPLEMENTATION 43

Parameter Value(s)

dt 0.1 s
nantennaRows 1
nantennaCols 8, 16, 32
αspacing

180
4×nantennaCols

nscatterers 0, 5, 25
wscatterers 7 m
µv 100, 200...1500 km/h
σv 10 km/h
dpath 100 m
lpath 200 m

Table 4.1: Parameter values used in the experiments.

4.2 Data

In this section, we introduce the data that can be collected from the simu-
lation environment. Because of the limitations of the environment, we focus
on two data types, index data and gain data.

4.2.1 Gain data

The received beamformed signal can be written as:

y = Hwx+ n, (4.2)

where H is the channel matrix, w is the beamforming weight vector, x is
the input signal and n is a noise vector.

With the assumption that |x|2 = |n|2 = 1, we define the gain of the received
signal as:

G(w,H) = |Hw|2

= (Hw)H(Hw)

= wHHHHw (4.3)

CHAPTER 4. IMPLEMENTATION 44

To denote gain measurements over all timesteps and beams for a single UE
we write:

G =

G11 · · · G1t · · · G1T

...
. . .

...
. . .

...
Gb1 · · · Gbt · · · GbT

...
. . .

...
. . .

...
GB1 · · · GBt · · · GBT

 ,

where each element Gbt is calculated using Equation 4.3, and B and T are
the total amount of beams and time steps, respectively. This means that a
column in the gain matrix contains gain measurements from each beam at
one time step.

4.2.2 Index data

Index data is time series data that denotes the selected beam index of a UE
at a given time step. Mathematically we can denote a single time series of
index data as:

I =
[
I1 · · · It · · · IT

]
where It = 1, 2, ..., B is the selected beam index of the UE at time step t,
and T is the total amount of time steps.

The optimal solution for the beam selection task at a given time step t is
such that It maximizes the gain over all possible beams b:

Iopt,t = arg maxbGbt

where Gbt is the gain achieved when choosing beam index b at time step t.
The optimal solution for t = 1, ..., T is then:

Iopt =
[
Iopt,1 · · · Iopt,t · · · Iopt,T

]

CHAPTER 4. IMPLEMENTATION 45

4.2.3 Data pre-processing

The raw data format is described in Sections 4.2.1 and 4.2.2, but pre-processing
is required before the data is in acceptable format for supervised machine
learning. For pre-processing the time series data, we use the windowing
method. In windowing method, input-target pairs, (x, y), are constructed
by rolling a window of length nlookback from the beginning of the time series
to the end, and setting the windowed values as input x and the following
ntarget values as target y. In the implementation of this thesis we only need
to predict one time step forward, so ntarget is always set to 1. The maximum
amount of (x, y) pairs that can be created from a time series of length N is
N − nlookback − ntarget + 1, so therefore larger windows sizes amount to less
(x, y) pairs available.

We provide here a minimal example of the window method for clarity. Let
time series be T = [1, 2, 3, 4, 5, 6, 7, 8]. Assuming nlookback = 3 and ntarget = 1
as an example, we can construct the following (x, y) pairs from T :

x y
(1,2,3) (4)
(2,3,4) (5)
(3,4,5) (6)
(4,5,6) (7)
(5,6,7) (8)

In this thesis, we use the above described window method to preprocess both
index and gain data before applying predictive algorithms. For index data
we use nlookback = 10 and for gain data we use nlookback = 5. These values
were chosen after manual experimentation on different nlookback values.

4.3 Experiments

In this section, we describe the two scenarios chosen for the empirical ex-
periments. In Scenario 1, there is no scattering environment present and a
direct LOS path is available between the BS and UE at all times. In Sce-
nario 2, there exist multiple scattering mirrors in the surroundings of the
base station. Scenario 1 acts as a simple starting point for determining how
severely the UE velocity and BS antenna array size affect the performance of
baseline and predictive algorithms. Scenario 2 is more complex and its main

CHAPTER 4. IMPLEMENTATION 46

purpose is to make the simulation more realistic and evaluate the efficiency
of baseline and predictive algorithms when the following beam is not always
the neighbouring beam of the previous optimal beam.

We use antenna arrays of 1x8, 1x16 and 1x32 antenna elements in the trans-
mitting end. The reason for selecting antenna arrays with only one row of
antennas is that the UE moves on a 2D plane. Having multiple rows of
antennas would be meaningful if we were interested in the gain pattern in
vertical direction, but on the 2D plane the effect would only be a constant
increase in gain values. This would not affect the results, since we use metrics
with percentage units. Thus, we opt for a single row of antennas to reduce
computational complexity.

In both scenarios the UEs move on a linear pre-determined path with nor-
mally distributed velocities. We motivate the choice of linear motion for the
UEs by assuming that at high velocities the UEs are most likely travelling
on roads or railway tracks. In other words, we assume that since UEs have
gained such high velocity, it would be less probable that the motion was for
example circular or randomized. However, the results in this thesis are not
limited on linearly moving UEs, because the used methods can generalize
on different types of time series data. Furthermore, by using normally dis-
tributed velocities, we attempt to generate more diverse data that captures
the historical beam selection behaviour from UEs with varying velocities.
Abuelenin and Abul-Magd [1] show empirically that a normal distribution is
a good fit for velocities in congestion or free-flow traffic states, but not nec-
essarily in the transition between those states. Congestion is a traffic state
where vehicles are unable to travel at their desired speed because of other
vehicles. Free-flow, in contrast, is a traffic state where the velocity of the
vehicles is not limited by other vehicles. In this thesis, we are interested only
in the free-flow state, because it better fits our high-speed scenario. We did
not find similar evidence for high-speed train velocity distribution, but for
simplicity we do not introduce a different velocity distribution for modelling
UEs travelling in trains.

Based on the above assumptions the UE velocities are drawn from a normal
distribution centered around a baseline velocity µv as follows:

vUE ∼ N (µv, σ
2
v), (4.4)

where σv is the standard deviation.

CHAPTER 4. IMPLEMENTATION 47

4.3.1 Scenario 1: Line of sight

In Figure 4.2 we can see the test environment for Scenario 1. When there
are no scatterers in the environment, the optimal beam is straightforward
to determine: The beam which has its main lobe pointing closest to the UE
location will provide the best gain value. As the UE is moving on a linear
path, the optimal beams are selected in order (i.e. neighbouring beam is the
next optimal beam) because of the nature of an evenly spaced grid of beams.

The absence of scattering obstacles leads to gain patterns that are continuous
and smooth. We use the term gain pattern in this thesis to signify the
profile of the time series produced by subsequent gain measurements over
the course of a UE passing by the BS. When there is a LOS-path available,
the gain profile of an individual beam reaches its maximal value when the
beam is pointing directly at the UE. We can see an example of a smooth
gain pattern in Figure 4.4(a). The gain will diminish rapidly when the UE
moves away from the center of the beam. This continuity in gain profiles
makes it feasible to predict subsequent gain values and thus predict also the
optimal beam index in the following time step. When predicting optimal
beam index of next time step based on gain predictions, no historical data
is needed. However, in Scenario 2, we aim to predict optimal beam indices
in a scattering environment, which limits the usage of gain profiles for index
prediction.

4.3.2 Scenario 2: Scattering environment

In Figure 4.3, we can see the test environment for Scenario 2. When there
are scatterers in the environment, the optimal beams are not necessarily
selected in order. The scatterers may block the propagation of the signal
towards certain directions, and also allow non-LOS paths via reflections from
scatterers.

Because of the scatterers, the gain profiles are no longer smooth, as we can
see in Figure 4.4(b). This leads to difficulties in using local gain profiles for
beam index prediction, as the scatterers can cause gaps and unpredictable
changes in gain values. Because of this, predicting the following optimal
beam successfully requires knowledge that is unobtainable from the local
data only. Thus, we aim to obtain that information from previous UEs who
have already travelled along the same path.

CHAPTER 4. IMPLEMENTATION 48

Figure 4.2: Scenario 1.

Figure 4.3: Scenario 2.

CHAPTER 4. IMPLEMENTATION 49

(a) Smooth gain pattern (b) Non-smooth gain pattern

Figure 4.4: Sample gain patterns from Scenario 1 and 2.

4.3.3 Training and testing phase

The training phase for the predictive algorithms (other than Kalman filter)
uses historical data from a train set of ntrain = 4000 UEs for training the
algorithms with beam selection behaviour of previous UEs. In a real world
scenario, this phase would correspond to the BS collecting data and learning
the order in which UEs select beams.

The testing phase consists of testing the predictive algorithm efficiency on
a test set of ntest = 1000 UEs after the training phase has been completed.
The UEs in the test set do not overlap with those in the train set and the test
accuracy is a measure of how well the algorithms perform for unseen UEs.

We assume that the scattering environment is stationary between the train-
ing and testing phases. This means that we only take into account stationary
scattering obstacles, which in a real world scenario would correspond to, e.g.,
trees, hills and buildings. There would also be other sources of scattering
that are in constant motion, for example other vehicles. The solutions pro-
posed in this thesis can however take into account long-term changes in the
scattering environment by re-training the BS specific predictive algorithm at
desired intervals. This ensures that the BS has adapted to changes in its
environment.

4.3.4 Baseline solution: persistence model

To assess the baseline performance, we use an approach that is often called
persistence model in literature (e.g., in [44]). In persistence model the next

CHAPTER 4. IMPLEMENTATION 50

time series value x(t+ 1) at step t is predicted to be the same as the current
value x(t). In the context of this thesis, persistence model corresponds to
selecting the optimal beam from the previous time step, Iopt,t−1, as the beam
of choice for the current time step, Iper,t. In case the optimal beam in the
current time step remains the same as in the previous time step, i.e., Iopt,t−1 =
Iopt,t, the persistence model will achieve the optimal gain. However, if the
optimal beam is different at the next time step, as often is the case, the
persistence model will produce a sub-optimal gain. We assume that this is
a good model for mimicking a real life beam selection strategy that does
not use any predictive algorithms, but rather follows a beam management
procedure similar to what was introduced in Section 2.4.2.

4.3.5 Algorithm implementations

MLP and LSTM are implemented using Keras library (version 2.2.4) [12].
SVM and Naive Bayes are implemented using Scikit-learn library (version
0.20.3) [47]. The necessary equations for Kalman filter were written from
scratch using Matlab [39]. Hyperparameters were optimized using random
search for MLP and both LSTM algorithms. Tables showing the random
search results can be seen in Appendix A. SVM contains considerably less
hyperparameters than neural networks, so they were optimized using grid
search. Grid search results can be seen in Appendix B. Naive Bayes hyper-
parameters were left at the default values, since the purpose of the algo-
rithm is only to act as a reference for the more complex algorithms. Overall,
the goal of hypeparameter optimization was not to spend too much time
exhaustively searching for the perfect hyperparameters, but mainly to find
hyperparameters which produce decent results.

• MLP index classification. MLP network is deployed with the amount
of input neurons equal to nlookback, which is the number of time steps
we look into the past. The final model contains two hidden layers
with ReLU activations and an output layer with softmax activation.
The hidden layers contain 150 and 100 neurons and the output layer
contains nbeams neurons, corresponding to the amount of classes. The
network is trained for 40 epochs.

• SVM index classification. As seen in Appendix B, the SVM accu-
racy is on a similar range as long as “rbf” kernel is chosen. Thus we
deploy SVM with Scikit-learn’s default parameters: C = 1.0, gamma =
“auto” and kernel = “rbf”.

CHAPTER 4. IMPLEMENTATION 51

• NB index classification. Naive Bayes is deployed using Scikit-learn’s
GaussianNB class with default parameters: var smoothing = 1e−9.

• LSTM index classification. LSTM for index classification is de-
ployed with two LSTM layers that both contain 100 neurons and are
followed by a dropout layer with droupout rate set to 0.25. The output
layer contains nbeams with softmax activation. The network is trained
for 8 epochs.

• LSTM gain regression. LSTM gain regression uses gain values in-
stead of beam index values as input. The network is deployed with two
LSTM layers of size 100, which are both followed by a dropout layer
with dropout rate set to 0.25. The LSTM layers are followed by an out-
put layer of size nbeams with linear activation function. The network
is trained for 5 epochs. The gain values are standardized to have zero
mean and standard deviation of 1 before feeding into the network. The
standardized gain values are acquired as:

Gstandardized =
G− Ḡ
std(G)

, (4.5)

where Ḡ and std(G) are the mean and standard deviation over all gain
values in the dataset, respectively.

• Kalman filter. When using Kalman filter, we attempt to predict the
gain value changes for the following time step and select the beam with
the highest predicted gain. We set the state vector xk as:

xk =

G1
...
GB

G′1
...
G′B
G′′1
...
G′′B

where G′b is the change rate in the gain of beam b, and G′′b is the
change rate of G′b. We assume a constant acceleration model in the
gain strength, which leads to the following equations:

CHAPTER 4. IMPLEMENTATION 52

Ĝb,k = Gb,k−1 +G′b,k−1dt+
1

2
G′′b,k−1dt

2 (4.6)

Ĝ′b,k = G′b,k−1 +G′′b,k−1dt (4.7)

Ĝ′′b,k = G′′b,k−1 (4.8)

To satisfy the above equations, we need to set the state transition ma-
trix A accordingly. For easier visualization, we demonstrate here the
state transition matrix A and the measurement matrix H assuming
that B = 2, while in the simulation B is actually larger. Neverthe-
less, the matrices follow the same pattern regardless of B. Under this
assumption we can write A as:

A =

1 0 dt 0 dt2/2 0
0 1 0 dt 0 dt2/2
0 0 1 0 dt 0
0 0 0 1 0 dt
0 0 0 0 1 0
0 0 0 0 0 1

No control input uk is used, so the state projection in time update is
simply:

x̂−k = Ax̂k−1 (4.9)

Substituting the state transition matrix A into Equation 4.9, we achieve
the desired constant acceleration equations.

The measurement matrix H is a B × 3B matrix, where an identity
matrix of size B×B is followed by a B× 2B zero matrix. For example
if B = 2, we have:

H =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
When calculating Hx̂−k in the measurement update step, using this kind
of measurement matrix means that we are only measuring gain values,
but not the change rates.

Chapter 5

Evaluation

In this chapter, we present the results and evaluate how different methods
succeed in the beam selection problem.

5.1 Metrics

We evaluate each algorithm using the following metrics:

• Classification accuracy. The selected beam index It at time step t
is compared to the optimal beam index Iopt,t, which is the beam that
provides the maximal gain. If It = Iopt,t, the classification is correct
and if It 6= Iopt,t, the classification is incorrect. Classification accuracy
tells the percentage of time steps which are classified correctly.

Classification accuracy =
1

T

T∑
t=1

{
1, if It = Iopt,t.

0, otherwise.
(5.1)

• Gain ratio. Gain G(It) is obtained when choosing beam index It at
time step t. Gain ratio tells the average ratio between the obtained gain
G(It) and the maximal gain G(Iopt,t), which is obtained by choosing the
optimal beam Iopt,t. The maximum value for gain ratio is 1. We can
write this as:

Gratio =
1

T

T∑
t=1

G(It)

G(Iopt,t)
(5.2)

53

CHAPTER 5. EVALUATION 54

• Gain increase. This measurable tells the average increase (or de-
crease) over the baseline method. We can write this as:

Ginc =
1

T

T∑
t=1

G(It)

G(IBL,t)
, (5.3)

where G(IBL,t) is the beam index chosen by the baseline algorithm at
time step t.

• Capacity increase. Shannon-Hartley theorem states channel capacity
as [58], [59]:

C = B log2

(
1 +

S

N

)
, (5.4)

where B is the channel bandwidth in Hz and S and N are the signal
and noise powers in a linear unit, respectively.

Capacity increase tells the average increase over the baseline method
in channel capacity. We write this as:

Cinc =
1

T

T∑
t=1

Calg

CBL

=
1

T

T∑
t=1

log2(1 + (1 +Ginc,t)
S
N

)

log2(1 + S
N

)
(5.5)

The signal-to-noise ratio (SNR) is required for calculating the channel
capacity. SNR values are not available in the simulation environment,
which is why we only present some examples of capacity increase given
theoretical SNR values in Chapter 6.

5.2 Scenario 1

5.2.1 1x16 antenna array

In Figure 5.1, we can see classification accuracy as a function of velocity.
The accuracy of the baseline algorithm decreases linearly as a function of
velocity. The trend in the performance of Kalman filter is similar to that of
the baseline method, but the accuracy remains slightly above the baseline.
The most important thing to note, however, is that Kalman filter provides a
good classification accuracy at low velocities, but at velocities higher than 300

CHAPTER 5. EVALUATION 55

Figure 5.1: Classification accuracy as a function of velocity using 1x16 trans-
mission antenna.

km/h the performance can not keep up with the algorithms using historical
data. The rest of the methods provide accuracies on a similarly high level,
showing no trend as a function of velocity. LSTM gain regression provides
a slightly higher accuracy, while MLP index classification comes out as the
weakest on several velocities.

However, by observing Figure 5.2, we see that the differences between the
machine learning algorithms in classification accuracy lead to negligible dif-
ferences in gain ratio. Classification accuracy as a metric is not particularly
informative for evaluating the benefit of predictive beam selection because
the binary nature of the metric penalizes the incorrectly classified beams
equally. The reality is that the some of the incorrectly classified beams pro-
vide better gain than others. Thus, it is better to observe gain increase and
gain ratio. In Figure 5.3, we can see that each algorithm other than Kalman
filter provides a gain increase of similar magnitude.

CHAPTER 5. EVALUATION 56

Figure 5.2: Gain ratio as a function of velocity using 1x16 transmission
antenna.

Figure 5.3: Gain increase as a function of velocity using 1x16 transmission
antenna.

CHAPTER 5. EVALUATION 57

5.2.2 1x8 antenna array

Using 1x8 transmission antenna array produces wider beams when compared
to the 1x16 antenna array. Consequently, the gain differences between neigh-
bouring beams at each particular location are smaller, so choosing the wrong
beam causes less penalty. In Figure 5.4, we can see that the baseline clas-
sification accuracy is higher than in the case of 1x16 transmission antenna.
Because of the wider beamwidth, the beam is switched less frequently, which
explains the increase in classification accuracy.

In Figure 5.5, we can see the gain ratio when using 1x8 transmission antenna.
Even at very high velocities, the baseline gain ratio is over 94%, which means
that it is difficult to achieve significant improvement over it. In Figure 5.6,
we can see that the gain increase is moderate for all algorithms - even at
velocity of 1000 km/h, an improvement of only around 2% is achieved with
methods other than Kalman filter. Kalman filter, again, produces the best
results at velocities under 300 km/h, but fails to keep up at higher velocities.

Figure 5.4: Classification accuracy as a function of velocity using 1x8 trans-
mission antenna.

CHAPTER 5. EVALUATION 58

Figure 5.5: Gain ratio as a function of velocity using 1x8 transmission an-
tenna.

Figure 5.6: Gain increase as a function of velocity using 1x8 transmission
antenna.

CHAPTER 5. EVALUATION 59

5.2.3 1x32 antenna array

We now inspect the effect of increasing the amount of antennas in the array.
Having 32 antennas in a row simulates an array with a massive amount of
antenna elements and based on the difference between 1x8 and 1x16 arrays,
we expect even higher gain increase with 1x32 antennas compared to the
previous cases. For producing the results, we increased the amount of hidden
layers and neurons in MLP to three hidden layers of 300 neurons in each.
The reason for this change was that the initial setup produced erratic results
where the MLP metrics were even below the baseline on some velocities.
The instability of the original MLP setup can be justified by the insufficient
capacity of the model when the amount of antennas and therefore the number
of possible classes was increased.

In Figure 5.7, we can see the classification accuracy of the models. LSTM
gain regression, SVM and NB perform the best here while MLP and LSTM
fall below 90% accuracy. Nevertheless, in Figures 5.8 and 5.9, we can see that
in terms of gain ratio and increase, there is not a large difference between the
methods. However, when compared to the 1x16 case, the gain increase of the
methods is on average around 4 times higher, and an even higher difference
is present between the gain increase of 1x32 and 1x8 cases.

Figure 5.7: Classification accuracy as a function of velocity using 1x32 trans-
mission antenna.

CHAPTER 5. EVALUATION 60

Figure 5.8: Gain ratio as a function of velocity using 1x32 transmission
antenna.

Figure 5.9: Gain increase as a function of velocity using 1x32 transmission
antenna.

CHAPTER 5. EVALUATION 61

5.3 Scenario 2

We now examine the effect of adding scatterers to the environment. The
experiments are done using a low (5) and a high (25) amount of scatterers.
In both cases, the scatterers are placed randomly into the environment such
that they fall into an area defined by x ∈ [70...130], y ∈ [−100...100]. The
results are averaged over three random seeds so the impact of randomness
is diminished. Ideally, the results would be produced with more than three
random seeds, but this amount was chosen due to simulation time limitations.

5.3.1 5 scatterers

In Figure 5.10, we can see that adding 5 scatterers into the environment does
not have a significant impact on the results when compared to Scenario 1.
The performance of the gain regression methods is deteriorated, since the
scatterers produce non-smooth gain patterns at some time intervals. The
amount of scatterers is still low enough that the overall performance decrease
is not significant.

In Figures 5.11 and 5.12, we can see that the performance of gain regression
methods in terms of gain ratio and increase is decreased. Kalman filter
gives worse gain ratio compared to the baseline on many velocities, although
there is only a low amount of scatterers. This suggests that in a real-life
environment with even small amounts of scattering, the Kalman filter is
probably unable to bring any improvement to the system performance.

CHAPTER 5. EVALUATION 62

Figure 5.10: Classification accuracy as a function of velocity using 1x16
transmission antenna, 5 scatterers.

Figure 5.11: Gain ratio as a function of velocity using 1x16 transmission
antenna, 5 scatterers.

CHAPTER 5. EVALUATION 63

Figure 5.12: Gain increase as a function of velocity using 1x16 transmission
antenna, 5 scatterers.

5.3.2 25 scatterers

The differences in accuracies of the methods are more visible when the
amount of scatterers is increased to 25. In Figure 5.13, we can see that
SVM provides the best accuracy on all velocities and Kalman filter is clearly
the worst performing method, often providing worse accuracy than the base-
line. Naive Bayes and LSTM gain regression give decent performance, but
are visibly worse than other index based methods. Index based methods
seem to produce the most robust results across the velocity and scatterer
values.

In Figure 5.14 and Figure 5.15, we can see noticeably more separation be-
tween algorithms compared to the previous gain ratio and increase figures.
The performance of SVM is superior whereas gain based methods can even
fall below the baseline performance. The gain ratio of all index based meth-
ods is close to the one achieved without scatterers. This gives evidence that
in the case of a scattering environment where gain behaves unpredictably,
index based methods can still give significant improvement over the baseline.

CHAPTER 5. EVALUATION 64

Figure 5.13: Classification accuracy as a function of velocity using 1x16
transmission antenna, 25 scatterers.

Figure 5.14: Gain ratio as a function of velocity using 1x16 transmission
antenna, 25 scatterers.

CHAPTER 5. EVALUATION 65

Figure 5.15: Gain increase as a function of velocity using 1x16 transmission
antenna, 25 scatterers.

5.4 Average results

We now present summary tables that show the same metrics as the figures
above, but averaged over all velocities. With this, we aim to make compar-
ison between algorithms and scenarios easier. In Table 5.1, we can see the
summary table for classification accuracy, where the highlighted values show
the maximum of each scenario. LSTM gain regression provides the best ac-
curacy on average when there are 0 or 5 scatterers. However, in the scenario
with high number of scatterers, the index based methods provide better ac-
curacies. In Table 5.2, we can see that the gain ratio is close to 100% in the
1x8 antenna array scenario for all methods. Moving to other scenarios we
see the steepest decline in the gain ratio of the baseline method, while the
gain ratio of all index based methods stays at over 95%. This leads to higher
gain increase when the amount of antennas or scatterers is increased, as seen
in Table 5.3.

CHAPTER 5. EVALUATION 66

XXXXXXXXXXXXAlg.
Ant. / Scat.

1x8/0 1x16/0 1x16/5 1x16/25 1x32/0

No predictions 81.12 62.49 62.69 58.56 33.67
SVM index classification 96.15 95.67 95.36 93.85 94.46
LSTM gain regression 97.73 97.41 95.57 86.03 96.47
LSTM index classification 95.75 93.53 92.72 90.38 85.21
MLP index classification 95.23 92.41 91.40 88.55 88.30
NB index classification 95.06 94.82 94.50 85.57 93.57
KF gain regression 87.07 68.30 67.47 58.13 37.68

Table 5.1: Average classification accuracy (%) over all velocities.

XXXXXXXXXXXXAlg.
Ant. / Scat.

1x8/0 1x16/0 1x16/5 1x16/25 1x32/0

No predictions 98.01 92.75 92.86 90.18 78.48
SVM index classification 99.91 99.88 99.79 99.43 99.81
LSTM gain regression 99.97 99.95 98.85 94.89 99.90
LSTM index classification 99.89 99.63 99.47 98.56 98.53
MLP index classification 99.83 99.39 99.05 97.93 98.99
NB index classification 99.84 99.82 99.73 96.86 99.72
KF gain regression 98.80 94.07 93.10 85.98 79.88

Table 5.2: Average gain ratio (%) over all velocities.

XXXXXXXXXXXXAlg.
Ant. / Scat.

1x8/0 1x16/0 1x16/5 1x16/25 1x32/0

SVM index classification 1.97 8.17 7.93 10.85 34.17
LSTM gain regression 2.03 8.25 6.91 5.83 34.30
LSTM index classification 1.94 7.88 7.59 9.85 32.32
MLP index classification 1.89 7.63 7.09 9.13 33.01
NB index classification 1.90 8.12 7.86 7.99 34.04
KF gain regression 0.81 1.46 0.30 -4.58 1.87

Table 5.3: Average gain increase (%) over all velocities.

CHAPTER 5. EVALUATION 67

5.5 Algorithm time complexities

In Table 5.4, we can see a comparison of algorithm run times for a single
train-predict pass. For this purpose we selected 1x16 antenna array and 500
km/h base UE velocity as parameters. We can see that there is large variation
between methods and the two LSTM algorithms take the most time in total
to run. While the total time for SVM is less than that of LSTMs, it should
be noted that for the prediction phase, the SVM run time is distinctly the
highest. Kalman filter does not contain any training phase so it is the fastest
algorithm, although Naive Bayes is almost as fast. The Naive Bayes has a
training phase but with this amount of data the training is so quick that it
is rounded to 0.

XXXXXXXXXXXXAlg.
Time (min)

Training Test Total

KF gain regression 0 1.7 1.7
LSTM gain regression 11.6 4.0 15.6
LSTM index classification 17.0 3.5 20.5
MLP index classification 4.9 0.7 5.6
NB index classification 0 2.1 2.1
SVM index classification 1.7 7.2 8.9

Table 5.4: Training and prediction time for each algorithm using 1x16 an-
tenna array, µv = 500 km/h, ntrain = 4000, ntest = 1000.

5.6 Learning curves

In this section we present learning curves, which show the training and cross-
validation loss as a function of training size. The reason for including these
figures is to examine how much data is needed until the performance of each
algorithm does not show any significant improvement even if more training
data is gathered. We use 3-fold cross-validation for assessing the validation
error. The learning curves are produced with data from 1x16 antenna setup
with 0 scatterers and UE base velocity of 1000 km/h.

In figures 5.16-5.20, we can see the learning curve of each algorithm. CV
data size denotes the amount of training and validation examples in total.

CHAPTER 5. EVALUATION 68

For example, if CV data size is 3000, 2000 UEs are used for training and
1000 UEs are used for validation in each of the 3 folds. It is important to
note in the figures that the x-axis values are different for NB and SVM. The
reason is that those algorithms already converged to stable loss levels at few
hundred UEs, so continuing the x-axis longer would make the figures more
difficult to read. For all neural networks, the loss keeps decreasing until a few
thousand UEs, suggesting that the neural networks benefit from additional
training data up to a higher amount when compared to NB and SVM.

Figure 5.16: Learning curve of LSTM gain regression. MSE is show in y-axis.

CHAPTER 5. EVALUATION 69

Figure 5.17: Learning curve of LSTM index classification. Categorical
crossentropy is shown in y-axis.

Figure 5.18: Learning curve of MLP index classification. Categorical crossen-
tropy is shown in y-axis.

CHAPTER 5. EVALUATION 70

Figure 5.19: Learning curve of SVM index classification. 1-accuracy is show
in y-axis.

Figure 5.20: Learning curve of NB index classification. 1-accuracy is show
in y-axis.

Chapter 6

Discussion

The results presented in Chapter 5 show that it is possible to produce sig-
nificant gain increase over the baseline method. Improvement is possible
using predictive methods based on gain and index data, the latter of which
provides more robust results when different velocity and scatterer values are
considered. At this point, we remind of the the interchangeability between
UE base velocity µv and simulation delta time dt parameters, which was
specified in Section 4.1.2. Because of this feature, the results can be inter-
preted as similar to having for example double the delta time but half the
velocity. It is also important to note the effect of antenna array size on the
beamwidth. As the number of antenna elements is doubled, the beamwidth
is roughly halved and this results to the UE moving doubly as fast in relation
to the beam.

The results show that having more antennas in the antenna array decreases
the performance of the baseline method as a result of more frequent beam
handovers and narrower beams. In contrast, the gain ratio figures showed
that the predictive performance of the algorithms does not deteriorate sig-
nificantly when more antennas are added to the array. This makes predictive
beam selection more promising for massive MIMO systems rather than small
antenna arrays.

The simulation environment in this thesis is simplistic so the results tell
mainly about the theoretical behaviour of predictive beam selection. In a
real-world scenario, the scattering environment and the channel model may
be considerably more complex. We still believe that the concept works sim-
ilarly given a more complex environment. However, examining the cost of
implementing predictive beam selection in real world is an important ques-
tion that requires more research. The base stations have limited computa-

71

CHAPTER 6. DISCUSSION 72

tional resources and strict time constraints, so the computational complexity
of the predictive algorithm must be taken into account. In Chapter 5, we
saw that SVM gives the best performance when scatterers are present in the
environment. In contrast, the prediction time for SVM is the highest while
algorithms such as Naive Bayes take less than half of the time as SVM. This
raises the question of whether SVM is the algorithm of choice over simpler al-
gorithms such as Naive Bayes, since the performance difference is only a few
percentage units. In a similar manner, the LSTM algorithms give even less
improvement over NB while taking considerably more time in both training
and testing.

Gain ratio/increase and classification accuracy are quite abstract metrics
which makes it hard to estimate the real-world benefits of predictive beam
selection. Channel throughput or capacity is often used to report the effi-
ciency of a communication system. Here it is more difficult because we do
not simulate all the detailed parameters, e.g., noise and interference levels in
the simulation. Nevertheless, we present here an example of the increase in
channel capacity compared to the baseline method given theoretical signal-to-
noise ratio values from an LTE network. The capacity increase is calculated
as defined in Section 5.1. Figures 6.1 and 6.2 show the capacity increase
given a poor (6 dB) and a good (10 dB) signal-to-noise-plus-interference ra-
tio (SINR), where the reference SINR values are taken from [13]. We can see
that a capacity increase of up to 12% and 8% is possible in poor and good
SINR conditions, respectively.

There are several topics for future research to further validate the efficiency
of predictive beam selection. For example, in a real world scenario we might
expect that there are multiple railway tracks or roads surrounding a base
station. This creates a need to first predict which path the UE is travelling
on. The BS could learn multiple profiles based on these paths in the training
phase. In testing phase, the BS could first select the most probable profile
and then apply predictive beam selection.

In this study, classification with index data proved to be more promising than
regression with gain data. With this in mind, classification with additional
features in the feature vector could be attempted. One such feature could be
the channel quality indicator (CQI), which is sent by the UE to the BS as
an indicator of the quality of the downlink channel to help select appropriate
modulation scheme and code rate [29]. Since the more time consuming clas-
sification algorithms did not provide considerably better performance com-
pared to, e.g., Naive Bayes, other lightweight classification algorithms could
be experimented with in further studies.

CHAPTER 6. DISCUSSION 73

Figure 6.1: Capacity increase as a function of velocity using 1x16 transmis-
sion antenna, 25 scatterers, SINR = 6 dB.

Figure 6.2: Capacity increase as a function of velocity using 1x16 transmis-
sion antenna, 25 scatterers, SINR = 10 dB.

Chapter 7

Conclusions

As mobile communications continues to evolve, novel solutions are required
to keep up with the increasing technical requirements. The amount of mobile
subscribers has grown significantly since the emergence of the first generation
of mobile networks, and more growth is expected in areas such as Asia Pacific
and Sub-Saharan Africa. The demand for cellular access has also spread to
all kinds of environments, for example remote rural areas and high-speed
railways.

The data rate requirements for 5G are in gigabits per second, which necessi-
tates the use of mmWave beamforming. Millimeter waves suffer from higher
penetration loss through materials than electromagnetic waves of lower fre-
quencies, while beamforming requires that the transmitting beam is pointed
accurately towards the UE to facilitate sufficient transmission quality. These
problems become even more pronounced in high mobility conditions such as
in high-speed railways. As the current high-speed trains can travel at veloci-
ties over 400 km/h, special solutions are required to reach the desired quality
in these challenging environments.

To improve the network performance in high mobility conditions, we propose
predictive beam selection, where the UE states the desired downlink beam
to the BS ahead of time. The goal of this thesis was to evaluate the use
of different data types and machine learning methods for predictive beam
selection. Furthermore, we studied the effect of different base station antenna
array sizes and varying amounts of scatterers in the simulation environment.
Two different data types, gain and index data, were used in the experiments.
We found index data more promising than gain data for improving the service
quality in scenarios with high UE velocities because index data is easier

74

CHAPTER 7. CONCLUSIONS 75

to acquire and provides results equal to or better than gain data in most
scenarios. More gain increase over the baseline was achieved when a larger
antenna array was used and there was a high amount of scatterers in the
environment. We also found a positive trend between gain increase and
UE velocity, which was mostly due to the baseline algorithm performance
deteriorating as a function of velocity.

However, further studies are required to evaluate the predictive beam selec-
tion concept in a more realistic environment. Other aspects to consider in
further research would be the inclusion of additional data sources and a focus
on the computational challenges in real mobile communication systems.

Bibliography

[1] Sherif M Abuelenin and Adel Y Abul-Magd. Empirical study of traffic
velocity distribution and its effect on vanets connectivity. In 2014 Inter-
national Conference on Connected Vehicles and Expo (ICCVE), pages
391–395. IEEE, 2014.

[2] Noor Hidayah Muhamad Adnan, Islam Md Rafiqul, and AHM Zahirul
Alam. Effects of inter element spacing on large antenna array charac-
teristics. In 2017 IEEE 4th International Conference on Smart Instru-
mentation, Measurement and Application (ICSIMA), pages 1–5. IEEE,
2017.

[3] Bo Ai, Xiang Cheng, Thomas Kürner, Zhang-Dui Zhong, Ke Guan,
Rui-Si He, Lei Xiong, David W Matolak, David G Michelson, and Cesar
Briso-Rodriguez. Challenges toward wireless communications for high-
speed railway. IEEE transactions on intelligent transportation systems,
15(5):2143–2158, 2014.

[4] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-
term dependencies with gradient descent is difficult. IEEE transactions
on neural networks, 5(2):157–166, 1994.

[5] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(Feb):281–305,
2012.

[6] James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science
of model search: Hyperparameter optimization in hundreds of dimen-
sions for vision architectures. 2013.

[7] Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le Borgne. Ma-
chine learning strategies for time series forecasting. In European business
intelligence summer school, pages 62–77. Springer, 2012.

76

BIBLIOGRAPHY 77

[8] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung. Time series analysis: forecasting and control. John Wiley &
Sons, 2015.

[9] Jason Brownlee. Machine learning is popular right now. https:

//machinelearningmastery.com/machine-learning-is-popular/, 2013.
Accessed: 15.08.2019.

[10] Vikram Chandrasekhar, Jeffrey Andrews, and Alan Gatherer. Femtocell
networks: a survey. arXiv preprint arXiv:0803.0952, 2008.

[11] Chris Chatfield. Time-series forecasting. Chapman and Hall/CRC, 2000.

[12] François Chollet et al. Keras. https://keras.io, 2015.

[13] USAT Corporation. Understanding lte signal strength values. https://

usatcorp.com/faqs/understanding-lte-signal-strength-values/. Ac-
cessed: 12.08.2019.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[15] Erik Dahlman, Stefan Parkvall, and Johan Skold. 5G NR: The next
generation wireless access technology. Academic Press, 2018.

[16] 3GPP TS 38.300 version 15.2.0 Release 15. ETSI, 2018.

[17] Ramsey Faragher et al. Understanding the basis of the kalman filter via
a simple and intuitive derivation. IEEE Signal processing magazine, 29
(5):128–132, 2012.

[18] Harald T Friis. A note on a simple transmission formula. proc. IRE, 34
(5):254–256, 1946.

[19] John Gantz and David Reinsel. The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east. IDC iView:
IDC Analyze the future, 2007(2012):1–16, 2012.

[20] Marco Giordani, Michele Polese, Arnab Roy, Douglas Castor, and
Michele Zorzi. A tutorial on beam management for 3gpp nr at mmwave
frequencies. IEEE Communications Surveys & Tutorials, 2018.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

https://machinelearningmastery.com/machine-learning-is-popular/
https://machinelearningmastery.com/machine-learning-is-popular/
https://keras.io
https://usatcorp.com/faqs/understanding-lte-signal-strength-values/
https://usatcorp.com/faqs/understanding-lte-signal-strength-values/
http://www.deeplearningbook.org

BIBLIOGRAPHY 78

[22] Simon Haykin. Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[23] Simon S Haykin and Simon S Haykin. Kalman filtering and neural
networks. Wiley Online Library, 2001.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[25] GSMA Intelligence. The mobile economy.
https://www.gsmaintelligence.com/research/?file=

b9a6e6202ee1d5f787cfebb95d3639c5&download, 2019. Accessed:
15.07.2019.

[26] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering:
a review. ACM computing surveys (CSUR), 31(3):264–323, 1999.

[27] Abayomi Jegede. Top 13 fastest bullet trains in the world. https://www.
trendrr.net/8852/fastest-bullet-trains-world-top-10/, 2019. Ac-
cessed: 16.07.2019.

[28] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45, 1960.

[29] Mohammad T Kawser, Nafiz Imtiaz Bin Hamid, Md Nayeemul Hasan,
M Shah Alam, and M Musfiqur Rahman. Downlink snr to cqi mapping
for different multiple antenna techniques in lte. International Journal
of Information and Electronics Engineering, 2(5):757, 2012.

[30] Junhyeong Kim, Hee-Sang Chung, Il Gyu Kim, Hoon Lee, and My-
ong Sik Lee. A study on millimeter-wave beamforming for high-speed
train communication. In 2015 International Conference on Information
and Communication Technology Convergence (ICTC), pages 1190–1193.
IEEE, 2015.

[31] Erik G Larsson, Ove Edfors, Fredrik Tufvesson, and Thomas L Marzetta.
Massive mimo for next generation wireless systems. arXiv preprint
arXiv:1304.6690, 2013.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. na-
ture, 521(7553):436, 2015.

[33] Titus KY Lo. Maximum ratio transmission. In 1999 IEEE International
Conference on Communications (Cat. No. 99CH36311), volume 2, pages
1310–1314. IEEE, 1999.

https://www.gsmaintelligence.com/research/?file=b9a6e6202ee1d5f787cfebb95d3639c5&download
https://www.gsmaintelligence.com/research/?file=b9a6e6202ee1d5f787cfebb95d3639c5&download
https://www.trendrr.net/8852/fastest-bullet-trains-world-top-10/
https://www.trendrr.net/8852/fastest-bullet-trains-world-top-10/

BIBLIOGRAPHY 79

[34] Fa-Long Luo and Charlie Zhang. Signal processing for 5G: algorithms
and implementations. John Wiley & Sons, 2016.

[35] Wantuan Luo, Xuming Fang, Meng Cheng, and Yajun Zhao. Efficient
multiple-group multiple-antenna (mgma) scheme for high-speed railway
viaducts. IEEE Transactions on Vehicular Technology, 62(6):2558–2569,
2013.

[36] Robert J Mailloux. Phased array antenna handbook. Artech house, 2017.

[37] Stephen Marsland. Machine learning: an algorithmic perspective. Chap-
man and Hall/CRC, 2011.

[38] Thomas L Marzetta et al. Noncooperative cellular wireless with unlim-
ited numbers of base station antennas. IEEE Transactions on Wireless
Communications, 9(11):3590, 2010.

[39] MATLAB version 9.5.0.944444 (R2018b). The Mathworks, Inc., Natick,
Massachusetts, 2018.

[40] MATLAB Phased Antenna Array Toolbox. The Mathworks, Inc., Natick,
Massachusetts, 2018.

[41] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,
NY, USA, 1 edition, 1997. ISBN 0070428077, 9780070428072.

[42] Gordon E Moore et al. Cramming more components onto integrated
circuits, 1965.

[43] Michael A Nielsen. Neural networks and deep learning, volume 25. De-
termination press San Francisco, CA, USA:, 2015.

[44] Torben Skov Nielsen, Alfred Joensen, Henrik Madsen, Lars Landberg,
and Gregor Giebel. A new reference for wind power forecasting. Wind
Energy: An International Journal for Progress and Applications in Wind
Power Conversion Technology, 1(1):29–34, 1998.

[45] Yong Niu, Yong Li, Depeng Jin, Li Su, and Athanasios V Vasilakos. A
survey of millimeter wave communications (mmwave) for 5g: opportu-
nities and challenges. Wireless networks, 21(8):2657–2676, 2015.

[46] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation functions: Comparison of trends in practice and
research for deep learning. arXiv preprint arXiv:1811.03378, 2018.

BIBLIOGRAPHY 80

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[48] Dinh-Thuy Phan-Huy and Maryline Hélard. Large miso beamforming
for high speed vehicles using separate receive & training antennas. In
2013 IEEE 5th International Symposium on Wireless Vehicular Com-
munications (WiVeC), pages 1–5. IEEE, 2013.

[49] Zhouyue Pi and Farooq Khan. An introduction to millimeter-wave mo-
bile broadband systems. IEEE communications magazine, 49(6):101–
107, 2011.

[50] Wonil Roh, Ji-Yun Seol, Jeongho Park, Byunghwan Lee, Jaekon Lee,
Yungsoo Kim, Jaeweon Cho, Kyungwhoon Cheun, and Farshid Aryan-
far. Millimeter-wave beamforming as an enabling technology for 5g cellu-
lar communications: Theoretical feasibility and prototype results. IEEE
communications magazine, 52(2):106–113, 2014.

[51] Raúl Rojas. Neural networks: a systematic introduction. Springer Sci-
ence & Business Media, 2013.

[52] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[53] Stephan Saur, H Halbauer, A Rueegg, and F Schaich. Grid-of-beams
(gob) based downlink multi-user mimo. IEEE, 802:1–4, 2008.

[54] M Series. Imt vision–framework and overall objectives of the future
development of imt for 2020 and beyond. Recommendation ITU, pages
2083–0, 2015.

[55] Stefania Sesia, Matthew Baker, and Issam Toufik. LTE-the UMTS long
term evolution: from theory to practice. John Wiley & Sons, 2011.

[56] Mansoor Shafi, Andreas F Molisch, Peter J Smith, Thomas Haustein,
Peiying Zhu, Prasan De Silva, Fredrik Tufvesson, Anass Benjebbour,
and Gerhard Wunder. 5g: A tutorial overview of standards, trials, chal-
lenges, deployment, and practice. IEEE Journal on Selected Areas in
Communications, 35(6):1201–1221, 2017.

BIBLIOGRAPHY 81

[57] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine
learning: From theory to algorithms. Cambridge university press, 2014.

[58] Claude Elwood Shannon. A mathematical theory of communication.
Bell system technical journal, 27(3):379–423, 1948.

[59] Claude Elwood Shannon. Communication in the presence of noise. Pro-
ceedings of the IEEE, 86(2):447–457, 1998.

[60] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in neural
information processing systems, pages 2951–2959, 2012.

[61] Foad Sohrabi and Wei Yu. Hybrid digital and analog beamforming
design for large-scale mimo systems. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages
2929–2933. IEEE, 2015.

[62] Mikael Sternad, Michael Grieger, Rikke Apelfröjd, Tommy Svensson,
Daniel Aronsson, and Ana Belén Martinez. Using ?predictor anten-
nas? for long-range prediction of fast fading for moving relays. In 2012
IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), pages 253–257. IEEE, 2012.

[63] Hans Steyskal. Digital beamforming antennas. In 1988 18th European
Microwave Conference, pages 49–57. IEEE, 1988.

[64] Yutao Sui, Jaakko Vihriala, Agisilaos Papadogiannis, Mikael Sternad,
Wei Yang, and Tommy Svensson. Moving cells: a promising solution
to boost performance for vehicular users. IEEE Communications Mag-
azine, 51(6):62–68, 2013.

[65] Jia Tang, Feng Zhen, Jason Cao, and Patricia L Mokhtarian. How do
passengers use travel time? a case study of shanghai–nanjing high speed
rail. Transportation, 45(2):451–477, 2018.

[66] Scott E Thompson and Srivatsan Parthasarathy. Moore’s law: the future
of si microelectronics. Materials today, 9(6):20–25, 2006.

[67] Niko Väisänen et al. Beamforming techniques for optimizing channel
capacity in wireless communications. 2018.

[68] Barry D Van Veen and Kevin M Buckley. Beamforming: A versatile
approach to spatial filtering. IEEE assp magazine, 5(2):4–24, 1988.

BIBLIOGRAPHY 82

[69] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter.
1995.

[70] Paul J Werbos et al. Backpropagation through time: what it does and
how to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[71] Neal Wyse, Richard Dubes, and Anil K Jain. A critical evaluation
of intrinsic dimensionality algorithms. Pattern recognition in practice,
pages 415–425, 1980.

[72] Wei Xiang, Kan Zheng, and Xuemin Sherman Shen. 5G mobile commu-
nications. Springer, 2016.

Appendix A

Random search results

Hidden act. Input act. Epochs Hidden sizes LR Lookback Input size Acc.

sigmoid softplus 40 [100] 0,001 15 150 0,967181
sigmoid linear 40 [50] 0,001 15 150 0,967083
sigmoid softsign 60 [150, 50] 0,0001 15 100 0,967009
sigmoid linear 40 [50, 50] 0,001 15 150 0,966859
sigmoid tanh 40 [150] 0,0001 15 150 0,966083
sigmoid hard sigmoid 40 [150, 50] 0,001 10 150 0,965668
linear softsign 20 [50] 0,0001 10 150 0,965611
relu softmax 20 [100] 0,001 10 150 0,965554
softsign softplus 60 [100, 100] 0,001 15 150 0,965319
softsign linear 60 [150] 0,001 10 150 0,96488
hard sigmoid softplus 20 [150] 0,0001 10 100 0,964489
linear softmax 40 [50, 50] 0,0001 10 50 0,964359
relu sigmoid 40 [100] 0,0001 10 50 0,964242
relu tanh 60 [100, 100] 0,0001 10 100 0,964171
tanh linear 20 [50] 0,001 10 100 0,964139
sigmoid softplus 40 [50, 100] 0,0001 15 50 0,963945
sigmoid hard sigmoid 40 [50, 50] 0,001 15 50 0,963486
softsign tanh 60 [50, 50] 0,0001 10 100 0,963418
sigmoid softsign 60 [100, 100] 0,001 10 100 0,963405
tanh hard sigmoid 60 [50] 0,0001 10 150 0,963293
tanh softmax 60 [100, 100] 0,001 10 150 0,963277
relu softplus 20 [150, 50] 0,0001 10 50 0,963052
hard sigmoid softsign 40 [150] 0,0001 10 50 0,962785
tanh softsign 60 [150, 50] 0,001 15 50 0,962779

83

APPENDIX A. RANDOM SEARCH RESULTS 84

sigmoid softsign 20 [150, 50] 0,0001 10 50 0,962682
linear softmax 20 [100] 0,0001 10 150 0,962565
relu softsign 40 [100, 100] 0,0001 15 100 0,962273
softplus relu 20 [150, 50] 0,001 10 100 0,962158
hard sigmoid softsign 20 [100, 100] 0,0001 10 150 0,961522
tanh relu 60 [150, 50] 0,001 10 150 0,961427
relu relu 60 [100, 100] 0,0001 15 50 0,961385
softsign relu 20 [50] 0,01 10 100 0,961364
sigmoid hard sigmoid 40 [100, 100] 0,001 15 100 0,961239
sigmoid relu 20 [100, 100] 0,0001 10 100 0,961152
sigmoid softsign 60 [100] 0,0001 10 100 0,961144
linear hard sigmoid 40 [100] 0,001 15 150 0,960943
tanh relu 40 [50] 0,01 10 150 0,960609
hard sigmoid sigmoid 60 [50] 0,001 15 50 0,960514
softplus relu 20 [100, 100] 0,001 10 50 0,960076
softsign tanh 20 [50] 0,0001 10 150 0,959639
sigmoid hard sigmoid 60 [150, 50] 0,0001 10 50 0,959
sigmoid sigmoid 20 [50] 0,001 10 100 0,958315
softplus softplus 40 [150, 50] 0,001 15 150 0,958129
softmax softmax 40 [50, 50] 0,001 10 100 0,958062
softplus relu 20 [50] 0,01 10 100 0,956538
softplus sigmoid 20 [50] 0,001 10 100 0,955617
softmax softsign 60 [50, 50] 0,0001 10 100 0,955158
hard sigmoid relu 20 [100] 0,01 10 150 0,954625
softsign softplus 20 [150] 0,01 10 100 0,954584
relu relu 40 [150] 0,0001 10 150 0,953579
softplus softmax 20 [50, 50] 0,001 10 100 0,953424
tanh sigmoid 20 [50, 50] 0,001 10 100 0,953326
relu relu 20 [100] 0,0001 10 50 0,952424
linear linear 20 [50, 50] 0,001 10 50 0,952103
linear tanh 60 [150, 50] 0,0001 10 50 0,950723
linear softplus 20 [100] 0,0001 10 150 0,950668
relu relu 40 [50] 0,01 10 100 0,950152
softmax hard sigmoid 60 [150] 0,001 10 150 0,948149
sigmoid softmax 20 [150] 0,0001 10 100 0,943519
softplus softmax 20 [50] 0,01 10 100 0,940698
tanh softplus 20 [50, 50] 0,01 10 50 0,920304
relu softmax 60 [50, 50] 0,01 10 50 0,915234
linear tanh 20 [150] 0,001 10 150 0,905427
softsign sigmoid 20 [50] 0,01 10 150 0,903293
softmax softsign 20 [100] 0,01 10 50 0,895802

APPENDIX A. RANDOM SEARCH RESULTS 85

sigmoid softplus 60 [50, 50] 0,001 5 150 0,892479
tanh hard sigmoid 40 [100, 100] 0,0001 5 100 0,892451
tanh softplus 40 [50, 100] 0,0001 5 50 0,892209
sigmoid softsign 40 [50, 100] 0,0001 5 150 0,891727
hard sigmoid linear 60 [100, 100] 0,0001 5 100 0,891327
sigmoid hard sigmoid 60 [50] 0,0001 5 50 0,891265
hard sigmoid hard sigmoid 40 [100, 100] 0,0001 5 150 0,890843
sigmoid sigmoid 40 [50, 50] 0,001 5 100 0,890544
sigmoid linear 40 [100] 0,001 5 100 0,890224
tanh hard sigmoid 60 [50] 0,001 5 50 0,890219
softsign softplus 20 [150] 0,01 10 50 0,890087
hard sigmoid hard sigmoid 40 [150] 0,0001 5 150 0,890003
tanh softplus 60 [100] 0,001 5 150 0,889974
softsign sigmoid 60 [50, 100] 0,0001 5 150 0,889946
softplus linear 60 [50, 100] 0,001 5 100 0,889923
sigmoid softplus 60 [50] 0,001 5 100 0,889142
tanh tanh 40 [150, 50] 0,001 5 150 0,888732
softplus hard sigmoid 60 [150, 50] 0,001 5 150 0,887662
tanh linear 40 [50, 50] 0,001 5 150 0,887108
softplus softplus 60 [50] 0,001 5 150 0,887077
linear sigmoid 40 [50, 50] 0,0001 5 150 0,887031
linear softsign 60 [150] 0,0001 5 50 0,88591
tanh tanh 40 [100, 100] 0,0001 5 100 0,885812
softsign hard sigmoid 60 [50, 100] 0,001 5 150 0,883683
tanh sigmoid 60 [150] 0,001 5 50 0,882866
relu softplus 60 [50] 0,001 5 100 0,882273
relu tanh 40 [50, 100] 0,001 5 150 0,881835
hard sigmoid hard sigmoid 40 [100] 0,01 10 50 0,881753
linear linear 40 [50, 100] 0,0001 5 50 0,87858
hard sigmoid tanh 40 [50, 50] 0,001 5 150 0,876031
softplus linear 60 [150] 0,001 5 100 0,872376
hard sigmoid hard sigmoid 60 [50] 0,01 10 100 0,872217
linear relu 40 [150] 0,001 5 150 0,867162
relu hard sigmoid 20 [100, 100] 0,01 10 50 0,857595
softmax hard sigmoid 20 [50] 0,001 10 100 0,851878
relu sigmoid 20 [150] 0,01 10 150 0,818117
sigmoid softplus 20 [100, 100] 0,01 10 150 0,812405
softsign softsign 60 [50] 0,01 10 100 0,799071
softsign hard sigmoid 20 [50, 100] 0,01 10 50 0,795562
tanh softplus 20 [50, 100] 0,01 10 50 0,761473
hard sigmoid tanh 20 [150, 50] 0,01 10 50 0,727261

APPENDIX A. RANDOM SEARCH RESULTS 86

linear sigmoid 20 [100] 0,01 10 100 0,708736
tanh softsign 20 [50] 0,01 10 150 0,697454
linear relu 40 [50] 0,01 10 50 0,64525
tanh softplus 20 [100, 100] 0,01 10 50 0,597851
softmax linear 20 [150, 50] 0,0001 10 50 0,58078
tanh sigmoid 40 [50, 100] 0,01 10 100 0,475609
softmax sigmoid 20 [150] 0,0001 10 150 0,3945
hard sigmoid linear 60 [150, 50] 0,01 10 100 0,378951
softmax tanh 20 [100, 100] 0,01 10 150 0,367891
tanh softsign 20 [150, 50] 0,01 10 50 0,349446
hard sigmoid sigmoid 60 [100, 100] 0,01 10 100 0,318984
sigmoid linear 60 [150] 0,01 10 150 0,26722
hard sigmoid linear 20 [150, 50] 0,01 10 150 0,19737
linear tanh 40 [50, 50] 0,01 10 150 0,089916
softmax linear 20 [100, 100] 0,01 10 150 0,080715
relu softsign 60 [50, 100] 0,01 10 100 0,080677
hard sigmoid softmax 20 [150, 50] 0,01 10 150 0,071304
linear softsign 40 [50, 50] 0,01 10 100 0,070476
linear linear 20 [150, 50] 0,01 10 50 0,070457

Table A.3: Random search results for MLP index classifi-
cation. Adam optimizer and batch size of 50 was used in
all trials. Confusingly, the “Input size” column refers to
the size of first hidden layer while “Hidden sizes” column
refers to the sizes of following hidden layers.

APPENDIX A. RANDOM SEARCH RESULTS 87

Dropout rate Epochs Lookback Layer 1 size Layer 2 size Loss

0.25 5 5 100 150 0.00056
0.25 4 5 150 150 0.00058
0.25 1 15 100 50 0.00131
0.25 3 5 50 50 0.00140
0.5 3 5 50 100 0.00259
0.5 5 15 100 100 0.00272
0.5 2 5 50 100 0.00276
0.5 5 10 100 50 0.00794
0.5 6 15 100 50 0.00825
0.75 2 5 100 150 0.00946

Table A.1: Random search results for LSTM gain regression. Learning rate
of 0.001 and Adam optimizer was used in all trials.

APPENDIX A. RANDOM SEARCH RESULTS 88

Dropout rate Epochs Lookback Layer 1 size Layer 2 size Loss

0.5 8 15 150 50 0.0699
0.25 9 15 100 50 0.0714
0.5 7 10 150 0 0.0780
0.25 6 10 100 100 0.0781
0.75 8 15 100 150 0.0784
0.5 6 10 100 0 0.0794
0.5 4 10 150 50 0.0796
0.5 8 10 50 50 0.0803
0.25 4 10 100 150 0.0813
0.5 4 15 50 50 0.1022
0.75 3 10 50 50 0.1174
0.75 5 15 50 50 0.1354
0.75 4 15 50 50 0.1371
0.25 6 5 150 150 0.2159
0.5 8 5 150 100 0.2183
0.75 14 5 150 100 0.2231
0.75 7 5 150 150 0.2398
0.5 4 5 50 50 0.2508
0.75 8 5 50 50 0.2651
0.75 5 5 50 100 0.2827

Table A.2: Random search results for LSTM index classification. Learning
rate of 0.001 and Adam optimizer was used in all trials.

Appendix B

Grid search results

C gamma kernel acc

1000 0,1 rbf 0,930447
100 0,1 rbf 0,930426
100 1 rbf 0,930377
10 1 rbf 0,930377
1000 1 rbf 0,930377
1 1 rbf 0,930369
10 100 rbf 0,930078
100 100 rbf 0,930078
1 100 rbf 0,930078
1000 100 rbf 0,930078
1000 10 rbf 0,930074
10 10 rbf 0,930074
1 10 rbf 0,930074
100 10 rbf 0,930074
10 0,1 rbf 0,930025
0,1 1 rbf 0,92943
1 0,1 rbf 0,927631
0,1 10 rbf 0,926816
0,1 100 rbf 0,926791
0,1 0,1 rbf 0,921406
1000 100 linear 0,903811
1000 1 linear 0,903811
1000 10 linear 0,903811
1000 0,1 linear 0,903811

89

APPENDIX B. GRID SEARCH RESULTS 90

100 100 linear 0,903807
100 0,1 linear 0,903807
100 10 linear 0,903807
100 1 linear 0,903807
10 10 linear 0,903398
10 100 linear 0,903398
10 1 linear 0,903398
10 0,1 linear 0,903398
1 100 linear 0,902648
1 10 linear 0,902648
1 1 linear 0,902648
1 0,1 linear 0,902648
0,1 100 linear 0,89791
0,1 10 linear 0,89791
0,1 1 linear 0,89791
0,1 0,1 linear 0,89791

Table B.1: Grid search results for SVM index classifica-
tion.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 5G
	2.1.1 Use cases

	2.2 SISO/MIMO
	2.2.1 Massive MIMO

	2.3 Radio propagation in mmWave bands
	2.4 Beamforming
	2.4.1 Grid of beams
	2.4.2 Beam management

	2.5 Machine learning
	2.5.1 Neural networks
	2.5.2 Time series analysis
	2.5.3 Hyperparameter optimization

	2.6 Related research

	3 Methods
	3.1 Kalman filter
	3.2 Neural networks
	3.2.1 Multi-layer perceptron (MLP)
	3.2.2 Long short-term memory (LSTM)

	3.3 Support vector machine
	3.4 Naive Bayes classifier

	4 Implementation
	4.1 Simulation environment
	4.1.1 Channel model
	4.1.2 Simulation parameters

	4.2 Data
	4.2.1 Gain data
	4.2.2 Index data
	4.2.3 Data pre-processing

	4.3 Experiments
	4.3.1 Scenario 1: Line of sight
	4.3.2 Scenario 2: Scattering environment
	4.3.3 Training and testing phase
	4.3.4 Baseline solution: persistence model
	4.3.5 Algorithm implementations

	5 Evaluation
	5.1 Metrics
	5.2 Scenario 1
	5.2.1 1x16 antenna array
	5.2.2 1x8 antenna array
	5.2.3 1x32 antenna array

	5.3 Scenario 2
	5.3.1 5 scatterers
	5.3.2 25 scatterers

	5.4 Average results
	5.5 Algorithm time complexities
	5.6 Learning curves

	6 Discussion
	7 Conclusions
	A Random search results
	B Grid search results

