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Abstract
Virtual Network Function (VNF) has gained importance in the IT industry, especially

in the telecommunication industry, because a VNF runs network services in commodity
hardware instead of dedicated hardware, thereby increasing the scalability and agility.
The container technology is a useful tool for the VNF because it is lightweight, portable
and scalable. The container technology shortens the product development cycle by easing
the service deployment and maintenance. The telecommunication industry uses service
uptime as an important gauge to evaluate if a service is of carrier grade, and keeping
services up and running generates most of the maintenance costs. These costs can
be reduced by container orchestration such as Kubernetes. Kubernetes handles the
automation of deployment, scaling and management for applications with the help of
orchestration mechanisms, such as the scheduler and load-balancers. As a result of those
mechanisms, the VNFs running in a Kubernetes cluster can reach high availability and
flexibility. However, the impact of the mechanisms on VNF throughput has not been
studied in detail.

The objective of this thesis is to evaluate the influence of Kubernetes orchestration
mechanisms on VNF throughput and Quality of Service (QoS). This objective is achieved
by means of measurements run with a packet-forwarding service in a Kubernetes cluster.

Based on the evaluations, it is concluded that the VNF throughput is dependent on
6 parameters: CPU types, CPU isolation, number of Pods, location of Pods, location of
load-balancer controllers, and load-balancing techniques.

Keywords virtual network function, container, container orchestration, benchmarking
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1. Introduction

The telecommunication industry has been increasingly adopting the method of

network service implementations from hardware-based inplementations to Virtual

Network Functions (VNF) since the establishment of Network Function Virtualiza-

tion (NFV) White Paper in 2012 [1]. The industry can benefit from the convenience

offered by NFV, such as reducing R&D costs and development cycles. However, the

transformation poses challenges related to crucial aspects of VNF implementation,

such as portability, management and orchestration, automation, network stability

and performance trade-offs of the VNFs. Many software applications have been

built as a response to these challenges. For example, Container and Container

Orchestration software are the two most commonly used ones that allow portabil-

ity, easy deployment and maintenance of the VNFs and hence are widely adopted

by companies in their production environments [2][3]. Although these tools are

convenient, they introduce many mechanisms with overheads and configurable

parameters. The industry has concerns on the impacts of those mechanisms on the

performance of network services. Because little research has been conducted on

the impact of those mechanisms on VNF throughput, a further study is required

to gain a better understand of these tools, thus accelerating the process of NFV.

1.1 Scope and Objective

The thesis is a study for the impact of Container Orchestration mechanisms on

VNF throughput and QoS. The main focus is to understand the mechanisms, such

as the scheduling and load-balancing, of a Kubernetes cluster. In more detail, the

objective of this study is to evaluate the impact of Kubernetes orchestration mech-

anism configurations, specifically the configurations of Scheduler and Network

Load-balancer, on the throughput and QoS of a packet-forwarding service.
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1.2 Contributions

The author of this thesis has implemented benchmarks that run on a Kubernetes

cluster and a packet-forwarding service following the telecommunication system

standard proposed by the European Telecommunications Standards Institute

(ETSI). The author has conducted tests, collected data and analyzed the data of

the packet forwarding service with several settings for Scheduler, Load-balancers,

Pod and HPA.

This study provides setups for a Kubernetes cluster. The setup extends the setup

given in Krishnakumar’s Thesis [4]. The study provides the implementation of

benchmarks for a packet forwarding service running on a Kubernetes Cluster.

The benchmarks simulate a telecommunication service that runs on the cluster to

obtain VNF throughput and QoS data. The benchmarks follow ETSI standards

widely used in the telecommunication industry. The study provides data collected

by the benchmarks. The study provides analysis for the data. The cluster is set up

with open-sourced projects such as MetalLB, Kubernetes, Ingress and Prometheus.

Data is collected using Prometheus and its related projects. Methodology for data

collection adopts the same methodology proposed by other studies [5], [6], [7] and

[8]. Conclusions for yielding a good VNF throughput is obtained from the analysis.

1.3 Thesis Structure

The thesis describes the study by introduction, background, experiment tools, pre-

vious work, experiment design, results and conclusions. Introduction in Chapter 1

states the objective and contribution of this study, as well as the structure of the

thesis. Background in Chapter 2 explains concepts and backgrounds related to the

study. Experiment tools in Chapter 3 describe the tools and reasoning for using

these tools in this study. Previous Work in Chapter 4 prove the feasibility and

value of the study together with methodologies. Experiment design in Chapter

5 lists procedures for conducting experiments and obtaining data. Chapter 5

also provides demonstrations for hardware and software interconnections and

the procedures of setting up the experiment environment, providing the method

for reproducing the study. Results in Chapter 6 provide data collected in the

experiments and the analysis for the data. Conclusions in Chapter 7 summarizes

results of experiments and provide the logic for designing a scheduler that yields

the best VNF throughput. Chapter 7 also gives the problems and gaps found

during the experiments and possible new studies in the future to solve the issues.

2



2. Background

Telecommunication industry used to rely on dedicated hardware-based appliances,

such as Message Router, WAN Acceleration and Radio Access Network Nodes,

to provide services and meet the high availability requirement of "five nines"

[9]. Appliances were manually tuned and connected that they coped well with

each other and could work reliably over a long time. However, such appliances

are reaching their end-of-life as the Internet traffic grew rapidly on the last

two decades, due to their long development cycles and difficulty in scaling [1].

Developing new hardware to handle the increasing traffic could be an option

to scale up the service but it would become more difficult and less profitable

as Moore’s Law is reaching its limit [10]. A more practical solution could be to

repeat the same setup multiple times, but this requires many manual operations,

which may prolong the product cycle. Besides, such setup is inefficient in power

consumption and space utilization. Therefore, the telecommunication industry

urges for solutions to scale up and maintain services in a fast and low-cost manner.

Since 2012, when European Telecommunications Standards Institute (ETSI)

proposed the White Paper on Network Function Virtualization, the telecommuni-

cation industry has been moving towards running their services and applications

on Commercial Off-The-Shelf hardware instead of dedicated hardware [11]. Many

models have been proposed to achieve high-availability of VNFs [12] with high

performance [13]. Many tools have been invented to achieve the goals stated in

the White Paper. Docker and Kubernetes are the most popular tools nowadays

used in the telecommunication industry for the transformation. Many third-party

projects are also published to even extend the usability of those tools.

The tools bring conveniences but they come with performance trade-offs [14][15][16].

In the telecommunication industry, in addition to time-to-market, performance

is important because it relates directly to customer satisfaction, which directly

affects the income of the industry and hence impacts the survival of those compa-

nies. Therefore, how to have a good performance while enjoying the conveniences

3
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is on the research schedule of telecommunication companies.

The art of computer systems performance analysis: techniques for experimental

design, measurement, simulation and modeling [17] gives steps for a performance

evaluation study. The steps are listed in Table 2.1. This study follows the general

guideline from the book. Most of the steps are illustrated in Chapter 5 except

for the sixth step, because it affects the selection of tools. In this study we adopt

measurement as the evaluation technique. Measurement has the advantage of

high accuracy if parameters properly represent the variables found in real world,

as well as high practical value. Hence, it requires proper selection for tools.

1. State the goals of the study and define the system boundaries.

2. List system services and possible outcomes.

3. Select performance metrics.

4. List systems and workload parameters.

5. Select factors and their values.

6. Select evaluation techniques.

7. Select the workload.

8. Design the experiments.

9. Analyze and interpret the data

10. Present the results.

Table 2.1. Steps for a Performance Evaluation Study [17]

Conducting experiments is a common approach to obtain empirical configurations

that yield to a good performance for those tools [18]. Tools and methods that are

used for the experiments should be similar to actual production environments

to obtain trust-worthy conclusions. Hence, this study adopts industrial tools,

standards and setups to conduct the experiments.

2.1 Network Function Virtualization and Virtual Network Function

In October 2012, the European Telecommunications Standards Institute (ETSI)

published a white paper on Network Functions Virtualization (NFV), outlining its

benefits, enablers and challenges [1]. The network functions in NFV are referred

to as Virtual Network Functions (VNFs). Each VNF works similar to one of those

dedicated appliances but it runs on Commercial-Off-The-Shelf (COTS) hardware.

Multiple VNFs can be combined as a service, for instance, a Phone Call Service.

The VNF usually runs on industry standard high volume servers, switches and

volumes that locate in Datacenter and Network Nodes [1].

The NFV White Paper states that NFV could solve some problems of tradi-
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tional network structures, for example, high R&D costs and long development

cycles. NFV transforms telecommunication developments from hardware-based to

software-based, thereby lowering R&D costs and time-to-market.

Hardware-based developments cost more both in time and capitals compared

to software-based developments. The book System Design for Telecommunication

Gateways [19] indicates that it costs from $100,000 to millions of dollars and takes

a long time to produce an electronic product from concepts to a mass-manufactured

product [19]. In contrast, software can be tested even before it is formally released.

It usually updates every few weeks and does not require manufacturing.

Besides, hardware cycle is becoming shorter, which leads to less profitability in

hardware-based developments. According to Cisco’s recommendation [20], voice

equipment needs to be replaced every five to seven years, when traditionally that

equipment would have been used for 12 years or more. It means the same design

can only be sold and create profit for a short time for the company before it is

deprecated.

NFV could also solve the problem of scaling up and down services. Internet

traffic has increased dramatically in the last two decades. According to Cisco

Visual Networking Index [21], global internet traffic has grown from 100 GB per

day in 1992 to 46,600 GB per second in 2017 and predicted to be 150,700 GB per

second in 2022. Therefore, network services should be able to scale up to keep

up with the traffic increments. Traditional network structures could be scaled

up by adding multiple existing setups. However, this approach requires many

manual operations and if the network becomes huge it would be too complex to

maintain and troubleshoot [22]. VNF, on the other hand, runs on COTS hardware

in VMs or Containers as software. Therefore, it can easily be scaled up by just

duplicating the software. And it is easier to configure and debug compared to

setting up hardware.

Although NFV can solve many problems of the traditional network structures,

it brings great challenges. Challenges are portability, management and orches-

tration, automation, network stability and performance trade-offs. Since the

proposal of the NFV White Paper, many software has been established to deal with

those challenges. This study focuses on Container and Container Orchestration

software.

2.2 Containers

A container is a tool that makes VNF portable and lightweight. VNF needs

to be portable to set up easily on any hardware, which was first achieved by
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running software on Virtual Machines (VMs). In this case, a VNF is stored as VM

images, containing all dependencies for the VNF and is set up by instantiating

those images. However, running VNF as VMs could be graceless because of

overheads. Every VM is a complete system and it has its complete set of operation

system, libraries and applications. Applications may not be the same for VM

images, but Operating System (OS) kernel and libraries are mostly the same,

which means many computer resources are wasted on those similar components.

Containerization is a solution to reduce those overheads.

A container is a user space in which computer programs run directly on the host

operating system’s kernel but have access to a restricted subset of its resources

[23]. As illustrated in figure 2.1, containers run on the same OS kernel and could

share libraries, volume and network interfaces with other containers. Therefore,

it is more agile and few resources would be wasted on running multiple OSs and

system services.

Figure 2.1. differences between container and virtual machine [23]

The container mechanism on Unix-based systems is implemented based on chroot

and cgroups to allocate resources to containers and give isolation for containers,

limiting the interference among containers. New namespaces will be created for

new containers. Resources, such as CPU, network, memory and storage, will be

assigned to the container namespaces to handle workloads.

Docker is the most popular container implementation in the last few years. It

was released in March 2013, right after the VNF White Paper, and grew rapidly

since then. Now Docker has 80B container downloads and more than 100k third-

party projects [2]. Docker became popular because of its useful features and its

good integration with other projects. Apart from basic container features, Docker

ships with useful features such as scaling applications, creating load-balancer and

container image management (Registries and Dockerfile). These features allow

Docker to set up and scale services quickly in a light-weight manner. It is also

integrated with infrastructure tools, such as Amazon Web Services, Google Cloud

6
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Platform, Microsoft Azure and Kubernetes [24], making Docker more useful in

production environments.

2.3 Container Orchestration

Although Docker improves the portability and usability of VNF, it operates only

on a local machine, which limits the scalability. Besides, each container must be

manipulated manually, making it difficult to maintain when the number of con-

tainers becomes large. These problems can be solved by an orchestration tool that

manages containers on multiple machines. One of the most popular orchestration

tools today is Kubernetes (K8s). Kubernetes is an open-source container orches-

tration system designed by Google and maintained by Cloud Native Computing

Foundation [25]. It supports Docker as its most recommended Container Runtime

and it is widely adopted by developers to improve the maintenance, management

and automation of VNFs.

Container Orchestration brings convenience to the containerization of VNF. But

as it is indicated in the White Paper, it must have performance trade-offs. How to

minimize the impact of overheads and how to utilize the orchestration mechanisms

to obtain best performance interests engineers in the telecommunication industry.

Tools are needed to run tests and obtain data for the questions. The tools adopted

by this study for experiments are Kubernetes, Prometheus, Network Protocols

and Network Standards.

7



3. Experiment Tools

This chapter introduces the tools that are used in this study for benchmarking

and obtaining data, together with the reasons for using the tools. Those tools are

Kubernetes [25], Prometheus [26] and Network Standards [27].

3.1 Kubernetes

Kubernetes runs in a master-slave manner. A host is indicated as a Node in Kuber-

netes. Kubernetes Nodes has states, such as Ready, MemoryPressure, OutOfDisk,

PIOPressure, DiskPressure, NetworkUnavailable and Unknown, indicating the

availability of the Node. Master Node takes charge of serving API, controlling

Objects and scheduling, while minion Nodes handle workloads, such as VNF

workloads. Master Node takes commands from users and communicates with

minion Nodes. Therefore, users do not interact with minion Nodes directly and

therefore, operations are similar to local manipulations. This abstraction enables

easy auto-deployment, scaling and management. Kubernetes structure is shown

in Figure 3.1 [28]. This study uses Kubernetes v1.13.0.

Figure 3.1. Kubernetes Structure

8
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Kubernetes is composed of several components. The Master Node runs kube-

apiserver, etcd, kube-scheduler, kube-controller-manager and cloud-controller-

manager [29]. Kube-apiserver is the front-end for Kubernetes Control Plane. It

exposes the Kubernetes API, allowing users to control Kubernetes by commands or

RESTful calls. Etcd is a distributed reliable key-value store for distributed system

and it is utilized in Kubernetes to store cluster data, such as Pod names, created

date and other Object properties. Kube-scheduler is the default scheduler that

keeps watching newly created Pods and assigns them to Nodes. Kube-controller-

manager comprises Node Controller, Replication Controller, Endpoints Controller

and Service Account & Token Controllers, administering Node states, number

of Pods, populations of Endpoints and API access tokens for namespaces. Cloud-

controller-manager provides interfaces to interact with cloud providers. But

because this study works on bare-metals, the cloud-controller-manager is of no

use.

Minion Nodes runs kubelet, kube-proxy and Container Runtime [28]. Kubelet

communicates with Master Node and Container Runtime, making sure containers

are running in a Pod. Kube-proxy connects Nodes together and abstracts services

running in Nodes. Container Runtime is the software that runs containers and in

most cases today the software is Docker.

3.1.1 Kubernetes Objects

VNF can be defined as Kubernetes Objects in YAML files. Kubernetes Objects

describe the desired VNF states running on a cluster. These Kubernetes Objects

include Pod, Service, Volume, Namespaces and Controllers [30].

A Pod is the basic unit of Kubernetes and it is the simplest Kubernetes Object

that users can create or deploy [31]. One Pod can run one or multiple containers

and attach resources such as disk volumes, memories and networks to it. Contain-

ers in a Pod share the same resources. A Pod could be scheduled to a minion Node

once it is created. It keeps alive until the program running in it finishes or gets

terminated.

A Pod will be deleted if Delete commands are given, the pod is evicted because

of lack of resources or the Node it is scheduled on fails. Pods do not self-heal

and if they fail, they can restart but they may not restart with the same state as

before the failure. This may not be important if the Pod works as standalone but it

becomes critical if other Pods rely on the failed Pod. A Pod will have its in-cluster

IP address after it is created, which can be accessed by other Pods. However, once

the Pod is deleted, the address may not be available, leading to failures of other

Pods and thus failure of the VNF.

9



Experiment Tools

Controllers, including Deployment, ReplicaSet, StatefulSet and DaemonSet,

keep a certain number of Pods alive, and mark Pods with names and labels by

which they are accessible to other Pods [32]. This ensures that the VNF is up and

accessible within the cluster. However, the Controllers do not meet the demand

that the VNF has to be accessed outside the cluster and the requirement that

traffic should be routed to Pods. This is solved by Object Service. Object Service

can connect Pods to Endpoint Objects that are IP addresses and create rules for

Kubernetes network traffic load-balancer to distribute traffic to Pods.

The networking functionality is not completely shipped with Kubernetes but

come from many third-party projects.

3.1.2 Network and Load-Balancing

Networking is a major concern to VNF as the nature of the VNF is to deliver

network contents between devices. Network load-balancer is hence an important

component for the VNF because it distributes traffic among multiple devices in a

system, allowing the VNF to have higher capacity and availability, and shorter

response time [33]. In [34], Marttila T. introduces container networking and Load-

balancing of Docker and briefly Kubernetes. Most of the container networking

nowadays remains the same as the one in [34], except that now Kubernetes can

use Macvlan with the help of Multus.

Kubernetes Networking

Kubernetes networking concerns four types of communications: container-to-

container communication in a Pod, Pod-to-Pod communication in the cluster,

Pod-to-Service communication and external-to-Service communication [35].

Container-to-container communication is solved by Pod implementation. Con-

tainers in a Pod share the same network namespaces, which means they can

access each other by localhost. This also means that containers within a Pod

should coordinate port usage to avoid resource conflict.

Pod-to-Pod communication is not shipped with Kubernetes. It is handled by

several third-party Container Network Interface (CNI) projects. CNI concerns

network connectivity of containers and manages network resources for containers.

The projects used in this study are Multus CNI and Flannel.

Multus CNI [36] is a CNI plugin that creates subnets for Pods in Kubernetes

Nodes and attaches multiple network interfaces to Pods before linking the network

interfaces to subnets. Pods within a Node can communicate with each other over a

subnet. But Pods on one node cannot communicate Pods on another Node only by

using Multus. In addition, Flannel [37] is used for the communications between
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Nodes. Flannel runs a binary agent called flanneld on each Node and provides

IPv4 network between Nodes. Multus and Flannel work together, allowing Pods

in Kubernetes Nodes to communicate with each other.

While container-to-container and Pod-to-Pod communications have been solved

by the networking mechanisms stated above, Pod-to-Service and External-to-

Service are solved by load-balancing mechanisms.

Kubernetes Load-Balancing

A VNF in Kubernetes can contain multiple Pods. VNF traffic could target directly

to Pods but this is not realistic in practice because it is difficult and unsafe to

maintain a list of the addresses of available Pods for every client. Instead, the

client would send traffic to a single IP address, which is the IP address of a load-

balancer. A load-balancer maintains a list of available VNF backends running

on the cluster, accepts traffic outside the cluster and distributes traffic to those

backends. According to Load Balancing in the Cloud [33], a load-balancer is

compulsory for any network service to achieve high availability and flexibility.

High availability means that the network service would stay up and available

for a long time. It is one of the most important properties for VNF as stated in

Section 2.1. To achieve high-availability, a network service would run at least two

backends and if one backend fails the other backends could still serve the traffic.

A load-balancer can avoid offline backends and routes traffic only to those online

backends. Therefore, the load-balancer ensures that the service will be available

from the customers’ point of view if at least one of the backends is online.

Flexibility means that a VNF could be scaled up, down, out or in easily. It is also

one of the most important properties for a VNF. If the VNF receives more traffic

than it can handle, a new host running the same backend can be instantiated

and connected to the load-balancer at any time to handle the extra traffic. With

the help of a load-balancer, the scaling behaviour does not require changes in the

clients, which makes the VNF highly flexible.

Network traffic load-balancing is handled by multiple components in Kubernetes

clusters [38]. These components are MetalLB, Kubernetes Service Object, Kube

Proxy, IPTables/IP Virtual Server (IPVS) and Ingress.

Kubernetes Service Objects

A Kubernetes Service targets a set of Pods by their labels. Those Pods are the

backends of the Service. When a Service is created, it gets an in-cluster virtual IP

from Kube Proxy. The Service creates traffic directing rules for IPTables or IPVS

from the virtual IP to IPs of Pods. As a result, traffic targeting the virtual IP of

the Service will be routed to Pods that the Service selects.

Kube Proxy and IPVS
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Kube Proxy watches Kubernetes API servers for the addition and removal of

Service or Endpoints. It behaves differently according to the mode it is running on.

It can run on three modes: userspace, IPTables and IPVS. This study only focuses

on mode IPVS. In the IPVS mode, Kube Proxy calls Netlink interface to sync

IPVS rules by a given period. Then the in-cluster traffic routing is handed over to

IPVS. IPVS implements transport-layer load balancing inside the Linux kernel

[39]. IPVS can capture both TCP and UDP traffic to the Service’s in-cluster virtual

IP address and Port and redirects the traffic to Service’s backends. The selection

of backend, referred to as the load-balancing algorithm, is based on the IPVS

scheduler setting. Available settings are round-robin(rr), least connection(lc),

destination hashing(dh), source hashing(sh), shortest expected delay(sed) and

never queue(nq). IPTables is the only approach that Pods can respond to requests.

MetalLB

Service can be of type "LoadBalancer", which allows the Service to obtain an

external IP address that is accessible outside the Kubernetes cluster. That external

IP is given by an external load balancer. But this load-balancer is not shipped

with Kubernetes. In cloud platforms such as Google Cloud Platform and Amazon

Web Services, users can request a load-balancer for Kubernetes cluster from the

cloud providers to receive external traffic. In a bare-metal cluster, this external

load-balancing can be handled by third-party projects such as MetalLB. MetalLB

runs one controller in the cluster and one speaker for every Node, which can assign

an external IP to a Service. MetalLB can work on two modes: Layer 2 mode and

Border Gateway Protocol (BGP) mode. Layer 2 mode is universal. MetalLB in this

mode can run on any Ethernet network with no special hardware while in BGP

mode an extra router is required. This study runs MetalLB in Layer 2 mode. In

this mode, traffic will first go to the Node that runs MetalLB controller and then

Kube Proxy will spread the traffic to Service backends.

Ingress

While Service is the load-balancer for Pods, Ingress is a load-balancer for Services

in Kubernetes. The Ingress is introduced in Kubernetes v1.2.0 to deal with the

limitation in Service that the Service cannot do path-based routing. This limitation

means that the user cannot use a single IP address for multiple Services. A

company could run multiple Services in the Kubernetes cluster and it is not

always possible for each of those Services to have a public IP address. The number

of public IPv4 addresses is limited and even business giants in the IT industry

such as Google and Amazon could have only a few IP addresses. A practical

solution is to use Ingress to connect multiple Services to a single IP address and

use different ports or URL sub-links to access those Services.
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3.1.3 Kubernetes Scheduler

After a Pod is created, it will be placed in a queue in Pending state and is waiting

to be assigned to a Node, before the state turns into Running. The Scheduler is the

program that watches the queue and assigns Pods to Nodes. The procedure that

assigns a Pod into a minion Node is called scheduling. Kubernetes has a default

scheduler that allows users to run Pods with little effort.

The behaviour of the default scheduler is illustrated as Graph 3.2. It first takes

a Pod from the pending queue. Then, it filters Nodes that fulfils the specifications

of the Pod and scores those Nodes. Then the Pod will be bound to the Node that

has the highest score. If no available Node is found and Preemption is enabled for

the Node, the scheduler will evict Pods one by one from the Node with the highest

score until enough resources is obtained for the new Pod. The eviction is based on

the Pod Priority that is set in the Pod specifications. Pods with lower priorities

will be evicted to release resources for Pods with higher priorities. After the Pod is

assigned to a Node, the scheduler binds plug-ins and other components such as

volumes and networks. All the scheduling is then finished.

Figure 3.2. Scheduler Behaviour [40]

Therefore, the behavior of the default scheduler is determined by parameters

for Pods, Nodes and Scheduler. All available parameters are listed in Table 3.1.

This thesis focuses on the parameters that affect VNF throughput and those

parameters are marked with * in the table.

Pod Node Scheduler

Resource Request and Limit* Resources Usages* Scheduler Name

Affinity* Image Locality Hard Pod Affinity Symmetric Weight*

Taint Toleration* Node Label* Preemption

CPU Pinning and Isolation* CPU Pinning and Isolation* Percentage of Nodes to Score

Bind Timeout Seconds

Table 3.1. Parameters that affect Scheduler Behaviour

The Kubernetes Scheduler places the Pods evenly, in a partial and non-injective

approach, on any Node as long as the Node posts Ready state [41]. Instead of using

default settings, Pods can be scheduled according to its specification. Specifications

could contain Node names, Affinity, Anti-affinity, resource requests and limits.

Pods can be scheduled only when all specifications present in the Pod definition

are met.

Users can allocate a Pod to a specific Node by putting a Node name in spec.nodeName
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[42]. Then the Pod will only run on that Node. Pod specifications regarding re-

sources requests and limits are available on Managing Compute Resources for

Container [43]. Users can also specify the minimum amount of resources allo-

cated to a Pod by using the spec.containers[].resources.request keyword. Pods will

stay in Pending queue until the Node has enough resources. A similar keyword

spec.containers[].resources.limits indicates the maximum amount of resources

available to a Pod. These resource keywords constrain CPU and memory usages.

In Kubernetes, CPU resources are measured in CPU units. One CPU is 1 vCPU

which is a standardized unit equivalent to 1 Amazon Web Services (AWS) vCPU,

1 Google Cloud Platform (GCP) Core, 1 Azure vCore, 1 IBM vCPU and 1 Hyper-

thread on a bare-metal Intel processor with Hyperthreading. vCPU represents a

portion of a physical CPU and is usually measured in CPU time. 500m CPU, also

read as five hundred millicpu, guarantees a CPU time that is half of the CPU time

given by 1 CPU. Memory resources are measured in bytes. For example, 123Mi

indicates 123 Mebibytes. Pods that reach the memory limit may be terminated in

the runtime.

Affinity and Anti-affinity constrain Pods with labels from Nodes or other Pods

[42]. Affinity aims to schedule Pods in a way that satisfies specified expressions

while anti-affinity tries to avoid scheduling Pods according to labels. Affinity and

Anti-affinity both have Pod and Node constraints. For example, podAffinity tries

to schedule the new Pod along with the Pods that have particular labels while

podAntiAffinity tries to avoid those Pods working together. Similarly, nodeAffinity

would constrain Pods to Nodes with those labels while nodeAntiAffinity tries to

avoid allocating Pods to those Nodes.

CPU pinning and Isolation allows exclusive CPUs to be granted to Pods [44].

The CPU control is not enabled by default, which means Pods are sharing CPU

with each other and the workload can be migrated between CPUs in runtime.

This could worsen the performance because it introduces extra context switching

time. Users can enable this feature by setting extra parameters to the kubelet

running on Nodes. Those parameters are –cpu-manager-policy, –kube-reserved

and –system-reserved as stated in Kubernetes Docs [44]. Pods will have a qosClass

indicating if the Pods are running with CPU isolation enabled. Burstable and

BestEffort for qosClass indicate that CPU isolation is not enabled for the Pod

while Guaranteed indicates that the feature is enabled. To enable the feature, the

Pod should be specified with CPU limits and requests set to an integer, together

with memory limit and requests.

The Nodes could be VMs or physical servers and therefore have resources limits.

The number of available resources of a Node can be checked from the Kubernetes
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Metrics API. Pods will not be scheduled if the Nodes do not hold enough usable

resources. Then, the Pod Priority and Preemption mechanism from the Kubernetes

Scheduler can handle the situation well. Pods could be specified with different

priorities beforehand. In the provided situation, Pods with lower priority will get

evicted from its current Node to make room for the new Pod.

3.1.4 Kubernetes Horizontal Pod Autoscaler

While Kubernetes Objects enable easy deployment, scaling and maintenance,

the network services still require manual scaling. Being able to auto-scale is

important for companies to reduce the billing from Cloud Providers or reduce

the power consumption of their infrastructures. The workload of the services

differs from time to time. Over-reserving resources would waste energy or cause

extra billing when the services have few requests. Under-reserving resources

reduces costs but it would lead to bad Quality of Service (QoS) when the services

encounter more requests than the resources can handle. Manual scaling is not a

good option because it requires human interaction, which is slow and error-prone.

Kubernetes has a Horizontal Pod Autoscaler (HPA) that addresses the problem

[45]. HPA works on Controllers, such as Deployment and ReplicaSet, and changes

the number of Pods they control.

HPA can scale up and down Pods according to the observation on cluster metrics.

Kubernetes has metrics for Pods and Nodes on an API server. The default metrics

include CPU, memory and network usages. HPA takes desired values for metrics

and try to match the observed metrics with desired values by scaling up and down

Pods. For example, if CPU usage is taken as a metric and 100m is set as the

desired value in Pods while 200m is reported by metrics API server, 200m/100m

= 2 would be the scaling ratio and therefore, the number of Pods will be doubled.

In another case, if the desired value is 100m but 50m is reported, 50m/100m =

0.5 would be the ratio and therefore, half of the Pods will be deleted. However, it

takes time for Kubernetes to create Pods and re-distribute workloads. To prevent

overshoots in scaling, Kubernetes have flags to control the interval between scal-

ings. Those flags are –horizontal-pod-autoscaler-downscale-stabilization-window,

–horizontal-pod-autoscaler-initial-readiness-delay and –horizontal-pod-autoscaler-

cpu-initialization-period.

HPA can also use custom metrics. Users can specify their custom metrics such

as latency of the services and the number of HTTP requests for scaling by using

the Kubernetes Custom Metrics Object. However, both default metrics and custom

metrics are not stored anywhere. Besides, defining Custom Metrics Object could

be complicated. Tools are needed to manage those metrics and Prometheus is one
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of the good options.

3.2 Data Collection

The study uses Prometheus for data collection. Prometheus is an open-source

systems monitoring and alerting toolkit originally built at SoundCloud. [26]

Prometheus joined a hosted project in Cloud Native Computing Foundation in

2016, together with Kubernetes. Since then many projects, including Prometheus-

operator, Kube State Metrics, Node Exporter and Prometheus Adapter, have

started to integrate Prometheus into Kubernetes to monitor metrics and collect

data from Kubernetes Objects.

Prometheus architecture is shown in graph 3.3. Systems can run Prometheus

Client to export purely numeric time series by RESTful API at /metrics paths on

the Client address. Prometheus Server scrapes those time series from systems by a

given interval via the API and stores the data in its Time Series Database (TSDB).

The Server also has RESTful API that allows Alertmanager, Data Visualisation

Tools or other API clients to read data of those monitored systems. Time series

Figure 3.3. Prometheus Architecture [26]

are time-stamped data. They could be server metrics, application performance

monitoring, network, sensor and other analytics data. TSDB is the database

optimized for handling time series data. [46] It provides fast writing and reading

for time series data, and at the same time supports specialized features such as

precision reduction, interpolation and multimetric aggregate computing.

TSDB has gained importance over the last decade because of the IT industry
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evolution from monolithic applications to serverless applications. Monolithic ap-

plications combine all user interface and data access code into a single program

running in a platform. Serverless applications, known as microservices, separate

the program into components. The modularization enables easier development,

testing and more importantly, resistance to architecture erosion. However, this

transition brings challenges for monitoring systems. As the program becomes com-

partmentalized, there will be more data sources and more data points. Every data

source may have a few metrics collected every few seconds or even nanoseconds for

months, leading to a large amount of data. Those time series may be queried with

different intervals or precisions, and sometimes queried for the summaries over a

long time span. Traditional databases perform poorly on those queries according

to the research done by Influxdata [47]. Hence, the new database TSDB is built

to meet the demands. TSDB could outperform traditional databases 14 times in

throughput [47] and therefore, it is becoming popular nowadays.

3.2.1 Prometheus with Kubernetes

Prometheus collects and stores data for Kubernetes. When working with Ku-

bernetes, instead of simply scraping data directly from Prometheus Clients,

Prometheus runs multiple plugins to scrape data from Pods and Kubernetes

Metrics API Server and exposes metrics as Custom Metrics Objects at Kuber-

netes Metrics API Server in order to use the metrics at HPA. Those plugins are

Prometheus Operator, Prometheus Node Exporter, Prometheus Adapter and Kube

State Metrics. The interconnection of the plugins is illustrated in graph 3.4

Prometheus needs target IP addresses to scrape data. Users can check the IP

addresses of Pods and manually put them in the monitoring list. This is time-

consuming and also problematic because Pods can fail and IP addresses will be

lost. Prometheus Operator manages Prometheus Servers and their configurations.

It allows Prometheus to discover Pods by their labels by defining two Third

Party Resources (TPR): ServiceMonitor and Prometheus. Provided that Pods are

running Prometheus Clients and a Service has been created to connect those Pods

to an Endpoint, a ServiceMonitor defines the Service that Prometheus Server

should monitor and scrape data from and a Prometheus Object ensures that the

Prometheus Server can run with desired settings to monitor the Service described

in the ServiceMonitor.

Prometheus Node Exporter exports Node level metrics to Prometheus Server,

including CPU, memory, disk and network utilization. The Exporter mounts

cluster metric files in /proc before exposing the data in those files by RESTful API.

Not all Node level metrics can be collected by the Node Exporter. For example,
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Figure 3.4. Interconnection of Prometheus Plugins

the metrics from Kubernetes components such as kubelet and kube-scheduler is

not stored in cluster and therefore the Exporter cannot collect them. Prometheus

Operator provides options for running those components in Pods in order to obtain

monitoring data from them.

Prometheus Adapter runs a Metrics API Server to replace the original Kuber-

netes Metrics Server and exports collected metrics to the Metrics API Server. It

allows HPA to use all the metrics in Prometheus for auto-scaling while reducing

the queries on the Kubernetes API server.

Kube State Metrics listens to the original Kubernetes API Server and generates

metrics for various objects running on the cluster before exposing it on HTTP

endpoint /metrics. The metrics will then be scraped by Prometheus Operator.

Data collected by Prometheus can be queried by PromQL via HTTP API or via

Prometheus’s expression browser. PromQL is a functional query language that

enables users select and aggregate time series in real time [48]. Metrics can be

queried by given names and labels together with a time span. The PromQL has

four data types for evaluating expressions: Instant Vector, Range Vector, Scalar

and String. PromQL has some built-in functions, such as sum() and rate(). These
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functions can only accept specific types of data. For example, rate() accepts only

Range Vector data.

PromQL queries metrics by names and filters data with labels matching spe-

cific regular expressions. Generally, PromQL syntax for querying data is <in-

stant_query> ’[’ <range> ’:’ [<resolution>] ’]’ [ offset <duration> ] [48]. For ex-

ample, when querying for container_cpu_usage_seconds_total, Prometheus will

return all the time series with the name. If the CPU usages of the Pods in

the default namespace is wanted, filtering can be done by adding label names

and conditions in curly braces behind the metric name, which would be con-

tainer_cpu_usage_seconds_totalnamespaces="default" in this case. Metrics can

be filtered by multiple labels. Conditions can be regular expressions in RE2

syntax [49]. PromQL allows four types of operators to match label names and

conditions. Those operators are "==", "!=", "= " and "! ", meaning exactly equal,

exactly not equal, matching regular expressions and not matching expressions.

Metrics can be queried with a specific range. If the metric from the last 5 minutes

is wanted, [5m] can be placed after the curly braces. Time duration is specified

as a number and a unit. Units could be s for second, m for minute, h for hour,

d for day, w for week and y for year. Metrics can be queried with a given offset

following the range, indicating the earliest data from now. If the data from 2

days ago till now is wanted in the example above, the complete query would be

container_cpu_usage_seconds_totalnamespaces="default"[5m] offset 2d.

PromQL has functions for easy concatenations of the metrics. Two of those

functions are concerned in this study. Function sum() sums up all the queried

metrics and function rate() returns the changing rate of the queried metrics.

3.3 Network Protocols

This study follows ETSI TS 129 060 V12.6.0 [50], the most popular standard

adopted by Digital Cellular Telecommunications System, to implement the VNF

testing benchmark. The ETSI TS 129 060 V12.6.0 is a standard for GPRS Tun-

nelling Protocol (GTP) proposed in October, 2014. The protocol is a group of

IP-based communication protocols used within General Packet Radio Service

(GPRS) Core Network [51].

3.3.1 GPRS Components

GPRS core network is the central part of GPRS and connects 2G, 3G or other

mobile networks with external networks such as the Internet [50]. It provides
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functions for mobility management, session management, transport for Internet

Protocol packet services, billing and lawful interception. The core network is

composed of Gateway GPRS Support Node (GGSN) and Serving GPRS Support

Node (SGSN). GGSN acts as a router that interconnects SGSNs or redirects mobile

traffic to external networks. SGSN delivers data packets among mobile devices

and mobile stations within its geographical service area. The study focuses on

the situation where mobile devices are communicating with each other through a

GGSN among multiple SGSNs.

GTP allows users to move from place to place without losing network connections

by combining user session information and media data. GTP contains three

protocols: GTP-U, GTP-C and GTP’ (GTP prime). GTP-C is used for signalling

between GGSN and SGSN to activate users’ sessions, deactivate the sessions and

adjust QoS parameters. GTP-U carries user data within the GPRS core network.

GTP’ is responsible for billing functionalities in the GPRS core network. The study

uses GTP-U for data transfer and throughput measurements. GTP-C is used for

signaling between the traffic generator and the receiver.

3.3.2 GTP Header

A GTP header has a minimum length of 8 octets and contains information about

the user session, for instance, information about the GTP protocol version, protocol

type, extension header, message type, length of the payload and tunnel endpoint

identifier. All GTP protocols share the same Header. Throughput would be

greatly affected by the Header structure because that information determines the

interpretations of packets and different interpretations require a different amount

of calculations. Hence, it’s necessary to follow the GTP Header standard to obtain

realistic throughput data. GTP Header structure is shown in graph 3.2.

The Version field is a 3-bit field indicating the GTP protocol version. GTP-U only

have one version which is GTPv1-U and therefore, the Version would be set to 1.

Protocol Type (PT) field is a one-bit field following Version. It distinguishes GTP’

from other protocols. GTP’ has PT value 0 while the other GTP protocols have PT

value 1. The header would be interpreted differently according to PT. As the study

uses GTP-U, PT would be set to 1.

Extension Header flag (E) defines the presence of a meaningful Next Extension

Header field. In this study, communications happen within the GPRS core network

and thus no extra header is concerned. This field will be set to 0.

Sequence Numbers flag indicates if the sequence numbers in the 9th and 10th

octets are available. This study does not send sequential packets and thus the flag

would be set to 0.
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Bits
Octets 8 7 6 5 4 3 2 1

1 Version PT (*) E S PN

2 Message Type

3 Length (1st Octet)

4 Length (2nd Octet)

5 Tunnel Endpoint Identifier (1st Octet)

6 Tunnel Endpoint Identifier (2nd Octet)

7 Tunnel Endpoint Identifier (3rd Octet)

8 Tunnel Endpoint Identifier (4th Octet)

9 Sequence Number (1st Octet)

10 Sequence Number (2nd Octet)

11 N-PDU Number

12 Next Extension Header Type

Table 3.2. GTP Header Structure [50]

N-PDU Number flag (PN) indicates if the N-PDU number is present or not.

N-PDU stands for Network Protocol Data Unit. The N-PDU number represents

the sequence number for N-PDU. This would be needed if the mobile devices need

to communicate with an external network. In this study, no external network is

concerned and this flag would be set to 0.

Message Type indicates the type of the GTP message with a single octet. The

full list of message types is available in the standard [50]. Redirection Response

and Redirection Request are the message types in the study and therefore, 6 and

7 will be the value in this field for those messages separately.

The Length field is split into two octets and indicates the payload length. The

maximum payload length is 65535 octets.

Tunnel Endpoint Identifier (TEID) is a number of 32 bits identifying the target

tunnel endpoint for the message.

The length of the header depends on the values of those fields. With any one of

the E, S and PN set to one, the length would be 12 octets. In the study, all of the

three flags are 0. Thus, the header length is 8 octets.

3.3.3 Path Protocol

UDP/IP is the only path protocol defined to transfer GTP messages in GTP version

1, according to the standard [50]. UDP stands for User Datagram Protocol. It is

one of the core members of the Internet Protocol Suite. UDP/IP means to send

messages, referred to as datagrams, on an Internet Protocol (IP) network. A
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datagram contains headers and payloads.

Communications using UDP do not require handshakes to set up communication

channels. UDP itself has no error checking and correction. Therefore, communica-

tions are not ordered and not guaranteed for delivery. The unreliability of UDP

reduces overheads in Protocol Stack, which makes processes fast and hence makes

it suitable for time-sensitive applications, such as Voice over IP and online games.

UDP provides verification in its header. UDP Header is shown in graph 3.3.

Offsets Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 Source Port Destination Port

4 32 Length Checksum

Table 3.3. UDP Header Structure [50]

All four fields in the header are of 2-octet in length. Source port indicates the port

of the sender. Destination port serves a similar functionality but it indicates the

port of the receiver. Length field implies the message length. The length includes

lengths for header and the payload. Checksum can be used for error-checking.

In the standard, UDP Destination Port for GTP-U request messages is 2152.

The port for GTP-C is 2123.
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Since the establishment of Container and Kubernetes, some researches have been

conducted to test the performance of those tools. This study learns from previous

researches and fills certain gaps in those researches. Therefore, this study is built

on those studies and extends to solve some unknowns.

In Operating Systems: Internals and Design Principles [5], Stallings W. classi-

fies multiprocessor systems as three types. Cluster, also referred to as loosely

coupled or distributed multiprocessor, is one of the multiprocessor systems. For

such systems, each processor has its own main memory and I/O channels. This

structure has benefits such as absolute scalability, incremental scalability, high

availability and superior price per performance. Stallings lists several clustering

methods. One of the methods is Separate Servers, which is the clustering method

of Kubernetes. This method has high availability with the drawback of high net-

work and server overhead. The benefit of high-availability fits the requirement of

carrier grade in the telecommunication industry. But the impact of the overheads

on telecommunication VNF throughput is still unknown in quantity.

Load Balancing in LTE Core Network with OpenStack Clouds [52] evaluates

network performance of a load balancing system in an OpenStack Cloud Cluster.

This study demonstrates that network performance would be affected by virtual

machine locations and the number of VNF backends. The study draws a conclusion

that the VNF would have the highest throughput if the VNF runs in one single

OpenStack instance on the same physical virtualization host. However, the study

runs an application that handles HTTP RESTful API in TCP instead of UDP.

Therefore, it’s unclear that if the same conclusion can apply to a telecommunication

VNF that runs in containers in UDP. The study runs VMs each with 2 vCPUs. The

figures for a bigger number of vCPUs are still to be measured. It would also be

interesting to see how the number of VNF backends influences VNF throughput

in the container case.

The study Characterising Resource Management Performance in Kubernetes

23



Previous Work

[6] conducted experiments to estimate starting time, termination time and the

execution time for different applications. For benchmarking starting time, the

authors run test cases on three variables and measured total deployment times.

The starting time is affected by the number of machines, the number of containers

in a Pod and the total number of containers. The termination time is also relevant

to the same variables mentioned above. The results for the execution time of

CPU intensive applications were also measured and those results are relevant

to the same parameters. The study includes an estimation of the throughput for

network-intensive applications as well. The study shows that the performance

of both CPU and network intensive applications in Kubernetes is affected by the

number of Pods, the number of Containers in a Pod and the number of Nodes.

The study draws the conclusion that network-intensive applications would reach

higher throughput if a Pod includes only one container. However, the hypothesis

tests for the network is not throughout enough. The network tests ran on TCP

protocol and the tests were either run on the same host or on the same Kubernetes

cluster. It means the performance for traffic in UDP protocols and the performance

for dealing with traffic from outside the Kubernetes cluster is missing.

NFV-VITAL: A Framework for Characterizing the Performance of Virtual Network

Functions [7] proposes a framework for characterizing the performance of a VNF

running on OpenStack VMs. In this framework, the VITAL acts as an orchestrator

that can configure VNF and workload generation, and monitor metrics of the

VNF. The configuration for VNF could be the number of CPU cores, memory and

network interface limit. The configuration for workload generation could be call

setup rate and the traffic intensity. Then metrics of the VNF during the test

will be collected by VITAL. Therefore, users can use this framework to estimate

VNF capacity for a given resource configuration, compute virtualization over-

heads, determine optimal resource configuration for a given workload, evaluate

different virtualization and hardware options and fine-tune VNF implementation

and performance [7]. The methodologies and benchmarking models proposed in

the study are reasonable and could fit well in benchmarking telecommunication

VNFs. However, the demonstrations in the study could be improved and extended.

The study measures VNF capacity by the maximum number of input calls and

successful calls for a given set of CPU settings without indicating the packet rate

of each call. Therefore, the relationship between CPU number and maximum

packet processing rate remains to be filled. Besides, the study runs VNF on VMs

and adopts Clearwater architecture, which may have a different result than a

VNF that runs on containers and other microservice architectures. Therefore, new

tests that adopt the same methodologies can be conducted in a Kubernetes cluster
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with other VNF architectures to improve the study. The tests run only one type

of VNF for benchmarking, which means it remains unknown how the number of

VNFs affects throughput and how different VNF types influence each other.

Multi-VNF Performance Characterization for Virtualized Network Functions [8]

conducts experiments to test the influences on VNF throughput with regards to

the number of VNFs running on the same host and with regards to network traffic

routing software. The study connects an IXIA traffic generator to a host. The traffic

generator sends traffic to the host and the traffic will then be directed to VNFs

running on the host as VMs, using I/O technologies. The throughput is measured

with different numbers of VNFs running on the host ranging from 1 to 10. The

throughput is also measured with different I/O technologies such as OVS, SR-IOV

and FD.io VPP. This study shows that the VNF throughput would be affected by

the number of VNFs sharing the same resources and affected by traffic routing

technologies. However, the study focuses on vertical scaling but does not concern

horizontal scaling. Therefore, it remains unknown how horizontal scaling affects

the throughput in relation to the number of VNFs. Also, it remains unknown for

the impact of multi-host load-balancing mechanisms on VNF throughput.

Accelerated DPDK in Containers for Networking Nodes [4] measures network

latencies with DPDK, SR-IOV, Open vSwitch and Open Virtual Network in a

Kubernetes cluster. The study sets up a Kubernetes cluster with MAAS and

kubeadm. VNF runs in a Pod in Kubernetes. In the experiments of the study,

traffic is routed to the Pod and is handled with different techniques, such as OVS,

DPDK, SR-IOV, Multus and OVN, and the corresponding latencies are measured.

The study provides a practical hardware setup for benchmarking a Kubernetes

cluster and potential tools used in Kubernetes networking. However, the study

does not measure the latencies for different number of Pods and different locations

for the Pods. Therefore, the impact of the number and location of Pods on latency

could be measured to extend the research.

To summarize, the previous researches provide practical directions and setups for

benchmarking VNFs, meanwhile providing reasoning to justify the methodologies

adopted in this study. This study is developed from those studies and fills the gap

in the domain of NFV.
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5. Experiment Design

This chapter introduces the experiment procedures for benchmarking and obtain-

ing data. The studies mentioned in Chapter 4 provide guidelines for benchmarking

VNF throughput. Basic structures of those tests are similar. This study follows

the setup structures and benchmarking methodologies of the previous studies

while extends to solve the gaps in the research area of benchmarking NFV.

5.1 General Information

In the experiments, a traffic generator sends traffic to the VNF running on physical

hosts. A metrics collector is constantly running during tests and collects data

from those hosts. The metrics are CPU usage, memory usage and network usage.

Network usage is highly relevant to the VNF throughput and hence is taken as

the gauge of VNF throughput. Test cases differ from each other by parameters of

the VNF. VNF throughput could be affected by several parameters that could be

the number of VNFs sharing the same resources and traffic routing technologies.

Tests are conducted by changing those parameters.

The workload is a packet forwarding benchmark running in Pods. The bench-

mark receives packets from a sender and forwards packets to a receiver. The size

of the packets is 256 bytes, which is given by the standard [50]. The metrics are

packet rate, packet loss and latency that together define Quality of Service (QoS).

The maximum VNF throughput is defined as the maximum throughput with the

packet loss of less than 1%. It is also notated as maximum feasible throughput in

this thesis.

There are gaps in the previous studies that could be filled in. Those gaps are: 1)

the performance of a VNF that handles traffic in UDP protocol; 2) the performance

of a VNF dealing with external traffic; 3) the performance of a VNF that runs in

containers; 4) the performance of a VNF that runs on multiple physical hosts; 5)

the relationship between the resources allocated to a VNF and VNF throughput;
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6) the influence from other VNF types on the throughput.

To fill those gaps, some parameters need to be changed to measure the impacts.

For the first gap, traffic packets need to adopt UDP. For the second gap, traffic

needs to be sent by an external traffic generator and forwarded to an external

receiver. For the third gap, the VNF should be run in containers. For the fourth

gap, the containers for the VNF need to be allocated in different physical machines

in the experiments. For the fifth gap, the amount of resources given to the VNF

should be changed during the experiment. Also, because the VNF comprises of one

or more containers, resources given to the VNF should be changed in the container

level. The resources are mainly CPU resources and therefore, they are changed

on VNF level and container level. For the sixth gap, a different type of containers

should be run on the same host where the VNF runs.

Therefore, this study is based on the structure of previous studies and aims at

filling the gaps.

5.2 Experiment Design

In order to fill the gaps, measurements are conducted in the following steps:

1) The Kubernetes cluster is configured so that it can receive traffic from outside

the cluster.

2) VNFs are running on the Kubernetes cluster as Pods.

3) Traffic generator sends packets to the Kubernetes cluster using UDP protocol

and gradually increases the packet rate.

4) Traffic can be routed to Pods by load-balancing mechanisms.

5) Data is collected by Prometheus.

6) MetalLB controller runs on Host 4 while Ingress controller runs on Host 2.

7) CPU isolation is enabled and the CPU limits and requests of a Pod are set

to a constant. The number of Pods is changed to measure the influence of

number of Pods on VNF throughput.

8) CPU isolation is disabled and the step 7) is repeated.

9) The number of Pods is set to a constant. The CPU resource (CPU limits

and requests) is changed to measure the impact of CPU resource on VNF

throughput. In this case, CPU isolation is disabled because of the single-

thread benchmark and the requirement that Kubernetes CPU manager can

enable CPU isolation only when CPU limit is set to an integer.
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10) The CPU resource and number of Pods are set to a constant. Pods are

allocated on different hosts to measure the influence of the load-balancing

mechanism on VNF throughput. Traffic is sent to the IP address of Service.

All Pods are first allocated to Load-balancer Controller Node (LCN). Then,

half of the Pods are allocated to MCN and the other half on non-loadbalancer

Controller Node (NLCN). Last, all Pods are allocated to NLCN.

11) Traffic is sent to the IP address of Ingress and step 10) is repeated.

12) Location of MetalLB and Ingress controllers are run in the same Host and

step 10) and 11) are repeated to test the impact of load-balancing mechanisms

on VNF throughput.

13) The CPU resource and number of Pods are set to a constant. Pods are allo-

cated on a Host. Another type of Pods, which runs intensive local calculations,

is run on the same host to measure the influence from other Pods on the

VNF throughput. The new type of Pods is first run with CPU limits and then

without CPU limits.

14) Kubernetes cluster composition can be changed to test the impact of CPU

types on VNF throughput.

The experiment setup is composed of hardware and software structures. The

hardware structure illustrate the hardware specification of hosts and intercon-

nection of hosts. The software structures illustrate the software setup and the

benchmarks for tests.

5.3 Hardware Structure

The hardware adopted in this study is composed of five physical machines. Each

machine is numbered for identification. The numbers of machines are 0, 2, 3, 4,

5 and 6. Specifications of the machines are listed in Table 5.1. All CPUs have

hyper-threading enabled and therefore, the number of CPU logical cores equals to

twice the number of physical cores.

The machines are connected by two switches. Each switch handles one network.

The network topology is shown in Graph 5.1.

All machines are connected to switch 1 in subnet 10.10.10.0/24. Host 2, 4, 5 and

6 are also connected to switch 2 in subnet 10.10.9.0/24. Switch 1 has a capacity of

100 Mbps while switch 2 has 1000 Mbps.

Host 3 is also connected to the Internet, which is not shown in Graph 5.1
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Host 0 Host 2 Host 3 Host 4 Host 5 Host 6

CPU logical
cores No. 8 64 8 8 8 56

Max. CPU
frequency/GHz 2.5 3.2 2.5 3.9 3.9 2.8

CPU
Micro-architecture Haswell Skylake Haswell Haswell Haswell Broadwell

Memory/GB 4 32 4 32 32 8

Storage/GB 150 120 110 1000 120 230

Network
Interface
Card 1

Name enp0s25 enp94s0 ens4 enp5s0 enp5s0 ens15f0

Capacity/
Mbps 100 100 100 100 100 100

IP address 10.10.10.30 10.10.10.33 10.10.10.1 10.10.10.31 10.10.10.32 10.10.10.29

Network
Interface
Card 2

Name - traffic0 enp0s25 traffic0 traffic0 ens15f1

Capacity/
Mbps - 1000 1000 1000 1000 1000

IP address - 10.10.9.12 Internet 10.10.9.10 10.10.9.11 10.10.9.23

Table 5.1. Hardware Specifications

Figure 5.1. Network Topology

Network 10.10.9.0/24 is used as a traffic network. Network 10.10.10.0/24 is used

as a control network.

5.4 Software Structures

5.4.1 MAAS

The MAAS setup in this study follows the setup proposed by Krishnakumar [4].

MAAS enables easy setup and management for private clusters. The MAAS

structure is shown in Graph 5.2. Host 3 runs as the MAAS controller. It provides

a subnet (10.10.10.0/24) and a corresponding DNS server, while other machines

run as MAAS nodes and are managed by the controller through the subnet. Each

machine has an IP address in the MAAS subnet. The IP addresses are shown in

Graph 5.2. Host 3 has direct access to the Internet and all other nodes can access

the Internet through Host 3.
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Figure 5.2. MAAS Structure

The MAAS nodes requires an IPTable forwarding rule to get access to the

Internet. Host 3 is the machine that bridges two networks. NIC ens4 connects to

the MAAS subnet and NIC enp0s25 connects to the Internet. Therefore, on Host

3, the following commands can be run to forward traffic between MAAS nodes and

the Internet.

$sudo iptables −−table nat −−append POSTROUTING \
−−out−in ter face enp0s25 − j MASQUERADE

$sudo iptables −−append FORWARD −−in−in ter face ens4 − j ACCEPT

5.4.2 Kubernetes

The composition of the Kubernetes cluster changes during this study. Host 0 is the

Kubernetes Master. There are always two Kubernetes Nodes in the Kubernetes

cluster. One of the Nodes is always Host 4 while the other one is either Host 2

or Host 5. Kubernetes shares the same control network as MAAS in the subnet

10.10.10.0/24. Kubernetes cluster structure in this study in shown in Graph 5.3.

Figure 5.3. Kubernetes Cluster Structure

Docker, kubelet and kubeadm are mandatory for all machines in a Kubernetes

cluster. The installation script is available in Appendix A.3.

After the installations for Docker, kubelet and kubeadm, the Kubernetes cluster

can be set up by using kubeadm. In Host 0, the following command can be run to

initiate Kubernetes Master:
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$kubeadm i n i t −−conf ig . / kubeadm . conf ig

The Kubernetes cluster needs to run in IPVS mode in order to have a higher

performance [53] and the IPVS should use the least connection algorithm for

load-balancing. These can be stated in the kubeadm.config file. Contents for the

kubeadm.config is appended on Appendix A.3.

After the Kubernetes Master has been initiated, a command that can be used

to add Nodes to the Kubernetes cluster would be available in the terminal. After

adding Host 2/5 and Host 4 to the cluster, ’kubectl get node’ can be run to check the

availability of the Nodes. But at this moment, all the nodes should be in NotReady

state because at least one CNI plug-in is needed for Pods to communicate with

Kubernetes API Server. Multus and Flannel are the CNI plug-ins adopted in this

study. Flannel requires Pods to run in subnet 10.244.0.0/16. Therefore, when

initializing the cluster, the podSubnet in ClusterConfiguration should be set to

the range. Kubernetes subnet is illustrated in Graph 5.4.

Figure 5.4. Kubernetes Subnet Topology

This subnet runs through switch 1 and thus, it shares the same network as the

MAAS and the Kubernetes control network.

The initialization of Multus CNI and Flannel can be done by running the follow-

ing commands on Host 0:

$g i t clone https : / / github . com / i n t e l / multus−cni . g i t
&& cd multus−cni

$cat . / images / { multus−daemonset . yml , f lannel−daemonset . yml }
| kubectl apply −f −

The Multus can create multiple network interfaces for a Pod. This allows Pods

to run in two networks. As ETSI TS 129 060 V12.6.0 [50] indicates, the GTP has
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three protocols: GTP-U, GTP-C and GTP’, where GTP-U is used in a traffic network

while GTP-C and GTP’ are used in a control network. This division is critical for a

VNF. Traffic network requires a larger bandwidth while control network requires

smaller. Control network should be more robust while traffic network is allowed

to have larger network fluctuations and packet loss. The division of two networks

between traffic and control signals enables better stability for the VNF.

Pods in this study have two network interfaces; one is used for Kubernetes

control network and the other one is for running traffic. This can be configured by

the Multus ConfigMap shown in Appendix A.4.

The traffic network interface adopts macvlan as its network driver and traffic0 as

its network device on the host. The IP addresses of the traffic network interfaces

ranges from 10.10.9.50 to 10.10.9.149. The traffic travels directly from network

interface traffic0 to Pods.

MetalLB can assign an external IP address for Kubernetes Objects. It can be

installed by running the following command on Host 0:

$kubectl apply −f . / metallb . yaml

The metallb.yaml implements the default configuration [54] but with nodeName

of the controller specified as nodeName: Host2 or nodeName: Host4. This could

measure the impact of controller location on VNF throughput.

The external IP address for Kubernetes Objects can be configured by MetalLB

ConfigMap as shown in Appendix A.5. This ConfigMap indicates that MetalLB

runs in layer 2 mode and the external IP address assigned by MetalLB would

range between 10.10.9.150 and 10.10.9.253.

Ingress can collect Services into one IP address and thus acts as a load-balancer

for Services. The ingress can be installed by running the following command:

$kubectl apply −f . / mandatory . yaml

The mandatory.yaml implements the default ingress controller setup file [54]

with changes in the port and protocols, as shown in Appendix A.6. For Ingress to

work with UDP traffic, tcp-services and udp-services need to be configured. Also,

according to the methodology adopted in this study, the location of the Ingress

controller would change between Host 2 and Host 4, stating by nodeName: Host2

or nodeName: Host4.
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Vnf-benchmark is the Service name for the VNF benchmark used in this study

and 2152 is the port used by GTP-U. In order to expose Ingress with an external

IP address, a Service object for Ingress is needed and it is shown in Appendix A.7.

This Service collects UDP traffic from Ingress controller at port 2152 and can

be accessed by an external IP address with the type set to LoadBalancer. Ingress

rules could be configured by Kubernetes Ingress Object with following command

run in Host 0:

$kubectl apply −f . / ingress . yaml

Contents of the ingress.yaml is shown in Appendix A.8.

This Ingress rule selects vnf-benchmark-svc at port 2152 as its backend for the

IP address and port described in the previous step.

Data is collected by Prometheus. This study uses kube-prometheus for simple

setup of Prometheus to monitor the Kubernetes cluster and to collect metrics. It

can be set up by running the following commands in Host 0:

$g i t clone https : / / github . com / coreos / kube−prometheus . g i t
$cd kube−prometheus
$kubectl create −f manifests /
$unti l kubectl get customresourcedef init ions \
servicemonitors . monitoring . coreos . com ;
do date ; sleep 1; echo " " ; done
$unti l kubectl get servicemonitors −−al l−namespaces ; do date ; \
sleep 1; echo " " ; done
$kubectl apply −f manifests /

This installs all components and services for monitoring and can be accessed on

http://localhost:9090 on Host 0 with the following command run:

$kubectl −−namespace monitoring port−forward
svc / prometheus−k8s 9090

All the procedures for setting up the Kubernetes cluster are done.
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5.4.3 Benchmarks

Benchmarks are composed of a traffic generator, a packet forwarding VNF and

a receiver. Traffic is transmitted in traffic network 10.10.9.0/24. The traffic

generator sends traffic to the packet forwarding VNF before the traffic is redirected

to the receiver. Interconnections of the benchmarks are illustrated in Graph 5.5.

Traffic flow is illustrated in Graph 5.6.

Figure 5.5. Interconnection for Benchmarks

Figure 5.6. Traffic Flow among Benchmarks

The traffic generator sends traffic packets to the forwarding VNF running on

the Kubernetes cluster. The VNF forwards packets to the receiver. The traffic

generator also sends a test latency packet in every second to the forwarding VNF.

The latency packet will then be sent to the receiver. The Receiver will respond the

packet back to the traffic generator to obtain Round Trip Time (RTT) of the VNF.

The traffic generator encodes an identification number in the header of traffic

packets. The number changes in every two seconds. Meanwhile, the receiver

calculates the number of packets received within the two seconds and sends the

information back to the traffic generator. Hence, the traffic generator can calculate

packet loss rates in every two seconds when the number of the packets received

by the receiver is divided by the number of packets it sends with the specific

identification number.

Kubernetes Nodes are allocated to different hosts during the study to test the

impact of CPU clock frequency and architecture of the hosts on VNF throughput.

The Hosts marked with * in Graph 5.7 indicates that a host is a Kubernetes host

running VNF in some experiments and it changes to traffic generator in some

other cases. The Kubernetes cluster always has two hosts. Host 4 is always a

Kubernetes Host while Host 2 and Host 5 swaps their roles.

The flowchart for the traffic generator is illustrated in Graph 5.8.
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Figure 5.7. Traffic Network Topology of the Kubernetes Cluster

Figure 5.8. Flowchart for Traffic Generator

The traffic generator starts with creating two processes. One process handles

the monitoring of statistical counters while the other one creates traffic clients to

send traffic packets and test packets. For every traffic client, it sends a latency test

packet to VNF once per second. The test packet has a timestamp of the moment

when it is sent. The traffic clients keep sending traffic packets in UDP protocol to

the VNF by a varying interval. The interval decreases by 5% in every 10 seconds

to increase the packet rate of the client. The traffic packet is encoded with a GTP

header described in Section 3.3.2 with a TEID that changes in every two seconds.

All clients have the same TEID in the GTP header over the two-second interval.

At the end of the interval, an ending signal is sent to the receiver at port 2123

with the TEID. Each client stores a counter for the traffic that it has sent before

the counter gets sent to the monitoring process. The monitoring process receives

counters from clients and calculates the total packet rate for all the clients. Then

the packet rate will be sent to Prometheus and stored in the TSDB for further

usage. The monitoring process listens to port 2123 and waits for statistical packets
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sent from the VNF and the receiver. The statistical packets contain information

about RTT from the traffic generator to the VNF and the receiver, together with

the number of packets with a certain TEID received by the receiver. The number

of packets received by the receiver is compared to the number of packets sent with

the same TEID, thereby obtaining the packet loss.

The flowchart for the VNF forwarding benchmark is illustrated in Graph 5.9.

Figure 5.9. Flowchart for the VNF

The forwarding VNF listens to port 2152, which is defined in ETSI [50]. When

it receives a packet, it parses the header of the packet to check the type of the

packet. If the packet is a latency test packet, the VNF sends the packet back to

the traffic generator as well as to the receiver. If the packet is a traffic packet, the

VNF sends the packet to the receiver only.

The flowchart for the receiver is shown in Graph 5.10.

Figure 5.10. Flowchart for the Receiver

The receiver listens to port 2152 and 2123. When a packet arrives from port

2152, the packet header is parsed to obtain a TEID, which is used for counting

the number of packets sent by the VNF. When a packet arrives from port 2123,

the packet is parsed to obtain a TEID which is used to read the counter in the

previous step. The counter will then be sent to the sender to calculate packet loss.

For the receiver to have the best performance, port reusing is enabled [55] and

more than three threads are running and fetching data from port 2152.

The VNF Service Object and Deployment is shown in Appendix A.2. After the
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VNF is deployed, Service has an IP address of 10.10.9.150 and Ingress has an IP

address of 10.10.9.151.
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6. Results

This chapter contains results for 7 experiments. Each experiment has multiple

test cases. Each test case is labelled with Section number-test case number. For

example, the first test case in the first experiment is labelled as 6.1-1. If the

experiment has more than one subset of experiments, the test cases is labelled as

Section number-subset number-test case number. For example, the first test case

in the first experiment subset in the fourth experiment is labelled as 6.4-1-1.

6.1 Impact of Number of Pods

This experiment measures the impact of the number of Pods on VNF throughput.

The number of Pods varies from 1 to 5. The number of Pods is increased by 1

between adjacent test cases. The experiment results are shown in Figure 6.1.

Each column in the graph indicates one test case. Each test case has three rows

for three metrics.

The x-axis in all graphs indicates the time that passes in the test in seconds.

Time ranges from 0 to 1000 seconds for all tests.

The first row shows the throughput of the VNF. It is notated in packets per

second (pps). In this row, blue curves indicate the number of packets sent by the

Traffic generator within one second, ranging from 10,000 to 400,000 pps. Red

curves indicate the number of packets received by the Receiver within one second.

The second row shows the packet loss of the VNF in the y-axis. The packet loss

range is shown up to 10% to illustrate the effect on the level where the packet

loss starts to increase rapidly while still having enough granularity on the lower

end of the range where the QoS targets for typical telecommunication VNFs can

be met. If a point is missing in the row, it is either not recorded due to network

connection problems or the measured loss is higher than 10%.

The third row shows the latency of the VNF in the y-axis in milliseconds. The

latency range is determined by the maximum value in the corresponding exper-
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iment and is the ceiling integer of the maximum value. If the latency is higher

than 5 ms, it will be missing from the graph.

The horizontal dashed line in the figure indicates the best throughput from all

the test cases in this experiment. The vertical lines indicate the moment when

the test case has the best throughput. The maximum throughput of each test case

in the experiment is indicated by a dot which is in the intersection of the vertical

dashed line and the blue curve. The red dot indicates the best throughput case in

the experiment.

MetalLB controller is running on Host 4. Each Pod has a CPU limit of 1 vCPU

and the Pods are running on Host 4. The packet forwarding benchmark is a single

thread programme, which means it cannot benefit from having more than 1 vCPU.

Therefore, CPU limits would have to be 1 vCPU. The Pod will be run with CPU

isolation turned on, meaning that the benchmark has an exclusive CPU. The first

column is the result for running the VNF in one Pod. The last column is the result

for running the VNF in five Pods.

Figure 6.1. Results for the Impact of Number of Pods

The VNF gets the best throughput when it is run in four Pods with CPU limited

to 1. When the VNF is run in one Pod, packet loss begins to rise earlier and the

variance in latency increases. When the VNF is run in more than four Pods, the

maximum throughput drops when the number of Pods increases.
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The figure in the first row in the first column shows that 140 kilo packet per

second (kpps) is the maximum packet rate with feasible packet loss. Hence, a

conclusion can be drawn from the figure that one vCPU is capable of handling

at maximum 140 kpps. When the number of Pods increases, the VNF gets more

CPU time for processing the packet and the VNF is able to process more packets.

The throughput increases almost twofold to 270 kpps when three additional Pods

are added. However, when more Pods are added, the throughput does not get

improved but instead, it becomes worse. The figures in the second row show that

increasing the number of Pods decreases the variance in packet loss. However,

when the VNF is run on 5 Pods, variance increases. When the figures in the second

and third row are examined together, it shows that when packet loss increases,

latency would also increase.

To summarize, the maximum feasible packet rate for 1 vCPU is 140 kpps and the

maximum feasible packet rate that the VNF can reach is 270 kpps when the VNF

is run in four Pods. Increasing the number of Pods will deteriorate the throughput.

6.2 Impact of CPU Isolation

In the previous experiment, each Pod has an exclusive CPU that it can run

programs without affecting other Pods or getting affected by other Pods. In this

experiment, Pods are running without CPU isolation, which means they are

sharing CPUs and the programs running on those Pods could run on any of the

shared CPUs in runtime.
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Figure 6.2. Results for the Impact of CPU Isolation

The results of this experiment are shown in Figure 6.2. The graph structure is

the same as the previous experiment. The experiment method is slightly different

from 6.1 that Pods are run with qosClass set to Burstable instead of Guaranteed

in the previous case. qosClass is a keyword in Pod specification that sets CPU

isolation for the Pod. It can be set to either Burstable (CPU isolation off), or

Guaranteed (CPU isolation on).

When the VNF is run in one Pod, the maximum feasible throughput is similar

to 6.1-1 at around 140 kpps. However, the throughput drops to 100 kpps when

the traffic is 250 kpps and eventually increases to 200 kpps level without the

CPU isolation while CPU isolation in 6.1-1 rises the throughput to 220 kpps.

The sudden drop happens when the QoS of the application is not acceptable and

therefore, the corresponding throughput is not useful in practice. But it indicates

the instability of the VNF when CPU isolation is not enabled.

When the VNF is run in two to four Pods, the maximum feasible throughput is

lower than the one in 6.1-2, 6.1-3 and 6.1-4. When the VNF is run in five Pods, the

maximum throughput in the non-isolated test case is 180 kpps, which is the same

as in the isolated case. However, CPU isolation keeps the packet loss low while

the non-isolated cases have higher packet loss on average.

To summarize, CPU isolation brings better and more stable throughput for the
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VNF.

6.3 Impact of CPU Limits

The experiment measures the impact of CPU limits on the throughput. CPU

isolation is not enabled in this experiment. Each Pod has a maximum CPU limit

of 1 vCPU because of the single-thread VNF benchmark. The VNF is composed

of five Pods and the Pods are running on Host 4. The CPU limit for the Pod will

change from 200m to 1000m and has the same amount of total CPU time ranging

from 1 to 5 as the experiment in Section 6.2 and therefore, this experiment can be

compared with the previous section.

Figure 6.3. Results for the Impact of CPU Limits

The experiment results are shown in Figure 6.3. The first column runs the

Pod with CPU limit of 200m. The last column runs the Pod with CPU limit of

1000m. The CPU limit increases by 200m between adjacent test cases. The graph

structure is the same as in the previous experiments.

When the CPU limit is set to 200m for a Pod, the VNF has 1 vCPU in total and

it has a maximum feasible throughput of 140 kpps, which is the same as in the

case 6.2-1 (both with or without CPU isolation enabled). Latency is similar to the

first test case in the first experiment.
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When the CPU limit is set to 400m and 600m for a Pod, the VNF has 2 vCPU

and 3vCPU in total respectively. The maximum throughput in two test cases is

similar. The maximum VNF throughput increases to 150 kpps. It is 10 kpps more

than in 6.3-1 but 10 kpps less than in 6.2-2 and in 6.2-3.

The results for the cases with CPU limits of 600m and 800m are similar to each

other. They have maximum feasible throughput around 170 kpps, which is slightly

lower than in 6.2-4 and 6.2-5.

Latencies of these cases do not differ much from each other. When the CPU

limit increases, the variance of latency increases slightly but the latency still stays

within 2.5 ms.

To summarize, this experiment has a similar throughput compared to 6.2. The

best throughput in this experiment is reached in the case with CPU limit of 600m.

6.4 Impact of VNF Pod Location and Load-balancing Techniques

This experiment measures the impact of Pod location on VNF throughput. In this

experiment, the same tests as in 6.1 are conducted with all the Pods running on

Host 5 instead of running on Host 4. Both the Ingress controller and MetalLB

controller are run on Host 4.

Figure 6.4. Results for the Impact of number of Pods with VNF Pods running on Host 5
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The results of this experiment are shown in Figure 6.4. The maximum VNF

throughput is 130 kpps. Increasing the number of Pods does not increase the

maximum VNF throughput but it increases the latency of the VNF when the

packet loss starts to increase.

The results show that the VNF throughput depends on the physical host of

the Pods. Therefore, an experiment for running Pods in different Hosts should

be conducted to measure the impact of Pod location. Kubernetes uses two load-

balancers: Ingress and Service. Therefore, the performance of the different

load-balancing techniques should also be compared.

The results for different combinations of VNF Pod locations and load-balancing

techniques are shown in Figure 6.5. The VNF is run in 4 Pods with each having 1

exclusive vCPU. The graph structure is illustrated in Table 6.1.

Load-Balancer Ingress Service

All Pods run on Host 4 Test 1 Test 2

2 Pods run on Host 4
2 Pods run on Host 5 Test 3 Test 4

All Pods run on Host 5 Test 5 Test 6

Table 6.1. Figure Structure for the Results of Pod Locations

The first column in Figure 6.5 indicates that the traffic generator sends traffic to

10.10.9.151, which is the address for Ingress service. The second column in Figure

6.5 indicates that the traffic generator sends traffic to 10.10.9.150, the address for

Kubernetes Service. Each column contains three test cases for different locations

for VNF Pods. Hence, there are 6 test cases in this experiment: 1) All Pods are

run on Host 4 with traffic sent to Ingress (Test 1); 2) All Pods are run on Host 4

with traffic sent to Service (Test 2); 3) Half of the Pods are run on Host 4 while the

other half on Host 5 with traffic sent to Ingress (Test 3); 4) Half of the Pods are

run on Host 4 while the other half on Host 5 with traffic sent to Service (Test 4); 5)

All Pods are run on Host 5 with traffic sent to Ingress (Test 5); 6) All Pods are run

on Host 5 with traffic sent to Service (Test 6). Each test case contains three rows

for three metrics that are the same as in the previous tests.

The best VNF throughput is reached in 6.4-2-2 with a maximum feasible through-

put of 270 kpps. The second-best throughput is obtained by 6.4-2-1 with a maxi-

mum feasible throughput of 190 kpps. 6.4-2-5 and 6.4-2-6 have similar maximum

VNF throughput and they rank third in this experiment. 6.4-2-3 and 6.4-2-4 have

the worst maximum VNF throughput at around 70 kpps. In all cases, packet loss

and latency start to deteriorate at the same time.

This experiment draws a conclusion that to obtain the best throughput, Pods
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Figure 6.5. Results for the Impact of Pod Locations and Load-balancers

should run on the Node where the load-balancer controller runs on. If it is not

applicable in practice, all VNF Pods should at least be run on the same Node. The

least feasible option would be to run VNF Pods on different Nodes.

6.5 Impact of Controller Location

In experiment 6.4, both Ingress controller and MetalLB controller are run on Host

4. In this experiment, MetalLB controller stays on Host 4 while Ingress controller

is run on Host 5. The VNF is run on four Pods with each having 1 exclusive vCPU.
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Figure 6.6. Results for the Impact of Pod Locations

The results are shown in Figure 6.6. The results for using Service for load-

balancing are the same as in 6.4. The results for using Ingress for load-balancing

change because of the change of the location of the Ingress controller.

The best throughput is reached in 6.5-2. 6.5-6 ranks second with around 10 kpps

more than the VNF throughput of 6.5-5. 6.5-3 and 6.5-4 remain similar results as

in 6.4. 6.5-1 becomes the worst case with a maximum feasible throughput of 30

kpps.

The reason for the differences between 6.4 and 6.5 is that Ingress gets external

IP addresses from MetalLB. The traffic will be sent to the Node that runs MetalLB

controller before being directed to the Node running Ingress controller. Then the

ingress controller will send the packets to Pods.

Most of the cases using Ingress for load-balancing have worse throughput than

46



Results

the cases in 6.4. Therefore, if the VNF uses Ingress for load-balancing, the Ingress

controller should be located in the same Node where MetalLB controller is running

to achieve a better throughput.

6.6 Impact of Local Calculation

This experiment measures the impact of local calculations on VNF throughput.

The VNF is run on 4 Pods each having CPU limit of 600m. The traffic generator

sends traffic at a rate that equals to the maximum feasible throughput in 6.3-3.

In this experiment, another Pod type is run on Host 4, which is the same Node

where the VNF Pods are running on. The new Pod runs a CPU intensive program.

The graph structure is the same as a single column described in 6.1.

Figure 6.7. Results for the Impact of Local Calculations

The measurements are shown in Figure 6.7. First, each local calculation Pod

has a CPU limit of 250m. At 62 seconds from the start, four calculation Pods are

deployed to the Node. At 102 seconds, another four calculation Pods are added

to the Node. At 142 seconds, another four Pods are added but because the Node

runs out of CPU resources, only one additional Pod is running on the Node. At

182 seconds, all local calculation Pods are removed from the Host.

Then, each local calculation Pod is run without specifying CPU limits. At 242

seconds, four calculation Pods are added. At 302 seconds, another four calculation

Pods are added. At 342 seconds, another four calculation Pods are added. At 402
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seconds, all calculation Pods are removed from the Host.

When the calculation Pods are specified with 250m CPU limit, every time when

four additional local calculation Pods are added, the packet loss will increase

approximately by 10%-units but it will not increase to more than 18% before the

Node runs out of CPU resources. When the calculation Pods are not specified with

CPU limits, the packet loss increases significantly to almost 60% when the Node

runs four calculation Pods. The packet loss does not increase further when more

calculation Pods are added.

To summarize, VNF throughput can be affected by local calculations running on

the same Node. In order to minimize the impact from other Pods that run CPU

intensive programs, those calculation Pods should have specified CPU limits.

6.7 Impact of Host CPU Type

In the previous experiments, two Kubernetes Nodes have the same type of CPU.

In practice, Kubernetes Nodes can have different CPU types. This cloud setup for

hosts having different hardware is referred to as non-heterogeneous architecture.

This experiment measures the VNF throughput for such architecture.
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This experiment repeats the same procedures as in 6.4 but instead of conducting

the experiment on Host 4 and Host 5, Host 4 and Host 2 are used. The hardware

change is illustrated in section 3.1 and marked with asterisks in Graph 5.3.

Figure 6.8. Results for the Impact of the number of Pods with Another CPU Type

Results for the effect of the number of Pods is shown in Figure 6.8. The results

can be compared with Figure 6.4. The maximum feasible throughput increases

from 130 kpps to 210 kpps. Increasing the number of Pods does not affect maxi-

mum VNF throughput, which is the same as in 6.4.

49



Results

Figure 6.9. Results for the Impact of Pod Locations and Load-balancers with Another CPU Type

The results for Pod locations are shown in Figure 6.9. When comparing the

results to the ones in 6.4, The throughput in 6.7-2-1, 6.7-2-2, 6.7-2-3 and 6.7-

2-4 remain the same level while 6.7-2-6 in this experiment has 60 kpps higher

maximum throughput than the 6.7-2-6 in 6.4. The throughput in 6.7-2-5 decreases

dramatically from 124 kpps in 6.4 to 33 kpps in this experiment.

To summarize, CPU types have an impact on the throughput and therefore,

results for one CPU type may not be applied to another CPU type.

6.8 Analysis

The maximum VNF throughput is affected by multiple factors, such as the total

CPU resource given to the VNF, the number of Pods, Pod locations, controller
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locations, load-balancers and CPU types of the hosts. The results in this study give

data for designing a scheduler that maximizes throughput for a packet forwarding

service, which is a typical use case in the telecommunication industry.

The first experiment shows that one exclusive vCPU is capable to process 140

kpps. Increasing the CPU resources given to the VNF can increase the maximum

throughput up to 270 kpps. The VNF throughput almost doubles when the number

of vCPUs is increased from 1 to 2. The throughput is slightly improved when the

number of vCPU changes from 2 to 4. The throughput decreases when the number

increases from 4 to 5. The results indicate that when the VNF is run in 1 vCPU

the VNF does not have enough CPU time to process packets. Increasing the CPU

resources grants more processing power to the VNF and therefore it yields better

throughput. When the VNF is run in more than four Pods, the overheads from load-

balancing become significant and that decreases the throughput. The reason for

this is the load-balancer. The load-balancer could proceed no more than 300 kpps

and it performs worse when the total packet rate from the traffic generator exceeds

that level. Four exclusive vCPUs guarantees the maximum throughput in this

case. The result shows similar pattern as Characterising Resource Management

Performance in Kubernetes [6]. The VNF has an optimal number of backends for

the best throughput. It means that the performance of the VNF for external traffic

in UDP has the same pattern as with internal traffic in TCP. But in this study, the

optimal number of VNF backends is smaller. This experiment also gives answer

to the gap in NFV-VITAL: A Framework for Characterizing the Performance of

Virtual Network Functions [7] about the relationship between CPU number and

maximum packet rate.

The second experiment shows that the VNF has a similar maximum throughput

for the corresponding cases between enabling CPU isolation and disabling CPU

isolation. The CPU isolation brings a lower packet loss before the traffic reaches

the maximum throughput. This is because the VNF gets exclusive CPUs and hence

there is no context switch time between the VNF program and other programs.

The third experiment shows that when the VNF obtains 1 shared vCPU, it has a

maximum feasible throughput of 140 kpps. Increasing the CPU limit can improve

the maximum feasible throughput to no more than 170 kpps. The third experiment

can be compared to the second experiment because the total CPU resource given

to the VNF is the same in each column of the two experiments and in both of

the experiments, CPU isolation is disabled. Even though the corresponding test

cases have the same total CPU resource, they have a different throughput. The

maximum throughput in the third experiment is in general smaller than in the

second experiment. Therefore, for a given number of total CPU resources, a
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composition of fewer Pods and larger CPU limits results in a higher throughput.

This experiment, together with the second experiment, answers the gap for Load

Balancing in LTE Core Network with OpenStack Clouds [52]. The performance of

a VNF in container with bigger number of vCPUs is measured in the experiments.

The VNF would have a worse performance when it has more backends with the

same amount of vCPUs.

The first part of the fourth experiment shows that when the VNF Pods and

the MetalLB controller are located in different Nodes, the maximum feasible

throughput is 130 kpps. Because Host 4 and Host 5 have the same hardware,

the difference in throughput is caused by the Pod location. Traffic will always be

received by the controller Node and handed over to kube-proxy where the traffic

will be directed to Kubernetes internal networks. When the Pod is located in

the MetalLB controller Node, traffic is sent to the loopback network interface

(localhost) that does not require a physical NIC and hence the traffic would not

be limited by the NIC. However, when the Pod is located in a Node other than

the MetalLB controller Node, the traffic is sent to a NIC before being received by

another NIC. Reading packets from a NIC is slower than reading from localhost

and therefore the throughput would be lower in the former situation.

The second part of the fourth experiment shows that the two load-balancing

techniques, Service and Ingress, lead to different throughput. The Service case

has the highest throughput of 270 kpps when all the Pods are run on the MetalLB

controller Node. Service and Ingress have the same throughput of 130 kpps when

all the Pods are run on the non-MetalLB controller Node. The case that all Pods

are run on different Nodes produces the smallest throughput, at around 70 kpps.

When the VNF Pods are run on the non-MetalLB controller Node, the throughput

bottleneck is the NIC as in the first part of this experiment. The fourth experiment

fills the gap in Multi-VNF Performance Characterization for Virtualized Network

Functions [8] about how the vertical scaling affects the throughput. Conclusion is

that vertical scaling downgrades the performance of the VNF, which aligns with

the conclusion in Load Balancing in LTE Core Network with OpenStack Clouds

[52] that the VNF gets the best throughput when all the VNF backends are run

on the same physical virtualization host.

The fifth experiment shows that when the Ingress controller and the MetalLB

controller are located in different Nodes, the Service case when all the Pods are

run on the MetalLB controller Node still has the best throughput of 270 kpps. The

Service and Ingress cases still have similar throughput of around 130 kpps when

all the Pods are run on the non-MetalLB controller Node. However, the Ingress

cases where all the Pods are run on the MetalLB controller Node produce the
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worst throughput at around 30 kpps. The reason is that Ingress gets the external

IP address as well as traffic from the MetalLB controller. Traffic targeting Ingress

will be sent to the MetalLB controller before being directed to the Ingress controller.

Then the traffic will be distributed to Pods by the Ingress controller. Hence, traffic

needs to travel to Host 2 and then to Host 4, introducing two extra overheads

compared to Service. Therefore, if Ingress is to be used, the Ingress controller

should be located in the same Node with the MetalLB controller for a better

throughput.

Experiment 6.4 and 6.5 have implications for the importance of networking to

a VNF, as indicated in 3.1.2. Networking is about the establishment or use of

a computer network [56]. In the two experiments, VNFs have the same CPU

resources but the throughput shows significant differences because of networking.

The sixth experiment shows that Kubernetes Pods can affect each other. If all

Pods are run with CPU limits specified, the packet loss increases to at most 18%.

If the VNF Pods are specified with CPU limit while the local calculation Pods are

not, the VNF packet loss increases to 60%. Hence, in order to minimize the impact

between Pods, CPU isolation should be enabled and CPU limits should be specified

for all the Pods. This experiment fills the gap in NFV-VITAL: A Framework for

Characterizing the Performance of Virtual Network Functions [7] about how other

VNFs influence each other.

The seventh experiment shows that CPU model of the hosts affects the VNF

throughput. Host 2 in this experiment has the same role as Host 5 in the fourth

experiment but Host 2 produces a better throughput. Although the CPU of Host 5

has a higher clock frequency than the Host 2 CPU, it is a Haswell architecture CPU

while the Host 2 CPU type is Skylake, which is two generations newer architecture

than Haswell. Newer CPU architectures tend to perform better than the old ones

and therefore, VNF Pods running on those newer CPUs have a better throughput.

However, when all the controllers and VNF Pods are located on Host 2, the VNF

performs worse than in experiment 6.1. In this case, the CPU clock frequency

becomes the bottleneck for the VNF throughput.

In this study, HPA is only useful when the VNF Pods are run on Host 4, the

controllers are also run on Host 4 and the traffic rate changes from lower than

200k pps to over 200 kpps. In this case, the HPA can scale up the VNF to increase

maximum throughput. When the packet rate drops below 200 kpps, the HPA can

also scale down the Pods to reduce resource consumption.
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7. Conclusions

Kubernetes is a popular tool for managing and deploying containerized VNF. It

introduces container orchestration mechanisms that could potentially affect VNF

throughput. The impact of those mechanisms has remained unknown and it is

investigated by conducting experiments in this study.

This study builds a Kubernetes cluster to run benchmarks that implement a

packet forwarding service typical for telecommunication industry by following

ETSI standards. The benchmarks are used to conduct several experiments to

measure VNF throughput in different cases. The experiments are designed by

following methodologies from previous studies. The VNF throughput is measured

as maximum packet rate in the receiver. The VNF QoS is measured as packet

loss and latency. Experiment cases differ from each other by CPU limits and the

number of Pods, CPU isolation for Pods, Pod locations, controller locations and

CPU types.

The VNF performs better when the VNF Pods are allocated in the same Node

and the Node should be the same Node where the load-balancer controllers are

run on. For the same amount of CPU resources, the VNF has a better throughput

when higher CPU limits are used for the Pods and the number of Pods is small.

Regarding load-balancers, Service performs better than Ingress. All Pods should

be run with CPU limits specified in order to reduce the CPU contention among

Pods. The VNF throughput results for different CPU architectures are not directly

comparable but generally newer CPU architecture and higher CPU frequency

tend to yield higher throughput.

This study draws conclusions for VNF throughput regarding CPU limits and the

number for Pods, CPU isolation for Pods, Pod locations, controller locations and

CPU types. There are still some gaps in this study to be filled in the future.

In telecommunication applications, not only packet loss and latency but also

jitter is a factor that influences the QoS. The QoS with regard to jitter can be

evaluated for a large number of speech streams using the E-model [57] or for a
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few speech streams using POLQA [58] because of the computation-heavy nature

of POLQA. Generally, jitter means variance in packet delay and it may lead to

out-of-order packets that need to be reordered. When jitter increases, speech

quality, or QoS, will decrease. In practice, when the data handled by the VNF is

Real-time Transport Protocol (RTP) speech data, it has a timestamp that reflects

the sampling instant of the first octet in the RTP data packet and usually a

packetization time of 20ms that together can be used to calculate jitter [59]. This

study uses simplified data streams to maximize the throughput in the traffic

generator and hence, this study does not adopt packetization time and does not

calculate jitter. Therefore, a study that uses RTP speech data and the E-model

can be conducted in the future to evaluate jitter and the corresponding QoS.

This study uses the default CPU manager for CPU isolation. This manager has

a basic CPU isolation feature which gives a separate cgroup. Other advanced

features, such as CPU pool and CPU pinning, are not provided by the default

CPU manager. Therefore, a study for obtaining the best VNF throughput using an

advanced CPU manager [60] could be conducted in the future.

This study uses MetalLB to load-balance external traffic and the MetalLB

controller is configured to run at Layer 2 mode. The IPVS is configured with

default settings. A study for measuring the VNF throughput with another external

network traffic load-balancing software and load-balancing settings could be

conducted in the future.

The results in this study show that the load-balancers performs undesirably

when Pods are distributed to different Nodes. This limits the scalability of any

larger-scale VNFs. Future works on improving the load-balancer performance and

scalability could be conducted.

This study does not adopt data plane libraries, for example, Data Plane Devel-

opment Kit (DPDK) [61]. DPDK could provide higher throughput but it requires

additional settings for software-defined networks. A study for obtaining the best

VNF throughput using data plane libraries could be conducted in the future.

This study observes that different CPU architectures do not present comparable

results. Two CPU types are measured in this study but in order to obtain more

thorough data for the impact of CPU types, throughput should be measured by

using a wider selection of CPU architectures and clock frequencies.
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A. Appendices

A.1 Node Setup

$apt−get update

$apt−get i n s t a l l −y \

apt−transport−https \

ca−c e r t i f i c a t e s \

curl \

gnupg2 \

software−properties−common

$curl −fsSL " https : / / download . docker . com / linux /\

$ ( . / etc / os−release ; echo "$ID " ) / gpg"\

| apt−key add −

$apt−key f ingerpr int 0EBFCD88

$add−apt−repos i tory \

" deb [ arch=amd64] https : / / download . docker . com / linux /\

$ ( . / etc / os−release ; echo "$ID " ) \

$ ( lsb_re lease −cs ) \

stable "

$apt−get update

$apt−get i n s t a l l −y docker−ce apt−transport−https curl

$curl −s https : / / packages . cloud . google . com / apt / doc / apt−key . gpg\

| apt−key add −

$cat <<EOF >/ etc / apt / sources . l i s t . d / kubernetes . l i s t

deb https : / / apt . kubernetes . i o / kubernetes−xenial main

EOF

$apt−get update

$apt−get i n s t a l l −y kubelet kubeadm kubectl
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$apt−mark hold kubelet kubeadm kubectl

$systemctl s tart kubelet

$systemctl enable kubelet

A.2 VNF Deployment

apiVersion : v1

apiVersion : apps / v1

kind : Deployment

metadata :

name: vnf−benchmark

labe ls :

app : vnf

spec :

rep l i cas : 2

se l e c t o r :

matchLabels :

app : vnf

template :

metadata :

labe ls :

app : vnf

annotations :

k8s . v1 . cni . cncf . i o / networks : macvlan−conf

spec :

containers :

− name: vnf

image : python :3

command:

− / pyrun / server

args :

− " "

ports :

− containerPort : 2152

name: udps

protoco l : UDP

volumeMounts :
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− mountPath : / pyrun

name: pyexec

resources :

l imi ts :

memory : "1024Mi"

cpu : "1"

requests :

memory : "1024Mi"

cpu : "1"

nodeName : labmpd2

volumes :

− name: pyexec

hostPath :

path : / home / ubuntu / share

type : Directory

−−−

kind : Service

apiVersion : v1

metadata :

name: vnf−benchmark−svc

labe ls :

app : vnf

spec :

s e l e c t o r :

app : vnf

ports :

− protoco l : UDP

port : 2152

targetPort : 2152

name: udp

type : LoadBalancer

A.3 Cluster Setup

apiVersion : kubeadm . k8s . io / v1beta1

kind : MasterConfiguration

kubernetesVersion : v1 .13 .0
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bootstrapTokens :

− t t l : "0 s "

−−−

apiVersion : kubeadm . k8s . io / v1beta1

kind : ClusterConfiguration

kubernetesVersion : v1 .13 .0

networking :

podSubnet : "10 .244 .0 .0 /16"

−−−

apiVersion : kubeproxy . conf ig . k8s . i o / v1alpha1

kind : KubeProxyConfiguration

mode : " ipvs "

ipvs :

scheduler : " l c "

A.4 Multus Setup

cat <<EOF | kubectl create −f −

apiVersion : " k8s . cni . cncf . i o / v1 "

kind : NetworkAttachmentDefinition

metadata :

name: macvlan−conf

spec :

conf ig : ’ {

" cniVersion " : " 0 . 3 . 0 " ,

" type " : " macvlan " ,

" master " : " t r a f f i c 0 " ,

"mode " : " bridge " ,

" ipam " : {

" type " : " host−l o c a l " ,

" subnet " : " 1 0 . 1 0 . 9 . 0 / 2 4 " ,

" rangeStart " : "10 .10 .9 .50" ,

" rangeEnd " : "10 .10 .9 .149" ,

" routes " : [

{ " dst " : " 0 . 0 . 0 . 0 / 0 " }

]

}
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} ’

EOF

A.5 MetalLB Setup

apiVersion : v1

kind : ConfigMap

metadata :

namespace : metallb−system

name: conf ig

data :

conf ig : |

address−pools :

− name: my−ip−space

protoco l : layer2

addresses :

− 10.10.9.150 −10.10.9.253

A.6 Ingress Setup

kind : ConfigMap

apiVersion : v1

metadata :

name: tcp−serv ices

namespace : ingress−nginx

labe ls :

app . kubernetes . i o /name: ingress−nginx

app . kubernetes . i o / part−of : ingress−nginx

data :

9011: " default / vnf−benchmark−svc :2152"

−−−

kind : ConfigMap

apiVersion : v1

metadata :

name: udp−serv ices

namespace : ingress−nginx

labe ls :
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app . kubernetes . i o /name: ingress−nginx

app . kubernetes . i o / part−of : ingress−nginx

data :

9011: " default / vnf−benchmark−svc :2152"

A.7 Ingress for VNF

apiVersion : v1

kind : Service

metadata :

name: ingress−nginx

namespace : ingress−nginx

labe ls :

app . kubernetes . i o /name: ingress−nginx

app . kubernetes . i o / part−of : ingress−nginx

spec :

type : LoadBalancer

ports :

− name: http

port : 80

targetPort : 80

protoco l : UDP

− name: https

port : 443

targetPort : 443

protoco l : UDP

− name: ws−udp−2152

port : 2152

targetPort : 2152

protoco l : UDP

se le c to r :

app . kubernetes . i o /name: ingress−nginx

app . kubernetes . i o / part−of : ingress−nginx

A.8 Ingress Service

apiVersion : extensions / v1beta1
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kind : Ingress

metadata :

name: vnf−ing

annotations :

nginx . ingress . kubernetes . i o / ssl−red i rec t : " f a l s e "

spec :

rules :

− http :

paths :

− path : /∗

backend :

serviceName : vnf−benchmark−svc

servicePort : 2152
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