
Mitigating the effects of vendor lock
in in edge cloud environments with
open source technologies

Gábor Finta

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Stockholm 25.09.2019

Supervisor

Prof. Jukka K. Nurminen

Advisor

Mihhail Matskin

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/237427459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c⃝ 2019 Gábor Finta

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Gábor Finta
Title Mitigating the effects of vendor lock in in edge cloud environments with open

source technologies
Degree programme School of Science
Major Cloud Computing and Services Code of major SCI3081
Supervisor Prof. Jukka K. Nurminen
Advisor Mihhail Matskin
Date 25.09.2019 Number of pages 56 Language English
Abstract
Cloud computing has been in the center of attention recently. Its popularity has
increased significantly. More and more companies decide to use a cloud for running
their applications. However, this introduces certain problems, such as vendor lock-in.
Without a widely used standard, the systems become incompatible with each other.
This thesis introduces a way to reduce the risk of vendor lock-in and uses open source
technologies in order to make it available to as many people as possible. The explored
solution is easy-to-use and light-weight compared to other ones. Furthermore, the
use of certain technologies over others is suggested in the thesis to further reduce
the risks of being locked to a single cloud provider.
Keywords cloud, lock-in, compatibility, portability

4

Contents
Abstract 3

1 Introduction 6
1.1 Background . 6

1.1.1 Cloud Computing . 6
1.1.2 Open Source . 7

1.2 Problem statement . 7
1.3 Purpose . 8
1.4 Goal . 8
1.5 Ethics and sustainability . 8
1.6 Methodology . 8
1.7 Delimitations . 9
1.8 Contribution . 9
1.9 Outline . 9

2 Background 9
2.1 Technologies . 10

2.1.1 Cloud Computing . 10
2.1.2 Containerization . 11
2.1.3 Container Technologies . 13
2.1.4 Infrastructure as a Service . 15
2.1.5 Platform as a Service . 16

2.1.5.1 Federation . 19

3 Methods 20
3.1 Cloud environment . 21
3.2 Platform layer . 22
3.3 Federation . 25
3.4 Approach of the experiments . 25

4 Experiments and results 26
4.1 Experimental setup . 26
4.2 Experimental applications . 29

5 Discussion 39
5.1 Manual migration . 39
5.2 Spinnaker . 40
5.3 Comments . 42
5.4 Future Work . 43

6 Conclusions 43

References 44

A Federation of clusters 50

5

B Federated python app files 51

C Second python application files 53

D Federated YAML files for second application 54

6

1 Introduction
This chapter presents the basis of the project as well as the problem, research question
and goals.

1.1 Background
1.1.1 Cloud Computing

Cloud computing has gained a significant amount of attention recently, and it became
widely used [1]. This is mostly due to the benefits it offers. One major advantage for
the organizations using these services is that there is no need for an initial investment
in servers. Instead of buying machines, installing the required software and managing
the system, hosts in the cloud can be used with much less effort and initial money.
Another great benefit is on the side of the cloud providers. Managing large scale data
centers is more cost-efficient than multiple smaller ones. Most of the advantages of
cloud computing are due to the fact that the data centers are centralized and large
scale entities. One important characteristic of such a paradigm is rapid elasticity
[2]. In a hypothetical scenario, where we have a web server running, and suddenly
the traffic soars, multiple instances of new replicas of the server can be spun up to
distribute traffic. Latency difference should be negligible as all the machines are in
the same data center [3].

Centralization comes with many advantages but it fails to fulfill some emerging
needs. In general, data centers are relatively far away from the end-user and this
comes with higher latency. Some latency-critical applications, such as the ones using
augmented reality, require it to be as low as possible. This requirement introduced
the need for edges. The principal idea of edges is to take the computation closer
to the data [4]. This can reduce the latency of the applications significantly. In
some cases, the edges are used to preprocess the raw data and send the result of this
to the cloud for further processing. This can be useful when the preprocessing can
significantly reduce the size of the data while the rest of the task is computationally
heavy and must be transferred to the central cloud. Edges are becoming more
and more relevant as the hardware get more powerful [5]. Lower latency enables
latency-critical applications to thrive, such as real-time image recognition. Another
example is Google’s Stadia [6], which is aiming to change one of the biggest industries,
the gaming industry. The user only needs a display because the game itself runs on
Google computers. With a latency low enough for gaming, it can have a huge impact
on this industry.

The current trend is to migrate to the cloud. However, this comes with certain
risks. Organizations that decide to migrate their applications can face the problems
of vendor lock-in [7]. Different cloud providers can use different technologies to
provide their services and they tend to be incompatible with each other. This comes
with several consequences and problematic scenarios:

7

• The cloud provider in use raises its prices or another one offers discounts.

• In case of an outage, a certain provider can be unavailable for use.

• The data gets stuck in the database and the organization is unable to move it
somewhere else.

With the rise of cloud computing, relevant technologies emerged as well. In this
thesis, the focus is put to open source projects because they have the potential to be
widely used, thus having a higher impact.

1.1.2 Open Source

Open source software development has seen an upward trend lately. Numerous new
open source projects have been started and many closed source projects have been
made open source. There are at least two points of views one should consider to
understand the reason behind this trend. The developers can have multiple different
reasons to contribute to these projects [8]:

• They are paid for it by a company to improve the software.

• They simply enjoy contributing to complex projects.

• It can be a reference for future employment purposes.

From a company’s point of view, making their own closed source project open
source can attract developers or other companies from all over the world to improve
the software more. Bugs or security issues can be detected more effectively and
new feature ideas can come from a more diverse group of developers. These result
in a better project that companies can build a service on and convert this into revenue.

This thesis focuses on open source projects as they are more accessible for
users and developers than paid software in the sense that even small companies or
individuals with less resources than big companies can afford to use these tools. It is
important to target a user base that has the potential to make a real difference in
the cloud industry.

1.2 Problem statement
Cloud providers offer numerous tools for a user to host applications, databases
and so on. However, even though these services are comparable, they are usually
incompatible with each other. This means that if an application is developed for
the platform of one particular cloud provider, it is likely that the whole application
needs to be rewritten if migrated to another provider. The same problem arises with
data storages, such as different databases, which further complicates the situation
[7]. Vendor lock-in can have multiple consequences:

• The cloud provider in use increases prices but the user is stuck with it even if
saving money would be possible with other providers.

8

• The provider has a service outage, which still happens [9], and the user can
only wait for the service to come back up.

• The user would like to move to an on-premise cloud for cost reduction or privacy
purposes but is stuck with the current provider.

These consequences have serious on the cost or high availability of a service.
Cloud providers tend to follow no standards but the one they designed themselves
[7]. The burden of handling the problem falls on the users. Finding available tools or
implementing new ones that can mitigate the impact of vendor lock-in is an emerging
issue.

1.3 Purpose
The purpose of the thesis is to tackle the problem of vendor lock-in and reduce the
risk of this happening. Cloud computing users should be aware of this problem and
have tools for solving them.

1.4 Goal
The primary goal of the thesis is to show the users exact ways or tools that can be
used to solve their problems caused by vendor lock-in. Furthermore, it is necessary
that the provided tools are proven to be capable of tackling this problem.

1.5 Ethics and sustainability
With the increasing trend of moving to the cloud and using high-performance com-
puters offered there, energy consumption increased as well [10]. While vendor lock-in
keeps some companies away from clouds [7], the reduced risk of such a problem would
attract them towards it and more instances and applications could be migrated to
the cloud using high-performance computers. This increases electricity usage even
more.

Keeping user data in a public cloud instead of a company’s own server machines
has higher privacy concerns. Migration in between multiple public clouds further
increases the risks of a breach as more systems can have more weak points.

1.6 Methodology
The methodology applied in this thesis is empirical experimenting and testing. The
data is collected by conducting experiments, then it is analyzed and the results are
concluded. The thesis can be broken down into the following steps:

1. Analyzing and studying the background of the problem.

2. Comparing and analyzing tools in this problem area.

9

3. Designing the test scenario for the experiments.

4. Setting up the work and experimental environment where the tests are con-
ducted.

5. Experimenting with the tools and applications to gather data.

6. Concluding the results and discussing possible future work.

1.7 Delimitations
There are multiple software projects that can be used to build up an infrastructure
and run containerized applications but this thesis focuses on open source technologies
as it has the highest potential to reach the most people. Kubernetes is used in the
experiment environment since it is the most popular container orchestration tool,
currently. Thus, the thesis only provides value to the users of Kubernetes. On the
infrastructure level, the chosen project is OpenStack but from the point of view of
Kubernetes, the underlying infrastructure should not matter, thus this could be
substituted with other projects as well.

1.8 Contribution
The most important contribution of this thesis to the IT research field is its approach
to the vendor lock-in problem. It offers a tool in its early development stage to handle
the problem and proves that it has the necessary capabilities to do so. The thesis
might also provide its developers with valuable information for future development
decisions.

1.9 Outline
The thesis is organized as follows. Chapter 2 describes the background study and
relevant information needed to understand the work. The main concepts detailed here
are cloud computing, containers, cloud operating systems and container orchestration
tools. Chapter 3 provides the details of the methodology of the experiments. In
chapter 4, the experiments and their results are presented. Chapter 5 contains a
discussion about the work done, compares the results with other technologies and
presents the future work. Chapter 6 concludes the thesis.

2 Background
This chapter provides the relevant background information in enough detail to clearly
understand this work. It discusses different technologies that emerged in the last
decade and are currently used in edge cloud systems.

10

2.1 Technologies
In this section, the relevant technologies of the field are described. It is important to
know these technologies and understand some of the design decisions behind them.

2.1.1 Cloud Computing

In a cloud environment, in general, there are three architectural layers we need to
consider:

• Software as a Service (SaaS): the user gets access to a software running in the
cloud and ready to be used. In general, these software are available to multiple
users and managed by the vendor.

• Platform as a Service (PaaS): the user gets the infrastructure but needs to
take care of the deployment of the intended application along with all its
dependencies. In this case, the user can develop and deploy applications using
the provided development tools. The management of these services falls on
them as well.

• Infrastructure as a Service (IaaS): the user gets virtual machines and needs to
set them up for use by installing an arbitrary cloud operating system on them.
From here, the users set up everything to use and need manages them themselves.
The vendor in this case does little to no management work apart from ensuring
that the virtual machines are up and running without interruptions.

Figure 1 shows the cloud stack and the differences between IaaS, PaaS and SaaS
in terms of the layers needed to be managed by the user and the cloud vendor.

Clouds can have three main types: public, private and hybrid clouds. In the case
of public clouds, a company offers different services for users. It is called public be-
cause anyone can request resources and use them. The resources can be easily scaled
up or down according to the needs of the user or the application [13]. This feature is
particularly advantageous due to the fact that the most common pricing strategy
is to pay for the used resources only, the so called pay-per-use model [14]. The
disadvantage of public clouds is privacy related. Users or organizations are unable to
exactly specify where their data is stored [15]. Its security relies on the cloud provider.

Private clouds, in contrast, are accessible by one user or organization only. The
point of this type of cloud is to restrict the resources and data exclusively for them-
selves. This provides better security and privacy. Private clouds can be achieved
in two ways. One is hosted by another organization, a cloud provider, then it is
called hosted or off-premise private clouds. The other is hosted by the organization
itself, then it is called on-premise [15]. If it is on-premise, the organization needs to
consider the initial capital investment, the cost of setting up, deploying, managing
and maintaining the cloud. Private clouds are generally preferable when security or
privacy critical workloads are run on the servers. Furthermore, more configuration
options are available for this type of cloud.

11

Figure 1: The cloud stack and the differences between IaaS, PaaS and SaaS. Image
is based on [2][11][12]

A hybrid cloud consists of a combination of private and public clouds. This
approach leverages the advantages of both types. An on-premise private cloud can
store privacy critical data and run small workloads for the organization, while the
public cloud can be utilized for processing computational heavy workloads [14][15].

2.1.2 Containerization

Virtual Machine (VM) technology has been a widely used virtualization technique in
the past. It increases the interoperability of software and gives additional tools in
the hands of its user. The virtualization of machines offers great benefits such as
higher security. An application running in a VM is separated from the host machine
and since the guest Operating System (OS) can be considered as untrusted, the
risk of running malicious code on the host is significantly lower. Furthermore, it
is capable of running software designed for an operating system different than the host.

Virtual machines, generally speaking, simulate computers. They virtualize hard-
ware and they have their own kernels. This provides isolation from the host system.
However, VMs have an unnecessarily high overhead because of this. With the rise of
cloud computing and large scale systems, a better-performing, more scalable solution
was needed. Thus came the concept of containers.

12

Containers, instead of full virtualization, use the kernel of the host machine
and isolate the application and its dependencies from the host system [16]. This
technology avoids the overhead of hardware virtualization as well as the need to
have its own kernel. Figure 2 shows a comparison between virtual machine and
container-based virtualization architecture.

Figure 2: Virtual machine and containerization architectures [16]

According to the performance study in [17], virtual machines can take up to 1-10
minutes to start [17] compared to just a few seconds in the case of containers [18].
Comparing processing speed, containers tend to perform better, however, the extent
of this can vary depending on the use case [19][20][21]. Scalability in a cloud environ-
ment is just as important as pure performance. Scaling out needs to be considered
when the load for the current instances is high. In such a case, increasing the number
of instances is required to handle the extra incoming traffic. Looking at this aspect,
containers perform better as well. Virtual machines can take up to several minutes
to scale up while containers only needed a couple of seconds. In this case, a 22-fold
increase in speed could be observed [19]. However, containers still need a host OS to
run on. If such a machine has no available resources to run a new container, starting
up another host machine could take up significantly more time than a single container.

We can see, that containers tend to perform better than virtual machines. In a
cloud environment, using containers to run applications proves to be an efficient way
of virtualization. Furthermore, avoiding incompatibility is easy since the containers
are isolated and contain the dependencies the app inside it needs. For instance,
running two applications on a virtual machine which requires two different versions

13

of a software to be installed can be tricky, while simply creating two containers solves
the issue. This problem is often referred to as the "dependency hell problem" [22].

2.1.3 Container Technologies

This section discusses different containerization approaches. These are:

• Linux Containers (LXC)

• Docker containers

• Kata Containers

Linux containers are part of the Linux kernel and provide operating-system-level
virtualization. More specifically, the kernel supports virtualization in the userspace.
It is licensed under the GNU LGPLv2.1+ [23] meaning that it is a free software.
The motivation behind LXC is to provide a virtualization way similarly powerful to
virtual machines but with the speed similar to operating systems running on bare
metal [24]. It can be thought of as a technology in between virtual machines and
chroot. Linux containers consist of multiple components which are provided by the
Linux kernel [24]. The most important ones are listed here:

• Chroot - a Unix system command which provides a running application with a
path that is considered as the root folder by the application. The process will
be denied to access anything other than this apparent root tree [25].

• Control groups - a feature that provides a way to manage and limit resource
usage for processes [26] [27].

• Namespace - Similar to control groups but it handles the resource isolation for
processes. Therefore, limiting the applications to see only the allowed resources
[26].

After the creation of a container, the user can access it and use it as a virtual
machine, install software and run applications [28].

Docker [29] containers were introduced as an extension of Linux containers. Later,
they dropped Linux containers as the default driver but kept supporting it. The new
default is libcontainer which is their own project written in Go language [30]. It was
made open source as well. The main component of Docker is Docker engine. This is
the part which creates containers and manages the running ones. For the creation,
it uses a Docker image file. This idea behind such an image is similar to a virtual
machine image. It contains the dependencies and the necessary configurations. A
docker image is already significantly smaller in size than a VM image, Dockerfiles can
improve it even more. These files contain the dependency description for the images,
environmental variables to be used and every configuration needed to run a container
successfully as expected. Dockerfiles, since they are typically small text files, can be
distributed easily. Furthermore, this makes it clear what the image contains and what

14

the container will run helping to avoid malicious software. Once we have a Docker-
file, we can build a Docker image from it and then create a container using this image.

In general, virtual machines provide higher isolation than containers, thus they
tend to be more secure. Kata containers aim to leverage the security benefits of
VMs over containers while keeping the performance capabilities of containers. They
are more similar to a virtual machine than Docker or Linux containers. In par-
ticular, Kata containers use features of virtual machines and containers together,
therefore increasing isolation and security [31]. This container runtime is open-
source as well. It was launched in 2017 and still needs to mature but looks like
a promising alternative to Linux kernel-based solutions for security-critical workloads.

To conclude the comparison, Docker containers seem to be the most mature and
most popular technology as of now. It is open source, high performant and the
default technology used in many cases. As Figure 3 shows, Docker is by far the
most searched container technology on Google. Furthermore, Docker is not just a
container runtime, it provides the user with multiple tools to increase the simplicity
of their product.

(a) Search interest of container technologies. X axis represents the
date while the Y axis represents search interest relative to the highest
point on the chart. A value of 100 is the peak popularity for the term.
A value of 50 means that the term is half as popular. A score of 0
means there was not enough data for this term.

(b) Average search in-
terest over this time pe-
riod

Figure 3: Google searches for different container technologies in the last five years
[32]

15

2.1.4 Infrastructure as a Service

In this type of service, the user can request virtual machines from the vendor. Gener-
ally, the vendor provides multiple options to choose from. These can be tiny servers
with a single-core CPU and 512 MiB memory capable of running a simple web server
or similar up to hundreds of cores with over ten thousand GiB of memory [33] [34].
Once the users get the machines requested, they can start setting up the upper
layers. This includes tasks such as installing packages, runtimes, developer tools and
dependencies, getting data to work with to the servers and developing, deploying
and running applications.

In the following part of this section, the reader can find a description of different
cloud operating system used in the Infrastructure as a Service bit of the cloud stack.
These can be deployed to multiple hosts to provide us services such as creating
virtual machines, virtual networking or usage measurement. The following projects
are considered:

• Eucalyptus

• OpenNebula

• CloudStack

• OpenStack

Eucalyptus is an open-source cloud platform for building private and hybrid
clouds. One benefit of this project is the compatibility with Amazon Web Services
(AWS). This means that the API calls implemented in AWS can be used in the
Eucalyptus on premise cloud as well. Therefore, scripts can be moved as they are too.
However, this compatibility is only true for AWS. Other vendors, such as Google
Cloud, IBM Cloud or Microsoft Azure still need extra work to overcome the incom-
patibility problems. Furthermore, Eucalyptus has a paid, commercial version which
contains more features than the free one. Eucalyptus supports three hypervisors
only [35]. The disadvantage of this project is its relatively limited capability to scale
compared to other projects [36].

OpenNebula is a free-to-use, open-source cloud computing platform. It can be
used for building private, hybrid or public cloud infrastructure. One disadvantage of
this approach is the limited support for hypervisors [37] compared to other solutions.
According to existing research, OpenNebula appears to be less secure, generally
slower, less documented compared and not well scalable [38] [36] relative to the
listed solutions. OpenNebula also requires more storage resources than the other
projects and has the potential to create bottlenecks. Furthermore, their official
website compares their project to OpenStack and concludes that OpenNebula is
simpler to use but OpenStack provides more features [39].

16

CloudStack is an open-source cloud platform that can be used for public, private
or hybrid cloud solutions. CloudStack supports most of the currently used hyper-
visors [40]. It is highly scalable and can manage high numbers of virtual machines
[37]. According to previous research, CloudStack is relatively easier to deploy than
OpenStack but also less stable [41]. Another disadvantage is performance. Compared
to OpenStack, the difference is considerable [41].

OpenStack is an open-source, free-to-use cloud computing platform for creating
private, public or hybrid clouds. One advantage of OpenStack is that it is supported
by the most Linux distributions in comparison to the other projects [38] and regarding
compatibility aspects, this is an important fact to consider. OpenStack is by far the
most popular technology out of the ones listed here. Since the goal is to avoid vendor
lock-in and switching in between technologies is difficult, it is important to target a
high proportion of people. OpenStack consists of many services of which any can be
used by calls to their respective Application Programming Interface (API). Having
the services separated in this manner enables developers to modify or completely
reimplement any service if required. This is also the reason that complicates the
deployment process of OpenStack [41]. All services need to be configured separately.
However, this offers greater flexibility and gives more tools in the hands of the
developer. OpenStack supports the most hypervisors from this list of IaaS platforms.

In conclusion, considering all aspects of the comparison, OpenStack presents the
best results. It is the best performing, most compatible and mostly supported project
out of the ones listed above and as shown in Figure 4, it is the most popular as well.

2.1.5 Platform as a Service

In this section, the Platform as a Service layer is discussed in more details. As already
explained in Section 2.1.1, IaaS provides the user with a running infrastructure while
handling dependencies, development, deployment and managing applications is the
job of the user.

Typically, applications are run in containers here. The advantages of this approach
are explained in Section 2.1.2. The most popular application container platform is
Docker. With Docker, one can create Docker containers. This platform provides the
user with a Graphical User Interface (GUI) and a Command Line Interface (CLI).
Once the user creates an image or chooses one from a container registry, a container
can be created. After successful creation, the service starts running. The user can
decide to interact with the running container using either one of the provided user
interfaces. Executing commands or logging into the container gives powerful tools
in the hands of the user to work with Docker. This is suitable for very low-scale
applications where not much management is required. However, as soon as medium
or large scale operations are performed, the use of an automation tool is essential.
Such tools are called container orchestration software. Some important features,
among others, of an orchestration tool are:

• Creating a required number of containers

17

(a) Search interest in cloud computing platforms. X axis represents
the date while the Y axis represents search interest relative to the
highest point on the chart. A value of 100 is the peak popularity for
the term. A value of 50 means that the term is half as popular. A
score of 0 means there was not enough data for this term.

(b) Average search in-
terest over this time pe-
riod

Figure 4: Graphical illustration of the popularity of cloud computing platforms
measured by Google Trends based on the number of Google searches [42]

• Scaling up or down when the traffic increases or decreases, respectively

• Providing rolling updates to avoid downtime at service updates

• Handling disaster recovery

For the above reasons, orchestration tools are considered essential in some use-
cases. In the rest of this section, some of these technologies will be discussed and
compared in more details. The discussed projects are:

• Docker Swarm

• Apache Marathon

• Kubernetes

Docker Swarm is shipped together with Docker. It is a free-to-use and open-source
software. It works by joining together a set of machines which is called a swarm.
The machines in the swarm are called nodes. A node can be a manager or a worker
node. Docker commands can be run on the manager node can be configured to apply
them on an arbitrary set of nodes [43]. The advantage of this solution is that it is
completely integrated into Docker, thus they work well together and that it is very

18

lightweight compared to other projects. However, it only supports Docker containers
and lacks the ability to scale well [44].

Apache Marathon is an open-source container orchestration software. It supports
Apache Mesos containers as well as Docker containers. Apache has multiple projects
related to big data as it is an important application area for them [45]. Apache Mesos
provides big data applications such as Kafka, Spark and Hadoop on each machine it
runs on [46]. For this reason, Apache Marathon was designed to be highly scalable
and focuses around big data. It has a two-level scheduling mechanism which is the
reason behind the good scalability to even tens of thousands of nodes [47]. Further-
more, the users can interact with it through REST APIs resulting in good scriptability.

Kubernetes is an open-source container orchestration tool which is free to use.
Currently, this is the most popular among such tools as shown in Figure 5.

(a) Search interest of container orchestration tools. X axis represents
the date while the Y axis represents search interest relative to the
highest point on the chart. A value of 100 is the peak popularity for
the term. A value of 50 means that the term is half as popular. A
score of 0 means there was not enough data for this term.

(b) Average search in-
terest over this time pe-
riod

Figure 5: Graphical illustration of the popularity of container orchestration tools
measured by Google Trends based on the number of Google searches [48]

A feature called Container Runtime Interface (CRI) was added to Kubernetes
which is responsible for communicating with the actual container runtime. The
benefit of such an approach is that support for new runtimes can be added relatively
simply to the CRI without the need to recompile the entire Kubernetes [49]. Figure
6 shows a simple representation of how CRI fits into the Kubernetes system. As we
can see, it communicates with the Kubelet agent and the container runtime in use. It

19

works in between them and translates the instructions from Kubelet to be understood
by the appropriate container runtime. The Kubelet module of Kubernetes is the
main node agent running on every node. It is responsible for creating and running
pods. In Kubernetes, pods are the minimal deployable entities which consist of one
or more containers.

Figure 6: Illustration of the Kubernetes CRI relative to other components of Kuber-
netes. Image based on [49]

A Kubernetes cluster consists of a master node and worker nodes. The master
manages the applications running on the worker nodes [50]. Kubernetes is well
scalable and supports large clusters as well. According to their website [51], now
they support a cluster if it contains no more than:

• 5000 nodes

• 150,000 pods in total

• 300,000 containers in total

• 100 pods on a single node

Disadvantage of Kubernetes is its complexity. It contains a large number of
components and configuration options.

In conclusion, Kubernetes is well-scalable, currently the most popular IaaS project,
robust, mature and it has support to many other technologies. It fits the best for
the purposes of this thesis.

2.1.5.1 Federation Kubernetes cluster federation is a tool aiming to facilitate
the management of multiple clusters. It achieves this by creating a cluster federation
where one cluster is appointed to be the host cluster. Others can be joined to this
federation which makes them member clusters. The main features of federation are
[52]:

• Synchronizing and automatically managing resources among multiple clusters.
The user can decide to propagate a resource to all of the clusters or just some of
them and the federation will take care of it and maintain the required number
of replicas without the need to manually configure it in all clusters.

20

• Providing a Domain Name Service (DNS) that can discover services across
clusters. An example case where this can be useful is when the frontend of an
application runs in every cluster in order to be as fast-responding as possible
for the user but a database is stored in a central data center that occasionally
needs to be accessed.

In the history of Federation, we can distinguish two projects: Federation v1 and
v2. The earlier version was designed to use the Kubernetes API as it is. It seemed
to provide sufficient functionality for the purposes of the project but this turned
out to be false. The project was abandoned and the Federation v2 project was
launched which aims to be able to solve the more complex problems Federation v1
could not tackle. Federation v2 is in prototype phase [53], as of writing this thesis
no beta version has been released yet but it is planned to happen before the end
of 2019. In this thesis, the focus is on Federation v2 because researching its capa-
bilities in this early stage can benefit the users as well as the developers of the project.

Kubernetes Federation v2 requires configuration when a user intends to set up a
federation control plane. It relies on two main kinds of information that needs to be
configured, namely cluster configuration and type configuration, also shown in Figure
7. Cluster configuration instructs the federation control plane about the clusters it
needs to target, whereas type configuration states what types of Kubernetes APIs
it should handle. Type configuration has three building blocks which need to be
considered:

• Template: declaration and configuration of a resource that the federation will
create in the clusters.

• Placement: a configuration that tells the federation which are the target clusters
for a specific resource.

• Override: cluster-specific configuration for fine tuning the template

Once the federation is configured with this information, it can start the propa-
gation of resources. This means that the host cluster distributes them among the
member clusters. Furthermore, the mentioned building blocks consist of three funda-
mental parts, namely status, policy and scheduling. Status refers to the status of the
propagated resources, policy defines the permitted target clusters for these resources,
whereas, taking these into account, scheduling decides about the distribution of
workloads.

3 Methods
This chapter describes the details of the environment, the experiment in general, and
how the cloud stack is built up.

21

Figure 7: Kubernetes Federation v2 concepts [53]

3.1 Cloud environment
The resources needed to carry out the project is provided by CityNetwork[54]. Their
infrastructure layer is deployed using OpenStack. A project on this infrastructure,
also called a tenant, was created for the purposes of the thesis. The total available
resources for this tenant are:

• 100 VCPUs

• 200 GB RAM

• 1000 GB storage

Said infrastructure is used for the thesis. For the experiments, it is considered
to be bare metal with the difference that all networking tools are virtualized. That
said, virtual routers, networks and instances need to be created. Once the instances
are up and running and communication works in between them, our own OpenStack
infrastructure can be deployed and considered as an edge. Continuing the stack,
Kubernetes is installed on top of it and it is used for running the experimental
applications.

22

OpenStack is deployed using Kolla-Ansible[55]. Kolla-Ansible is a relatively easy-to-
use tool for deploying OpenStack in Docker containers. Kolla-Ansible has a network
requirement of two interfaces: one for providing internet for the instances and one for
the OpenStack Neutron network. Neutron is a component of OpenStack responsible
for networking. One example network that suits the needs of Kolla-Ansible is shown
in Figure 8. In the experimental setup, the different edges might have different
number of instances but they all follow the same idea to have:

• One jumphost

• One controller node

• Multiple compute node

In this setup, a jumphost is an instance with a floating IP address which is public.
It can be reached from anywhere. The other hosts have no public IP addresses
and can only be reached from within the same network they are connected to. The
jumphost can reach the controller and compute nodes, thus it is used to manage the
system. The user is authenticated on the jumphost with SSH keys. Then, from the
jumphost to the other nodes, SSH key-based authentication is used again. Password
authentication is disabled for security reasons. In OpenStack, there are two basic
types of nodes. The main task of a compute node is to run a hypervisor that can
spin up and run virtual machines when it is told so. Other tasks are carried out
by the controller node, such as scheduling, networking, running database servers or
APIs [56]. It is possible to have multiple controller nodes that can be dedicated to
certain tasks. For example, a network controller node. In our setup, there is one
controller node that performs all the necessary work to keep the system simple.

3.2 Platform layer
For the platform layer, Kubernetes is deployed on OpenStack. There are multiple
ways to execute the deployment but similarly to OpenStack, unless advanced config-
urations are required, any tool is capable of performing this task. For this thesis, a
tool called Kubespray [58] is used. Kubespray is a Kubernetes side-project [59] which
is a simple, easily configurable and flexible tool for deploying Kubernetes clusters. It
uses Ansible for the process and it runs Kubernetes services in Docker containers on
the machines it is deployed on.

The setup is very similar to the one OpenStack is deployed on. At least three
virtual machines are created. One as a jumphost that will communicate with the
other ones, initiate the deployment and manage the cluster. One manager node,
called a Kubernetes master node, which similarly to an OpenStack controller node,
handles API calls, runs interfaces and schedules workloads. Furthermore, one or
more Kubernetes worker nodes are added as well, that creates, runs and manages
containerized applications as Docker containers.

23

Figure 8: OpenStack virtual network example based on the requirements in the
documentation [57]

Once we have decided on a setup and created a necessary virtual machines
that Kubernetes will run on, we need to tell Kubernetes this information. This
information is fed to Kubernetes through Ansible inventory files [60]. An inventory
is a configuration file used for telling Ansible about the hosts it is supposed to work
on. Listing 1 shows how a simple, example inventory file looks like in case of one
master and one worker node. In such a file, we need to list all the nodes under [all]
that are going to be part of the cluster. [kube-master] is a list of the master nodes
and [kube-node] is a list of worker nodes. Furthermore, we need to specify which
node will run the etcd container [61], which is a distributed key-value storage used
for storing Kubernetes cluster-state and all necessary information required for its
operation.
[k8s−c l u s t e r : c h i l d r en]
kube−master
kube−node

[a l l]
c o n t r o l l e r ans ib l e_user=ubuntu ansible_become=true
compute ans ib l e_user=ubuntu ansible_become=true

[kube−master]

24

c o n t r o l l e r

[kube−node]
c o n t r o l l e r
compute

[etcd]
c o n t r o l l e r

Listing 1: Sample inventory file for deploying Kubernetes with Kubespray

One cluster is now defined, but for the experiments another one is required as
well. To test the major point of the thesis, the avoidance of vendor lock-in, the
other cluster is hosted on another public cloud provider. This other cloud provider is
Microsoft Azure [62]. The Azure Dashboard provides a graphical interface to create
a Kubernetes cluster with just a few clicks. The cluster created consists of five nodes,
all running Kubernetes v1.12.7. Note that this version is different from the other
cluster to test whether the assumption that different versions cause no problems
is true or not. The name of the size of each node is Standard DS2 v2 denoting a
machine with two VCPUs and seven GB of memory. The name and the context of
this cluster are aks-cluster.

Commands are executed using the kubectl tool. Kubectl is a CLI for running
commands against Kubernetes clusters[63]. It is used, among other things, for
creating, running, managing applications, configuring deployed clusters or gathering
information about them. It needs to be configured to know about the cluster it needs
to operate against. A so called kubeconfig file serves this purpose. Listing 2 shows
an example kubeconfig file. It needs to be in YAML language. This file contains
the address of the API server as well as the name of the cluster and its context.
Furthermore, it knows the key and certificate needed for secure communication with
the API server.
ap iVers ion : v1
c l u s t e r s :

− c l u s t e r :
c e r t i f i c a t e −author i ty−data : REDACTED
se rv e r : https : / / 1 0 . 1 . 0 . 4 0 : 6 4 4 3

name : gabor . host
context s :
− context :

c l u s t e r : gabor . c l u s t e r
user : admin−gabor . c l u s t e r

name : c l u s t e r 1
current−context : c l u s t e r 1
kind : Config
p r e f e r e n c e s : {}
u s e r s :

25

− name : admin−gabor . c l u s t e r
user :

c l i e n t −c e r t i f i c a t e −data : REDACTED
c l i e n t −key−data : REDACTED

Listing 2: Sample kubeconfig file for configuring kubectl command line tool

If multiple clusters can be reached from a single host, multiple kubeconfigs can be
provided to kubectl. In this case, a context can be specified in order to execute a
command on the right cluster.

3.3 Federation
Kubernetes Federation v2 requires at least two clusters to have benefits. The two
clusters are the ones defined in Section 3.2. Both of these two clusters can be accessed
by the jumphost and the commands are executed from this host as well. One of
the clusters needs to be appointed as host cluster, while the other one joining the
federation is a member cluster. Kubernetes Federation v2 is supposed to work with
any cluster with version above v1.11. Conducting the experiments with different
versions of Kubernetes adds important insights to the results because expecting all
clusters on every edge running on different cloud providers’ systems to have the
same version is unrealistic. The promising characteristic of Federation v2 is its
little requirements of clusters. In between edges it is expected to have differences.
Furthermore, member clusters of a federation can be managed by a single host
without the need to manually configure them one by one. This is especially beneficial
in edge environments where a high number of clusters can be expected.

3.4 Approach of the experiments
The experiments intend to mitigate the vendor lock-in problem on the platform layer.
The aim of the thesis is to discover and propose a way to utilize a combination of
tools and prove its effectiveness in this area. In order to be able to prove this, a
certain set of application needs to be defined and the experiments need to be carried
out on a general item of this set.

This thesis considers a classification of applications which divides them into two
classes, namely stateful and stateless. Stateless application requires no information
from earlier sessions. It relies entirely on its source code and the data fed to it in a
single session. In contrast, stateful applications rely on data from earlier sessions [64].
It can be, for instance, a database containing entries from users, such as a forum, or
metadata identifying the users to keep them logged in. This class of applications
requires a data storage that the replicas can access. This can result in a bottleneck of
performance due to either geographical distance or the requirement of transactional
atomicity [64]. Distributed databases, such as Redis, aim to tackle this problem by
running a master and multiple slave servers [65]. From an application migration
perspective, this introduces additional experimental questions, such as how to move

26

the data together with the application. Due to these facts, stateless applications
tend to scale better, whereas stateful ones tend to perform better in security aspects
[66].

Considering the classification discussed here, this thesis focuses on the stateless
application class. From an application migration perspective, the successful outcome
of this class is a prerequisite for the stateful one. Therefore, experiments targeting
the stateless class are performed.

For the experiments, an application is designed with stateless characteristics. It
is designed with the idea to keep it simple yet demonstrate the use case of stateless
applications that a user provides it with data which gets processed and the results
are sent back to the user. Two experiments are performed. The first one is a single,
standalone application and the second one is a combination of applications where
they need to communicate with each other. The first experiment proves the basis of
the idea while the second one tests whether a set of applications can work together
in a stateless manner even after being migrated to a different cluster.

The experimental application waits for an input number, finds the closest prime
number that is equal to or lower than the input and returns that value. To be able
to run such an application on our federated clusters, there are multiple steps to take
including:

1. Writing the code of the application

2. Creating a Docker image out of it

3. Writing Kubernetes deployment and service YAML files first to make sure it
runs in a single cluster

4. Federating the resources

The second application uses the first one as a service. The user gives an input to
the second application which transfers it to the first one. Then the first application
returns the closest smaller prime number. The second application takes this number
as an input variable n and returns the nth prime number. The steps to create this
application are similar to the first one.

4 Experiments and results
This chapter describes how the experimental environment for this thesis is created,
how experiments are carried out, and the outcomes.

4.1 Experimental setup
The resources discussed in this section are all virtualized and created in the cloud
infrastructure. A router called gabor-router is connected to the internet and another

27

network, called gabor-net1. This network will provide the internet for the instances
created on it. A subnet with 10.1.0.0/24 prefix specifies the IPs available for use.
Another network called gabor-net2 is used by the OpenStack Neutron component
for its trafficking. The subnet, similarly to the one mentioned above, has the prefix
10.2.0.0/24.

Figure 9: Graphical illustration of a cluster in the experimental setup used in the
thesis

Figure 9 shows the setup described in this section. In the first steps, OpenStack
needs to be deployed. The cloud providers made some computers available for the
purpose of this thesis. One of these is the jumphost, called gabor-jumphost which is
the main host used in the setup. An important purpose of this is to avoid logging into
every host and instead run automated scripts from this computer. This is essential
in a cloud environment since the number of computers can be very high, thus a
user simply cannot handle them all one-by-one. Four other instances are created
connected to the gabor-net1 and gabor-net2. Namely, these are gabor-controller2,
gabor-compute2, gabor-compute3 and gabor-compute4. Their names already suggest
their purpose. gabor-controller2 is used as an OpenStack controller while the other
instances are compute nodes. These instances are created with an image of Ubuntu

28

16.04. The reason for this particular operating system is that its highly compatible
with most tools. Little extra work is needed to deploy OpenStack or Kubernetes
on it since it is supported by these projects as well as deployment tools. Resources
allocated to each instance are four CPUs, 8 GB RAM and 40 GB disk space. This is
sufficient for our experiments. Using kolla-ansible from the jumphost, OpenStack is
deployed on these four hosts. Since kolla-ansible uses Ansible as a deployment tool,
it needs to be provided an inventory file. This inventory file is long but the most
important lines specifying the hosts are shown in Listing 3.
[c on t r o l]
gabor−c o n t r o l l e r 2 ans ib l e_user=ubuntu

ansible_become=true
[compute]
gabor−compute2 ans ib l e_user=ubuntu

ansible_become=true
gabor−compute3 ans ib l e_user=ubuntu

ansible_become=true
gabor−compute4 ans ib l e_user=ubuntu

ansible_become=true
Listing 3: Part of the inventory file used for deploying OpenStack with kolla-ansible

After deployment, we can see docker containers running on both the controller
and compute nodes. Listing 4 shows some of the running containers on the controller
node.
92 b1894102ec k o l l a /ubuntu−source−hor i zon : rocky

"dumb−i n i t −−s i n g l e−c " hor i zon
cbc200157d6b ko l l a /ubuntu−source−neutron−s e r v e r : rocky

"dumb−i n i t −−s i n g l e−c " neutron_server
903 ddbe94fa0 k o l l a /ubuntu−source−nova−api : rocky

"dumb−i n i t −−s i n g l e−c " nova_api
4 ec6dacdb4c7 k o l l a /ubuntu−source−f l u en td : rocky

"dumb−i n i t −−s i n g l e−c " f l u en td
Listing 4: A sample of OpenStack services running in Docker containers on the
controller node.

With OpenStack deployed, the next step is Kubernetes. This process is also
shown in Figure 9. On our OpenStack we create a similar setup to the one discussed
above with one router and two networks. However, only three instances are created
for Kubernetes. One jumphost, one Kubernetes master and one Kubernetes worker
node. They are called jumphost, controller and compute, respectively. With these
machines up and running, Kubernetes can be deployed on them. Kubespray is used
for this process. Since Kubespray uses Ansible, an inventory file needs to be provided
similarly to the case of kolla-ansible. The experimental cluster is very simple, an
inventory file similar to the one shown by Listing 1 can be passed to Kubespray.
Kubespray can be configured to install kubectl on the machine the script is run on,
thus no manual installation is needed. After the script is executed, the kubeconfig

29

file can be found on the controller node or, if Kubespray was configured so, then
it is automatically copied to the deployment host. Logging into the master node
and listing the running containers, it shows Kubernetes services running in Docker
containers. A sample of such a list is shown by Listing 5.
9584265 cb1fd "/ dashboard −−i n s e . . . "

k8s_kubernetes−dashboard_kubernetes−dashboard
16 f1e220d136 "/ hyperkube contro . . . "

k8s_kube−c on t r o l l e r −manager_kube−c on t r o l l e r −manager
9 f1b449f268b "/ kube−dns −−domai . . . "

k8s_kubedns_kube−dns
01 a6bf72d457 "/ hyperkube proxy . . . "

k8s_kube−proxy_kube−proxy−c o n t r o l l e r
4 e3c696cae4c "/ usr / l o c a l / bin / etcd " etcd1
Listing 5: A sample of Kubernetes services running in Docker containers on the
master node

In order to create a cluster federation, a second cluster is deployed with similar
configuration to the first one. The clusters are named according to their status in
the federation: gabor.host and aks-cluster. The gabor.host cluster runs the federation
control plane and therefore acts as the single source of truth for the members. The
aks-cluster cluster is joined to this federation. In order to test the compatibility
of different versions as well, gabor.host runs Kubernetes version v1.11.3 while aks-
cluster runs v1.12.7. Listing 9 in Appendix A shows the command to create a cluster
federation and its output. The first time the command is run, the host cluster is
created. This is what the snippet shows.

4.2 Experimental applications
The applications are implemented in Python 3 language. The code for the first one
is shown in Listing 6. Python 3 is simple and often used for backend servers for
processing data. The application relies on the REST protocol. Since the REST
protocol is stateless [67], it fits our purposes. The user needs to send a GET request
for the application to a subdomain identical to the number the user wishes to transfer.
An example with cURL [68] looks like the following:
$ c u r l −X GET 1 2 7 . 0 . 0 . 1 : 5 0 0 0 / 1 0
In this example case, the application is running on the localhost, listening on port
5000 and the number 10 is sent to it as input. The code imports the Flask package.
Flask is a microframework [69], which in this case is used for defining endpoints. An
integer argument is passed to the get_prime function. This function then returns the
closest smaller or equal prime number using the SymPy package. SymPy is a Python
library containing functions for symbolic mathematics[70]. In this applications, two
functions are used, namely isprime and prevprime. The function isprime decides if a
number is prime or not whereas prevprime returns the closest previous prime number
relative to its parameter. Eventually, when the prime number has been specified, it
gets sent back to the client as a response to the GET request.

30

from f l a s k import Flask
import sympy

app = Flask (__name__)

@app . route (’/<in t : number>’ , methods=[’GET’])
def get_prime (number) :

number = int (number)
i f number < 2 :

return "No␣ sma l l e r ␣prime␣number␣ e x i s t s \n "
else :

r e t s t r = " C lo s e s t ␣ sma l l e r ␣prime␣number : ␣ "
retnum = number
i f not sympy . i sp r ime (number) :

retnum = sympy . prevprime (number)
return r e t s t r + str (retnum) + " \n "

app . run (host=’ 0 . 0 . 0 . 0 ’ , debug=False)
Listing 6: The experimental Python 3 application that returns the closest smaller
prime to the input number

When the application itself is implemented, the next step is to create a Docker
image out of it. This is performed using a Dockerfile and the docker build command.
The contents of this file is shown in Listing 7. It specifies the base image to use,
which in this case is Python 3.7. The ADD command copies the content of the
current folder to the /code folder in the container. This only contains the python
code. The WORKDIR command sets the working directory in the container to the
/code path. Then, necessary packages are installed using pip. Port 5000 is exposed,
therefore the container listens on this port. Important to note, that this command
only exposes the port, as a kind of documentation for the programmer, but it is not
published. Eventually, the startup commands for the container is specified, which
simply starts up our application.
FROM python :3.7− a l p i n e
ADD . /code
WORKDIR /code
RUN pip i n s t a l l f l a s k sympy
EXPOSE 5000
CMD [" python " , " app . py "]

Listing 7: The Dockerfile for building and image from the python application

This Dockerfile is built into an image using the following command:
$ docker bu i ld −t f i n t a / edgethes i spythonapp .

The created image is pushed and stored in Docker Hub[71] in the finta/edgethe-
sispythonapp repository. Kubernetes will use this as the image name to download

31

the image at application startup.

The next step is to create a YAML file that tells Kubernetes what resources are
required to be used and how to configure them. Listing 8 shows the contents of this
file. Two resources are defined in it: deployment and service. In general, a deployment
definition contains the specification of a Kubernetes pod and takes care of fulfilling
the requirements defined in it. Here, the specification says that the pod needs to
have a container in it which uses the image with the finta/edgethesispythonapp:latest
tag. Furthermore, this container exposes the port 5000. The number of replicas
defines how many copies of this pod need to be created. Increasing this number
increases the available backend pods running, thus resulting in less workload for each
of them. In such a case, Kubernetes itself takes care of load-balancing the workload
among the pods. A service is also defined. A Kubernetes service serves the purpose
of easily reaching pods. Pods have their own IP addresses which can be used to
reach them but new pods can be created with new IPs or old ones can be removed
anytime. Therefore, an extra layer of abstraction is needed to reliably access the
pods. When the user communicates with a service, it picks one of the underlying
pods and forwards the traffic to that one. The set of pods are usually linked to a
service with the help of selector. In this case, the selector is the app: python-app
key-value label. Some ports need to be defined in the specification. The targetPort
defines which port the traffic will be sent to in the container. This is the same as
the port exposed earlier. The value of the port key defines which port is exposed
inside the Kubernetes cluster. This can be accessed by other services if needed.
Finally, nodePort exposes a port to the outside of the cluster making it available
to be accessed by a user. For this key, port 31111 is chosen as the value. If it was
left unset, it would be an automatically and randomly generated number between
30000 and 32767 [72]. Setting this port to a fixed value makes it easier to access the
application.
ap iVers ion : apps/v1
kind : Deployment
metadata :

name : python−deployment
namespace : python−ns
l a b e l s :

app : python−app
spec :

r e p l i c a s : 1
s e l e c t o r :

matchLabels :
app : python−app

template :
metadata :

l a b e l s :
app : python−app

spec :

32

con ta i n e r s :
− name : python−app

image : f i n t a / edgethes i spythonapp : l a t e s t
por t s :
− conta ine rPor t : 5000

−−−
ap iVers ion : v1
kind : S e rv i c e
metadata :

name : python−s e r v i c e
namespace : python−ns

spec :
por t s :
− nodePort : 31111

ta rge tPor t : 5000
port : 5000
p ro to co l : TCP

s e l e c t o r :
app : python−app

type : NodePort
Listing 8: The YAML file for the Python 3 application that Kubernetes uses to
create the necessary resources

To test if this configuration works, the resources can be created by executing the
following commands against a cluster:
$ kubect l c r e a t e ns python−ns
$ kubect l apply −f pythonprime . yaml

Now the resources should be up and running. Figure 10 shows how this can be
checked and made sure of. By default, security rules restrict sending GET requests

Figure 10: Graphical representation of commands showing the Python application
running in a Kubernetes cluster

from one instance to another on port 31111, thus this port needs to be enabled in
OpenStack. This is true to any other application where the user shall try to access
an application running on another instance. In this particular case, the Kubernetes

33

master node is running on gabor-controller1, thus the deployment can be tested by
sending a GET request to this host on the port 31111.
$ c u r l gabor−c o n t r o l l e r 1 :31111/20
C lo s e s t sma l l e r prime number : 19

This shows that the application works fine in a single cluster.

The next step is to federate these resources. The YAML files are modified and
some other ones are created as well. Four YAML files describe the basic specification
of the application as shown in Appendix B. Here, the non-federated namespace is
defined in a YAML file, as shown in Listing 10, to reduce the manual execution of
commands, therefore making automation simpler. This namespace then needs to be
federated. The corresponding configuration is shown in Listing 11. The federated
deployment and service are shown in Listing 12 and Listing 13, respectively. There
is a new mapping in these files called placement. This specifies which clusters the
corresponding resources are expected to be propagated to. The placements type was
discussed in more details in Section 2.1.5.1. This application is used for the experi-
ments. In the FederatedService definition, overrides are defined as well. Microsoft
Azure supports load balancers, thus this is used to automatically allocate a public
IP address for the running application which can be used to access it from outside
the cluster.

Migration of the application is carried out by modifying the placement. As it can
be seen in Appendix B, the placement of the deployment and service resources are
set to both the gabor.host and aks-cluster clusters. Therefore, resources are expected
to be propagated to both of them. However, the federated namespace python-ns,
in which these resources exist, is only propagated to the gabor.host cluster. No
federated namespace is created in the other cluster, limiting the resources to this one
only. The namespace, the deployment and the service are created using the apply
command:
$ kubect l apply −f namespace . yaml −f federatednamespace . yaml \

−f f ederateddeployment . yaml −f f e d e r a t e d s e r v i c e . yaml
namespace/python−ns c rea ted
federatednamespace . types . f e d e r a t i o n . k8s . i o /python−ns c rea ted
federateddeployment . types . f e d e r a t i o n . k8s . i o /python−deployment

c rea ted
f e d e r a t e d s e r v i c e . types . f e d e r a t i o n . k8s . i o /python−s e r v i c e c r eated

The federated namespace now exists only in the gabor.host cluster. In this namespace,
the deployment forces the images for the containers to be pulled from the repository,
creates the containers encapsulated in pods and makes sure the required number of
replicas always run, in this case one only. The service creates an endpoint for the
pod and exposes the port 31111. We need to make sure that everything happens as
expected. The available resources are listed for the clusters.
$ kubect l get namespace −−context=gabor . host | grep python−ns
NAME STATUS AGE

34

python−ns Active 24m

$ kubect l get deployment −n python−ns −−context=gabor . host
NAME DESIRED CURRENT UP−TO−DATE
python−deployment 1 1 1

AVAILABLE AGE
1 26m

$ kubect l get federatednamespace −n python−ns −−context=gabor . host
NAME AGE
python−ns 26m

$ kubect l get s e r v i c e s −n python−ns −−context=gabor . host
NAME TYPE CLUSTER−IP EXTERNAL−IP
python−s e r v i c e NodePort 1 0 . 2 3 3 . 1 8 . 5 6 <none>

PORT(S) AGE
5000:31111/TCP 26m

$ kubect l get pods −n python−ns −−context=gabor . host
NAME READY STATUS
python−deployment −55d965fb96 −9xxhg 1/1 Running

RESTARTS AGE
0 28m

The following command returns no namespaces.
kubect l get namespace −−context=aks−c l u s t e r | grep python−ns

Federation v2 successfully placed the resources to gabor.host while it did not propagate
them to aks-cluster as configured. Sending a GET request to the endpoint, the result
is returned as expected.
$ c u r l gabor−c o n t r o l l e r 1 :31111/18
C lo s e s t sma l l e r prime number : 17

Migration of the application happens by propagating the resources to other clusters.
The deployment and service are already configured for this, only the namespace
is needed to be changed. A patch is executed on the resource that changes the
placement.
$ kubect l −n python−ns e d i t federatednamespace python−ns
federatednamespace . types . f e d e r a t i o n . k8s . i o /python−ns ed i t ed

The edit command opens a vi editor on the given resource. Now the target cluster
is changed to aks-cluster manually. The federation controller-manager recognizes
this change and propagates the resources to the given clusters. The resources can be
queried again.
$ kubect l get ns −−context=aks−c l u s t e r | grep python−ns
python−ns Active 7m2s

$ kubect l get deployment −n python−ns −−context=aks−c l u s t e r

35

NAME DESIRED CURRENT UP−TO−DATE
python−deployment 1 1 1

AVAILABLE AGE
1 7m12s

$ kubect l get pod −n python−ns −−context=aks−c l u s t e r
NAME READY STATUS
python−deployment−ccf59b558 −5dmql 1/1 Running

RESTARTS AGE
0 7m18s

$ kubect l get s e r v i c e −n python−ns −−context=aks−c l u s t e r
NAME TYPE CLUSTER−IP EXTERNAL−IP
python−s e r v i c e LoadBalancer 1 0 . 0 . 3 5 . 5 5 52 . 2 36 . 3 3 . 21 5

PORT(S) AGE
31111:31232/TCP 7m26s

The resources are up and running in aks-cluster. The service in this particular case
took around one minute to generate an external IP address. This process can take up
to several minutes. The LoadBalancer type of the service means that the overrides
defined in the YAML file was successful as well. The application can be tested by
sending a GET request to the external IP address.
$ c u r l 52 . 236 . 33 . 215 : 31111/28
C lo s e s t sma l l e r prime number : 23

The application now runs in aks-cluster. We need to make sure that it has been
completely migrated and no resources are running in the other cluster.
$ kubect l get pod −n python−ns −−context=gabor . host
No r e s o u r c e s found .

$ kubect l get deployment −n python−ns −−context=gabor . host
No r e s o u r c e s found .

$ kubect l get s e r v i c e −n python−ns −−context=gabor . host
No r e s o u r c e s found .

The application has been successfully migrated to another cluster running in another
cloud provider’s cloud. The application can be moved back to the other cluster with
similar steps.

The second application is tested in the following part. It is important to be able
to migrate multiple applications at the same time without manual steps, otherwise it
can get complex in a system with multiple components. The non-federated files for
the second application are listed in Appendix C. Listing 14 contains the Python code.
It is similar to the first one, but in this case an extra package, requests is imported for
making HTTP requests. The address for the request is set to python-service because
the Kubernetes service in named this as seen in Listing 8. That service creates an
endpoint only available inside the cluster and this application communicates with

36

the other one through this. From the response, the number is extracted and passed
to the sympy.prime[73] function as an argument. It returns the nth prime number
and this is the result of the algorithm. The Dockerfile is very similar to the first one.
The only difference is a single python package that needs to be installed. Listing 16
shows the YAML file for the application. It differs from the first application in the
name, the container image, the port and the nodePort. This application is exposed
on port 31112.

First, the applications are tested on a single cluster as non-federated resources.
After creating a namespace, the applications can be deployed, as shown on Figure
11. Important to note that for this experiment, the first application is modified. The
type of the service is set to ClusterIP to simulate a backend application which is not
exposed to the internet and is reachable from inside the cluster only. The application

Figure 11: Deployment of the two applications

is listening on port 31112, as specified in the service definition. The application can
be tested with a GET request.
$ c u r l gabor−c o n t r o l l e r 1 :31112/4
3 . prime number : 5

In this case, the second application gets the input number 4, and calls the first appli-
cation with this input. It gets a response with 3 as the closes smaller prime number
and returns the third prime number which is 5. This shows that the application
works as intended.

The files for the federated second application can be found in Appendix D. List-
ing 17 shows the federated deployment while Listing 18 shows the federated service
resource.

The deployment command of the two applications together is executed similarly
as before.
$ kubect l apply −f namespace . yaml −f federatednamespace . yaml \

−f f ederateddeployment . yaml −f f e d e r a t e d s e r v i c e . yaml \
−f f ederateddeployment2 . yaml −f f e d e r a t e d s e r v i c e 2 . yaml

namespace/python−ns c rea ted
federatednamespace . types . f e d e r a t i o n . k8s . i o /python−ns

c rea ted

37

f ederateddeployment . types . f e d e r a t i o n . k8s . i o /python−deployment
c rea ted

f e d e r a t e d s e r v i c e . types . f e d e r a t i o n . k8s . i o /python−s e r v i c e
c r ea ted

federateddeployment . types . f e d e r a t i o n . k8s . i o /python−deployment2
c rea ted

f e d e r a t e d s e r v i c e . types . f e d e r a t i o n . k8s . i o /python−s e r v i c e 2
c rea ted

Now both applications exist in the gabor.host cluster while it is not propagated to
the aks-cluster.
$ kubect l get deployment −n python−ns −−context=gabor . host
NAME DESIRED CURRENT UP−TO−DATE
python−deployment 1 1 1
python−deployment2 1 1 1

AVAILABLE AGE
1 2m
1 2m

$ kubect l get pod −n python−ns −−context=gabor . host
NAME READY STATUS
python−deployment −55d965fb96 −79ddb 1/1 Running
python−deployment2−5f687956c8−hkn82 1/1 Running

RESTARTS AGE
0 2m
0 2m

$ kubect l get s e r v i c e −n python−ns −−context=gabor . host
NAME TYPE CLUSTER−IP EXTERNAL−IP
python−s e r v i c e Cluster IP 1 0 . 23 3 . 63 . 2 42 <none>
python−s e r v i c e 2 NodePort 1 0 . 23 3 . 46 . 2 30 <none>

PORT(S) AGE
5000/TCP 2m
5001:31112/TCP 2m

$ kubect l get s e r v i c e −n python−ns −−context=aks−c l u s t e r
No r e s o u r c e s found .

$ kubect l get deployment −n python−ns −−context=aks−c l u s t e r
No r e s o u r c e s found .

The response to the GET request is successfully received for both applications.
$ c u r l gabor−c o n t r o l l e r 1 :31112/5
5 . prime number : 11

This shows that the application can work together even when deployed as federated
resources. To migrate both applications to another cluster, the placement of the
namespace needs to be modified just as earlier. No matter how many applications
are deployed in such a way, all are moved. In case some of them are supposed to

38

stay in their current cluster, the placement of the namespace needs to be set to both
clusters and the specific resources need to be modified only for migration. Now both
applications are moved to aks-cluster by setting the placement of the namespace.
$ kubect l −n python−ns e d i t federatednamespace python−ns
federatednamespace . types . f e d e r a t i o n . k8s . i o /python−ns ed i t ed

When the migration is completed, the resources can be listed.
$ kubect l get deployment −n python−ns −−context=aks−c l u s t e r
NAME DESIRED CURRENT UP−TO−DATE
python−deployment 1 1 1
python−deployment2 1 1 1

AVAILABLE AGE
1 2m24s
1 2m24s

$ kubect l get pod −n python−ns −−context=aks−c l u s t e r
NAME READY STATUS
python−deployment−ccf59b558−fhmcw 1/1 Running
python−deployment2 −85786c748d−tdz56 1/1 Running

RESTARTS AGE
0 2m29s
0 2m29s

$ kubect l get s e r v i c e −n python−ns −−context=aks−c l u s t e r
NAME TYPE CLUSTER−IP EXTERNAL−IP
python−s e r v i c e Cluster IP 1 0 . 0 . 2 2 2 . 1 9 7 <none>
python−s e r v i c e 2 LoadBalancer 1 0 . 0 . 7 9 . 2 4 3 4 0 . 6 9 . 4 3 . 8 8

PORT(S) AGE
5000/TCP 2m27s
31112:32192/TCP 2m26s

In the gabor.host cluster, the resources have been terminated.
$ kubect l get deployment −n python−ns −−context=gabor . host
No r e s o u r c e s found .

$ kubect l get s e r v i c e −n python−ns −−context=gabor . host
No r e s o u r c e s found .

Send the GET request to test the application.
$ c u r l 40 . 69 . 43 . 88 : 31112/15
13 . prime number : 41

The migration of the applications is successful. The new cluster has the required
resources up and running while the old one terminated them.

39

5 Discussion
Kubernetes Federation v2 is designed to manage multiple clusters by applying
resource definitions - YAML files - on the target clusters with a single command. It
only requires the kubeconfig files and access to the member clusters. As presented,
this can be utilized for migrating stateless applications without redesigning it for the
new environment, thus mitigating the problems of vendor lock-in. This approach has
its benefits and drawbacks. Some of these are consequences of design decisions while
others are due to the fact that Federation was created for multi-cluster management.
This chapter compares the presented solution with other approaches. It also describes
the key findings of the thesis and discusses some important insights found throughout
the work.

5.1 Manual migration
Applications running in Kubernetes can be migrated from one cluster to another
manually, without using any extra tool. We can assume a setup similar to the one
presented in the thesis and the applications are configured in YAML files.

Migration of applications in this case can take up much time and carries a high
risk of human error. The user needs to copy these YAML files to a computer which
can communicate with the new cluster. In the case of Federation, this is given due
to the fact that the host cluster must be able to communicate with the member
clusters. In case there are slight differences in the new environment that the configu-
ration needs to adapt to, the changes need to be carried out manually in the YAML
file. This highly increases the risk of human error. Especially if this application
is modified in the new cluster then migrated back to the original one and so on.
Multiple configuration files need to be kept track of. With more member clusters
even more maintenance of multiple files is required. With Kubernetes Federation, a
single file is sufficient for multi-cluster or migration purposes. The Federation API
can handle overrides for cluster specific configurations. Eliminating the need for
multiple configuration files lowers the chance of human error and having multiple
versions of an application unintentionally.

Kubernetes Federation v2 utilizes the placement types in the YAML files to
decide which clusters a resource needs to be propagated to. As the thesis presented,
this can be the name of a cluster but it can also be a label. When the infrastructure
includes a couple of clusters only, it is simple to maintain it by names, but with
more clusters, it can easily get out of hands. With the use of labels, Federation can
target clusters which have a specific label. For instance, it will propagate resources
to all the clusters with the label propapp=true. Addition or removal of this label
on a cluster triggers Federation to act according to the label configurations. In the
case of manual migration, it requires the user to take care of this all by hand highly
increasing the risk of human error.

40

5.2 Spinnaker
Spinnaker [74] is an open source software used in cloud environments. It is a contin-
uous delivery platform that can work together with multiple cloud providers. All
the major providers are supported, such as Google Compute Engine, Amazon Web
Services EC2, OpenStack, Kubernetes, etc [75]. The main purpose of Spinnaker is
to make deployment of applications simpler and easier. It is shipped with built-in
deployment strategies including canary and red/black. It was created at Netflix
and tested on their systems, therefore it is capable of serving enormous infrastructures.

Spinnaker is a mature project compared to Kubernetes Federation v2. The first
stable version was released in June, 2017 [76], while Federation is still in alpha state
at the time of the thesis work. Hence, fewer bugs and errors can be expected to be
present when working with it.

Once Spinnaker is deployed, accounts, also known as deployment targets, can
be registered to it. An account contains the necessary credentials needed for au-
thentication [75]. This provides Spinnaker the rights to manage and change the
resources. Multiple accounts can be registered in a Spinnaker instance. Therefore,
the deployment target can be selected to be any or all of the registered accounts
when deploying an application. This is a similar mechanism to the one presented
in the thesis and capable of deploying an application in either Kubernetes clusters.
Thus, migration of a stateless application is possible using Spinnaker.

Spinnaker is a massive project with a vast amount of features included in it. This
comes at a cost. The system requirements for running this project in a cluster is
huge in comparison to Federation. The documentation of Spinnaker lists that the
minimum requirements are 8 GB memory and a CPU with at least 4 cores [77].
Furthermore, for developing Spinnaker, the memory requirement increases to 18
GB of RAM [78]. These requirements for only application migration purposes are
huge. If other features of Spinnaker, not covered by Federation, are expected to be
used as well, then it might be worth it to consider this approach to the problem.
Federation, in contrast, requires significantly less computer resources. It is not well
documented yet, supposedly due to its alpha state. However, rough estimates of the
system requirements can be made. The output of the following command describes
the configuration of federation controller-manager.
$ kubect l get pod −n f ede ra t i on −system −o j son

The configuration shows a resource limit of 128 MiB of memory and 100m of CPU
power as seen on Figure 12. The "100m" value given for the CPU limit means one
hundred millicpu. This is the equivalent of the tenth of a single core. Furthermore,
the requested resources can be seen as well, showing a minimum of 64 MiB of memory.
Table 1 shows these resource requirements and compares Spinnaker to Federation.

Even though the exact system requirements for Kubernetes Federation v2 are not
described in the documentation, the upper limits as well as the minimum require-
ments for the CPU and memory show that this approach requires significantly less

41

Kubernetes Federation v2 Spinnaker
Min memory 64 MiB 8 GB
Max memory 128 MiB n/a
Min CPU 100m 4 cores
Max CPU 100m n/a

Table 1: Kubernetes Federation v2 and Spinnaker resource requirement comparison

Figure 12: Resource limits and requests for the federation controller-manager pod

computational power than Spinnaker.

Fault tolerance is a greatly important discussion topic within this area. With
massive amounts of nodes, deployments and services, failures always have to be
assumed to happen. According to Spinnaker’s documentation, it is possible to deploy
the microservices of Spinnaker independently [77]. This means that the different
parts are distributed within a cluster and they are not reliant on each other. If
one of them goes down or the containing node goes down, it can be rescheduled
on another node without the need to redeploy Spinnaker or reconfigure anything.
However, Spinnaker is still deployed in a single cluster and in case the entire cluster
goes down, it stops working until it is brought back up. To further increase reliability,
these microservices can be deployed in their own clusters as well, which can be in
different availability zones. This scenario increases delays and reaction times but
considered to be a safer approach. In case a cluster fails or an entire availability zone
goes down for some reason, the microservices running in other clusters can still work.
Deploying multiple instances of a service, each in their own cluster, possibly in their
own availability zones greatly reduces the impact of an outage.

Furthermore, some microservices can be configured to be highly available[79].

42

This is called sharding, where the service is broke down into smaller pieces. These
small shards work similar to the microservices. They are independent of each other
in the sense of scaling and configurations. However, this feature is only available
for Echo and Clouddriver. Echo is responsible for handling changes, also called
webhooks, in services such as Github. Clouddriver takes care of the API calls to the
different cloud providers. Spinnaker consists of more than ten microservices, thus
this does not cover the whole software but only these two very important ones.

Kubernetes Federation v2 has less features implemented to deal with failures.
The controller-manager is deployed in a host cluster and other clusters are joined
to the federation as member clusters. In case of an outage where the host cluster
goes down, the controller-manager becomes unable to further manage the resources.
However, configurations and deployments continue working without interruption
as if nothing happened. The only difference is that the federation control plane
cannot make changes to the resources it manages until it gets back up. In a general
configuration, if a resource has too high load, the controller-manager schedules the
creation of more replicas but when the host cluster is down, this could cause an
overload, eventually leading to an interruption in the service. In the perspective
of migration, no migrations can be executed while the outage lasts. If the outage
happens during the process of a migration, it could also result in an interrupted
service with no replicas available of a service. If the host cluster runs normally but
a member cluster fails, then everything can work fine, since the federation control
plane is able to bring up the failed services in any other clusters.

From an availability perspective, Spinnaker definitely performs better. It can
be deployed in a distributed way and some of its components can be highly avail-
able as well. Meanwhile, Kubernetes Federation v2 stops making changes to the
configurations of the managed resources. However, they continue running without
interruptions.

5.3 Comments
Kubernetes Federation v2 is a relatively simple, fast and light-weight project that
already contains numerous useful features despite it being only a prototype. However,
more fault tolerance is required in order to be used reliably in massive systems.
Currently, the federation controller-manager can be deployed in a cluster and if
either this deployment or this host cluster is down, the federation control plane
stops working and no more commands can be executed or configurations can be
changed. It would be a good idea to run multiple controller-manager replicas in
multiple clusters. This could also be implemented relatively easily. However, since
the federation uses the Kubernetes API as a storage for its configurations, problems
start to arise because the API is tied to a cluster. Achieving high availability of
the federation control plane would essentially mean implementing a highly available
Kubernetes API. Then the state of a cluster could be synchronized to a backup
storage in real time. No such solution is known at the time of the thesis work.

43

Even though a highly available federation might never be implemented, disaster
recovery could be a more realistic goal. Snapshots could be taken of the federation
control plane and in case of a failure, it could be reconstructed in another cluster
using the latest snapshot. This solution, though, carries the risk of losing information.
One solution could be saving the changes made in the configurations to a storage
distributed over multiple clusters. When the host cluster fails, the snapshot and the
content of the database would be enough to restore the control plane in another
cluster. Furthermore, to make the database reliable and avoid corrupted data, a
solution similar to transactions[80] in SQL languages would be required.

Further reducing the effects of a failure in the federation host cluster, the im-
plementation of the propagation could be changed. Currently, the control plane
handles the propagation of changes to the member clusters but if the host cluster
goes down, the process stops working. Instead, a distributed database should be run
over multiple clusters that stores the configurations. The federation control plane
writes to this storage, the member clusters read from this storage and apply the
changed themselves. However, this solution is likely to introduce extra overhead due
to the use of the database resulting in longer delays and higher storage consumption.

5.4 Future Work
In this thesis, the experimental applications are stateless. The presented solutions are
true only for this type of applications. In order to continue this work further, stateful
applications need to be experimented with as well. From an application migration
perspective, the prerequisites for the stateful applications to work are the stateless
one. The latter is presented in this thesis. The stateful applications present further
challenges, though. For instance, if an application uses a database and stores huge
amounts of data in it, migrating it could be difficult. Even if Kubernetes Federation
v2 or some other solutions enabled the user to move the database from one cluster to
another seamlessly, if the database contains petabytes of data, it would technically
be stuck to its original place as moving it would require way too much bandwidth.
Distributing databases over clusters might be an approach worth investigating.

6 Conclusions
This thesis introduces the vendor lock-in problem in edge cloud environments. As
described, this is a significant problem which needs to be solved. The thesis proposes
a tool, Kubernetes Federation v2 as a potential solution for this problem. It is a fast,
lightweight and relatively easy-to-use tool designed for multi-cluster management.
This thesis shows that is is capable of migrating resources from vendor to vendor.
The experimental applications are stateless, thus stateful applications are yet to be
tested.

44

The proposed solution was compared to other, already existing ones. Manual mi-
gration quickly becomes complex even in relatively simple infrastructures. Spinnaker
is a continuous delivery platform which can be utilized for application migration
as well. It is a more mature project than Kubernetes Federation v2 but Spinnaker
is significantly more complex with high system requirements. The most significant
downside of Kubernetes Federation v2 is that it only works with Kubernetes clusters.
However, it is currently the most popular container orchestration tool.

References
[1] M. Satyanarayanan. “The Emergence of Edge Computing”. In: Computer 50.1

(Jan. 2017), pp. 30–39. issn: 0018-9162. doi: 10.1109/MC.2017.9.
[2] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. en.

Tech. rep. NIST Special Publication (SP) 800-145. National Institute of
Standards and Technology, Sept. 2011. doi: https://doi.org/10.6028/
NIST.SP.800-145. url: https://csrc.nist.gov/publications/detail/
sp/800-145/final (visited on 09/22/2019).

[3] Michael Armbrust et al. “A view of cloud computing”. en. In: Communications
of the ACM 53.4 (Apr. 2010), p. 50. issn: 00010782. doi: 10.1145/1721654.
1721672. url: http://portal.acm.org/citation.cfm?doid=1721654.
1721672 (visited on 04/09/2019).

[4] W. Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE Internet
of Things Journal 3.5 (Oct. 2016), pp. 637–646. issn: 2327-4662. doi:
10.1109/JIOT.2016.2579198.

[5] Giovanni Merlino et al. “Enabling Workload Engineering in Edge, Fog, and
Cloud Computing through OpenStack-based Middleware”. en. In: ACM
Transactions on Internet Technology 19.2 (Apr. 2019), pp. 1–22. issn: 15335399.
doi: 10.1145/3309705. url: http://dl.acm.org/citation.cfm?doid=
3322882.3309705 (visited on 05/13/2019).

[6] Google Store. en-GB. url: https://store.google.com/gb (visited on
05/13/2019).

[7] B. Satzger et al. “Winds of Change: From Vendor Lock-In to the Meta Cloud”.
In: IEEE Internet Computing 17.1 (Jan. 2013), pp. 69–73. issn: 1089-7801.
doi: 10.1109/MIC.2013.19.

[8] Karim R. Lakhani and Eric von Hippel. “How Open Source Software Works:
“Free” User-to-User Assistance”. en. In: Produktentwicklung mit virtuellen
Communities: Kundenwünsche erfahren und Innovationen realisieren. Ed. by
Cornelius Herstatt and Jan G. Sander. Wiesbaden: Gabler Verlag, 2004,
pp. 303–339. isbn: 978-3-322-84540-5. doi: 10.1007/978-3-322-84540-
5_13. url: https://doi.org/10.1007/978-3-322-84540-5_13 (visited on
05/13/2019).

https://doi.org/10.1109/MC.2017.9
https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
http://portal.acm.org/citation.cfm?doid=1721654.1721672
http://portal.acm.org/citation.cfm?doid=1721654.1721672
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1145/3309705
http://dl.acm.org/citation.cfm?doid=3322882.3309705
http://dl.acm.org/citation.cfm?doid=3322882.3309705
https://store.google.com/gb
https://doi.org/10.1109/MIC.2013.19
https://doi.org/10.1007/978-3-322-84540-5_13
https://doi.org/10.1007/978-3-322-84540-5_13
https://doi.org/10.1007/978-3-322-84540-5_13

45

[9] Haryadi S. Gunawi et al. “Why Does the Cloud Stop Computing?: Lessons
from Hundreds of Service Outages”. en. In: Proceedings of the Seventh ACM
Symposium on Cloud Computing - SoCC ’16. Santa Clara, CA, USA: ACM
Press, 2016, pp. 1–16. isbn: 978-1-4503-4525-5. doi: 10.1145/2987550.
2987583. url: http://dl.acm.org/citation.cfm?doid=2987550.2987583
(visited on 05/14/2019).

[10] Saurabh Kumar Garg et al. “Environment-conscious scheduling of HPC appli-
cations on distributed Cloud-oriented data centers”. en. In: Journal of Parallel
and Distributed Computing 71.6 (June 2011), pp. 732–749. issn: 07437315.
doi: 10.1016/j.jpdc.2010.04.004. url: https://linkinghub.elsevier.
com/retrieve/pii/S0743731510000936 (visited on 05/14/2019).

[11] Michael J. Kavis. Architecting the Cloud: Design Decisions for Cloud Com-
puting Service Models (SaaS, PaaS, and IaaS). en. Google-Books-ID: NcrDA-
gAAQBAJ. John Wiley & Sons, Jan. 2014. isbn: 978-1-118-82646-1.

[12] S. Subashini and V. Kavitha. “A survey on security issues in service delivery
models of cloud computing”. en. In: Journal of Network and Computer
Applications 34.1 (Jan. 2011), pp. 1–11. issn: 10848045. doi: 10.1016/j.
jnca.2010.07.006. url: https://linkinghub.elsevier.com/retrieve/
pii/S1084804510001281 (visited on 08/13/2019).

[13] Grace Lewis. Basics About Cloud Computing. 2010.
[14] Y. Jadeja and K. Modi. “Cloud computing - concepts, architecture and

challenges”. In: 2012 International Conference on Computing, Electronics and
Electrical Technologies (ICCEET). Mar. 2012, pp. 877–880. doi: 10.1109/
ICCEET.2012.6203873.

[15] Sumit Goyal. “Public vs Private vs Hybrid vs Community - Cloud Computing:
A Critical Review”. en. In: International Journal of Computer Network and
Information Security 6.3 (Feb. 2014), pp. 20–29. issn: 20749090, 20749104.
doi: 10.5815/ijcnis.2014.03.03. url: http://www.mecs-press.org/
ijcnis/ijcnis-v6-n3/v6n3-3.html (visited on 05/15/2019).

[16] C. Pahl. “Containerization and the PaaS Cloud”. In: IEEE Cloud Computing
2.3 (May 2015), pp. 24–31. issn: 2325-6095. doi: 10.1109/MCC.2015.51.

[17] M. Mao and M. Humphrey. “A Performance Study on the VM Startup Time in
the Cloud”. In: 2012 IEEE Fifth International Conference on Cloud Computing.
June 2012, pp. 423–430. doi: 10.1109/CLOUD.2012.103.

[18] Kyoung-Taek Seo et al. “Performance Comparison Analysis of Linux Container
and Virtual Machine for Building Cloud”. en. In: Dec. 2014, pp. 105–111.
doi: 10.14257/astl.2014.66.25. url: http://onlinepresent.org/
proceedings/vol66_2014/25.pdf (visited on 04/12/2019).

[19] A. M. Joy. “Performance comparison between Linux containers and virtual
machines”. In: 2015 International Conference on Advances in Computer
Engineering and Applications. Mar. 2015, pp. 342–346. doi: 10.1109/ICACEA.
2015.7164727.

https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2987550.2987583
http://dl.acm.org/citation.cfm?doid=2987550.2987583
https://doi.org/10.1016/j.jpdc.2010.04.004
https://linkinghub.elsevier.com/retrieve/pii/S0743731510000936
https://linkinghub.elsevier.com/retrieve/pii/S0743731510000936
https://doi.org/10.1016/j.jnca.2010.07.006
https://doi.org/10.1016/j.jnca.2010.07.006
https://linkinghub.elsevier.com/retrieve/pii/S1084804510001281
https://linkinghub.elsevier.com/retrieve/pii/S1084804510001281
https://doi.org/10.1109/ICCEET.2012.6203873
https://doi.org/10.1109/ICCEET.2012.6203873
https://doi.org/10.5815/ijcnis.2014.03.03
http://www.mecs-press.org/ijcnis/ijcnis-v6-n3/v6n3-3.html
http://www.mecs-press.org/ijcnis/ijcnis-v6-n3/v6n3-3.html
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.1109/CLOUD.2012.103
https://doi.org/10.14257/astl.2014.66.25
http://onlinepresent.org/proceedings/vol66_2014/25.pdf
http://onlinepresent.org/proceedings/vol66_2014/25.pdf
https://doi.org/10.1109/ICACEA.2015.7164727
https://doi.org/10.1109/ICACEA.2015.7164727

46

[20] W. Felter et al. “An updated performance comparison of virtual machines and
Linux containers”. In: 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). Mar. 2015, pp. 171–172. doi:
10.1109/ISPASS.2015.7095802.

[21] R. Morabito, J. Kjällman, and M. Komu. “Hypervisors vs. Lightweight
Virtualization: A Performance Comparison”. In: 2015 IEEE International
Conference on Cloud Engineering. Mar. 2015, pp. 386–393. doi: 10.1109/
IC2E.2015.74.

[22] Docker: Lightweight Linux Containers for Consistent Development and De-
ployment. url: http : / / delivery . acm . org . focus . lib . kth . se / 10 .
1145/2610000/2600241/11600.html?ip=130.237.29.138&id=2600241&
acc = ACTIVE % 20SERVICE & key = 74F7687761D7AE37 % 2EE53E9A92DC589BF3 %
2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1555508012_c351f12897f3eac02476539c7ba514a9
(visited on 04/17/2019).

[23] gnu.org. en. url: https://www.gnu.org/licenses/old-licenses/lgpl-
2.1.en.html (visited on 04/15/2019).

[24] Linux Containers - LXC - Introduction. url: https://linuxcontainers.
org/lxc/introduction/ (visited on 04/15/2019).

[25] Lee D. McFearin. “Chroot Jail”. en. In: Encyclopedia of Cryptography and
Security. Ed. by Henk C. A. van Tilborg and Sushil Jajodia. Boston, MA:
Springer US, 2011, pp. 206–207. isbn: 978-1-4419-5906-5. doi: 10.1007/978-
1-4419-5906-5_778. url: https://doi.org/10.1007/978-1-4419-5906-
5_778 (visited on 04/15/2019).

[26] Senthil Kumaran S. “Introduction to Linux Containers”. en. In: Practical
LXC and LXD: Linux Containers for Virtualization and Orchestration. Ed.
by Senthil Kumaran S. Berkeley, CA: Apress, 2017, pp. 1–9. isbn: 978-
1-4842-3024-4. doi: 10 . 1007 / 978 - 1 - 4842 - 3024 - 4 _ 1. url: https :
//doi.org/10.1007/978-1-4842-3024-4_1 (visited on 04/15/2019).

[27] Rami Rosen. “Linux containers and the future cloud”. In: Linux J 240.4
(2014), pp. 86–95.

[28] B. I. Ismail et al. “Evaluation of Docker as Edge computing platform”. In:
2015 IEEE Conference on Open Systems (ICOS). Aug. 2015, pp. 130–135.
doi: 10.1109/ICOS.2015.7377291.

[29] Enterprise Application Container Platform. en. url: https://www.docker.
com/ (visited on 04/15/2019).

[30] Docker 0.9: introducing execution drivers and libcontainer. en. Mar. 2014.
url: https://blog.docker.com/2014/03/docker- 0- 9- introducing-
execution-drivers-and-libcontainer/ (visited on 04/15/2019).

[31] Kata Containers documentation. Contribute to kata-containers/documentation
development by creating an account on GitHub. original-date: 2017-12-21T13:41:45Z.
Apr. 2019. url: https://github.com/kata-containers/documentation
(visited on 04/15/2019).

https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1109/IC2E.2015.74
http://delivery.acm.org.focus.lib.kth.se/10.1145/2610000/2600241/11600.html?ip=130.237.29.138&id=2600241&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37%2EE53E9A92DC589BF3%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1555508012_c351f12897f3eac02476539c7ba514a9
http://delivery.acm.org.focus.lib.kth.se/10.1145/2610000/2600241/11600.html?ip=130.237.29.138&id=2600241&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37%2EE53E9A92DC589BF3%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1555508012_c351f12897f3eac02476539c7ba514a9
http://delivery.acm.org.focus.lib.kth.se/10.1145/2610000/2600241/11600.html?ip=130.237.29.138&id=2600241&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37%2EE53E9A92DC589BF3%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1555508012_c351f12897f3eac02476539c7ba514a9
http://delivery.acm.org.focus.lib.kth.se/10.1145/2610000/2600241/11600.html?ip=130.237.29.138&id=2600241&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37%2EE53E9A92DC589BF3%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1555508012_c351f12897f3eac02476539c7ba514a9
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://doi.org/10.1007/978-1-4419-5906-5_778
https://doi.org/10.1007/978-1-4419-5906-5_778
https://doi.org/10.1007/978-1-4419-5906-5_778
https://doi.org/10.1007/978-1-4419-5906-5_778
https://doi.org/10.1007/978-1-4842-3024-4_1
https://doi.org/10.1007/978-1-4842-3024-4_1
https://doi.org/10.1007/978-1-4842-3024-4_1
https://doi.org/10.1109/ICOS.2015.7377291
https://www.docker.com/
https://www.docker.com/
https://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
https://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
https://github.com/kata-containers/documentation

47

[32] Google Trends. url: https://trends.google.com/trends/explore?date=
2013-01-01%202019-08-11&q=%2Fm%2F0wkcjgj,%2Fm%2F0crds9p,Kata%
20container (visited on 08/11/2019).

[33] Machine Types | Compute Engine Documentation. en. url: https://cloud.
google.com/compute/docs/machine-types (visited on 04/16/2019).

[34] Amazon EC2 Instance Types for SAP. en-US. url: https://aws.amazon.
com/sap/instance-types/ (visited on 04/16/2019).

[35] Eucalyptus. url: https://www.eucalyptus.cloud/ (visited on 04/16/2019).
[36] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. “Comparison of

multiple iaas cloud platform solutions”. In: Proceedings of the 7th WSEAS
International Conference on Computer Engineering and Applications,(Milan-
CEA 13). ISBN. 2012, pp. 978–1.

[37] C. Chilipirea et al. “A Comparison of Private Cloud Systems”. In: 2016 30th
International Conference on Advanced Information Networking and Applications
Workshops (WAINA). Mar. 2016, pp. 139–143. doi: 10.1109/WAINA.2016.23.

[38] D. Freet et al. “Open source cloud management platforms and hypervisor
technologies: A review and comparison”. In: SoutheastCon 2016. Mar. 2016,
pp. 1–8. doi: 10.1109/SECON.2016.7506698.

[39] Carlo Daffara. Comparing OpenNebula and OpenStack: Two Different Views
on the Cloud. en-US. Oct. 2014. url: https://opennebula.org/comparing-
opennebula-and-openstack-two-different-views-on-the-cloud/ (vis-
ited on 04/16/2019).

[40] Apache Cloudstack. url: https://cloudstack.apache.org/ (visited on
04/16/2019).

[41] J. P. Mullerikkal and Y. Sastri. “A Comparative Study of OpenStack and
CloudStack”. In: 2015 Fifth International Conference on Advances in Com-
puting and Communications (ICACC). Sept. 2015, pp. 81–84. doi: 10.1109/
ICACC.2015.110.

[42] Google Trends. url: https : / / trends . google . com / trends / explore ?
cat=32&date=all&q=%2Fm%2F0cm87w_,Eucalyptus, CloudStack, %2Fm%
2F0g58249 (visited on 04/30/2019).

[43] Get Started, Part 4: Swarms. en. Apr. 2019. url: https://docs.docker.
com/get-started/part4/ (visited on 04/17/2019).

[44] Lubos Mercl and Jakub Pavlik. “The comparison of container orchestrators”. In:
Third International Congress on Information and Communication Technology.
Springer. 2019, pp. 677–685.

[45] Apache Projects List. url: https://projects.apache.org/projects.html?
category#big-data (visited on 04/17/2019).

[46] Apache Mesos. url: http://mesos.apache.org/ (visited on 04/17/2019).

https://trends.google.com/trends/explore?date=2013-01-01%202019-08-11&q=%2Fm%2F0wkcjgj,%2Fm%2F0crds9p,Kata%20container
https://trends.google.com/trends/explore?date=2013-01-01%202019-08-11&q=%2Fm%2F0wkcjgj,%2Fm%2F0crds9p,Kata%20container
https://trends.google.com/trends/explore?date=2013-01-01%202019-08-11&q=%2Fm%2F0wkcjgj,%2Fm%2F0crds9p,Kata%20container
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
https://aws.amazon.com/sap/instance-types/
https://aws.amazon.com/sap/instance-types/
https://www.eucalyptus.cloud/
https://doi.org/10.1109/WAINA.2016.23
https://doi.org/10.1109/SECON.2016.7506698
https://opennebula.org/comparing-opennebula-and-openstack-two-different-views-on-the-cloud/
https://opennebula.org/comparing-opennebula-and-openstack-two-different-views-on-the-cloud/
https://cloudstack.apache.org/
https://doi.org/10.1109/ICACC.2015.110
https://doi.org/10.1109/ICACC.2015.110
https://trends.google.com/trends/explore?cat=32&date=all&q=%2Fm%2F0cm87w_,Eucalyptus,CloudStack,%2Fm%2F0g58249
https://trends.google.com/trends/explore?cat=32&date=all&q=%2Fm%2F0cm87w_,Eucalyptus,CloudStack,%2Fm%2F0g58249
https://trends.google.com/trends/explore?cat=32&date=all&q=%2Fm%2F0cm87w_,Eucalyptus,CloudStack,%2Fm%2F0g58249
https://docs.docker.com/get-started/part4/
https://docs.docker.com/get-started/part4/
https://projects.apache.org/projects.html?category#big-data
https://projects.apache.org/projects.html?category#big-data
http://mesos.apache.org/

48

[47] Why Mesos. en-US. url: https://mesosphere.com/why-mesos/ (visited on
04/17/2019).

[48] Google Trends. url: https : / / trends . google . com / trends / explore ?
cat=32&date=today%205- y&q=Kubernetes, Docker%20Swarm, Apache%
20Marathon (visited on 05/22/2019).

[49] Introducing Container Runtime Interface (CRI) in Kubernetes. en. url:
https://kubernetes.io/blog/2016/12/container-runtime-interface-
cri-in-kubernetes/ (visited on 04/17/2019).

[50] S. Hoque et al. “Towards Container Orchestration in Fog Computing In-
frastructures”. In: 2017 IEEE 41st Annual Computer Software and Appli-
cations Conference (COMPSAC). Vol. 2. July 2017, pp. 294–299. doi:
10.1109/COMPSAC.2017.248.

[51] Building Large Clusters. en. url: https://kubernetes.io/docs/setup/
cluster-large/ (visited on 04/17/2019).

[52] Federation. en. url: https://kubernetes.io/docs/concepts/cluster-
administration/federation/ (visited on 04/30/2019).

[53] Kubernetes Federation v2. Contribute to kubernetes-sigs/federation-v2 develop-
ment by creating an account on GitHub. original-date: 2018-01-09T14:21:03Z.
Apr. 2019. url: https://github.com/kubernetes-sigs/federation-v2
(visited on 04/30/2019).

[54] Agility through open infrastructure. en-US. url: https://www.citynetwork.
eu/ (visited on 05/03/2019).

[55] Ansible deployment of the Kolla containers. Contribute to openstack/kolla-
ansible development by creating an account on GitHub. original-date: 2016-
11-15T16:12:46Z. Apr. 2019. url: https://github.com/openstack/kolla-
ansible (visited on 05/03/2019).

[56] OpenStack Docs: Overview. url: https://docs.openstack.org/newton/
install-guide-obs/overview.html (visited on 05/06/2019).

[57] OpenStack Docs: Quick Start. url: https://docs.openstack.org/kolla-
ansible/latest/user/quickstart.html (visited on 08/11/2019).

[58] Deploy a Production Ready Kubernetes Cluster. Contribute to kubernetes-
sigs/kubespray development by creating an account on GitHub. original-date:
2015-10-03T20:18:11Z. May 2019. url: https://github.com/kubernetes-
sigs/kubespray (visited on 05/06/2019).

[59] Kubernetes SIGs. en. url: https://github.com/kubernetes-sigs (visited
on 05/06/2019).

[60] Working with Inventory — Ansible Documentation. url: https://docs.
ansible.com/ansible/latest/user_guide/intro_inventory.html (vis-
ited on 05/06/2019).

https://mesosphere.com/why-mesos/
https://trends.google.com/trends/explore?cat=32&date=today%205-y&q=Kubernetes,Docker%20Swarm,Apache%20Marathon
https://trends.google.com/trends/explore?cat=32&date=today%205-y&q=Kubernetes,Docker%20Swarm,Apache%20Marathon
https://trends.google.com/trends/explore?cat=32&date=today%205-y&q=Kubernetes,Docker%20Swarm,Apache%20Marathon
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://doi.org/10.1109/COMPSAC.2017.248
https://kubernetes.io/docs/setup/cluster-large/
https://kubernetes.io/docs/setup/cluster-large/
https://kubernetes.io/docs/concepts/cluster-administration/federation/
https://kubernetes.io/docs/concepts/cluster-administration/federation/
https://github.com/kubernetes-sigs/federation-v2
https://www.citynetwork.eu/
https://www.citynetwork.eu/
https://github.com/openstack/kolla-ansible
https://github.com/openstack/kolla-ansible
https://docs.openstack.org/newton/install-guide-obs/overview.html
https://docs.openstack.org/newton/install-guide-obs/overview.html
https://docs.openstack.org/kolla-ansible/latest/user/quickstart.html
https://docs.openstack.org/kolla-ansible/latest/user/quickstart.html
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes-sigs
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

49

[61] Distributed reliable key-value store for the most critical data of a distributed
system: etcd-io/etcd. original-date: 2013-07-06T21:57:21Z. May 2019. url:
https://github.com/etcd-io/etcd (visited on 05/07/2019).

[62] Microsoft Azure Cloud Computing Platform & Services. en. url: https:
//azure.microsoft.com/en-us/ (visited on 05/20/2019).

[63] Overview of kubectl. en. url: https://kubernetes.io/docs/reference/
kubectl/overview/ (visited on 05/07/2019).

[64] Nikolay Grozev and Rajkumar Buyya. “Multi-Cloud Provisioning and Load
Distribution for Three-Tier Applications”. en. In: ACM Transactions on
Autonomous and Adaptive Systems 9.3 (Oct. 2014), pp. 1–21. issn: 15564665.
doi: 10.1145/2662112. url: http://dl.acm.org/citation.cfm?doid=
2676689.2662112 (visited on 05/16/2019).

[65] Redis. url: https://redis.io/ (visited on 05/16/2019).
[66] Rajkumar Jalan et al. “Combining stateless and stateful server load balancing”.

en. US8897154B2. Nov. 2014. url: https://patents.google.com/patent/
US8897154/en (visited on 09/30/2019).

[67] Cesare Pautasso, Erik Wilde, and Rosa Alarcon. “Introduction”. en. In: REST:
Advanced Research Topics and Practical Applications. Ed. by Cesare Pautasso,
Erik Wilde, and Rosa Alarcon. New York, NY: Springer New York, 2014,
pp. 1–5. isbn: 978-1-4614-9299-3. doi: 10.1007/978-1-4614-9299-3_1.
url: https://doi.org/10.1007/978- 1- 4614- 9299- 3_1 (visited on
05/08/2019).

[68] curl. url: https://curl.haxx.se/ (visited on 05/08/2019).
[69] Welcome | Flask (A Python Microframework). url: http://flask.pocoo.

org/ (visited on 05/08/2019).
[70] SymPy. url: https : / / www . sympy . org / en / index . html (visited on

05/08/2019).
[71] Docker Hub. url: https://hub.docker.com/ (visited on 05/08/2019).
[72] Services. en. url: https://kubernetes.io/docs/concepts/services-

networking/service/ (visited on 05/09/2019).
[73] Number Theory — SymPy 1.4 documentation. url: https://docs.sympy.

org/latest/modules/ntheory.html?highlight=prime#sympy.ntheory.
generate.prime (visited on 05/20/2019).

[74] Spinnaker. en. url: https://www.spinnaker.io/ (visited on 07/14/2019).
[75] 3. Choose your Environment. en. url: https://www.spinnaker.io/setup/

install/environment/ (visited on 07/14/2019).
[76] Versions. en. url: https://www.spinnaker.io/community/releases/

versions/ (visited on 07/14/2019).
[77] 3. Choose your Environment. en. url: https://www.spinnaker.io/setup/

install/environment/ (visited on 07/14/2019).

https://github.com/etcd-io/etcd
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://doi.org/10.1145/2662112
http://dl.acm.org/citation.cfm?doid=2676689.2662112
http://dl.acm.org/citation.cfm?doid=2676689.2662112
https://redis.io/
https://patents.google.com/patent/US8897154/en
https://patents.google.com/patent/US8897154/en
https://doi.org/10.1007/978-1-4614-9299-3_1
https://doi.org/10.1007/978-1-4614-9299-3_1
https://curl.haxx.se/
http://flask.pocoo.org/
http://flask.pocoo.org/
https://www.sympy.org/en/index.html
https://hub.docker.com/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.sympy.org/latest/modules/ntheory.html?highlight=prime#sympy.ntheory.generate.prime
https://docs.sympy.org/latest/modules/ntheory.html?highlight=prime#sympy.ntheory.generate.prime
https://docs.sympy.org/latest/modules/ntheory.html?highlight=prime#sympy.ntheory.generate.prime
https://www.spinnaker.io/
https://www.spinnaker.io/setup/install/environment/
https://www.spinnaker.io/setup/install/environment/
https://www.spinnaker.io/community/releases/versions/
https://www.spinnaker.io/community/releases/versions/
https://www.spinnaker.io/setup/install/environment/
https://www.spinnaker.io/setup/install/environment/

50

[78] Getting Set Up for Spinnaker Development. en. url: https://www.spinnaker.
io/guides/developer/getting-set-up/ (visited on 07/14/2019).

[79] High Availability. en. url: https : / / www . spinnaker . io / reference /
halyard/high-availability/ (visited on 07/31/2019).

[80] rothja. Transactions (Transact-SQL) - SQL Server. en-us. url: https://
docs.microsoft.com/en-us/sql/t-sql/language-elements/transactions-
transact-sql (visited on 08/01/2019).

A Federation of clusters

. / go/ s r c / kubernetes−s i g s / f ede ra t i on−v2/bin /kubefed2−l i nux
j o i n gabor . host −−c l u s t e r−context gabor . host

−−host−c l u s t e r−context gabor . host −−add−to−r e g i s t r y −−v=2
I0603 09 : 24 : 52 . 227636 21253 j o i n . go : 1 6 5] Args and f l a g s :

name gabor . host , host : gabor . host , host−system−namespace :
f ede ra t i on−system , r e g i s t r y −namespace :
kube−mul t i c l u s t e r−publ ic , kubeconf ig : , c l u s t e r−context :
gabor . host , s e c r e t−name : , l im i ted−scope : f a l s e , dry−run : f a l s e

I0603 09 : 24 : 52 . 347296 21253 j o i n . go : 2 1 9] Performing p r e f l i g h t checks .
I0603 09 : 24 : 52 . 524241 21253 j o i n . go : 3 0 9] Reg i s t e r i ng c l u s t e r :

gabor . host with the c l u s t e r r e g i s t r y .
I0603 09 : 24 : 52 . 528052 21253 j o i n . go : 3 8 9] Creat ing

c l u s t e r r e g i s t r y c l u s t e r gabor . host
I0603 09 : 24 : 52 . 538831 21253 j o i n . go : 3 1 8] Reg i s t e r ed c l u s t e r :

gabor . host with the c l u s t e r r e g i s t r y .
I0603 09 : 24 : 52 . 538858 21253 j o i n . go : 2 4 0] Creat ing

f ede ra t i on−system namespace in j o i n i n g c l u s t e r
I0603 09 : 24 : 52 . 562380 21253 j o i n . go : 2 4 8] Created

f ede ra t i on−system namespace in j o i n i n g c l u s t e r
I0603 09 : 24 : 52 . 562412 21253 j o i n . go : 2 5 1] Creat ing

c l u s t e r c r e d e n t i a l s s e c r e t
I0603 09 : 24 : 52 . 562423 21253 j o i n . go : 4 7 2] Creat ing

s e r v i c e account in j o i n i n g c l u s t e r : gabor . host
I0603 09 : 24 : 52 . 652939 21253 j o i n . go : 4 8 2] Created s e r v i c e

account : gabor . host−gabor . host in j o i n i n g c l u s t e r : gabor . host
I0603 09 : 24 : 52 . 652979 21253 j o i n . go : 5 1 0] Creat ing c l u s t e r

r o l e and binding f o r s e r v i c e account :
gabor . host−gabor . host in j o i n i n g c l u s t e r : gabor . host

I0603 09 : 24 : 52 . 710984 21253 j o i n . go : 5 1 9] Created c l u s t e r
r o l e and binding f o r s e r v i c e account :
gabor . host−gabor . host in j o i n i n g c l u s t e r : gabor . host

I0603 09 : 24 : 52 . 711015 21253 j o i n . go : 5 2 3] Creat ing s e c r e t
in host c l u s t e r : gabor . host

https://www.spinnaker.io/guides/developer/getting-set-up/
https://www.spinnaker.io/guides/developer/getting-set-up/
https://www.spinnaker.io/reference/halyard/high-availability/
https://www.spinnaker.io/reference/halyard/high-availability/
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transactions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transactions-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transactions-transact-sql

51

I0603 09 : 24 : 53 . 747043 21253 j o i n . go : 9 1 2] Using s e c r e t named :
gabor . host−gabor . host−token−6rd8c

I0603 09 : 24 : 53 . 753755 21253 j o i n . go : 9 4 4] Created s e c r e t
in host c l u s t e r named : gabor . host−tznqt

I0603 09 : 24 : 53 . 753781 21253 j o i n . go : 5 3 2] Created s e c r e t
in host c l u s t e r : gabor . host

I0603 09 : 24 : 53 . 753794 21253 j o i n . go : 2 6 1] C lus te r
c r e d e n t i a l s s e c r e t c r ea ted

I0603 09 : 24 : 53 . 753804 21253 j o i n . go : 2 6 3] Creat ing
f ede ra t ed c l u s t e r r e s ou r c e

I0603 09 : 24 : 53 . 768093 21253 j o i n . go : 2 7 2] Created
f ede ra t ed c l u s t e r r e s ou r c e

Listing 9: Command and its output when creating a federation of clusters

B Federated python app files

ap iVers ion : v1
kind : Namespace
metadata :

name : python−ns
Listing 10: Namespace definition for the python app

ap iVers ion : types . f e d e r a t i o n . k8s . i o / v1alpha1
kind : FederatedNamespace
metadata :

name : python−ns
namespace : python−ns

spec :
placement :

c lusterNames :
− gabor . host

Listing 11: Federated namespace definition for the python app

ap iVers ion : v1
ap iVers ion : types . f e d e r a t i o n . k8s . i o / v1alpha1
kind : FederatedDeployment
metadata :

name : python−deployment
namespace : python−ns

spec :
placement :

c lusterNames :
− gabor . host
− aks−c l u s t e r

52

template :
metadata :

l a b e l s :
app : python−app

spec :
r e p l i c a s : 1
s e l e c t o r :

matchLabels :
app : python−app

template :
metadata :

l a b e l s :
app : python−app

spec :
c on ta i n e r s :
− image : f i n t a / edgethes i spythonapp : l a t e s t

name : python−app
por t s :
− conta ine rPor t : 5000

p ro to co l : TCP
Listing 12: Federated deployment definition for the python app

ap iVers ion : types . f e d e r a t i o n . k8s . i o / v1alpha1
kind : FederatedServ i ce
metadata :

name : python−s e r v i c e
namespace : python−ns

spec :
placement :

c lusterNames :
− gabor . host
− aks−c l u s t e r

template :
spec :

por t s :
− port : 5000

p ro to co l : TCP
targe tPor t : 5000
nodePort : 31111

s e l e c t o r :
app : python−app

type : NodePort
ov e r r i d e s :
− clusterName : aks−c l u s t e r

c l u s t e rOve r r i d e s :

53

− path : spec . type
value : LoadBalancer

− path : spec . por t s
va lue :
− pro to co l : TCP

port : 31111
ta rge tPor t : 5000
Listing 13: Federated service definition for the python app

C Second python application files

from f l a s k import Flask
import sympy
import r eque s t s

app = Flask (__name__)

@app . route (’/< in t : number> ’ , methods=[’GET’])
de f get_prime (number) :

number = in t (number)
i f number < 2 :

re turn "The input needs to be g r e a t e r or equal to 2\n "
e l s e :

address = " http :// python−s e r v i c e : 5000/ " + s t r (number)
prime = reque s t s . get (address) . t ex t
prime = in t (prime [prime . r f i n d (" ") :] . s t r i p ())
r e t s t r = s t r (prime) + " . prime number : "
retnum = sympy . prime (prime)
re turn r e t s t r + s t r (retnum) + "\n "

app . run (host = ’ 0 . 0 . 0 . 0 ’ , debug=False)
Listing 14: The Python code for the second application

FROM python :3.7− a l p i n e
ADD . /code
WORKDIR /code
RUN pip i n s t a l l f l a s k sympy r eque s t s
EXPOSE 5000
CMD [" python " , " app2 . py "]

Listing 15: The Dockerfile for the second application

ap iVers ion : apps/v1
kind : Deployment
metadata :

54

name : python−deployment2
namespace : python−ns
l a b e l s :

app : python−app2
spec :

r e p l i c a s : 1
s e l e c t o r :

matchLabels :
app : python−app2

template :
metadata :

l a b e l s :
app : python−app2

spec :
c on ta i n e r s :
− name : python−app2

image : f i n t a / edgethes i spythonapp2 : l a t e s t
por t s :
− conta ine rPor t : 5000

−−−
ap iVers ion : v1
kind : S e rv i c e
metadata :

name : python−s e r v i c e 2
namespace : python−ns

spec :
por t s :
− nodePort : 31112

ta rge tPor t : 5000
port : 5001
p ro to co l : TCP

s e l e c t o r :
app : python−app2

type : NodePort
Listing 16: The YAML file for the second application to run in a Kubernetes cluster

D Federated YAML files for second application

ap iVers ion : v1
ap iVers ion : types . f e d e r a t i o n . k8s . i o / v1alpha1
kind : FederatedDeployment
metadata :

name : python−deployment2
namespace : python−ns

spec :

55

placement :
c lusterNames :
− aks−c l u s t e r
− gabor . host

template :
metadata :

l a b e l s :
app : python−app2

spec :
r e p l i c a s : 1
s e l e c t o r :

matchLabels :
app : python−app2

template :
metadata :

l a b e l s :
app : python−app2

spec :
c on ta i n e r s :
− image : f i n t a / edgethes i spythonapp2 : l a t e s t

name : python−app2
por t s :
− conta ine rPor t : 5000

p ro to co l : TCP
Listing 17: Federated deployment definition for the second python app

ap iVers ion : types . f e d e r a t i o n . k8s . i o / v1alpha1
kind : FederatedServ i ce
metadata :

name : python−s e r v i c e 2
namespace : python−ns

spec :
placement :

c lusterNames :
− aks−c l u s t e r
− gabor . host

template :
spec :

por t s :
− port : 5001

p ro to co l : TCP
targe tPor t : 5000
nodePort : 31112

s e l e c t o r :
app : python−app2

56

type : NodePort
ov e r r i d e s :
− clusterName : aks−c l u s t e r

c l u s t e rOve r r i d e s :
− path : spec . type

value : LoadBalancer
− path : spec . por t s

va lue :
− pro to co l : TCP

port : 31112
ta rge tPor t : 5000

Listing 18: Federated service definition for the second python app

	Abstract
	1 Introduction
	1.1 Background
	1.1.1 Cloud Computing
	1.1.2 Open Source

	1.2 Problem statement
	1.3 Purpose
	1.4 Goal
	1.5 Ethics and sustainability
	1.6 Methodology
	1.7 Delimitations
	1.8 Contribution
	1.9 Outline

	2 Background
	2.1 Technologies
	2.1.1 Cloud Computing
	2.1.2 Containerization
	2.1.3 Container Technologies
	2.1.4 Infrastructure as a Service
	2.1.5 Platform as a Service
	2.1.5.1 Federation

	3 Methods
	3.1 Cloud environment
	3.2 Platform layer
	3.3 Federation
	3.4 Approach of the experiments

	4 Experiments and results
	4.1 Experimental setup
	4.2 Experimental applications

	5 Discussion
	5.1 Manual migration
	5.2 Spinnaker
	5.3 Comments
	5.4 Future Work

	6 Conclusions
	References
	A Federation of clusters
	B Federated python app files
	C Second python application files
	D Federated YAML files for second application

