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user viewport compared to peripheral areas. This way bandwidth can be saved,
since the peripheral areas are streamed at a lower bitrate. In streaming 360°
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can be easily extended by other optimization methods and discuss how we can
incorporate head movement prediction to allow DVAR to optimally determine
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resolution given the system constraints.
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Chapter 1

Introduction

In recent years Virtual Reality (VR) has seen a significant increase in atten-
tion from researchers, market, hardware /software developers and consumers.
A recent report predicts that the VR market is expected to reach a value
of $26.89 billion in 2022 [52]: a massive increase from $2 billion in 2016.
Although VR research is not "new” as such, and goes back to the 1980’s, re-
cent developments and releases of high-end consumer-grade Head-Mounted
Displays (HMD’s) such as the HTC Vive and Oculus Rift have have made
both development and research of VR more accessible. VR content comes in
many forms nowadays, but mainly as either video games/computer-generated
3D imagery or 360° video (otherwise known as panoramic or omnidirec-
tional video). In order to view VR content an HMD is required, which is
a binoculars-like device that tracks head movement to match the viewport!
of the virtual environment to the direction a user is looking. Apart from high-
end and expensive HMD’s such as the Oculus Rift and HTC Vive, low-end
HMD’s have also been published for mobile devices such as Google Daydream,
Google Cardboard or Samsung GearVR. In these HMD’s the smartphone is
used to take care of the tracking and display of the Virtual Reality Environ-
ment (VRE), while the HMD provides the lenses necessary for viewing the
VRE in 3D. Both a challenge and a benefit of these mobile solutions is that
they are untethered, and thus do not require a separate high-end desktop
PC to render VR content. Furthermore, manufacturers such as Oculus and
Lenovo have presented stand-alone mobile HMD’s such as the Oculus Go,

!The viewport is the area of a VR image that the user can see at a given moment. In
traditional video this is simply all parts of the video visible on screen. In VR video, as
the user is watching part of a sphere through the HMD’s lenses, this is the part that the
user sees through the lenses. The size of the viewport depends on the field-of-view of the
HMD, expressed in degrees. Hence, the viewport size does not depend on the resolution
of the video or the physical size of the HMD’s display.
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Oculus Quest or Lenovo Mirage Solo that combine the features of high-end
HMD'’s with full mobility, based on a mobile chipset.

Both mobile smartphone-based and stand-alone HMD’s offer benefits in
viewing VR content because they do not require expensive supporting hard-
ware, an array of cables or a restricted usage area. These mobile HMD’s
either render the content locally or receive it over a wireless connection such
as Wi-Fi or LTE. Although smart devices are getting increasingly more pow-
erful and are catching up fast to modern PC’s in terms of computing power,
their performance is still limited and is likely to remain limited compared
to high-end PC’s since their primary objectives in performance management
differ: smart devices generally prioritize power savings and efficiency, while
PC’s offer a much higher performance. As such, mobile devices are only
capable of rendering low-quality 3D images. Streaming VR content over
a wireless connection presents a possible solution to provide high quality
graphics, as the local device only has to display it on screen and track user
and controller position. However, the bandwidth of wireless connections is
limited and prone to more or less severe fluctuations.

Due to the nature of VR content the bandwidth requirements of streaming
VR content are several factors higher than those of streaming traditional 2D
video: in a virtual environment a user’s point of view resides inside a sphere,
while the VR content is projected to the inside of the sphere. This gives the
user a full 360° x 180° Field of View? (FoV). This means that, in order to
stream the full spherical content, the transmission of a 360° video consumes
4-6x the bandwidth of a regular video with the same resolution [13], [51],
easily reaching 12K pixels resolution for common HMD’s. However, the user
is only looking at a part of the sphere at a given time (the viewport). In
order to present the viewport in sufficient quality to maintain a good Quality
of Experience (QoE), the viewport resolution is generally at least the native
resolution of the HMD, for example 1600x1440 pixels per eye for the recently
released Oculus Quest. Because of the massive resolution of VR content
and the limited bandwidth of current wireless connections, it is infeasible to
stream any VR content of such a connection. Due to encoding technology
such as H.264 (AVC), H.265 (HEVC) or VP9 the bandwidth requirement
can be decreased, but it remains significantly higher than that of traditional
video. Additionally, VR streaming requires anew video frame to be displayed
at a very low latency for a smooth experience, which requires high Frames

2Field-of-View (FoV) refers to the area a user can see, either through his eyes or a
device. It is usually measured in degrees. For example, 360° video provides a potential
360° FoV, as the vdeo contains content for each possible viewing direction. However, a
typical HMD might offer only a 100° FoV, allowing the user to see 100° worth of content
at a time.
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Per Second (FPS) rendering, further increasing the bandwidth requirement.

1.1 Problem Statement

A central theme in the VR research community in recent years has been:
"How can we further reduce the bandwidth requirements of VR streaming
without decreasing the Quality of Experience?”. Even with the promise
of new Wi-Fi technology, server technology or 5G networking technology,
HMD'’s are expected to also support higher resolutions to further increase
the potential visual quality. However much bandwidth becomes available
in the future, we can expect the receiving end to match it in demand, so
the problem of determining an efficient streaming solution for VR remains
(not unlike traditional video streaming optimization). A popular strategy
is to leverage the fact that a user only views one portion of a VR video
at a time, thus giving content delivery systems the opportunity to deliver
higher quality in that area, while limiting the bandwidth requirement for the
peripheral areas. Recently many methods for this have utilized the recent
MPEG-DASH streaming protocol: by dividing a video into separate tiles and
training a content delivery model on head traces from users watching 360°
video a quality level of a tile can be determined, based on it’s location w.r.t.
the user’s viewport and the available bandwidth.

Primary downsides of this approach are the required extra storage ca-
pacity on the server side, the non-trivial determination of how to generate
the tiles and quality levels, or how to implement viewport awareness. Most
importantly, however, is that most of these works focus on streaming 360°
video, instead of streaming a VR application such as a game (much like in
traditional cloud gaming). Streaming Interactive VR requires taking into ac-
count the effect of interactivity and requires real-time changes to any dynamic
quality variations. This excludes tiling and other pre-generated video based
solutions as the additional overhead of creating tens of different versions of
tiles of each video frame would violate the latency requirement.

In a lesser way researchers have begun investigating VR streaming sys-
tems: due to the strict latency requirements it is non-trivial to set up a VR
streaming system that delivers the required QoE. Given that the motion-
to-photon latency should be below 10-25ms [7], [35], a server has to render,
encode and transmit a frame within, say, 10ms to give the client 6ms to
present the frame. Separately, work has been published on improving wire-
less network connectivity and hardware performance for VR streaming, but
the work on combining these new technologies into a VR system that can
support fully interactive VR at high resolutions is limited. The task is fur-
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ther complicated by the fact that mobile devices such as smartphones, a key
target for VR streaming, have limited processing power and are bound by
power-saving policies.

1.2 Scope of the Thesis

In this work we present a novel viewport-adaptive rendering solution for VR
streaming. By rotating the frontal direction of the VR video sphere with
the gaze of the user, we can dynamically increase or decrease the amount
of peripheral area to render since this area is not visible to the user. Less
peripheral area rendered not only enables lower rendering times, but leaves
room on a video frame to increase the proportional resolution of the frontal
direction. Our solution optimizes the resolution in the viewport by rendering
only the viewport location and a surrounding area based on the current net-
work conditions and head orientation parameters. By utilizing the remaining
available bandwidth to increase the viewport resolution we increase the QoE
while simultaneously compensating for the effects of system latency. Our
solution, which will be introduced in Chapter 4, is designed for streaming
Interactive VR content, such as cloud-based VR gaming, but can also sup-
port 360° video streaming. The system is designed for live streaming of
computer-generated images, such as games or simulations, and streams these
at an optimal quality level to a standalone or smartphone-based client device.
The amount of peripheral area to render critically depends on the system’s
response time and the user’s head movement velocity. Our solution dynam-
ically adapts itself to the system’s Round-Trip Time (RTT) (time before a
requested frame is rendered on the client) and the user’s head movement
velocity to offer exactly the right amount of peripheral area to avoid showing
any unrendered area. This way we can maximize the viewport resolution
while offering a completely transparent experience to the user. Because we
change the amount of peripheral area to render at render time (i.e. before en-
coding), our solution can easily be combined with existing approaches such
as tiling, improved encoding, head movement prediction, gaze prediction,
optimized software algorithms for rendering and coding, etc. Furthermore,
our solution comprises a low-impact, high-level software solution which al-
lows for easy improvements as hardware and technology support allow for
even higher resolutions and frame rates. We show that Dynamic Viewport-
Adaptive Rendering (DVAR) is capable of precisely reacting to changes in
system RTT, and that DVAR requires less bandwidth than comparative im-
plementations while offering a significantly higher viewport resolution.
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1.3 Structure of the Thesis

This work is organized as follows: we first elaborate on the concept of vir-
tual reality, VR streaming the different factors involved and related works
in Chapter 2: Background. We then present a prototype streaming sys-
tem in Chapter 3: System Architecture. Our Dynamic Viewport-Adaptive
Rendering proposal is presented in the likewise-named Chapter 4, after which
we set up an experiment to evaluate DVAR’s performance. The experiment
set-up is discussed in Chapter 5: Experiment Setup and the results of our
experiments are presented and discussed in Chapter 6: Results. In the same
chapter we furthermore discuss future improvements. Finally, we summarize
our work in Chapter 8: Conclusions.



Chapter 2

Background

Virtual Reality is defined by the Oxford dictionary as ” The computer-generated
simulation of a three-dimensional image or environment that can be inter-
acted with in a seemingly real or physical way by a person using special
electronic equipment, such as a helmet with a screen inside or gloves fitted
with sensors” [48]. In other words, Virtual Reality can refer to the three-
dimensional computer generated environment of a video game, in which the
user is immersed as if they were physically present in the virtual environ-
ment by means of a (head-mounted) stereoscopic display, binaural audio and
simulation of physical hand, head and leg positions in the virtual world.
VR revolves around making a user believe they are physically present in a
non-physical environment, by substituting real-world input to the senses by
artificially created ones.

2.1 Virtual Reality

Although recently VR and it’s related technologies have seen a massive influx
of interest, the concept may be older than the computer itself [49]. The
first devices and use cases that are related to how we know VR nowadays
come from the 70’s and 80’s, when NASA’s Ames Research Center set up a
Virtual Interactive Environment Workstation based on a headset that offered
stereoscopic imagery and a convincingly large Field-of-View [49]. During this
time also game console manufacturers such as SEGA and Nintendo released
VR devices that were capable of displaying stereoscopic images. It should be
noted however, that in this time VR did not exclusively refer to the HMD-
based idea: in fact, still to this day it encompasses any virtual environment
that may be convincing enough to immerse the user. This includes, for
example: driving and flying simulators, projection based ("holodeck style”)

12
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Extended Reality
]
I 1
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Real Life Augmented Reality Mixed Reality Virtual Reality
This is the real, physical This Is the technology which This is the merging of both This is the immersing of a
life around us in the averlays digital information ento  the real world and the digital userin a completely

world (not digital). the real world. world. digital world.

Figure 2.1: An overview of the XR spectrum containing Augmented Real-
ity, Mixed Reality and Virtual Reality technologies in increasing order of
immersion into a virtual environment. Image from [37].

VR rooms and telepresence solutions. For a further read on the interesting
history of Virtual Reality, see for example [1], [42], [49]. Nowadays VR is
part of the umbrella term ”eXtended Reality” (XR), which further includes
Augmented Reality (AR) and Mixed Reality (MR) technologies (see Figure
2.1). Whereas VR offers full immersion in a completely virtual environment,
AR adds virtual elements to the real world, to be viewed using a camera that
combines real world images and virtual ones into the same view. MR further
combines virtual and real artefacts by allowing them to interact with each
other.

The recent influx of interest in Virtual Reality in academia, commercial
and consumer markets came around the the introduction of Facebook’s Ocu-
lus Rift, the HTC Vive and Sony Playstation VR headsets in 2012-2016.
These headsets were developed for the consumer market and offered a high
quality immersive experience at an affordable cost. Many more VR headsets
were to follow, with one of the latest being the Valve Index VR kit released
in June 2019. These headsets are all tethered: they require to be connected
to a computer at all times to transmit visual data over a multi-Gbps cable
and controller and tracking information over USB. However, in 2015 Google
introduced Cardboard, a DIY headset that allowed users to place a capa-
ble smartphone in the headset and watch stereoscopic content through the
headset’s lenses. In 2016, Daydream View was released: a more mature and
comfortable headset that adopted the same principle and came with a 3-
Degrees-of-Freedom! (DoF) controller. With Daydream it is possible to not

n Virtual Reality, Degrees-of-Freedom (DoF) refers to the representation of the move-
ment of real element (user head or controller) by an avatar in the VRE. 3-DoF means that
the element can rotate around it’s x-, y- and z-axis in the virtual environment. A 6-DoF
element can further translate along these axis, giving a complete movement representation.
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only watch stereoscopic content, but interact with the virtual environment as
well through the controller. An updated version was released in 2017, which
provided a 200° FoV as opposed to the earlier 90° [41]. Similarly, Samsung
released their Gear VR headset in 2015, which supports all modern Samsung
flagship Galaxy smartphones [46], [47]. An up-to-date overview of recent
consumer VR headsets can be found at: [50].

Virtual Reality has many use cases, ranging from simulation, training
and evaluation (architecture, design) to gaming and entertainment (omnidi-
rectional video, theme parks, theaters). A recent report estimates that the
global VR market will grow from $2.02 billion in 2016 to $26.89 billion in
2022 [52]. A particularly interesting development is the rise of 360° video and
smart device VR /AR capabilities. YouTube and Facebook, two of the largest
social media platforms, offer omnidirectional video that can be watched on
any device, but particularly by using a VR headset. A clear benefit of using
mobile devices for VR experiences is that the device is not attached to a
computer, giving the users much more freedom to move around. Although
this is not a factor in 360° video per se, the limited ”play area” of tethered
devices is a mayor downside in current VR systems and can easily lead to
injury (e.g. by tripping over a cable). However, using mobile devices for
VR content often requires the content to be rendered locally at low quality
or streamed over a network connection, which is not a trivial task given the
massive bandwidth requirements and latency restrictions.

2.2 Virtual Reality Streaming

Without going into the many (specialized) applications of VR, there are a
couple of different types of devices and use cases in VR. We're assuming the
term VR as used in this work is closer to what we know as the popularized
VR: using an HMD to view stereoscopic images and interact with the virtual
world. This then excludes the massive HMD'’s of old, transportation simu-
lators, 3D television, etc. We can divide VR devices into three categories:
tethered, standalone and smartphone-based. Tethered devices include pop-
ular HMD’s such as the Oculus Rift, the HTC Vive and Valve Index. These
are characterized by their need to be connected to a computer by cable to
receive images and transmit play control and tracking data. One of the main
benefits of tethered devices is that due to the high available bandwidth and
very low latencies, very high quality VR content can be shown in a way that
offers the highest QoE in VR to date.

Standalone devices are relatively new, and include for example the Lenovo
Mirage Solo [43], which is a standalone headset based on Google’s Daydream,
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or the Oculus Quest and Oculus Go [38], [39]. Smartphone based solutions
rely on a platform-based service to enable the viewing of content, such as
Google Daydream of Samsung Gear VR, and a separate headset with lenses
and optionally a controller. Standalone devices are, in simple terms, just
dedicated smart devices: they use a mobile chip and have most of the fea-
tures and connectivity of a smartphone, but with dedicated controllers and
displays. This means that standalone devices are also fully mobile, and gen-
erally offer a better experience than smartphone based solutions due to for
example a more comfortable headset. However, unlike tethered solutions,
they can only display very simple graphics due to the limited processing
power of the mobile chipset. Smartphone-based VR suffers from the same
problem of course, but has the benefit that the display may be of a higher
resolution, that smartphones tend to evolve faster than standalone VR head-
sets in terms of hardware, and that most people nowadays already have a
smartphone.

In VR streaming there are two main types of applications: streaming a
video such as a 360° video and streaming interactive VR such as a video
game. Hybrids exist as well, with minimal interaction in the 360° video (e.g.
choosing a new view point in the VRE). Streaming video often relies on pre-
rendered content that is either computer generated or comes from a so called
360° camera. In continuation of this work we will refer to streaming 360°
video with no or minimal interaction as 7360 video” or ” VR video streaming”
and to VR streaming with full interaction between the user and the vir-
tual world as "Interactive VR”. For a more detailed introduction VR video
streaming see e.g. [17]. Interactive VR is closely related to Cloud Gaming:
in cloud gaming a remote server reads the input from the user on a client
device, updates the world state, renders the output and streams this to the
client device. The client device then decodes the output, renders it on screen
and sends the player controls back to the server to update the world state.
For some examples, see: [8], [9], [24], [29]. There are some key differences,
however: the visual content of a VRE is generally shaped like a sphere, pro-
viding a spherical video. In order to encode such a video this sphere needs to
be first projected onto a rectangular texture. Furthermore, the much larger
resolution of VR content and the even more stringent latency requirements
in VR streaming require specialized software and often specialized hardware.
In order to provide a good QoE in an Interactive VR streaming system, [35]
posit there are three key requirements: low latency (between 10-25ms) [7],
high-quality visual effects (high detail, high FPS [15]), and mobility.

Streaming Virtual Reality relies on the same principles as tethered VR:
rendering the virtual environment and displaying it on a client device (HMD).
However, instead of the data transfer taking place by cable between the
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HMD and the rendering machine, we send a video to the client device over a
network connection. This does require us to make some modifications to the
VR system. For instance: we cannot just take the raw output from the GPU
and send it directly to a client: the video file would be massive and no existing
consumer network connection would be fast enough to handle a single frame
within the required time frame for delivery. Instead, the video texture is
first encoded and then streamed to the client. Second, because encoders are
designed for rectangular video formats, and a VR video frame is spherical,
we need a way to map the sphere to a rectangular surface. Lastly, the client
needs to be able to decode the video file and project the chosen mapping
back onto a sphere and distort the output to match the lens parameters of
the HMD.

Compared to tethered VR, streaming VR offers a number of benefits of
which three stand out: first, untethered VR allows the user full freedom of
movement. With wireless connection technology and 3- or 6-DoF' tracking
built-in any area can be a VR area. This also reduces the dangers of tripping
over cables or smashing into your living room TV during a virtual boxing
match. Second, By streaming VR content to a thin client we enable very high
quality content on devices that would otherwise be incapable of displaying
such a level of visual quality. Third, as smartphones evolve and their DPI
increases rapidly, they may not suffer from the ”screen door effect” as much
as older, tethered headsets.

Of course, there are also downsides. For example: to avoid cybersickness,
a low system latency is very important (this goes for tethered systems as
well). While tethered systems nowadays are able to easily provide such low
latencies, mobile devices and network connections in Streaming VR still can-
not meet this requirement. [5] reports that cybersickness may affect 60-80%
of users. Cybersickness is the apparent feeling similar to motion sickness,
which, among others, includes dizziness, nausea, disorientation, sweating or
even epileptic seizures. Cybersickness is often caused by discrepancies be-
tween a movement in the physical world and the related effect in the virtual
world. For example: lag between a movement and the move being visible [5],
[12], [22], [27]. Another downside is battery consumption on mobile devices,
and although streaming may allow for higher quality, mobile devices are still
struggling with very high resolution video (4K+). Tethered solutions may
also offer higher refresh rates and higher levels of comfort, depending on the
headset.

[35] discusses the possibility of streaming high quality VR to mobile de-
vices, and note that on today’s hardware it is unlikely to be successful: they
posit that the QoE level of streaming to mobile devices is about 10x lower
than acceptable QoE. Furthermore, they predict that newer hardware may
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not necessarily be the solution, as higher data rates offered by new net-
work technologies are likely unable to be fully utilized by the still power
consumption-bound mobile devices. This means that in order to provide
streaming VR to mobile devices with high QoE, smart software solutions are
required.

2.3 Head Orientation and Projection Map-
ping

Figure 2.2: A user’s head orientation in a 3-DoF system. Horizontal move-
ments (yaw) rotate around the y-axis, Vertical movements (pitch) rotate
around the x-axis and Sideways movements (roll) rotate around the z-axis.
The origin is generally inside the head, but this may depend on the system.
The axis system also represents the different viewing directions, with +z be-
ing "forward”, -z being "backwards”, +y being "right”, -y being "left”, +x
being "up” and -x being "down”. Each axis has a range of [0°,360°). Image
adapted from [14].

In any VR system, the rendering device receives the positional informa-
tion of the head, and optionally that of the controller, from the client device.
This includes orientation and position information, as well as button presses
or touches in the case of controllers. The orientation is generally represented
as a Quaternion, but is more easily visualized and discussed in terms of Euler
angles. In Figure 2.2 the axis system with Euler angles is depicted for a user
wearing an HMD. Horizontal movements (yaw) rotate around the y-axis, ver-
tical movements (pitch) rotate around the x-axis and sideways movements
(roll) rotate around the z-axis. The origin is generally inside the head, but
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(a) Equirectangular mapping (b) Cube mapping

Figure 2.3: (a) An Equirectangular projection mapping. (b) A Cube projec-
tion mapping in 3x2 layout with the directional axis overlayed. Some faces
are rotated according to JVET recommendations. Image adapted from [26].

this may depend on the system. The axis system also represents the differ-
ent viewing directions, with +z being ”forward”, -z being ”backwards”, +y
being "right”, -y being "left”, +x being "up” and -x being "down”. KEach
axis has a range of [0°,360°). When receiving the positional information
from the client, the rendering device updates the cameras that represent the
head/eyes of the user in the virtual world to match the user’s position and
orientation.

The question of what projection mapping is best for VR streaming (in
order to map a sphere to a rectangular surface) is an area of active and on-
going research. At the moment, there is no answer as to what method is
best: different authors have invented different methods and each work well
in a particular way. However, there are some common methods that are of-
ten used nowadays: Equirectangular and Cubemap projection mappings are
the most common (see Figure 2.3). In equirectangular projection the ver-
tical direction of the surface corresponds to the latitude of the sphere, and
the horizontal direction corresponds to the longitude. Cubemap projection
works by assuming a cube circumscribes the sphere, and each point on the
sphere is then mapped to the corresponding point on the cube face behind
the sphere point. The cubemap projection is natively supported by graphics
libraries such as OpenGL, and is thus commonly used in VR games and other
computer-generated imagery. Cubemap projection also does not suffer from
shape distortion and has less redundant pixels compared to Equirectangu-
lar projection [26]. Figure 2.3(a) shows an example of an Equirectangular
mapping and Figure 2.3(b) shows an example of the cube mapping. The lay-
out in Figure 2.3(b) is the recommended layout by the Joint Video Experts
Team (JVET), however a 4x3 layout is also commonly used. Many more
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projection methods exist nowadays. For example: Facebook uses a pyramid
shape mapping for their 360° video streaming, which devotes more pixels to
the viewport. For an excellent discussion of different projection methods, see

[26].

2.4 Related work: 360° Video Streaming

In streaming VR video, one of the main concerns is how to limit bandwidth
consumption while maintaining high video quality. Since a user is only view-
ing a portion of the video at a given time, we can exploit that to provide
higher quality in the viewport region while limiting the quality of the pe-
ripheral regions. This idea is the core of all current work on optimizing
VR video bandwidth consumption, but it requires careful fine-tuning of the
used algorithm to make sure quality changes are transparent to the user
and the quality level changes accordingly when a user changes their gaze.
In [16], the authors develop a viewport-adaptive system for streaming 360°
video that prepares multiple representations of Quality Emphasis Centres
(QEC’s). These representations differ in quality level and bitrate to be able
to use higher quality/bitrate video for the viewport and lower for the pe-
ripheral area. The video is cut into segments with different QEC locations
and for different quality levels. The client then chooses the QEC closest
to the gaze location and the quality level befitting its available bandwidth.
Their system is somewhat related to ours in that they use an adaptive al-
gorithm to determine when to switch to a different QEC or different quality
level. However, their solutions relies on many pre-encoded segments that are
stored on a server, which makes it impossible to use this method in real-
time streaming systems. Furthermore, their algorithm was trained using a
dataset of head movements. The Jaunt Inc. dataset is widely used, but it
is generated from users watching 360° video which may comprise very differ-
ent head movement behaviour compared to Interactive VR, or even different
videos. In a follow up paper, [21] augmented the system to include a model of
the optimal Quality Emphasis Region quality level distribution. This model
was again generated from head traces of users watching a 360° video. In a
simplified experiment, they reported up to 45% bandwidth savings, given 4
quality-variable video versions and perfect head movement prediction.

The work of [16], [21] nicely illustrates the main strategies for bandwidth
savings in 360° video at the moment: cut a video up into pieces, use some
algorithm to match these pieces to the user’s viewport, and have multiple
quality versions available of each piece to dynamically adjust the quality
of different regions. For example, [19] analyzed a different dataset of over
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1300 head traces to determine common gaze locations. They then propose
a multicast DASH-based solution that streams a higher quality tile based
on the likelihood of that tile being in the viewport. Similarly, [23] used
these strategies to optimize bandwidth consumption, focusing explicitly on
the DASH streaming algorithm and modern encoders such as H.265 and
VP9. In [28] the authors realize the multitude of different optimizations for
streaming 360° video are becoming increasingly hard to compare due to the
lack of standardized tests, and propose a tool to compare their effect on QoE
for different optimizations, viewports, encoding and streaming algorithms. In
the context of using head trace datasets for determining the most important
regions in a VR video, several datasets have been developed. Apart from
the ones just mentioned, see also for example [25], [34]. Gaze and saliency
analysis may provide us with more useful information of how people control
there gaze in a spherical video. For some examples, see [31], [33], [34].

2.5 Related work: Real-time Interactive VR
Streaming

The 360° video streaming solutions we discussed above rely on some form of
offline representation of the video, usually in the form of multiple tiles with
multiple quality representations. Not only does this require more storage
space on the server side, but it also cannot be applied to fully live, on-demand
streaming of VR content. In this section we discuss some of the works that
are designed to optimize live VR streaming, such as live streaming of 360°
video and streaming of Interactive VR, such as cloud VR gaming.

In [14] the authors developed a system to predict head movements and,
based on the predicted head movement, transmit only the part that corre-
sponds to the predicted viewport location. Using a machine learning algo-
rithm trained on a dataset collected from users watching 360° videos, they
were able to accurately predict the new viewpoint on a timescale of 100-
500ms. They transmit a circular area for the predicted new viewpoint with
a buffer circular area around it sized based on how confident the algorithm
is. The authors report a 0.1% failure ratio and up to 45% bandwidth sav-
ings. Their results are promising, but based on 360° videos and they do not
mention how the partial rendering was implemented. This work is in a way
similar to ours, as they exploit the fact that users are only viewing a portion
of the VR sphere at a time and stream only that part including a buffer
area. They do note that a circular area may not be ideal in terms of band-
width savings, and do not compare their solution to other head movement



CHAPTER 2. BACKGROUND 21

predictions algorithms.

In [32] an untethered VR streaming system is proposed that supports up
to 4K resolution with a latency of 20ms. The system consists of multiple en-
coders and decoders working in parallel, supported by a 60Ghz wireless link.
They analyse the component latency of the system and particularly develop
a V-Sync driven version of the system to overcome the latency introduced by
missing V-Sync calls. Their work serves as an inspiration for the technical
implementation of a VR streaming system and is one of the few that actively
tackles the issue of latency in VR streaming and the high FPS requirement.
It should be noted, however, that they point out that their system used a
60Ghz wireless link which is not commonly available and limits the mobility
of the user. Furthermore, they used a laptop for receiving and decoding the
video. Although they do not specify the model, the average laptop computer
is much more powerful than a smartphone, which is used in this work.

FURION is a system designed by [35] to support Interactive VR streaming
to mobile devices. By offloading part of the rendering (background) to a
remote server and using the mobile device for foreground rendering and in-
teraction, they manage to achieve a 14, 1 and 12ms latency to controller,
rotation and movement interaction respectively. Their system is designed
with the same type of mobile device in mind as our work: smartphones such
as the Google Pixel or Samsung Galaxy S series combined with household
connectivity such as 802.11ac Wi-Fi. Furthermore, it is developed based on
Unity3D and Google Daydream and can be relatively easily added to exist-
ing content as a plugin. Unlike our VR streaming system, they pre-fetch the
entire view for close-by gridpoints, whereas our work and [32] render just
the required view on-demand. A key difference between [35] and our work
presented here on dynamically rendering and streaming a VRE is that they
do not employ any viewport-aware rendering strategies such as ours and thus
do not have to consider head movement and latency compensation.

In [36] the authors present a VR streaming system that dynamically
adapts a buffer area to compensate for system latencies. Their idea is similar
to ours, although they use different methods and posit that it is not necessary
to explicitly compensate for head movements. Further similar to our work is
their assumption of some VR streaming system either in the cloud or in a Mo-
bile Edge Cloud that streams content to a thin client. The authors present an
extensive latency analysis in their work, and show that their adaptive margin
area calculations are based on a similar rolling average RT'T approach. How-
ever, it is unclear how the authors compensate for different head movements.
Currently their calculations are based on a head movement dataset and they
evaluate their system’s performance by streaming 360° video. Compared to
their work we explicitly focus on live user head movements and emphasize the



CHAPTER 2. BACKGROUND 22

need for reliable head orientation prediction. Furthermore our work focuses
on Interactive VR streaming such as gaming, and while [36] supports this in
theory, it is not discussed any further in their work. Due to their focus on
LTE networks and promising results, combined with our results presented in
this work, it seems that this approach of adaptively rendering the user FoV
while compensating for network conditions and system latency is a promising
way of enabling Interactive VR streaming with high QoE.

Our work is in part based on the work done by [30], who developed
CloudVR, an Interactive VR system designed to enable VR streaming using
cloud-based server instances that stream to thin clients. In particular, the
prototype VR streaming system used in this work is based on the prototype
system in [30]. Lastly, Flashback [15] and MoVR [18] further present VR
streaming systems that aim to provide high-quality untethered Interactive
VR experiences.



Chapter 3

System Architecture

In this chapter we will describe the VR streaming system that is used in the
current work. Although the system itself, it’s development or optimization
are not the focus of this work, it will be beneficial to know a VR streaming
system works in general. The key part of this work, our solution to the prob-
lem stated in Chapter 1, is described in Chapter 4. A working prototype of
the VR streaming system described here has been developed in the CloudXR
project and is largely based on the CloudVR system presented in [30]. It is
within this prototype that we have applied our Dynamic Viewport-Adaptive
Rendering solution.

Our Virtual Reality streaming system (henceforth referred to as ”Sys-
tem”) is implemented as a plugin for a game engine that acts as the server and
an application for a mobile client. The server plugin (henceforth ”Server”)
can be implemented during application development in game engines such
as Unity3D and Unreal Engine. The client app (henceforth ”Client”) is a
standalone application that connects to a compatible server and renders the
video received from the server on the client display while sending user data to
the server. The System was designed with cloudification in mind: the plugin
can easily be integrated into existing and new projects and facilitates run-
ning the entire application in a cloud environment. Furthermore, the system
was designed primarily with mobile clients in mind: efficient software and
fast hardware on the server side minimize the system latency and require less
bandwidth, crucial for streaming to a low-power mobile device. The System
utilizes a novel partial cubemap layout to emphasize the quality of the front
face of the VR video sphere, while the front face is always kept in the user’s
viewport. This means that we can dynamically change what part of the VRE
to render based on where the user is looking, without to need to render the
full 360° FoV at all times.

23
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Network message (Video Frame)

Game Engine

DVAR

Network message

- Head Orientation
- Position

- Control Data

- FrameID
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Figure 3.1: Diagram of a typical processing loop in the VR streaming system.
Our solution is provided as plugins (green boxes) to an existing game engine.
The blue boxes represent data being transmitted over a network connection.
The client plugin retrieves data from the client device (left side) through an
API such as Google Daydream (not pictured).

3.1 Server

On the server side, a typical render cycle! (for one video frame) looks like
this:

1. Receive orientation, position and control data from the client
device. Depending on the implementation this data may have been
received earlier or slightly later: in any case the server uses the most
recent data to render the new frame when the render cycle is started.
The Server sets the cameras to the received orientation and position,
so that the VRE on the server matches the user orientation and virtual
position on the client. The control data is then used to advance the
game logic and update the world state according to the application
specifics. Control data includes, but is not limited to: button presses,

!By render cycle we mean one full iteration in the game engine logic that updates the
world state and renders the virtual world to an output, including encoding. Typically one
such iteration is done for each video frame.

Game Engine
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Figure 3.2: The 3x3 cubemap layout used in our system with left and right
eye content. The middle rectangle for each eye is the front face of the cube
(+2). In this particular example we are rendering all of the peripheral area
except for the back face (-z). The cube faces may look slightly distorted in
the figure due to rendering the output to a desktop monitor, but in practice
each face is square and of equal size.

controller orientation and position, local game object parameters, video
frame and system parameters.

2. Render the virtual scene, using the cameras, to a temporary
texture. The System uses 5 cameras per eye to render the virtual
world to the output texture. Each camera has a 90° field of view, and
each camera is aligned to a directional axis. Combining the output of
all cameras (typically 6), would give us the 360° FoV required. In this
case, however, we render using only 5 cameras, ignoring the -z (rear)
direction providing a 270° x 180° FoV.

3. Combine the camera textures into a single rectangular tex-
ture for encoding. The System utilizes a partial cubemap projection
method to combine the camera textures into a single texture. In this
case, we render the +x and -x, +y and -y and +z axis (vertical, hori-
zontal and frontal views), but not the -z direction (rear direction). This
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has a number of benefits: for one, it lowers the amount of rendering
needed to compile a full video frame. Second, it allows us to use a 3x3
layout for the partial cubemap, where the front face (+z) is in the mid-
dle, adorned by the horizontal (y) and vertical (x) direction faces (See
Figure 3.2). This will be crucially important for dynamically scaling
the faces to devote more space to the front face in the video texture,
which is discussed in Chapter 4.

4. Encode the texture into a video frame. The video texture is
essentially no different than from what would be rendered on screen
in a normal game, or displayed on a tethered HMD. However, because
of it’s large size and the need for streaming it to a client, we need to
encode it. The Server uses the FBCapture SDK [40] to capture the
rendered texture, and pass is to a hardware-accelerated encoder. In
the meantime, the Server can start with it’s next render cycle.

5. Stream the video frame to the client, together with control
data. The resulting encoded video frame can then be passed to the
network stack and sent to the client. The control data includes, but
is not limited to: the orientation that the video frame is based on, as
well as video parameters. We use a TCP socket connection to ensure
the correct order of the frames being delivered.

3.2 Client

The client application utilizes the HMD manufacturer’s SDK (e.g. Google
Daydream, Oculus Quest) to display a received video frame on the device’s
display, in such a way to match the layout and properties of the headset’s
lenses. Furthermore, the SDK provides API access to the different XR prop-
erties of the nodes, such as the head orientation, eye position, controller
position, etc., and matches the real-world orientation to the corresponding
VRE orientation, so that the user can look and move around in the VRE by
physically moving. Optionally, the Client can locally render some game ob-
jects and perform part of the game logic locally. The current System utilizes
such a hybrid approach, where the controller for example is displayed in the
VRE using local rendering [30]. The Client consists of a standalone appli-
cation (in this case based on Unity3D) and our own native Android decoder
plugin. A typical render cycle looks like this:

1. Receive a video frame and control data from the server. The
decoder plugin is multi-threaded and takes care of receiving NAL units
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and control data from the server. The received NALU’s and control
data are fed to a buffer for processing. The network connection is based
on a TCP/IP socket to ensure correct order of both control data and
video frames.

2. Decode the received video frame. The decoder is based on Google
Android’s MediaCodec API. It works asynchronously by waiting for a
decoder inputbuffer to become available and then feeding it the next
NAL unit. When the buffer is processed the output is rendered to an
internal texture that can be accessed by the higher-level Client appli-
cation.

3. Process the game logic and update the world state. In case
of local rendering and interaction events, the world state is updated
accordingly. Furthermore, the new control data (e.g. user orientation,
frame ID, performance metrics) are prepared.

4. Update the shader parameters and render the video frame to
the display. The client displays a spherical video by projecting the re-
ceived imagery to the virtual environment’s skybox. A modified shader
provides support for stereoscopic panoramic rendering to the skybox.
In order to be able to modify the content outside of the user’s viewport
without the user noticing, the skybox is oriented along the orientation
of the video frame which is extracted from the received control data.
This means that a user is always facing the front face (4z direction)
of the cubemap/sphere. The received video frame is in rectangular
format comprising a non-spherical layout of the faces. The cubemap
faces in the video frame are moved to a separate texture for each eye in
the common 4x3 cubemap layout, which the shader natively supports.
With the shader being updated to the new orientation and having ref-
erences to the rearranged input textures, the content is rendered to the
Client device’s display. The HMD’s SDK provides the warping of the
image to match the lens parameters.

5. Send the current player control data to the server. The client
sends the server the control data needed to render the next frame. Note
that this step does not necessarily happen at the end of the render cycle.



Chapter 4

Dynamic Viewport-Adaptive
Rendering (DVAR)

Normally when streaming a VR video frame, each viewing direction is repre-
sented by the same amount of pixels. In case of streaming a cubemap layout,
each face has an equal amount of pixels, and the six faces together offer 360°
of visual content. Notwithstanding technologies that alter the resolution of
the video frame, such as adaptive resolution used in video streaming, the size
in pixels of a video frame is fixed at a given time. This means that all cube
faces are proportionally the same size. However, a user is only looking in one
direction at a time, with a limited FoV (generally between 90° — 110°). As
we discovered in the Background section, most companies and researchers
have discovered this as well and use it to non-uniformly assign better quality
factors to the part of the scene the user is looking at (the viewport). This has
been done using frame tiling for example, where tiles in the viewport area
of a video frame are given higher quality than the surrounding areas. Many
more solutions exist, of course, but the consensus seems to be that streaming
all areas of a VR video frame in equal quality is a waste of valuable resources.

In this work we mostly deal with square cube faces and square video
frames for a given eye. This means that the height and width of an area will
be equal. Because of this we employ a shorthand notation unless otherwise
noted: an area with a resolution of 2048x2048 pixels (for example) will be
referred to as an area of 2048 pixels.

4.1 Idea

Given a streaming system with a low enough latency, and given that we can
orient the frontal direction with the users viewing direction, we can assume

28
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(a) Original (b) Increased cube face size (c) Resulting video frame

Figure 4.1: Transforming a 3x3 cubemap layout to proportionally increase
the size of the front face (4+z). In (a) the original proportions are displayed
with their axis directions. Each cube face is rendered 100%. The blue border
represents the video frame boundaries for one eye. In (b) we have increased
the size of all faces, such that the side faces do not fit into the video frame
anymore. The video frame size remains the same. In (c), we have adapted
the amount of side face to render, such that all faces fit into the video frame,
resulting in a proportionally larger area for the front face.

that a user will only be viewing the frontal direction for the majority of
the time and any changes in orientation are quickly compensated for in the
next video frame. This assumption allows us to ignore the rear direction
of the content sphere, because by the time the user will have reached that
orientation, a new video frame will have already placed the frontal direction
in the way of the previously rear direction. This then, allows us to use
the partial cubemap layout described earlier, in which we only utilize 5 front
faces of a cubemap and ignore the back face. Our contribution is utilizing this
layout to proportionally enlarge the frontal cube face while rendering only
part of the side faces (top, bottom, left, right) in their respective direction.
This way we end up with a video frame that offers proportionally more pixels
to the front face.

For an example, see Figure 4.1: (a) represents the normal layout, with
each cubemap face having an equal proportion and equal amount of pixels.
Because we disregard the back face, we only need to place the other 5 faces
on the video frame in a plus-shape layout (3x3). This square video frame
represents one eye, and the other eye is generated correspondingly. Now, we
can devote more pixels to the front face by enlarging all cubemap faces to
have a desired resolution. However, given that the video frame resolution
stays the same, parts of the side faces will now not fit within the frame and
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need to either be compressed or cropped as in (b). Instead, our solution is
to simply only render the part of each side face that fits within the video
frame given the larger front face. We end up with the video frame as in (c),
where the front face now contains % of the pixels, and we only render % of
each side face. The resulting video frame offers more pixels in the front face,
but limits the available field-of-view in the VRE since only part of the left,
right, top and bottom faces are rendered. The non-rendered areas, including
the back face, simply appear as black pixels. We can arbitrarily choose the
amount of pixels (i.e. the proportion) for the front face by adjusting the
amount of side face to render, but there are some caveats related to the
user’s head movement: when the user moves his head and the new frame
(with the "recentered” front face) takes too long to be displayed, the user
will see the unrendered area. This is obviously highly detrimental for the
user’s Quality of Experience, so in the next section we will discuss how to
prevent this.

First, however, we’ll have a look at how this is implemented in prac-
tice, so as to gain a better understanding of the exact workings. Combined
with the optimization process described in Section 4.3, we have dubbed this
method of rendering DVAR, for Dynamic Viewport-Aware Rendering. The
optimizations below will allow us to dynamically adjust the amount of side
face to render, based on the current system parameters such as latency, so
as to maximize the front face resolution while maintaining good QoE. This
method is viewport-adaptive in that we rotate the cube/sphere’s front face to
the user’s viewport every time and because we devote a maximum amount of
pixels to the viewport given the system and optimization constraints. Lastly,
we do not simple crop or cut the remainder of the side faces that do not fit
on the video frame, but rather do not render those areas at all on the Server.
Thus DVAR also positively affects rendering times and avoids unnecessarily
using resources.

4.2 Implementation

On the server side, the Server plugin has a module that calculates the desired
amount of side face to render at every render cycle. From here on out we
will refer to the amount of side face to render as the side face percentage
(SF%), and the front face resolution and proportional size automatically
follow from the side face percentage: if we render 10% side face, and have
a face on each side of the front face, the front face occupies 80% of the
video frame. In case of a 2048x2048 pixel video frame for one eye, this
amounts to 1638x1638 pixels for the front face, 1638x204 pixels for the top
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and bottom faces, and 204x1638 pixels for the left and right faces. At each
frame, the module determines whether the side face percentage should be
changed, based on the system performance and user head movement velocity
(see below, Section 4.3).

If the side face percentage is changed, the new resolution for the side
and front faces is calculated and helper variables updated. Because the des-
tination texture of each camera, and thus each direction, still all have the
same resolution, we can render only part of a direction by modifying the
camera projection matrix to obtain the desired side face resolution and con-
tent. When the SF'% is changed, the camera projection matrix for each side
face camera is adjusted so that it only renders a percentage of it’s 90° FoV,
starting from the edge connected to the front face. DVAR is not content-
dependent, so we only need to calculate the new values once, and update
the cameras to obtain a new video frame with the new layout. Modifying
the projection matrix is essentially the same as cropping the output texture,
before rendering. This way we avoid distortion that might arise from either
enlarging the front camera FoV or compressing the side face cameras. The
rendered areas are then moved to the video texture in the original plus-shape
layout, which gives us Figure 4 (c¢). The video texture is then processed as it
would be normally and sent to the encoder. From the encoder we then send
the encoded video frame to the client, together with the front face resolution
and the SF%.

The client now receives a video frame that is not in any natively supported
layout. When the video frame is decoded, the client also knows the front face
size in pixels and the SF%. This can be used to calculate the size in pixels
of the side faces, since the original resolution of each face is equal, i.e.

50% - SideFace == 50% - FrontFace. This can then be used to determine
the location of the faces in the video frame and copy them to a destination
texture that is in the 4x3 layout that is supported by the shader.

4.3 Optimization

Now that we have the ability to render and stream any SF% we need, we
need to determine how much to render at any given moment. Recall that the
system loops works as follows: the client device sends the head orientation
to the server, where the camera position is adjusted accordingly and the new
image rendered, encoded and sent back to the client with the sent orientation
where it is rendered on screen. Due to the inherent latency in the system
and the speed with which users move their heads, it may be possible for the
user to observe a non-rendered part of the video before it is updated with
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the new content. This is visible as blackness, and it’s generally replaced by
the proper visual content in the next frame update provided the system is
responsive enough. However, a user observing the non-rendered part will
have clear implications for their QoE, so we need to be able to render just
enough of the side faces that the entire experience of moving one’s head to a
new orientation is transparent to the user (i.e. the user does not observe any
non-rendered areas). The question of how much of the side faces to render,
then, is the topic of this section.

4.3.1 Compensating for System Latency

(o] 10 20 30 40 50 60 70 80 90 100 ms

Figure 4.2: Assuming a system RTT of 50ms, a requested frame F;, takes
50ms to be rendered on the client. R, is the head orientation sent by the
client to the server and horizontal axis marks represent time t = 0..100
milliseconds.

Observe Figure 4.2. At a given time t = 0, the client sends the current
head Ry to the server to render a frame Fj. Assume the system RTT is a
constant 50ms. It thus takes up to 50ms for Fy to be rendered on the client
screen. If the user is moving it’s head at a constant speed of 50°/second,
this means that at ¢ = 50 the user will have moved 2.5°. Assume further
that the client updates the view (i.e. renders a new frame) every 10ms. At
t = 10 the head rotation R; is sent to the server for frame Fj, which arrives
at t = 60. If the user’s FoVyyp is 90°, the requested frame Fy should have
the HMD’s FoV plus the amount the user has moved. Furthermore, at ¢ = 50
the viewport will be at the edge of Fy’s FoV, while the next frame still takes
10ms to be rendered. We thus also need to add the user’s displacement
in those 10ms. Finally, this means that Fj should have an FoVygme of
90° 4 2.5° 4+ 0.5° = 93°. With this the user’s viewport will be at the edge of
the frame’s FoV at ¢ = 60 and the user will not observe any unrendered area.
At t = 60 the next frame, F}, is rendered, providing an extra buffer area of
the difference between Ry and Ry (i.e. 0.5°), meaning the viewport will again
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be at the edge of Fi’s FoV at t = 70. It is clear from the example above
that if a frame fails to provide an FoV that includes the movement since the
request of that frame, the user will observe unrendered area (”blackness”)
due to the fact that we only render the requested FoV.

If the system RRT drops, incoming frames for the new and lower RTT
may arrive at the same time or before an earlier frame for a higher RTT. This
means that a frame arriving in between render cycles may get overwritten
by a newer frame, essentially skipping the frame. Assume that at ¢t = 10
the RTT drops to 45ms, and at ¢ = 20 the RT'T is 40ms. This means that
Fy will arrive at ¢ = 55, but will be skipped since there is no render call at
that time. It will get overwritten by F5 arriving at ¢t = 60. F3 has an FoV
of 92° plus 0.5° for the frametime compensation. F, is then based on the
orientation at t = 20, which is 1° from the starting point. At ¢ = 60 the head
orientation is 3° from the starting point, meaning F3 has to compensate for
FoVgyp + AR, which is 92°. Given the calculation above we find that Fj
has an FoV of 92.5° so the user will not observe any blackness.

If the RTT increases some blackness may be observed: assume that at
t = 10 the RTT increases to 70ms, causing F} to arrive at ¢t = 80. At
t = 70, Fy will still be rendered, which has an FoV},qme of 93°, while the
head orientation at t = 70 requires 93.5°. At t = 80 F} is rendered with
an FoV of 94°, which removes the unrendered area from the user’s viewport.
This means that for roughly 10ms, 0.5° of unrendered area will be visible,
which in practice is invisible to the user. Of course, with larger changes in
RTT these effects will be more pronounced, but a change in RTT of more
than 20ms within the time of a single frame is in practice highly uncommon.

Consider another example, presented in Figure 4.3. This top-down view
represents either the calculation for the y-axis (horizontal direction) or the
x-axis (vertical direction), which are equivalent in this case. The blue lines
represent the full FoV in the video frame FoVj4me. In this case we are
rendering }l of the side faces, giving us an FoVjqme of 135°. At Ry (green
lines) the user’s head orientation has moved left 10°; causing the edge of the
user’s viewport with FoVy M D = 90° to be within the left edge of FoVy,gme.
Thus, at R; the user will not see any unrendered area. If, however, the head
orientation were at Ro (red lines), having moved left 40°, the user would be
able to see 17.5° of unrendered area.

Given the system specifications that any cube face represents a 90° FoV
we need to render the displacement as a factor of FoV,enger = 90° in the
displacement direction to fill the viewport. Since we need to compensate for
this movement at ¢ = 0, we need to know the angular displacement in degrees
per millisecond for AR =; —t;_; (RTT; the time before the requested frame
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270°

90°

180°

Figure 4.3: A top-down view of the video sphere with circumscribing cube
and user head orientation with a 90° FoV. Ry is pointing in the +z direction.
The blue lines indicate the rendered area: in this example we are rendering
25% of each side face, providing an FoVy,qme of 135°. R; represents a head
orientation of 10° to the left compared to Ry, where the user does not observe
unrendered area. Ry however represents a rotation of 40° to the left, causing
the user to observe 17.5° of unrendered area (grey area/line).

arrives). This gives us the following equation:

(f+0)-v

°R FO‘/T'ender e (41)
Where sg is the required side face percentage, f is the frametime on the
client side in ms (i.e. maximum time before the new frame arrives), [ is the
system RTT in ms, v is the head movement velocity in degrees per ms and
FoV,cnder 18 the cube face FoV in degrees. In other words: the numerator in
Equation 4.1 represents how many degrees the user may move in the time
to the new requested frame, and the denominator represents the FoV for a
cube face.
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In practice, the render camera field of view of 90 degrees does not always
equal the FoV of a modern HMD (100° — 120°), so we add the compensation
factor ¢ to render at least the full HMD FoV:

o FOVHMD - Fo‘/render
B 2- Fomender

(4.2)

Since we render all side faces equivalently, the resulting F'oViqme is:

FOVfT’ame = 2-5p " FoViender + FoViender (43)

For a given eye, we have half the video frame as the width and the video
frame height available in pixels. Furthermore, each cube face has an equal
amount of pixels. To determine the proportion of the front face in pixels
given the amount of side face to render, we need to determine the proportion
of the front face in the video frame given the required SF%:

_m

" 2spt1
Where m is the resolution of the video frame for one eye (shorthand applies
here backwards: 2048x2048 pixels for a video frame means m = 2048), sg is
the required SF% from Equation 4.1 and r is the resolution of the front face
in pixels.

(4.4)

4.3.2 Head Movement

The head movement velocity is more challenging to compensate for: although
we can record the user’s head movement velocity during a movement, as well
as the average angular velocity, we don’t know this just before the movement
starts. Thus we do not know how much velocity to compensate for (term v
in Equation 4.1). However, there are some possible solutions:

1. always compensate for some average angular velocity based on a user’s
average head movement velocity during a session;

2. compensate for some arbitrary amount of angular velocity;

3. always compensate for the maximum head movement speed a user can
produce;

4. predict the onset and angular velocity of a head movement before it
begins.
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It is clear from Equation 4.1 and 5.3 that the more angular velocity we
compensate for, the higher the percentage of side face to render is, and thus
the lower the resolution of the front face is. This means that option #3 is
not ideal, since we want to maintain a high-as-possible front face resolution
at all times. The ideal option would be #4, as it would allow the system
to know the user’s head velocity during the RTT interval (or, analogously:
predict the new head orientation after said interval). Implementing head
movement prediction is not trivial, and currently out of the scope of this
work. We might use a combination of options #1 and #2: tracking the
average angular velocity of a user during a session, and use this as a baseline
compensation factor, with a minimum. This means that if a user during a
task moves their head generally slowly, the viewport resolution will be higher,
while if the user moves their head generally quickly, the viewport resolution
will be lower to accommodate the extra visual content rendered.

The average head movement velocity is a moving average measured over
some time interval ¢;. The main disadvantage of this approach is that the
system may take up to t; time to adjust itself to the new angular velocity
when a user switches from a series of slower movements to a faster one, and
vice-versa. When suddenly going from slower to faster movements the user
may observe non-rendered areas as the system is still adjusting. For the
experiment in Chapter 5 we will be using a fixed, constant head movement
velocity compensation, to provide comparable data and avoid the unreliabil-
ity of using a naive rolling average. In future work this will be replaced by
proper head orientation prediction such as done in [14] or [2].

We ran a number of tests that confirmed that the calculation of the re-
quired side face percentage to compensate for latency and head movements
works. However, the effectiveness crucially depends on the accurate mea-
surement of the motion-to-photon latency and the head movement velocity
in the RTT timespan. Because these variables cannot always be measured
accurately, it might be well worth sacrificing a little resolution in order to
increase the buffer zone.

There has been some interest in analyzing head movements of users in
a VR context. However, all works we found were related to 360° video.
Although the visual experience is very similar, 360° video offers no real in-
teraction and generally has no task. Since in an interactive scenario such as
gaming head movements are highly dependent on the task at hand, player
goals, environment variables (saliency, audio, etc.), we cannot directly use
these findings in this work. However, [19] found, after analyzing a dataset
of 1300 head movement traces from 360° video, that small head movement
changes are much more common than large ones. They found that 80% of an-
gular changes were withing [—38.1°,36.2°], [—14.5°,15.2°], and [—5.3°,5.0°]
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for yaw, pitch, and roll angles. This corresponds roughly to our own find-
ings in Section 5, where users were instructed to explore a new VRE. [14]
built a VR system roughly similar to ours, but focused on predicting head
movements instead of compensating for system RTT. They used a dataset
based on 360° videos to predict head movements on a scale of 100-500ms
and achieved reasonable accuracy. Other such prediction solutions use for
example double exponential smoothing ([2]) on a time scale of 50ms, or mo-
tion prediction with constant acceleration/velocity over 20-100ms ([10]). [20]
noticed that within a segment duration of 2 s, 95% of the users move less
that /2 radians. This means that within a 2 s length segment, 95% of the
user stay inside the hemisphere centered on the head position of the user at
the beginning of the segment. They found this to be true for a video trigger-
ing with very few head movements (Roller-Coaster), a video triggering many
head movements (Timelapse), and intermediary videos.

Given the work discussed here it seems feasible to implement a head ori-
entation prediction system that would be accurate anough to complement
DVAR, and work fast enough to not increase the system latency. However,
as we discussed also in Chapter 2 and will see in Chapter 6, head move-
ment characteristics are very personal and may depend highly on the task at
hand. This means that apart from the performance considerations, a head
movement prediction system should also be task and user agnostic to some
degree.



Chapter 5

Experiment Setup

DVAR is designed to maximize the viewport resolution given the constraints
of the current network connection and the user’s head movement velocity,
thus using the available bandwidth more efficiently in order to provide the
highest viewport resolution. In order to assert whether our solution works
as intended, we run a series of measurements to determine the performance
of DVAR in the current system.

Note that, although video quality and network delay are crucial factors
in Quality of Experience in any streaming system, and DVAR aims at pro-
viding the best QoE, our current prototype system has some characteristics
that make it impossible to evaluate the Quality of Experience directly in a
meaningful way. For example, despite new metrics of video quality being
developed, currently none are suitable for evaluating the effect of unrendered
pixels in a viewport. Furthermore, the current technical limitations are likely
to strongly influence a user’s experience during subjective tests, which we are
unable to control at this time. However, it is well established that if all other
factors remain unchanged, a higher resolution provides a higher video quality
and thus a higher Quality of Experience (e.g. [4], [6], [11]). Following this
reasoning, we do not assess the QoE as such, but merely assess the increase
in resolution due to the use of DVAR. This seems reasonable, as DVAR does
not concern encoding or network design choices and these are better covered
in other work.

5.1 Measurements

As measurements of DVAR’s performance, we record the following dependent
variables:

1. Unsuccessful Frames (UF)

38
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2. Unrendered Area (UA) in an Unsuccesful Frame

3. Viewport resolution

The measurements described here are adapted from [14], who applied
these in evaluating a similar system. Our system differs from theirs in some
significant ways, and their focus was on evaluating the effect of predicting
head movements, instead of compensating for network conditions and opti-
mizing bandwidth usage. As such our results are not directly comparable,
but they serve the same purpose in assessing the viewport content’s proper-
ties. By Unsuccessful Frame we mean a frame that has some visible amount
of unrendered area, and by Unrendered Area in a frame we mean the visible
unrendered area in degrees that a user will be able to see in a given frame.
The viewport resolution is simply the average amount of pixels the user will
observe through the HMD for a given frame.

The experiment consists of emulating a head trace recorded from 5 differ-
ent users, who are exploring a virtual environment (described in more detail
below). The system functions as it would normally, with the exception that
real-life head orientations are replaced by the recorded orientations. This
way we are able to have the experiment represent real-life use case, while
still controlling the head movement velocities of different users. During a
trial we record the measurements described in this section. We keep the en-
coding and streaming settings constant during all trials, while streaming at
30 FPS. We set up DVAR to use a rolling average of the RTT based on the
last 60 frames as the latency input. Both server and client are set to render at
60FPS, due to technical limitations. DVAR was configured to use a discrete
interval for the side face percentages from 0% to 100% in steps of 5. The
closest value to the calculated percentage is chosen for rendering each frame.
This can lead to the used value being up to 2.5% off the real value, or 2.25
degrees. We further configured DVAR to use a head movement compensation
level of 127 degrees per second. This number is partly based on the results
found by [3], who noted that their user’s maximum head movement speed
was 382° per second, but 127° per second during natural head movement in
a sound localization task.

We end up with 5 unique parameterizations for the 5 users. Each param-
eterization is played out in the emulation for the duration of the recorded
30 seconds of real interaction. During each trial, we record the dependent
variables described below. The unrendered area is recorded before the new
frame is rendered based on the current frame and current head orientation,
after which we render the new frame and calculate the viewport resolution.
Each parameterization is emulated 10 times for each of the 4 conditions (3
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references and 1 DVAR) which gives us a total of 200 trials. I.e. we emulate
User 1’s head trace 10 times using DVAR and 10 times for each of the Ref-
erences 1 through 3. The results from the trials are then combined across
users and averaged where applicable to eliminate any minor fluctuations in
rendering and network performance. Trials with a Standard Deviation of
more than 2x that of the other trials are discarded as outliers. For the un-
rendered area measurements we maintained a 3° error margin: although the
system calculates the required amount of side face to render with high pre-
cision, this can cause minute fluctuations in cube face resolution that can
make the prototype system unstable. Furthermore, our pilot tests showed
that users see unrendered area around 3 degrees later than calculated due to
the distortion and quality of the Daydream headset.

5.1.1 Unsuccesful Frames

An unsuccessful frame is defined as a video frame that contains unrendered
pixels, which are visible to a user as a black area/black pixel. The percentage
of unsuccessful frames is calculated as the fraction of total individual unsuc-
cessful frames rendered on the client display to the total amount of frames
displayed on the client display. For this measurement we ignore the size of
the unrendered area. This measurement gives us a quick-and-easy measure
of how well DVAR performs: the best case scenario is a UF percentage of 0%,
while 100% means all frames contained some visible unrendered pixels. The
calculation of Unsuccesful Frames and Unrendered Area are closely related,
so we discuss the calculation below.

5.1.2 Unrendered Area

The unrendered area is the amount of unrendered pixels in an unsuccessful
video frame measured in degrees. At render time of a received frame we know
the current head orientation, the orientation of the current video frame, the
FoV represented by the frame (FoVy.qme), and the FoV of the user through
the HMD (FoVyyp). We can then calculate how much of the unrendered
area is or is not visible in the viewport at that time. Given a side face of
the cubemap, with a percentage s rendered, the FoV of that side face is the
percentage of the FoV of the entire cube face, which is 90° (FoV,enger = 90°).
The total FoV of a given video frame in terms of rendered area is then twice
the rendered percentage of a side face plus the FoV of the front face:
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Fovframe =S- FO‘/render -2+ FOV;ender
FoVirgme =5-90-2490 (5.1)
= 180s + 90

We then calculate the unrendered area factor P as follows:

_ FOVframe B FOVdisplay . AR i FOVdisplay — FOVHMD

2 2 2

P

(5.2)

Where AR is the displacement between the current frame orientation and
the current head orientation in degrees, FoVyjspiay is the field of view with
which the visual content for a given eye is rendered on screen as calculated
from the camera projection matrix®, and FoVyp is the field-of-view of the
HMD, as reported by the manufacturer.

Equation 5.2 applies to a clockwise turn of the head with a displacement of
less than 180°. In order to calculate P for a counterclockwise turn we simply
subtract AR from 360° first. If any unrendered area would be visible, the sign
of P would be negative and it’s number would represent the amount of degrees
of unrendered area visible in the viewport. If P is positive it shows how much
rendered area in degrees we have left in this direction before unrendered
area would come into the viewport ("buffer area”). This application of the
equations above is equivalent for calculating the unrendered area for either
the vertical or horizontal direction. Note however that these only apply to a
3-DoF system, or at least a system where the Origin of the frame orientation
and camera orientation are equal.

The last term in Equation 5.2 represents the offset between the display’s
FoV for a given eye and the FoV of the HMD for a given eye. It is important
to note here that what is visible to a user greatly depends on the quality and
parameters of the client hardware used by the user. For example, Daydream
renders the edges of a viewport with some distortion, and renders the display
content with a horizontal field of view of 96,35 degrees. The Daydream head-
set offers only a 90° FoV, meaning the user could have a different experience
from the predicted viewport if the predicted viewport content is calculated
based on the display contents.

!The horizontal and vertical fields of view often differ in stereoscopic rendering. In the
equations above we refer to the F'oVy;sp1qy as either the vertical or horizontal field of view,
depending on whether we’re calculating the unrendered area in a respective direction.
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Source Name Description

Client FT Frame Time in ms since the last frame was rendered
Client DT Decode Time in mssince the last frame was decoded
Server  RTT System RTT in ms

Client  FPT Frame Processing Time from receiving a frame to it hav-

ing been decoded in ms
Client ~ NRT NALU Receive Time since receiving the last frame from
the network in ms

Table 5.2: The system performance measures we recorded during all trials.
We focus on client performance measures as the client device is currently the
bottleneck in the prototype system.

5.1.3 Viewport Resolution

The viewport resolution of a given frame is simply the resolution of the front
face plus the areas of the side faces in the viewport. Since the width and
length in pixels of each face are equal, and each face represents a 90° FoV,
the viewport resolution can be calculated as follows:

o FOVHMD

v
90°

*Vef (53)

Where v.s is the resolution of a cubemap face in pixels. The process is
the same for calculating the vertical viewport pixels as well as the horizontal
viewport pixels, with the application of the corresponding value of FoVy,qme.
Equation 5.3 does assume that there is no unrendered area visible in the
given frame. If there is, we simply subtract the amount of unrendered area
from FoVyup.

5.1.4 Bandwidth, Latencies and System Performance

As dependent variables we further record average bandwidth usage from the
packets being streamed to the client, using Wireshark. To get an indication
of system performance during the trials we furthermore record the variable
in Table 5.2.

The system RTT is calculated in the following way: at each frame that
is rendered on the server, this frame is assigned a unique identifier that
is then stored on the server with a timestamp of the start of that frame’s
render cycle. The identifier is sent with the frame to the client. The client
catches this identifier and, when the corresponding frame has been rendered,
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sends the identifier back to the server. It is there matched to the recorded
identifier and the difference between the current timestamp and the recorded
timestamp results in the RTT measurement.

5.2 Materials & Apparatus

We used a Dell Precision 5820 workstation as a server. This desktop PC fea-
tured an Intel Xeon W-2133 CPU with an NVidia GeForce RTX 2060, using
driver package 431.60 and Windows 10 Pro 64-bit fully updated as of 15-8-
2019. The client was installed on a Google Pixel 3 XL smartphone, plugged
in to a power source, and featured Android 9 at patch level August 1, 2019.
All apps and software were fully updated as of 15-8-2019, with Daydream
App version 1.20.190204006. The client and server software was built using
Unity 2018.3.3f1, using latest Daydream SDK as of 15-8-2019. For the net-
work connection the server was connected with a LAN gigabit connection to
a dedicated Asus RT-AC66U B1 router to which the client was connected on
the 5Ghz band using WLAN 802.11ac with a peak throughput of 866 Mbps.
The headset was a Daydream View 2016. To capture the network packets
we used Wireshark v3.0.3, and the server used FBCapture SDK v2.35 to
capture and encode the output from Unity. We set up Wireshark to record
all packets on the tethered connection to the router, which was disconnected
from the internet and set up so that only the server and client have access.

5.3 Emulating Head Movement

5.3.1 Recording the Head Traces

We asked five employees in the Computer Science building at Aalto Uni-
versity to collect head traces. The server was set to render at 60 FPS and
capture and stream at 30 FPS. The client always renders at the refresh rate
of the display because of Android’s limitations, which for the Pixel 3 XL
results in 60 FPS. We used the ArchVizPro Interior Vol.6 Demo [45] as the
virtual environment. In this demo a detailed, fully furnitured house is shown.
The demo offer high graphics quality and visual fidelity. We placed the scene
camera at a fixed position inside the house, showing the living room and
dinner table. After the system had initialized, we asked the participant to
stand still while wearing the headset, we re-centered the view to the natural
forward direction of the scene using the standard Daydream controls. Then
we told the participant to start the task and started the recording. The task
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was beforehand explained by asking the participant to look around naturally
and freely in the scene while describing what they see. During the task we
recorded the head orientation and a timestamp. The task ended after 30
seconds. This gave us 5 separate head trace files with head orientations at
a 16.7ms interval, equal to the interval with which head orientation data is
sent to the server normally.

5.3.2 Emulating the Head Traces

The recorded head trace was loaded at the start of the program. After the
system has initialized, we place the device in a holder to maintain a steady
orientation and re-center the view using the Daydream controls. The device’s
orientation now matches the starting orientation of the head traces. We start
the experiment by reading each recorded head orientation from the file in
memory at each render cycle, and replacing the use of the head orientation in
the program on both the client and server side with the recorded orientation.
The emulation ends automatically when the last head orientation is used and
the system then records the dependent variables to disk.

5.4 Reference Conditions & Encoding Param-
eters

In Table 5.1 the different testing conditions and their main parameters are
presented. R1 represents a high bandwidth, high resolution, full field of view
setting that should always offer a comparatively high quality of experience.
Other solutions may offer up to 16K video resolution, but our current pro-
totype system is unable to handle such high resolution video. However, the
results are easily extended to higher resolution references. R2 represents the
system’s worst-case scenario in which the entire field of view needs to be ren-
dered, resulting in lower bandwidth usage but also a much lower viewport
resolution. R3 represents a naive setting in which the viewport resolution is
very high, but the rendered field of view is only equal to the HMD’s field
of view (90° for the Daydream View 2016 headset). This means that un-
rendered areas will be easily visible except for very low system latencies. In
R1 we stack both eyes on top of each other in the video frame, whereas in
the other conditions the left and right eye are represented in their respective
halves of the video frame (horizontal stacking). As a final note we remind the
reader that because we do not render the -z direction of the cube map and
instead rotate the +z face with the user’s gaze, the 270° x 180° is essentially
equivalent to a full FoV as offered by a typical 360° video.
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Condition Video Resolution Cube Face Res. FoV Layout
R1 4096x4096 1024 270° x 180° 3x2
R2 4096x2048 682 270° x 180°  3x3
R3 4096x2048 2048 90° x 90° 1x1
DVAR 4096x2048 Variable Variable 3x3

Table 5.3: Conditions tested in the experiment with their main parameters.
Video resolution refers to the resolution in pixels of one video frame contain-
ing content for both eyes. Cube Face Res. refers to the resolution in pixels of
one cube face of the cubemap for one eye using the shorthand notation. FoV
refers to the rendered area provided by one video frame one eye (FoViame)-
Layout refers to the layout of the cube faces in the video frame for one eye.

We used the standard encoding settings from the FBCapture SDK for live
streaming. The FBCapture SDK used the NVEncoder SDK for encoding. We
set the encoder to use the Low Latency High Performance preset with the
h.264 codec, a QP of 28 and infinite GOP length resulting in a constant QP
encoding setup. For more information, see the official NVEnc documentation:
[44].

5.5 Procedure

1. Build an executable of the client and server with the required parame-
terization;

2. repeat for 10 trials:
(a) start Wireshark and prepare to record on the connection to the
client;
(b) start the server software;
(c) start the client software;

(d) wait for the system to initialize, and another 5 seconds for the
system to stabilize;

(e) place the client device in the holder;

(f) reset the orientation to the scene’s natural forward using the Day-
dream controller;

(g) start the recording in Wireshark;

(h) start the emulation;
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(i) upon finishing, save the recording in Wireshark and close all soft-
ware.

3. change the parameterization of the client and the server to the next;

4. repeat from step 1.



Chapter 6

Results

In the following we present the results from the experiment. The viewport
resolution and bandwidth measurements are in the following section, after
which we discuss the unrendered area/unsuccessful frames measurements for
each user separately. Finally, we quickly discuss the results presented.

6.1 Overall Performance

6.1.1 Viewport Resolution

Average Viewport Resolution
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mm \/iewport Resolution ~ ===Native Resolution

Figure 6.1: The average viewport resolution of DVAR and the three reference
conditions. The green line represents the native resolution of the Pixel 3 XL
for one eye (1440 pixels). The error lines on the left bar represent the average
resolution + 1 SD.

47



CHAPTER 6. RESULTS 48

In Figure 6.1 the average viewport resolution is plotted for DVAR and
the three reference conditions. The average viewport resolution is the res-
olution visible through the HMD with a 90° FoV. For R1 through R3 this
resolution is fixed, while DVAR optimizes the viewport resolution based on
the system RTT and head movement velocity. We can see that DVAR pro-
vides a viewport resolution close to the device’s native display resolution for
one eye (green horizontal line), with a mean of 1227 pixels and a mode of
1204 pixels. To get the average viewport resolution we took the mean of
the viewport resolution of all users and all trials minus the outliers. R1, R2
and R3 provide a constant viewport resolution of 1024, 682 and 2048 pixels
respectively.

6.1.2 Bandwidth

Average Viewport Resolution vs. Network Bandwidth
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Figure 6.2: The average resolution as in Figure 6.1, combined with the net-
work bandwidth used by streaming the video to the client in average megabits
per second (right axis).

Figure 6.2 shows the average network bandwidth used by streaming the
video from the server to the client in MBit/second. The average was obtained
from all trials by all users minus the outliers. The resolution data is the same
as in Figure 6.1. We can see that R1, which uses a 4096x4096 pixels video
with 1024 pixels per cube face, requires the most bandwidth at an average of
2.24 £ 0.04 Mbit/s. R2 uses cube faces of only 682 pixels, and thus contains
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a lot of black areas in the video. These black areas are likely to be encoded
very efficiently, so R2 unsurprisingly requires the least bandwidth (1.29+0.01
MBit/s). R3 uses the same 4096x2048 video resolution as DVAR, which is
reflected in the results: DVAR used 1.68 4+ 0.03 MBit/s on average. R3 only
uses slightly more bandwidth (1.71 4 0.02 MBit/s), likely due to the small
black areas in DVAR’s video which are efficiently encoded. As DVAR works
by scaling the resolution of the front face, it’s worst case scenario is equal to
R2, with it’s best case scenario equal to R3. We can thus expect DVAR’s
bandwidth usage to be between that of R2 and R3 in Figure 6.2.

6.1.3 Unsuccessful Frames & Effective Bandwidth

KBits/Viewport Pixel vs. Unsuccessful Frame %
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90 %

2 80 %
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1,5 60 %
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1 40 %
30%
0,5 20 %
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% of Unsuccessful Frames

Condition
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Figure 6.3: The bandwidth usage as average KBit/s per effective pixel (i.e.
pixels in the viewport) for all of the conditions. The secondary axis represents
the percentage of Unsuccessful Frames (frames containing more than 3° of
unrendered area).

In Figure 6.3 we can see the average bandwidth usage per effective pixel,
where an effective pixel is a pixel visible in the viewport. We can see that R1
and R2 have a much higher bandwidth usage as they stream the entire FoV
and only a small area of that is visible in the viewport at a time. R3 uses it’s
bandwidth most efficiently, because we only stream the viewport. However,
this leads to large amount of unrendered area being visible. Where DVAR
has less than 1% of Unsuccessful Frames over all trials by all users, R3 has
55%. Furthermore, R3 actually did not have a single successful frame if we
do not consider the 3° error margin. It then seems that DVAR offers a better
trade-off in terms of Bandwidth /Effective Pixel and Unrendered Area.
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DVAR R1 R2 R3
FT 33.02£6.37 36.41 £ 6.67 33.02 +£5.19 32.96 £5.73
DT 33.29+6.02 36.76 = 6.69 33.34 - 4.86 33.33 £5.54
RTT 218.07+36.31 3179.4+£6159 197.90 4+ 38.33 216.64 £37.13
FPT 50.96 £ 7.68 148.38 £5.83  50.08 4 5.22 50.42 £ 6.07
NRT 33.32+£2.02 36.76 £ 6.67 33.33 £1.49 33.33 = 2.50

Table 6.1: Average system latency measurements for User 1 in all conditions.
FT = FrameTime, the time in milliseconds since the last frame was rendered
on the client display. DT = DecodeTime, the time since the last decoder
buffer became available (measure of decoding performance). RT'T = Round-
Trip Time, a measure of the total system RTT. FPT = Frame Processing
Time, a measure of the time it takes from receiving a video frame to it being
decoded. NRT = NALU Receive Time, the time since the last NALU packet
was received. Since we're streaming at 30 FPS the ideal value, except for
RTT, is 33.33ms.

6.1.4 System Performance

In Table 4.1 we present the average values for the different system latencies
we measured. All values are in milliseconds. It is clear from the data that
DVAR does not significantly decrease or increase decoding, rendering or net-
work performance. The slightly higher average RTT for DVAR compared
to R2 can be explained by the fact that DVAR uses almost the entire video
frame, thus increasing network load compared to R2 which contains around
44% black area. This is further supported by the fact that the RTT for DVAR
and R3 are statistically equal, as they both use the entire video frame. Re-
garding R1: as we mentioned before the prototype system is not suitable for
high resolution video at the moment and this shows in the measurements in
Table 4.1. However, R1 is mainly used for the bandwidth calculations, where
these values do not diminish it’s validity. Lastly, Table 4.1 only contains the
results for User 1: we have omitted the results of the other users because the
values for the other users present the same pattern and have no significant
differences to User 1’s values.

6.2 Per-user Analysis

6.2.1 User 1

In Figure 6.4 the average system RTT as used by DVAR is plotted against
the viewport resolution during the DVAR condition for User 1. This figure
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Figure 6.4: The average Round-Trip Time and viewport resolution of User
1 in the DVAR condition. The green line represents the RTT (right axis) in
milliseconds, while the blue line represents the viewport resolution (left axis)
in pixels. The resolution is for a single eye in either the width or the height,
since the video area for one eye is square.

provides us with an overview of how DVAR responds to changing RTT values.
We can see that early in the trails the system is adapting quickly to the
increasing RTT, while during the remainder of the condition the RTT is
relatively stable and thus also the viewport resolution. The distinct steps
in resolution in the first couple of frames, as opposed to the smooth RTT
increase, are due to the 21 discrete side face percentages we used. This figure
shows us that DVAR works as expected with no surprises. In the other
conditions, R1 - R3, the viewport resolution is fixed and does not react to
changes in the network conditions.

Figure 6.5 shows the amount of unrendered area in degrees at a given time
(frame) against User 1’s head movement velocity in the DVAR condition. The
yellow line represents the ”blackness” threshold: values above this threshold
will be visible as unrendered area (i.e. black pixels). Values under this
threshold represent how much ”visual buffer” is available, i.e. how much
extra FoV is available in the video frame that is not visible to the user. The
green lines represent the amount of unrendered area. The values in the x-axis
are generally less than that in the y-axis, because users tend to move their
head in the horizontal direction more, while both the horizontal and vertical
direction get an equal amount of compensation in the current system. The
red line represents the velocity compensation level. In general we expect
blackness to be visible if the user moves their head faster than the velocity
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Figure 6.5: The unrendered area in both the y-axis and the x-axis, combined
with the magnitude of User 1’s head velocity. The tested condition is DVAR.
The blue lines represent the head velocity in degrees per second (left axis),
while the green lines represent the amount of unrendered area in degrees in
their respective axis. The yellow line is the threshold for when unrendered
area becomes visible: blackness values above the threshold are visible, while
values under the threshold represent the amount of ”visual buffer” that is
still available for the given velocity compensation level and the current RTT.

compensation level.

User 1 had a relatively low overall average head movement velocity of
30.17° £ 25.62° per second, and if we count individual peaks above the av-
erage line in the moving average velocity, User 1 has 22 movements. The
moving average (over the last 30 frames) shows that separate movements
are also relatively slow with all peak velocities staying well under 100° per
second. This means that DVAR shouldn’t have any problem compensating
for User 1’s head movements, given the compensation level of 127°/s. The
data in Figure 6.5 confirms this, with the blackness level (the amount of un-
rendered area) in both the X- and Y-axis staying well under the threshold.
Consequently, User 1 does not have any Unsuccessful Frames, i.e. 0%. The
mean amount of FoV that is not visible (i.e. ”visual buffer) is 23.86° £ 6.93°
for the y-axis, and 27.99° & 6.14° for the x-axis.

6.2.2 User 2

Figure 6.6 shows the viewport resolution during User 2’s trials in the DVAR
condition versus the RTT in those trials. There are no surprises here, as
the pattern is very similar to User 1. At this point the reader may notice
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Figure 6.6: The average Round-Trip Time and viewport resolution of User
2 in the DVAR condition. The green line represents the RT'T (right axis) in
milliseconds, while the blue line represents the viewport resolution (left axis)
in pixels.

that the Resolution vs. RTT figures all feature a steep increase in RTT
and thus a decrease in viewport resolution in roughly the first 200 frames.
This is because the user starts the trial from a stationary moment, where
the orientation and position are the same. This increases the overall system
efficiency and thus causes the RTT to decrease. As soon as the user starts
moving, the RTT quickly jumps back to "normal”, however, because we are
measuring a rolling average here, it takes a couple of frames to stabilize. For
the purposes of analyzing the unrendered area and head movement velocity,
the reader may ignore the values for the first 200 frames. In the bandwidth
sections these values do not represent normal usage, but do show nicely how
DVAR reacts to changing RTT values.

In Figure 6.7 User 2’s head movement velocity and unrendered area are
plotted. The properties of this figure are similar to Figure 6.5. User 2 has
the aforementioned early blackness peak due to incorrect RTT information
and a strong early movement, but in the remainder of the session there
is no unrendered area. User 2 has an average head velocity of 28.37° +
29.04° per second, and 15 movements. Similarly to User 1, User 2 has no
unrendered area if we do not count the start-up peak at Frame # 70. We feel
confident excluding this peak because a very similar movement occurs at 960
frames, where there is no unrendered area. Again the data shows that DVAR
performs well in compensating for the system latency and different head
movements. The visual buffer is 23.86°46.93° for the y-axis and 27.99°+6.14°
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Figure 6.7: The unrendered area in both the y-axis and the x-axis, combined
with the magnitude of User 2’s head velocity. The tested condition is DVAR.
The blue lines represent the head velocity in degrees per second (left axis),
while the green lines represent the amount of unrendered area in degrees in
their respective axis. The yellow line is the threshold for when unrendered
area becomes visible: blackness values above the threshold are visible, while
values under the threshold represent the amount of ”visual buffer” that is
still available for the given velocity compensation level and the current RTT.

for the x-axis. Note that from these numbers it seems that the amount of
(un)rendered area is more stable than the actual head velocity. This is partly
explained by the noisy head velocity data. When we look at the moving
average velocity values and the blackness values, we see that the amount of
unrendered area is closely related to the head movement velocity, as expected.

6.2.3 User 3

Figure 6.8 shows User 3’s viewport resolution and RTT during the DVAR
session. The network conditions are slightly less stable here, so we can see
that the resolution changes with slight increases/decreases in RT'T. Otherwise
this figure shows no surprises and is very similar to Figures 6.4 and 6.6.

In Figure 6.9 User 3’s head movement velocity and unrendered area are
plotted. The properties of this figure are identical to Figures 6.5 and 6.7.
Due to the lack of a strong movement in the beginning, the start-up phase
does not produce any unrendered area this time. User 3 has 19 relatively slow
movements, with a couple even slower ones (small peaks below the average
line). The average head velocity is 23.84° + 23.16° per second which is the
lowest of all users. In this case the velocity compensation level of 127°/s



CHAPTER 6. RESULTS 95

User 3 - Viewport Resolution vs. RTT

2000 275
1800 250
1600 225
1400 200
|, 1200 izz
2 1000
& 125
800 100
600 75
400 50
200 25
0 0
SRR SRR SIS SR DR DRI S \/@9 @%Q 0@ 000 0@0@ 0%6 \b‘@ Q’QQ {7@ \@o x‘g’g é\@\q}@ &@ @,@@@@@’9@

Frame#

—\/liewport Resolution =——RTT

Figure 6.8: The average Round-Trip Time and viewport resolution of User
3 in the DVAR condition. The green line represents the RT'T (right axis) in
milliseconds, while the blue line represents the viewport resolution (left axis)
in pixels.

might be overkill, but we can still still see some movements coming within
10° of the threshold. Another interesting thing to note here is that User 3 has
many small movements, as opposed to the fewer but larger movements seen
earlier and in the following users. This highlights again that head movement
patterns are inherently personal and predicting them requires taking into
account personal differences in behaviour even within the same scene and
same task. The average ”visual buffer” is 26.62° £ 6.25° for the y-axis and
29.46° + 5.20° for the x-axis.

6.2.4 User 4

Figure 6.10 shows User 4’s viewport resolution and RTT during the DVAR
session. We see a slight dip in RTT around 350 frames, which might not
have been compensated properly in terms of resolution scaling as we saw
previously. However, the lowest point in the dip is only 212 ms, for which
1200 pixels viewport resolution is still more than adequate. If we take a sneak
peek at Figure 6.11, we see that this was a moment of User 4’s slowest head
movements, which could explain the dip as the system efficiency increases
when dealing with similar frames and orientations. At the end of the session
we see a sudden increase in RT'T, of which the cause is unknown. However,
DVAR responds as expected, even given the noisy dips. Remember that
these values are (rolling) averages, which means that these discrepancies are
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Figure 6.9: The unrendered area in both the y-axis and the x-axis, combined
with the magnitude of User 3’s head velocity. The tested condition is DVAR.
The blue lines represent the head velocity in degrees per second (left axis),
while the green lines represent the amount of unrendered area in degrees in
their respective axis. The yellow line is the threshold for when unrendered
area becomes visible: blackness values above the threshold are visible, while
values under the threshold represent the amount of ”visual buffer” that is
still available for the given velocity compensation level and the current RTT.

not merely coincidences but were present in all trials.

User 4’s head movement velocity and unrendered area values are then
plotted in Figure 6.11. This figure is more interesting than the previous
ones, as User 4’s head movements cause it to show unrendered area at around
1920 frames. The amount of unrendered area is only present in the y-axis
(horizontal direction) and reaches 19.76° of unrendered area. The average
unrendered area was 12.47° + 4.81° and lasted for 33 frames. The cause of
this unrendered area is easily determined, as the head velocity goes well over
the velocity compensation level and the RTT remains steady. The average
head velocity of User 4 was relatively higher than the previous users and had
higher peaks at 33.59° £ 35.91° per second and 20 movements. The average
amount of visual buffer (counting the blackness peak) was 23.72° +9.05° for
the y-axis and 28.23° 4 6.10° for the x-axis. The similar averages confirm
that User 4’s head movements were still well under the velocity compensation
level for the majority of the session, while the slightly higher SD corresponds
to the stronger movements.
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Figure 6.10: The average Round-Trip Time and viewport resolution of User
4 in the DVAR condition. The green line represents the RT'T (right axis) in
milliseconds, while the blue line represents the viewport resolution (left axis)
in pixels.

6.2.5 User 5

Figure 6.12 shows us again a very steady RTT and viewport resolution, simi-
lar to Figures 6.4, 6.6 and 6.8. The fact that the viewport resolution remains
steady at 1204 pixels throughout the majority of the session indicates that
the system was relatively stable throughout the User 5’s trials. Interestingly,
User 5 also has the highest head velocity, strongest movements and largest
amount of unrendered area.

In Figure 6.13 we see the head movement velocity and unrendered area
amount plotted over the DVAR condition session. User 5 may be the most
interesting case so far, given the strong and plenty head movements and
the resulting amount of unrendered area. First off we can see again a peak
in the first 200 frames due to the start-up effect and an early strong head
movement. To remain consistent with User 3’s results, we will ignore this
first peak. Overall, User 5 has an average head velocity of 47.69° 4-54.82° per
second which is much higher than the previous users. User 5 also has 24 head
movements (not counting the one at 60 frames). User 5’s high head velocity
results in 3 occasions of unrendered area being visible in the y-axis, and 1
in the x-axis. The last peak in ”Blackness Y-axis” at 1570 frames stays just
under the error margin of 3°. The first peak lasts 15 frames with an average
blackness of 9.10° 4 2.41° maximum 12.48°. The second and largest peak
lasts 23 frames with an average blackness of 32.82° £ 16.47° and a maximum
of 55.15°. The last peak would have been barely visible at a duration of 11
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Figure 6.11: The unrendered area in both the y-axis and the x-axis, combined
with the magnitude of User 4’s head velocity. The tested condition is DVAR.
The blue lines represent the head velocity in degrees per second (left axis),
while the green lines represent the amount of unrendered area in degrees in
their respective axis. The yellow line is the threshold for when unrendered
area becomes visible: blackness values above the threshold are visible, while
values under the threshold represent the amount of ”visual buffer” that is
still available for the given velocity compensation level and the current RTT.

frames with an average of 5.99° +1.77° and maximum of 8.77°, which results
in roughly 5° of blackness given the error margin. The x-axis peak (vertical
direction) also barely stays under the error margin and we can thus ignore it
here.

6.3 Reference Conditions

The attentive reader will have noticed that we have mainly discussed the
DVAR condition so far. The reason for this is that it is by far the most
interesting condition for determining whether DVAR works as it’s supposed
to. In order to compare it to other implementations we care mainly about the
bandwidth and resolution changes, which we have covered in an earlier section
(Section 6.1). R1 and R2 both offer a full field-of-view, hence unrendered
area measurements are not applicable here. Also, the viewport resolution
stays constant, nullifying the need for comparison. For completeness’s sake,
however, we will have a quick look at the unrendered area performance of
R3 for User 5, which only renders the front face. This is visualized in Figure
6.14. The results are as expected and consistent with what we saw in Figure
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Figure 6.12: The average Round-Trip Time and viewport resolution of User
5 in the DVAR condition. The green line represents the RT'T (right axis) in
milliseconds, while the blue line represents the viewport resolution (left axis)
in pixels.

6.3, with constantly some amount of unrendered area during the session,
correlated with the head movement velocity. A change in head orientation
will immediately lead to a view outside of the current viewport, while the
new frame does not render immediately. Note that this is unrelated to the
viewport resolution, but relies solely on the amount of FoV that is rendered
unless we have a system that provides extremely low latencies, such as a
tethered system.

6.4 Discussion

The results just presented provide us with a couple of key insights. First,
DVAR is able to provide a much higher viewport resolution than other im-
plementations while not using more bandwidth and not showing a significant
amount of unrendered area. R3 does offer a higher viewport resolution due to
the fact that we render only the HMD FoV and thus can dedicate the entire
video frame to the front face. However, due to the system latency this also
causes unacceptable levels of unrendered area being visible for even small
movements (see Figure 6.14 for example). Furthermore, the figures showing
the viewport resolution (Figure 6.1), bandwidth usage (Figure 6.2) and Un-
successful Frames (Figure 6.3) show us that DVAR can offer a near-native
viewport resolution even at high RTT values witout compromising the QoE.

Given further optimizations of the current VR streaming system, or by
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Figure 6.13: The unrendered area in both the y-axis and the x-axis, combined
with the magnitude of User 5’s head velocity. The tested condition is DVAR.
The blue lines represent the head velocity in degrees per second (left axis),
while the green lines represent the amount of unrendered area in degrees in
their respective axis. The yellow line is the threshold for when unrendered
area becomes visible: blackness values above the threshold are visible, while
values under the threshold represent the amount of ”visual buffer” that is
still available for the given velocity compensation level and the current RTT.

applying DVAR in an existing high-performance system the RTT could be
decreased significantly, leading to even higher viewport resolutions while still
maintaining a good QoE by avoiding unrendered areas in the viewport. This
is exemplified in Figure 6.15: if we assume that the system RTT is stable
around 50ms, DVAR will provide an average viewport resolution of 1660 pix-
els by rendering only 12% of the side faces. Given that the other parameters
remain unchanged and we have established that DVAR avoids showing un-
rendered area as long as the head velocity is lower than the compensation
level, DVAR can provide higher-than-native viewport resolution while main-
tining a good QoE. Furthermore, with lower head velocity compensation of
higher video frame resolution, DVAR can provide even higher viewport res-
olutions. As R3 represents the best-case scenario for DVAR resolution wise
(i.e. using the maximal viewport resolution supported by the video frame)
and R2 represents the worst-case, we can expect DVAR’s bandwidth usage
to be in between R3 and R2’s values for other viewport resolutions. Lastly,
we have shown that DVAR does not increase render times significantly. In
fact, with further system optimizations, DVAR is expected to have a lower
performance impact than other implementations due to not having to render

Degrees of unrendered area
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Figure 6.14: The unrendered area in both the y-axis and the x-axis, combined
with User 5’s head velocity in the R3 condition. The blue lines represent the
head velocity in degrees per second (left axis), while the green lines repre-
sent the amount of unrendered area in degrees in their respective axis. The
yellow line is the threshold for when unrendered area becomes visible: black-
ness values above the threshold are visible, while values under the threshold
represent the amount of ”visual buffer” that is still available for the given
velocity compensation level and the current RTT.

the entire VRE.

The second insight is that the amount of unrendered area critically de-
pends on what values are used for the head movement compensation. In
the results shown here we have maintained a constant head movement com-
pensation level, which is sufficient for the task used (i.e. exploring a new
VR environment): most users did not encounter any unrendered area, while
User 4 and 5 did because of their fast head movements. However, in some
cases, such as User 5’s fast head movements, a constant compensation level
is inadequate as it cannot respond to movements that are faster than the
compensation level. In other cases, such as for User 3, the compensation
level may have been too high: by using a lower compensation level we could
have offered a higher viewport resolution while still keeping the unrendered
area to a minimum. This further emphasizes the need for a dynamic and
reliable algorithm to predict head movement velocities/future head orienta-
tions in order to use DVAR to provide the optimal viewport resolution at
any given time for any given scenario. One can imagine the yellow threshold
line in the Unrendered Area figures being lower or higher to get an idea of
the blackness in such scenarios. Ideally, the yellow line would be perfectly
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Figure 6.15: The average viewport resolution for each of the conditions, as-
suming the system RTT is 50ms. The DVAR conditions in that case provides
an average viewport resolution of around 1660 pixels. All other parameters
are as in Figure 6.1.

correlated with the head velocity (as the green and blue lines are now) to
avoid any superfluous visual buffer and any unrendered area, for any head
velocity.



Chapter 7

Future Work

In order to provide even higher viewport resolutions in future applications,
there are three main avenues to consider: reducing the system latency, in-
creasing the supported resolutions on the server and client side, and further
optimizing the head movement compensation. Additionally, one could also
further decrease the bandwidth requirements or further investigate the im-
pact of other projection mappings on the visual quality to improve the overall
QoE.

Currently the prototype system only supports 4K video frames, result-
ing in a maximum viewport resolution of 2K pixels per eye for stereoscopic
content. By further optimizing the encoder and decoder, as well as up-
grading the system’s hardware higher resolutions are within reach. DVAR
is system-agnostic in q way that it does not limit the maximum or mini-
mum resolutions of the viewport resolution. Care should be taken however
to ensure that higher resolutions do not further increase the system latency.
In Chapter 2 we have seen a couple of interesting approaches that support
higher resolutions. For example, by utilizing parallel coders or using a hybrid
rendering approach between client and server. Furthermore, it is clear from
DVAR’s description and analysis that a lower system RTT would result in
higher viewport resolutions without significantly increasing the bandwidth
requirement. Similarly, we discussed several possible approaches to more
precisely determine a head movement compensation level in real-time. If the
head movement compensation level is lower, we again have to render less of
the peripheral area and can thus provide a higher viewport resolution.

In order to provide DVAR as a complete and reliable solution for Interac-
tive VR streaming future work should provide a way to accurately determine
future head orientations to lower the compensation level. Furthermore, fu-
ture work should attempt to implement DVAR in a system that enables a
much lower system RTT, to profit from the increased viewport resolutions.
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As we’ve only examined objective system performance measurements in this
work, it is hard to predict what the impact of DVAR on user’s QoE will be.
It would be a good idea to examine the performance of DVAR, including
the resolution changes, buffer area and possible resulting side effects in a
subjective user study. We have also not discussed in this work how DVAR
might work with other projection mappings than a cube mapping. Although
a cube map is natively supported by graphics hardware and provides an es-
pecially convenient way of employing DVAR, other mappings may provide a
better visual quality, more efficient bandwidth usage due to less redundant
pixels, or even higher viewport quality by natively assigning more pixels to
the viewport.

Lastly, an interesting possibility for future work is collaboration with ex-
isting solutions. In Chapter 2 we mentioned several VR streaming systems,
some of which embrace similar goals as our work. It would be worthwhile
to attempt to combine our strategies in order to provide the best possible
performance in mobile Interactive VR streaming. Furthermore, many fac-
tors influence the overall performance of an Interactive VR system, such as
network configuration, server and client hardware, projection mappings, en-
coding, and many more. All of these factors have been studied individually,
to more or less extent in the context of VR streaming. However, to our
knowledge there is currently no system that discusses and considers the best
option for each of these factors.



Chapter 8

Conclusions

In this thesis we have presented a novel solution for rendering VR content in
an adaptive way to optimize the viewport resolution given system constraints.
Our solution, Dynamic Viewport-Adaptive Rendering, comprises a method
that can very precisely compensate for the system latency and user head
movement such that the highest possible viewport resolution is provided
to the user. Simultaneously, DVAR prevents to user from observing any
unrendered area resulting from the update delay by optimally rendering the
peripheral area.

We have first discussed the background of virtual reality, and the par-
ticulars of streaming virtual reality. In the system architecture chapter we
have elaborated on the cloud-based VR streaming system that is used in
this work. We have shown how using a 3x3 cube map layout allows us to
dynamically alter the proportional size of the front face of the cube map.
Furthermore, by rotating the front face with the user’s head orientation, we
can avoid rendering all peripheral areas.

We have presented the idea for our solution, DVAR, in Chapter 4 and
elaborated on it’s implementation. We have especially presented the two
main factors involved in optimizing such adaptive rendering: system latency
and head movement velocity. We have discussed how to optimize these pa-
rameters and provided a working solution. Finally, we have presented our
experiment to evaluate whether and how well DVAR actually works and
presented our results. We have shown that DVAR works as expected and
provides a significantly higher viewport resolution to the user, while not
increasing the bandwidth requirement or decreasing QoE. Due to DVAR’s
design, it can be easily integrated into existing projects or enhanced with
e.g. improved encoding or streaming technologies.
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