
Active Incremental Learning of a
Contextual Skill Model

Xiaopu Li

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 28.8.2019

Supervisor

Prof. Ville Kyrki

Advisor

M.Sc. Murtaza Hazara

Copyright c⃝ 2019 Xiaopu Li

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Xiaopu Li
Title Active Incremental Learning of a Contextual Skill Model
Degree programme Automation and Electrical Engineering
Major Control, Robotics and Autonomous Systems Code of major ELEC3025
Supervisor Prof. Ville Kyrki
Advisor M.Sc. Murtaza Hazara
Date 28.8.2019 Number of pages 46 Language English
Abstract
Contextual skill models enable robot to generalize parameterized skills for a range of
task parameters by using regression on several optimal policies. However, the task
difficulty and task sequence of learning a contextual skill model is usually neglected.
Thus, the learning process is usually time consuming since some tasks might be
easier to learn or the knowledge of these tasks might be easier to share with other
tasks. In this thesis, we introduce active incremental learning framework for actively
learning a contextual skill model based on dynamical movement primitives which
are widely used to learn parameterized policies on trajectory level as a dynamical
system for robot. The proposed framework will first select a task which maximizes
the expected improvement in skill performance over entire task parameters and then
optimize the corresponding policy with a fixed number of iterations in policy search.
We model the learning rate of policy search for predicting reward improvement over a
single iteration. We evaluated the improvement of the skill performance in two tasks,
ball-in-a-cup and basketball, with a simulated KUKA robot arm. In both, the results
show that active task selection can improve the skill performance continuously over
a baseline.
Keywords contextual skill model, active incremental learning, dynamical movement

primitives, policy search

4

Preface
I want to thank Professor Ville Kyrki and my instructor M.Sc. Murtaza Hazara for
their great guidance and patience.

Otaniemi, 28.8.2019

Xiaopu Li

5

Contents
Abstract 3

Preface 4

Contents 5

Symbols and abbreviations 7

1 Introduction 9

2 Background 11
2.1 Generalization using Regression . 11
2.2 Generalization using contextual policy search 11
2.3 Active Learning . 11
2.4 Incremental Learning . 12

3 Research material and methods 15
3.1 Dynamic Movement Primitives . 15
3.2 Reinforcement Learning . 17

3.2.1 Policy search . 18
3.2.2 Policy Learning by Weighted Exploration with the Returns . . 18

3.3 Gaussian Processes . 19
3.4 Active Incremental Learning . 22

3.4.1 Problem Definition . 22
3.4.2 Algorithm . 23

4 Experiment 26
4.1 Setting . 26

4.1.1 The KUKA LWR4+ Robot Arm 26
4.1.2 Robot Operating System . 27
4.1.3 Learning a Robotic Skill in a Simulation Software 28

4.2 Tasks . 28
4.2.1 Ball in a Cup . 28
4.2.2 Basketball . 29

5 Results 31
5.1 Contextual Skill Model . 31

5.1.1 Learning CSM with RBF and GPDMP 31
5.1.2 Learning CSM with Random task order 34
5.1.3 Learning CSM with spatiotemporal kernel 34

5.2 Learning Rate Model . 37
5.2.1 Reward function with exponential 37
5.2.2 Reward function without exponential 38

5.3 Reward Model . 39
5.4 Active incremental learning . 40

6

5.5 Conclusion . 42

6 Summary 43

References 44

7

Symbols and abbreviations

Symbols
a action Def. 3.2.2
b damping coefficient Def. 3.1
D database Def. 2.3
EISP expected improvement in skill performance Def. 2.3
f forcing function Def. 3.1
fsample sampling function Def. 3.3
GP Gaussian process Def. 3.3
J(t; βJ) learning rate model with hyper-parameter βJ Def. 3.4.2
j(τ) predicted reward of task τ Def. 2.3
k kernel Def. 3.3
koc oscillatory coefficient Def. 3.1
N Gaussian distribution Def. 2.3
P (τ) probability of task τ Def. 2.3
R(τ) reward function Def. 2.3
R(τ ; βR) reward model with hyper-parameter βR Def. 3.4.2
r(τ ; S) evaluated performance at task τ with skill model S Def. 3.4.1
s state Def. 3.2.2
SP skill performance Def. 2.3
αy gain term Def. 3.1
βy gain term Def. 3.1
∆ a fixed number of iterations in policy search Def. 3.4.2
∆R(τ) reward improvement at task τ Def. 3.4.2
θ policy parameters Def. 3.2.2
τ task parameter Def. 2.3

Operators∫
integral Def. 2.3

arg maxτ argument of the maximum Def. 2.3
ẏ the first derivatives of y Def. 3.1
ÿ the second derivatives of y Def. 3.1∑N

i=1 sum over index i Def. 3.1
exp(x) exponential function Def. 3.1
∂

∂t
partial derivative with respect to variable t Def. 3.1

8

Abbreviations
ACES Active Contextual Entropy Search
CPS Contextual Policy Search
CSM Contextual Skill Model
DMP Dynamic Movement Primitives
DoF Degrees of Freedom
EBNN Explanation-Based Neural Network
EISP Expected Improvement in Skill Performance
EM Expectation Maximization
F/T Force/Torque
GP Gaussian Process
GPDMP Global Parametric Dynamic Movement Primitives
GPR Gaussian Process Regression
KB Knowledge Base
KBL Knowledge-Based Learner
LfD Learning from Demonstration
LWR Light-Weight Robot
LWRSIM Light-Weight Robot Simulator
MuJoCo Multi-Joint dynamics with Contact
PILCO Probabilistic Inference for Learning Control
PI2 Policy Improvement with Path Integral
PoWER Policy Learning by Weighted Exploration with the Returns
RBF Radial Basis Function
REFS Relative Entropy Policy Search
RL Reinforcement Learning
ROS Robot Operating System
TM Task Manager

1 Introduction
Human beings have a direct sensory contact with the environment. Therefore, we can
construct the perception of the environment by performing actions and receiving the
feedback from the environment. Reinforcement learning (RL) is a process in which
agents simulate human learning. RL enables an agent to learn from scratch through
a trial and error process. In this process, the agent can only take actions and receive
feedback of each action by interacting with the dynamic environment. The goal of
RL is to learn an optimal policy for the agent and maximize the long term reward.
In RL, policy search methods can find the appropriate parameters of a parametrized
policy for a given task parameter, therefore these methods are widely used to learn
movement skills [1, 2]. However, the learned parametrized policy cannot be adapted
to other task parameters directly, which results in different rewards for applying the
same policy to different task parameters.

In order to overcome the generalization limitation, contextual skill models (CSMs)
are widely used in generalization over a set of task parameters [3, 4, 5, 6, 7]. They
first learn policies for a set of task parameters separately and then learn a CSM using
regression, which maps task parameters to parametrized policies. However, in order
to achieve a good performance, the learning process is usually costly for the agent
in high-dimensional control problems. Incremental learning has been proposed to
solve this problem which incrementally updates and stores the knowledge with tasks
arriving sequentially.

On the other hand, contextual policy search (CPS) learns parametrized policies
for a set of task parameters without separating learning according to a given distri-
bution over task parameters [8, 9]. However, CPS does not consider the order of task
execution, since the task parameter is given by a fixed distribution, which cannot be
changed by the agent during the learning process.

The process of learning a CSM is usually passive and time consuming when the
task parameters are selected manually or randomly, since some task parameters might
be easier to learn or the knowledge of these task parameters might be easier to share
with other task parameters. If we can select the most important task parameters
by understanding the task, it will be helpful to the process of learning the model.
In order to obtain a better CSM with less effort, active learning has been proposed.
Active learning is widely applied in supervised learning to select the most important
samples from unlabeled data and achieve a better learning model with lower cost
of annotation. In reinforcement learning, active learning has been used based on
Gaussian process regression [10]. They introduce a method of actively selecting the
task that maximizes the expected improvement in skill performance. However, they
do not consider the training difficulty. The learning process will be continued with a
task until an optimal or near optimal policy is achieved.

In this thesis, we propose a novel active incremental learning method to actively

10

select a task step by step based on the current skill performance. Instead of learning
a policy until optimal, we will update the skill model and actively select the next task
after a fixed number of iterations. Although the current skill model is not optimal,
the skill performance of the skill model increases gradually over time and converges
in the end.

The remainder of the thesis is divided into five chapters. Chapter 2 introduces the
related work of our research. Chapter 3 introduces the research material and methods
in detail, including dynamic Movement Primitives, related concepts of reinforcement
learning and the active learning algorithm. Chapter 4 introduces the experimental
settings and two implemented tasks, ball-in-a-cup and basketball. Chapter 5 presents
the results of our research. Chapter 6 summarizes this thesis.

11

2 Background
This chapter introduces the background of the related work of our research tasks.
Sections 2.1 and 2.2 introduce two different methods for learning a contextual skill
model (CSM) respectively. Then, Section 2.3 introduces active learning. Finally,
incremental learning is presented in Section 2.4.

2.1 Generalization using Regression
Reinforcement learning (RL) is widely applied to learn a parametrized policy
for robotic applications. Dynamical movement primitives (DMPs) is a kind of
parametrized policy which has been developed to learn complex movements on tra-
jectory level as a dynamical system. A contextual skill model (CSM) can provide
parametrized policies for a range of tasks by using regression on limited optimal
policies [3, 4, 5, 6, 11, 12]. Calinon et al [3] learned the CSM by using a paramet-
ric Gaussian mixture model and trained it using expectation maximization (EM)
algorithm. However, the task parameters of the model can only be represented
in the form of a coordinate system. Stulp et al. [4] learned parameterizable skills
based on a novel DMP formulation, and used task parameters as inputs to the DMP
function approximator. Forte et al. [5] utilized Gaussian process regression (GPR)
for real-time generalization of example trajectories. Their method allows the robot
movement to adapt to the perceived changes in the outside world. Ude et al. [6]
applied locally weighted regression to compute the internal parameters of the DMPs
in each trial and used GPR for mapping the task parameters to meta-parameters
such as goal and duration of DMPs. Da Silva et al. [12] used regression algorithms to
deduce a deterministic function which can generalize the learned policy parameters
over the entire task parameters. Parametric CSM has also been proposed in [13], [11].

2.2 Generalization using contextual policy search
Policy search is used to find the appropriate parameters for one task with a given
policy. Moreover, contextual policy search (CPS) can learn optimal policies for a set
of tasks from scratch and has been used to learn a contextual skill model (CSM),
which provides policies to tasks that has never been learned, by applying a regression
algorithm [9, 8, 14]. In [9, 14], they used model-free approach with CPS to learn a
CSM. Kupcsik [8] learned a CSM using model-based policy search with CPS. In
both of these approaches the CSM is linear and modeled using a Gaussian function
whose hyper-parameters are updated iteratively. However, CPS does not consider the
task order, since the task parameter is given by a fixed distribution, which cannot
be changed by the agent.

2.3 Active Learning
In reinforcement learning with robotic application, the robot is usually provided
with a randomly or manually selected order of task parameters. However, some

12

tasks might be easier to learn or the knowledge of these tasks might be easier to
transferred to similar but more difficult tasks. Therefore, active learning have been
proposed to select a task parameter automatically. The goal of active learning is to
select the next task parameter which maximizes future expected improvement of skill
performance. Active learning has been proposed in [14, 15, 10]. We will elaborate
on [10] which is the most relevant to our proposed approach.

In [14], they used heuristic intrinsic reward functions with a non-stationary multi-
arm bandit to actively select the next task. In [15], they proposed active contextual
entropy search (ACES) which is an information theoretic approach based on Bayesian
optimization to minimizing uncertainty about the optimal policy parameters for task
parameters without defining a heuristic function.

Da Silva et al. [10] proposed a non-parametric Bayesian approach of skill perfor-
mance to actively select the next task that maximizes expected improvement in skill
performance. They use a Gaussian process (GP) with the spatio-temporal kernel for
modelling non-stationary reward R(τ) function. With the given kernel and current
database Dt = {(τ1, r(τ1)), . . . , (τN , r(τN))}, they can compute the Gaussian poste-
rior P (Rt(τ)|τ, Dt) over reward for any task parameter which is normally-distributed
according to Rt(τ) ∼ N (µt(τ), σ2

t (τ)), where r(τi) is the evaluated reward of optimal
policy for previous selected task τi and t denotes time refers to the order in which
tasks are practiced. They define the skill performance

SPt =
∫

P (τ)µt(τ)dτ, (1)

where P (τ) denotes the probability of task τ occurring. Furthermore, they introduced
the Expected Improvement in Skill Performance (EISP) as an acquisition function
to predict the expected improvement for a candidate task τc

EISPt(τc) =
∫

P (τ ′)(µ̂t+1(τ ′) − µt(τ ′))dτ ′, (2)

where µ̂t+1 denotes the mean of Gaussian posterior R̂t+1 computed by updating R̂t

with the updated database Du = Dt ∪ {(τc, j(τc))}. j(τc) is the upper endpoint of
the 95% confidence interval around the mean of current Gaussian posterior Rt:

j(τc) = µt(τ) + 1.96
√

σ2
t (τ). (3)

The task τ ∗ will be identified by maximizing Equation 2:

τ ∗ = arg max
τ

EISPt(τ). (4)

2.4 Incremental Learning
Most machine learning algorithms are batch Learning, which requires obtaining and
learning all the training samples at once. In fact, the number of samples tends to

13

increase gradually and the information reflected by these samples also changes over
time. It is challenging to extract useful information from the ever-increasing samples.
If the model is retrained each time when new samples arrive, the demand for time
and space will increase rapidly. Thus, the traditional batch learning cannot satisfy
this requirement. Incremental learning is an effective way to solve this problem which
can incrementally update the knowledge and enhance previous knowledge without
having to retrain all the data each time. Incremental learning indicates that the time
cost of modifying a trained model is usually less than the cost of retraining a model
when new data is added.

Incremental learning, which is also called lifelong learning, is an machine learning
framework that incrementally updates the knowledge with tasks arriving sequen-
tially [16, 17, 18, 19]. Thrun [16] described several lifelong learning approaches for
supervised learning, such as memory-based learning approaches and explanation-
based neural networks (EBNN) learning algorithm. Fei [19] proposed cumulative
learning to detect and update new knowledge (classes or concepts) over time without
re-training the model. In [18], they sped up model-free policy search by extracting
uncertainty in the form of covariance matrices. Chen and Liu [17] introduced lifelong
learning in detail (see Fig. 1).

Fig. 1 shows 4 key components of incremental learning: (I) Knowledge Base
(KB) which stores the previously learned knowledge for tasks τ1, τ2, · · · , τN−1, (II)
Knowledge-Based Learner (KBL) which learns the new task by using the previous
knowledge in the KB, (III) a prediction model for application and (IV) a task manager
(TM). TM can manage the arriving sequence of the tasks and assign a new task τN

to the KBL. Then, KBL can use the past knowledge in KB to update a model and
also store the new learned knowledge for τN to KB.

14

Figure 1: Incremental learning.

15

3 Research material and methods
This chapter introduces the research material and methods of our research. Section 3.1
introduces dynamic movement primitives (DMP). Then, the basics of reinforcement
learning are introduced in Section 3.2. Section 3.3 introduces Gaussian processes.
Finally, the framework of active incremental learning is elaborated in Section 3.4.

3.1 Dynamic Movement Primitives
DMPs [20, 21] are applied for trajectory control and planning problem to repre-
sent complex movements using a nonlinear dynamical system while ensuring the
global stability. DMPs can represent both discrete movements such as reaching and
rhythmic movements such as walking. In this section, we only consider the discrete
movements.

We start from a mass-spring-damper system. With excitation, the spring always
converges to the goal state in a finite amount of time.

−kocx − bẋ = mẍ (5)

where koc is oscillatory coefficient and b is damping coefficient.

m
k

𝑥

𝑏
Figure 2: Mass-spring-damper system.

In a DMP, the transformation system is based on a mass-spring-damper system
with m = 1. A 1-DOF transformation system is given as

ÿ = αy(βy(g − y) − ẏ), (6)

where y is the joint or end-effector position, g is the goal state and αy, βy are the
gain terms which can achieve critical damping with

βy = αy/4. (7)

In order to achieve smooth and complex movements, a nonlinear time-dependent
forcing term is added to the dynamical system,

ÿ = αy(βy(g − y) − ẏ) + f. (8)

16

The forcing function is a weighted sum of the activations of basis functions which
can be written as

f(t) =
∑N

i=1 Ψi(t)wi∑N
i=1 Ψi(t)

(9)

where Ψi denotes a basis function and wi is the corresponding weight for the given
basis function. Thus, the shape of the forcing function can be changed by changing
the weight value and the forcing function can control the motion trajectory of the
second-order system.

In [21], they introduce a replacement of time by the first-order linear dynamics
in x, called canonical system

τ ẋ = −αxx, (10)
where x denotes the phase of the movement, τ is the duration of the movement and
αx is a positive constant. The variable x converges exponentially to zero. Thus, the
forcing function can be defined as a function of the canonical system

f(x) =
∑N

i=1 Ψi(x)wi∑N
i=1 Ψi(x)

(g − y0)x (11)

where y0 denotes the initial state and Ψi is defined as a Gaussian kernel

Ψi = exp(−hi(x − ci)2) (12)

where ci and hi are the center and variance respectively.

In the case of learning a DMP, we first need to compute the accelerations from the
desired trajectory yd, which denotes the time series of desired points in the trajectory,

ÿd = ∂

∂t
ẏd = ∂

∂t

∂

∂t
yd. (13)

Then, we calculate the forcing term

f = ÿd − αy(βy(g − y) − ẏ). (14)

With the desired trajectory, we can compute wights wi with the following equation

ωi = sT Γiftarget

sT Γis
, (15)

where

s =

⎡⎢⎢⎢⎣
x1(g − y0)
x2(g − y0)

· · ·
xP (g − y0)

⎤⎥⎥⎥⎦ Γi

⎡⎢⎢⎢⎣
Ψi(1) 0

Ψi(2)
· · ·

0 Ψi(P)

⎤⎥⎥⎥⎦ ftarget =

⎡⎢⎢⎢⎣
ftarget(1)
ftarget(2)

· · ·
ftarget(P)

⎤⎥⎥⎥⎦ . (16)

17

Equation (8) formulates the DMP for a 1 degree of freedom (DoF) system.
However, the robot, such as KUKA LBR 4+, usually has multiple DoF. In this case,
each DoF is formulated with a separate transform system (8) and share the same
canonical system (10). The same canonical system can be seen as a global clock
coupled with different transform systems. Combined with RL, we can fine-tune the
shape parameters of the DMP which are first learned from a human demonstration.

3.2 Reinforcement Learning
Generally, machine learning algorithms can be divided into three categories: super-
vised learning, unsupervised learning, and reinforcement learning (RL). Supervised
learning uses samples which include input-output pairs to learn a function mapping
inputs to outputs. Unsupervised learning uses samples which only include inputs
to learn relationships between the data. However, RL is to let the agent learn from
experience, since the agent can only take actions and receive feedback of each action
by interacting with the environment. The goal is to learn a policy π, which selects
actions based on the current state, to maximize the returned cumulative reward.

Figure 3: The framework of Reinforcement Learning [22].

The basic components of reinforcement learning include an agent, environment,
state, action and reward. In the Fig. 3, the subscripts t and t + 1 represent time
steps to distinguish different states: the state at t and the state at t+1. At time t,
the agent receives an observation (state) St and a feedback (reward) Rt. Then, an
action At is selected from a set of available actions and sent to the environment. The
time moves to t + 1 and the environment returns a new state St+1 and reward Rt+1.
The agent will select the next action according to the new state and reward. This
loop will continue until maximizing the long term reward.

In this process, the agent can make trade-offs between exploration and exploita-
tion. Exploration is to select action that have not been executed before, thus exploring
more possibilities; exploitation is to select the best action based on current trained

18

model. The objective is to obtain a policy with the highest long-term return, which
can result in short-term return losses. The challenge is that if you exploit too much,
the model may fall into a local optimum, and if you explore too much, the model
may converge too slowly; this is the exploitation-exploration dilemma.

There are many examples of reinforcement learning, such as the recent famous
Alpha Go [23], the robot first defeated the human master on the Go game. The
algorithm does not tell the agent how to move, how to make decisions, but to score
the behavior of the agent. The agent only needs to remember those high-scoring,
low-scoring behaviors, and use the high-scoring behavior to get high scores next time,
avoiding low-scoring behavior. This high score behavior is like the correct label in
supervised learning.

3.2.1 Policy search

Policy search is a sub-area of reinforcement learning (RL) which aims to find the
appropriate parameters for a given policy. It is very suitable for robotics because it
can handle high-dimensional states and motion spaces. Policy search is divided into
model-based policy search methods such as PILCO [24] and model-free policy search
methods such as PoWER [25], PI2 [26] and REPS [27]. Model-free policy search
methods learn an optimal policy directly with several sampled trajectories, which rely
on a policy representation such as DMP with less than 100 parameters. Model-based
policy search methods first use several sampled trajectories to construct a model of
the robot’s dynamics, and then use this model to improve the policy. The goal of
the policy search is to find the policy parameters θ such that the expected return is
maximized. In this thesis, we use a model-free policy search method (PoWER) to
learn two tasks: Ball-in-the-Cup and Basketball. The detailed description of PoWER
is presented in the next Section 3.2.2.

3.2.2 Policy Learning by Weighted Exploration with the Returns

In this thesis, we use PoWER [25] to refine the shape parameters of the DMP
iteratively, which is inspired by Expectation Maximization algorithm and particularly
well-suited for trial-based tasks in motor control.

We first define a deterministic mean policy

ā = θT ϕ(s, t) (17)

where θ is the policy parameters from a demonstration and ϕ is the basis function.
In each iteration, we perform N roll-outs of the task and choose the best n (n << N)
roll-outs based on the reward. In each roll-out, random Gaussian noise ϵ(s, t), which is
weighted by the returned accumulated reward, will be added to the shape parameters
θ in order to make model-free policy search possible. That means the roll-out with
higher returned reward will contribute more to the updated policy parameters. As a

19

result, the stochastic policy can be given as

a = θT ϕ(s, t) + ϵ(ϕ(s, t)). (18)

In previous work [28, 29, 30], ϵ(ϕ(s, t)) is defined as a state-independent, white
Gaussian noise

ϵ(ϕ(s, t)) ∼ N (0, Σ). (19)
However, it has several disadvantages: a large variance increases with the number
of time-steps; actions can be perturbed frequently; the system of executing the
trajectory can be damaged.

In [31], they propose a state-dependent exploration

ϵ(ϕ(s, t)) = εT
t ϕ(s, t) (20)

where [εt]ij ∼ N (0, σ2
ij) and σ2

ij can be optimized. Then, the resulting policy can be
given as

a ∼ π(at | st, t) = N (a | θT ϕ(s, t),
∑̂

(s, t)) (21)
The updated rule is given by

θ′ = θ + E

⎧⎨⎩
T∑

t̃=t

W (st, t)Q̂π(s, a, t)
⎫⎬⎭

−1

E

⎧⎨⎩
T∑

t̃=t

W (st, t)εtQ̂
π(s, a, t)

⎫⎬⎭ (22)

where W is a constant matrix and Q̂π(s, a, t) is the state-action value function [32].
PoWER is presented in Algorithm 1. ⟨·⟩w(τ)

denotes an importance sampler since we
always choose the best n from N roll-outs in each iteration.

Algorithm 1 Policy Learning by Weighted Exploration with the Returns (PoWER).
Input: The initial policy parameters θ0,

1: repeat
2: Sample: Perform rollout(s) using a = (θ + εt)T ϕ(s, t) with [ε] ∼ N(0, σ2) as

stochastic policy and collect all (t, st, at, st+1, εt, rt+1) for t = {1, 2, ..., T + 1}.
3: Estimate: Use unbiased estimate Q̂π(s, a, t) = ∑T

t̃=t r(st̃, at̃, s ˜t+1, t̃).
4: Reweight: Compute importance weights and reweight roll-outs, discard low-

importance roll-outs.

5: Update policy using θk+1 = θk +
⟨∑T

t̃=t
εtQ̂π(s,a,t)⟩

w(τ)

⟨∑T

t̃=t
Q̂π(s,a,t)⟩

w(τ)

.

6: until Convergence θk+1 ≈ θk.

3.3 Gaussian Processes
A Gaussian process (GP) is a non-parametric Bayesian approach which is utilized
for optimizing unknown functions based on the observed data [33, 34]. A GP is a
set of random variables y which are arranged according to the continuous variable

20

x, such as time and space. Each random variable is a Gaussian distribution with a
mean µ and a variance σ2

y ∼ N (µ, σ2). (23)
Thus, a GP can be seen as a joint Gaussian distributions over functions, which is
defined with a mean function µ(x) and a covariance function k(x, x′).

fsample ∼ GP(µ(x), k(x, x′)). (24)

The covariance function is also called the kernel function which decides the shape
of prior and posterior of the GP. An appropriate kernel specifies smoothness of the
function and the similarity between function values at different inputs. This means
that closer inputs would have higher value of the kernel. One of the popular kernels
is the radial basis function kernel (RBF), which is also called the squared exponential
kernel

k(x, x′) = exp(−1
2d(x

l
,
x′

l
)2), (25)

where d denotes the Euclidean distance between two 1-D arrays.

The RBF kernel is parametrized by a length-scale parameter l which specifies the
width of the kernel for modelling a stationary and smooth function. In this thesis,
RBF is used to fit a reward model with limited sample pairs, including inputs, task
parameters, and outputs, the corresponding rewards.

Another important kernel is the dot-product kernel which is parameterized by a
parameter σ2

0,
k(x, x′) = σ2

0 + x · x′
. (26)

When σ2
0 = 0, the kernel is homogeneous, otherwise it is inhomogeneous.

The Dot-Product kernel is usually combined with exponentiation,

k(x, x′) = (σ2
0 + x · x′)D. (27)

In our work, we use Dot-Product kernel with exponent 2 to fit skill model with limited
sample pairs, including inputs, task parameters, and outputs, the corresponding
policy parameters.

Assume we have new inputs x and observed data set D = {(xo, yo)} which
includes n samples {(x1, y1), (x2, y2), · · · , (xn, yn)}. The objective is to predict the
function value f(x) for new inputs. The observation yo and function value f(x)
follow a joint normal distribution, written as[

yo

f(x)

]
∼ N (0,

[
k(xo, xo) k(xo, x)
k(x, xo) k(x, x)

]
). (28)

Then, we can easily compute the Gaussian posterior for any input based on the
observed data with mean and covariance matrix [34],

µ(x) = k(x, xo)[k(xo, xo)]−1yo, (29)

21

σ2(x) = k(x, x) − k(x, xo)[k(xo, xo)]−1k(xo, x). (30)
In this thesis, we consider a Gaussian Process to represent the contextual skill model,
which can generalize skills over a range of task parameters; and reward model which
allows agent to predict reward for one task without executing the skill.

Figure 4 shows an example of the GP prior and posterior with a radial basis
function kernel. Figure 5 shows an example of the GP prior and posterior using
Dot-Product kernel with exponent 2. Colorful lines indicate 10 samples from the GP.
Red dots indicate empirical observations. The black line marks the current mean of
the GP. The gray filling area indicates standard deviation of the GP.

Figure 4: The prior and posterior of a GPR with RBF kernel [35].

22

Figure 5: The prior and posterior of a GPR with Dot-Product kernel [35].

3.4 Active Incremental Learning
3.4.1 Problem Definition

We will have a database Dt = {(τ i, θτ i
)|i = 1 . . . N} at time t with a set of tasks

τ i and their corresponding policies θτ i
. We assume that tasks will be added to the

database sequentially. A contextual skill model share knowledge over a range of tasks
in Dt by fitting a regression model mapping task parameters to policy parameters.
We can generalize policy parameters for any task parameters using the skill model,
instead of learning policy for each task.

We evaluate the performance r(τ ; S) of the skill models. Then, we define skill
performance as the expected performance of the skill over a set of tasks

SP (St) =
∫

P (τ)r(τ ; St)dτ , (31)

where P (τ) denotes the probability of the task τ occurring. We assume that the
tasks occur with the same probability. Thus, we can rewrite (31) into

SP (St) = 1
τ max − τ min

∫ τ max

τ min

r(τ ; St)dτ . (32)

Furthermore, we can define the expected improvement in skill performance (EISP)

23

which corresponds to the expected skill performance definition (2) considered in [10]

EISP (τ c) = SP (St+1) − SP (St)

= 1
τ max − τ min

∫ τ max

τ min

r(τ ; St+1) − r(τ ; St)dτ ,
(33)

where St+1 represents the updated skill model with updated database Dt+1 =
Dt ∪ {(τ c, θτc)}.

Using the EISP , a task will be selected according to τ ∗ = arg maxτ EISPt(τ).

3.4.2 Algorithm

We propose a novel active incremental learning method to actively select a task step
by step based on the current performance which is evaluated with current skill model.
In order to predict the improvement in skill performance, we introduce a learning
rate model J(t) to predict reward improvement over a single iteration by recording
total rewards after every update step t of policy search until achieving the optimal
rewards R∗. Furthermore, we assume that the learning rate model J(t) does not
depend on task parameters, and rewards achieved by the skill model are similar for
similar task parameters. This consistency is then modeled with current reward model
R(τ). Using the learning rate model J(t) and reward model R(τ), we can evaluate
the expected improvement in skill performance (EISP) for any task.

The first step of active incremental learning (see Algorithm 2) is initialization,
including choosing the initial task parameter τ 0, optimizing policy for τ 0, learning
the learning rate model J(t; βJ), initializing the database D and estimating skill
model S(τ) with D in lines 1-5. We utilize an exponential family to represent the
learning rate model

J(t; βJ) = − exp(−a(t − b)) + c (34)
where βJ = {a, b, c} denotes the hyper-parameters of the learning rate model. We
assume that the learning rate models are the same for different task parameters
within a certain range (see Section 5.2).

The hyper-parameters are estimated using curve_fit function in scipy.optimize
which uses non-linear least squares to fit learning rate function to data. The data
includes the independent variable t and the dependent data J collected when optimiz-
ing policy parameters θτ 0 for the initial task parameter τ 0. After that, we estimate
the skill model S(τ) using the database D containing the initial sample (τ 0, θ∗

τ 0).

Then, we update the skill model S(τ) iteratively in lines 7-16. In order to build
the reward model R(τ) over task parameters, we first estimate the reward r(τ ; St)
with the current skill model St(τ) for each task parameters τ ∈ τ eval in line 7. Then,
the reward model

R(τ ; βR) ∼ GP(τ , βR), (35)

24

is estimated by a Gaussian process (GP) with the training samples {(τ , r(τ))}.
βR is the hyper-parameter of GP which can be optimized by maximizing evidence
function [36] in line 8.

With the learning rate model J(t; βJ) and reward model R(τ), we evaluate EISP
for each candidate task parameter in lines 9-12. The most important step is to
predict the reward improvement ∆R(τ c) using the learning rate model J(t; βJ). We
first calculate the time step tc for the candidate task parameter τ c according to the
inverse of the learning rate function

tc = J−1(R(τ c; βJ)). (36)

Then, we calculate the reward improvement ∆R(τ c)

∆R(τ c) = J(tc + ∆; βJ) − R(τ c; βR), (37)

where ∆ denotes a fixed number of iterations in policy search. When we calculate
the estimated reward r(τ ; St+1) after ∆ iterations across all task parameters (38),
we assume that the closer the task is to the candidate task, the more the reward
increases, but not greater than the reward improvement of the candidate task. Thus,
we predict the expect reward r(τ , St+1) after ∆ iterations by

r(τ ; St+1) = R(τ ; βR) + ∆R(τ) × exp(cd ∥τ − τc∥2), (38)

where St+1 denotes the expected skill model with expected D = D ∪ (τ c, θτ c) and cd

is a constant controlling the similarity across tasks. In our experiments, cd is −0.1.
Now we can calculate EISP (33) by

EISP = 1
τ max − τ min

τ max∑
τ=τ min

r(τ ; St+1) − r(τ ; St). (39)

The most promising task τ ∗ is selected by maximizing EISP in line 13

τ ∗ = arg max
τ

EISP (τ). (40)

EISP can be seen as a quantitative representation of the contributions of different
task parameters to improve the overall skill performance. Some task parameters may
contribute more to the overall skill performance. Thus, computing and comparing
the EISP for different task parameters can help us find the most promising task
parameter without executing it.

We run PoWER for ∆ iterations for τ ∗ in order to update the corresponding
policy parameters θτ ∗ in line 14 and update skill model with updated database
D = D ∪ {(τ ∗, θτ∗)} in lines 15-16. We will continue to update the skill model S(τ)
iteratively by repeating lines 7-16 until S(τ) can provides successful skills for all
τ ∈ τ eval.

25

Algorithm 2 Active Incremental Learning of a CSM S(τ)
Input: τ = {τ i | 1 ≤ i ≤ n}, τ eval = {τ j | 1 ≤ j ≤ k}
Output: Skill model S(τ).

Initialization :
1: Choose initial task parameter τ 0.
2: Optimize policy for τ 0 using RL to determine θ∗

τ 0 .
3: Estimate parameters βJ for learning rate model J(t; βJ).
4: Initialize database of policies D = {(τ 0, θ∗

τ 0)}.
5: Estimate skill model S(τ) with D.
6: repeat
7: Evaluate r(τ) for τ ∈ τ eval.
8: Estimate parameters βR for reward model R(τ ; βR) using r(τ).
9: for each τ c ∈ τ eval do

10: Predict reward improvement ∆R(τ c) using (37).
11: Evaluate EISP (τ c) using (33) and (38).
12: end for
13: Choose next task τ ∗ = arg maxτ EISP (τ).
14: Optimize policy for ∆ iterations for τ ∗ to determine θτ∗ .
15: Update D = D ∪ {(τ ∗, θτ∗)}.
16: Re-estimate S(τ) with D.
17: until S provides success for all τ ∈ τ eval.
18: return Skill model S(τ).

26

4 Experiment
This chapter introduces the experimental setting and research tasks. Section 4.1
introduces the setting, including the robot arm, robot operating system (ROS) and
simulation software. Then, the two tasks, ball-in-a-cup and basketball, is introduced
in section 4.2. We implemented active incremental learning algorithm on the two
tasks and compared with a baseline, in order to achieve successful skills for a range
of task parameters.

4.1 Setting
4.1.1 The KUKA LWR4+ Robot Arm

We evaluate the proposed active incremental learning framework on KUKA LWR4+
(see Fig. 6) which has a payload capacity of 7 kg and low weight of 16 kg. KUKA
LWR4+ is a light-weight 7 degrees of freedom robotic arm, which enable the robot
to reach any position in its working area. Moreover, each joint is provided with
integrated Force/Torque (F/T) sensors which are independent from each other. These
F/T sensors make robot suitable for process monitoring which can detect collisions in
real time. Due to these characteristics, KUKA LWR4+ has high sensitivity, flexibility
and safety.

Figure 6: KUKA LWR4+.

Fig. 7 shows the zero configuration of KUKA LWR4+, indicating positive and
negative directions of joint rotations. In order to reduce the search space during
reinforcement learning, only some joints are movable, and the rest joints will be fixed
at home position. For the ball-in-a-cup experiment, all the joints have been moved.
For the basketball experiment, joints A2, A3, A5 are movable.

27

31

their home position. To avoid any terms confusion, we refer to joints A2, A3 and A5
as J2, J4 and J6 respectively. Accordingly, actions delivered by PILCO are angular
velocities q̇i for every joint i that get converted into angular position qi for every
timestep �t as Equation 3.4 shows.

qi = qi≠1 + q̇i�t (3.4)
The consideration of angular velocities as policy actions allowed to drive the

search exploration from each position at every time step, i.e. it allowed to perform
the policy search through forward or backward movements from the current position.
This enabled a steadier policy search compared to one in which actions are joint
positions leading into a bouncy policy-search.

Figure 3.2: Joint names and directions movement of KLR.

As a summary state St and actions At vector are exhibited in Table 3.2.

Figure 7: Frontal View of KUKA LWR4+.

4.1.2 Robot Operating System

Robot Operating System (ROS) is an open source system with a set of software
libraries and tools for developing robotics applications. The primary goal of ROS is to
increase the rate of code reuse in the field of robotics research. A robot control system
usually consists of many nodes and a super administrator ROS Master. A node is
the minimum processing unit of ROS and a node is usually responsible for a single
function of the robot. A ROS master can manage all nodes in the system so that
nodes can communicate with each other by means of publish/subscribe. For example,
a sensor on the robot can act as a node of the ROS, which can publish the message
obtained by the sensor to a given topic. The published message can be subscribed by
other nodes that are interested in this kind of message types. Note that the message
is passed directly from the publishing node to the subscribing node without going
through the ROS Master. Fig. 8 shows the basic structure of the topic communication.

Service is another communication method of a node, using a request-reply com-
munication model. Such a communication model does not have frequent message
delivery which is suitable for one-to-one communication. A service consists of two
parts, Client and Server. The client sends the request messages and waits for reply.
After the server finishes processing the request and replies, the client will continue to
execute.

28

Figure 8: Structure of the topic communication.

4.1.3 Learning a Robotic Skill in a Simulation Software

In order to learn a task, the robot usually requires repeating experiments for that
task. Thus, in real robot implementations, the learning process is time-consuming.
Moreover, it causes wear and tear on the robot due to the high repeatition. Thus,
we perform the proposed framework in a simulation software named LWRSIM [37].
It uses MuJoCo [38], an advanced physics simulation developed by Emo Todorov for
Roboti LLC, to simulate physical contacts between the object. The simulation runs
faster than real-time without physical damage.

4.2 Tasks
4.2.1 Ball in a Cup

The ball-in-a-cup game needs a cup, a string, and a ball. The cup is attached to the
end-effector of KUKA LBR 4+; the string is attached to the bottom of the cup and
the ball hangs vertically under the cup by the string (see Fig. 9). The objective of
the game is to move the cup in order to get the ball in the cup. Since the length of
the string can be observed, changed and evaluated easily, we chose the string length
as the task parameter τ , which was varied within τ ∈ {29 cm, 30 cm, . . . , 43 cm}. In
order to succeed in this game, the movement requires a complex trajectory. Moreover,
the change in string length can result into a significant change in the dynamics of the

29

task which requires a complex change in the motion. Thus, we can easily evaluate
the generalization capability of a CSM with ball-in-a-cup game. Since the movement
was restricted to a plane, the trajectories along y and z direction were encoded using
separate DMPs [39]. Each DMP requires 20 kernels, thus in total N = 40 parameters
were needed to be fine-tuned by the PoWER algorithm for a task parameter.

Figure 9: Learning ball-in-a-cup skill using KUKA LBR 4+ in MuJoCo.

4.2.2 Basketball

The basketball game requires a ball holder, a basket, and a ball. The ball holder
is attached to the end-effector of KUKA LBR 4+ and the basket is located at a
certain distance in front of the robot (see Fig. 10). The objective of the game
is to throw the ball into the basket. We chose the distance between the basket
and the base of the robot as the task parameter τ , which was varied within τ ∈
{120 cm, 130 cm, . . . , 240 cm}. Identical to the ball-in-a-cup game, the movement
was restricted to a plane, thus only joints 2, 3, and 6 were used; the rest of the joints
were kept fixed. Each DMP requires 20 kernels, thus in total N = 60 parameters
were needed to be fine-tuned by the PoWER algorithm for a task parameter.

30

Figure 10: Learning basketball skill using KUKA LBR 4+ in MuJoCo.

31

5 Results
This chapter presents the experiment results. Section 5.1 represents the results of
contextual skill model learned in different situations. Then, the results of learning
rate model and reward model are presented in Section 5.2 and Section 5.3 respectively.
Finally, Section 5.4 shows the results of skill performance over time for ball in a cup
and basketball tasks.

5.1 Contextual Skill Model
In order to map the task parameters to policy parameters, we used Gaussian process
regression (GPR) to learn a contextual skill model. In this case, we selected dot-
product kernel with exponent 2, which can be seen as a quadratic kernel. This model
has been used in simulation to real world transfer [40], called global parametric
dynamic movement primitives (GPDMP). It has been shown that the generalization
capabilities with GPDMP performed better than the linear CSM [11] or local models
using model selection [39]. Besides that, we compare the performance of GPDMP
and GPR with RBF kernel in Section 5.1.1.

5.1.1 Learning CSM with RBF and GPDMP

In order to determine a suitable kernel for the CSM, we compared the skill perfor-
mance of GPR with RBF kernel vs. GPDMP.

We selected 3 optimal policies with string length {30cm, 35cm, 41cm} to learn
CSM with GPDMP and RBF kernel respectively, and used 6 optimal policies with
string length {30cm, 32cm, 35cm, 37cm, 39cm, 41cm} to learn the CSM with RBF
kernel. Then, We evaluated the skill performance for these 3 CSMs. Figure 11 shows
that the CSM learned with GPDMP has the best skill performance (the average
reward r̄GP DMP 3 is 0.615). The CSM learned with RBF kernel from 6 samples (the
average reward r̄RBF 6 is 0.475) has better skill performance than the CSM learned
with RBF kernel from 3 samples (the average reward r̄RBF 3 is 0.405). Thus, GPDMP
is more suitable in our experiments.

32

Figure 11: Skill Performance for Different CSMs.

We compared 3 CSMs which are learned with RBF using 3 samples, RBF using
6 samples and GPDMP using 6 samples (see Fig. 12 and Fig. 13). In the figures, the
x axis represents the task parameter, and y axis represents the corresponding policy
parameter. The figures show great differences that exist in the edge region of the
fitting range, since RBF can cause edge effects when fitting functions, which means
that the fitting effect is not ideal in the edge region of the fitting range. The reason
is that the data points at the edge are only trained using one side of the data, which
inevitably leads to loss of precision. According to the skill performance in Fig. 11,
the CSM learned with RBF kernel from more samples has better skill performance,
since the shape of the CSM is more similar to the CSM learned with GPDMP, which
is a quadratic curve.

33

28 30 32 34 36 38 40 42 44
140

120

100

80

60

40

28 30 32 34 36 38 40 42 44
560
540
520
500
480
460
440
420
400
380

28 30 32 34 36 38 40 42 44
950
900
850
800
750
700
650
600
550

28 30 32 34 36 38 40 42 44
1000

900

800

700

600

500

400

28 30 32 34 36 38 40 42 44
800
700
600
500
400
300
200
100

28 30 32 34 36 38 40 42 44
300
200
100

0
100
200
300
400

28 30 32 34 36 38 40 42 44
300

400

500

600

700

800

900

28 30 32 34 36 38 40 42 44
500

600

700

800

900

1000

1100

28 30 32 34 36 38 40 42 44
400

500

600

700

800

900

1000

28 30 32 34 36 38 40 42 44
300

400

500

600

700

800

900

28 30 32 34 36 38 40 42 44
200

100

0

100

200

300

400

28 30 32 34 36 38 40 42 44
500

400

300

200

100

0

100

28 30 32 34 36 38 40 42 44
100

200

300

400

500

600

28 30 32 34 36 38 40 42 44
900

1000

1100

1200

1300

1400

28 30 32 34 36 38 40 42 44
850
900
950

1000
1050
1100
1150
1200

28 30 32 34 36 38 40 42 44
350
300
250
200
150
100

50
0

50

28 30 32 34 36 38 40 42 44
300
250
200
150
100

50
0

50
100
150

28 30 32 34 36 38 40 42 44
50
0

50
100
150
200
250
300

28 30 32 34 36 38 40 42 44
150

100

50

0

50

100

150

28 30 32 34 36 38 40 42 44
60
50
40
30
20
10
0

10
20

GPDMP3

RBF3

RBF6

String Length

P
o
lic

y
 P

a
ra

m
e
te

r
CSM(y) Learned with RBF Using 3 Samples, RBF Using 6 Samples and GPDMP Using 3 samples

Figure 12: CSMs(y) learned with RBF using 3 samples, RBF using 6 samples and
GPDMP using 3 samples.

28 30 32 34 36 38 40 42 44
150
160
170
180
190
200
210
220

28 30 32 34 36 38 40 42 44
60
80

100
120
140
160
180
200

28 30 32 34 36 38 40 42 44
60
80

100
120
140
160
180
200

28 30 32 34 36 38 40 42 44
50

0

50

100

150

200

28 30 32 34 36 38 40 42 44
100

50
0

50
100
150
200
250

28 30 32 34 36 38 40 42 44
50
0

50
100
150
200
250
300

28 30 32 34 36 38 40 42 44
50
0

50
100
150
200
250
300
350
400

28 30 32 34 36 38 40 42 44
100
150
200
250
300
350
400
450
500
550

28 30 32 34 36 38 40 42 44
200
250
300
350
400
450
500
550
600

28 30 32 34 36 38 40 42 44
150

100

50

0

50

100

150

28 30 32 34 36 38 40 42 44
420
400
380
360
340
320
300
280
260

28 30 32 34 36 38 40 42 44
100

150

200

250

300

350

400

28 30 32 34 36 38 40 42 44
1250
1300
1350
1400
1450
1500
1550
1600
1650

28 30 32 34 36 38 40 42 44
1000

1100

1200

1300

1400

1500

1600

28 30 32 34 36 38 40 42 44
100

50
0

50
100
150
200
250
300
350

28 30 32 34 36 38 40 42 44
500
450
400
350
300
250
200
150
100

28 30 32 34 36 38 40 42 44
200
150
100

50
0

50
100
150

28 30 32 34 36 38 40 42 44
100

50

0

50

100

150

28 30 32 34 36 38 40 42 44
20
0

20
40
60
80

100
120

28 30 32 34 36 38 40 42 44
20

0

20

40

60

80

100

GPDMP3

RBF3

RBF6

String Length

P
o
lic

y
 P

a
ra

m
e
te

r

CSM(z) Learned with RBF Using 3 Samples, RBF Using 6 Samples and GPDMP Using 3 samples

Figure 13: CSMs(z) learned with RBF using 3 samples, RBF using 6 samples and
GPDMP using 3 samples.

34

5.1.2 Learning CSM with Random task order

In order to study whether the task order contributes to the learning speed, we
did three experiments where the task orders were generated randomly and learned
CSM with all optimal policies until skill performance converges. It should be noted
that the convergence of the skill performance does not mean that the final CSM
is optimal. In Fig. 14, experiment 1 (blue line) converges fastest and achieves
a successful skill model with the task order {35cm, 32cm, 37cm, 41cm, 39cm, 30cm}
after only 13 policy updates. However, experiments 2 (orange line) with the task order
{35cm, 32cm, 29cm, 33cm, 33cm, 33cm, 40cm, 34cm, 37cm, 39cm, 41cm, 42cm} and 3
(green line) with the task order {35cm, 30cm, 33cm, 30cm, 30cm, 38cm, 39cm, 38cm,
32cm, 37cm, 40cm, 43cm} converge slowly and cannot achieve a successful skill model
at the end. In this case, we can easily achieve a successful skill model with a good
task order, which means that the learning speed depends to some extent on the
task order. On the other hand, the result also shows that more samples and longer
learning times do not mean that we can learn a better skill model.

Figure 14: Skill performance for ball in a cup experiments using a CSM learned with
random task order.

5.1.3 Learning CSM with spatiotemporal kernel

In [10], Da Silva et al. proposed a non-parametric Bayesian approach of skill
performance which uses a GP with a spatio-temporal kernel to accommodate the
non-stationary skill performance. They actively selected each task that maximizes
expected improvement in skill performance, then learned each task until the policy
was optimal, and used all optimal policies to train a CSM. In order to compare
with the results of our approach, we performed experiments with the aforementioned

35

approach and learned CSMs with GPDMP in the ball-in-a-cup task.

The spatio-temporal kernel is comprised of two kernels, one for measuring the
similarity between tasks and one for measuring the similarity between time. With
this kernel, we got two inconsistent results (see Fig. 15) even though the task order
has been the same, which is {35, 38, 36, 34, 37, 39, 33, 31, 32, 40, 42, 41, 30, 43, 29}.

The learning process started with close task parameters {35, 38, 36}, since the
algorithm tends to select a task parameter which is close to the already learned
task parameters. However, the two CSMs learned with the same three samples
{35, 38, 36} are very different (see Fig. 16 and Fig. 17), which explains to some extent
why the results of continuous updated skill performance with the same task order
are quite different (see Fig. 15). The reason behind this is that the current CSM is
always updated with the previous CSM. When the CSM is learned with bad samples
in the initial stages, the model would tend to the wrong direction, resulting in an
unsuccessful CSM in the end. Thus, this active learning approach is useful when the
task parameters are irregular and non-smooth or has local underlying regularities.

Figure 15: Skill performance for ball-in-a-cup experiment using all optimal samples
with a spatiotemporal kernel.

36

28 30 32 34 36 38 40 42 44
100

50

0

50

100

150

28 30 32 34 36 38 40 42 44
600

500

400

300

200

100

0

28 30 32 34 36 38 40 42 44
1000

900
800
700
600
500
400
300

28 30 32 34 36 38 40 42 44
1000

900
800
700
600
500
400
300
200

28 30 32 34 36 38 40 42 44
1000

800

600

400

200

0

200

28 30 32 34 36 38 40 42 44
800
600
400
200

0
200
400
600
800

28 30 32 34 36 38 40 42 44
500

0

500

1000

1500

28 30 32 34 36 38 40 42 44
500

0

500

1000

1500

2000

28 30 32 34 36 38 40 42 44
500

0

500

1000

1500

2000

28 30 32 34 36 38 40 42 44
500

0

500

1000

1500

2000

28 30 32 34 36 38 40 42 44
1500

1000

500

0

500

1000

1500

28 30 32 34 36 38 40 42 44
1500

1000

500

0

500

1000

28 30 32 34 36 38 40 42 44
1000

500

0

500

1000

1500

28 30 32 34 36 38 40 42 44
500

0

500

1000

1500

2000

28 30 32 34 36 38 40 42 44
400
200

0
200
400
600
800

1000
1200
1400

28 30 32 34 36 38 40 42 44
1400
1200
1000

800
600
400
200

0
200

28 30 32 34 36 38 40 42 44
1000

800

600

400

200

0

200

28 30 32 34 36 38 40 42 44
600
500
400
300
200
100

0
100
200
300

28 30 32 34 36 38 40 42 44
400

300

200

100

0

100

200

28 30 32 34 36 38 40 42 44
200

150

100

50

0

50

Experiment 1

Experiment 2

String Length

P
o
lic

y
 P

a
ra

m
e
te

r

CSM(y) Learned with Different Samples

Figure 16: CSMs with different samples.

28 30 32 34 36 38 40 42 44
150
200
250
300
350
400
450
500
550

28 30 32 34 36 38 40 42 44
100
200
300
400
500
600
700
800
900

28 30 32 34 36 38 40 42 44
0

200

400

600

800

1000

28 30 32 34 36 38 40 42 44
0

200

400

600

800

1000

1200

28 30 32 34 36 38 40 42 44
0

200
400
600
800

1000
1200
1400
1600

28 30 32 34 36 38 40 42 44
0

200
400
600
800

1000
1200
1400
1600
1800

28 30 32 34 36 38 40 42 44
0

500

1000

1500

2000

28 30 32 34 36 38 40 42 44
0

500

1000

1500

2000

2500

28 30 32 34 36 38 40 42 44
0

500

1000

1500

2000

2500

28 30 32 34 36 38 40 42 44
500

0

500

1000

1500

2000

28 30 32 34 36 38 40 42 44
600
400
200

0
200
400
600
800

1000
1200

28 30 32 34 36 38 40 42 44
0

200
400
600
800

1000
1200
1400
1600

28 30 32 34 36 38 40 42 44
1000
1200
1400
1600
1800
2000
2200
2400

28 30 32 34 36 38 40 42 44
1000

1200

1400

1600

1800

2000

28 30 32 34 36 38 40 42 44
200
100

0
100
200
300
400
500
600
700

28 30 32 34 36 38 40 42 44
600
500
400
300
200
100

0
100
200

28 30 32 34 36 38 40 42 44
200

100

0

100

200

300

400

28 30 32 34 36 38 40 42 44
100

0

100

200

300

400

500

28 30 32 34 36 38 40 42 44
50
0

50
100
150
200
250
300
350
400

28 30 32 34 36 38 40 42 44
0

50

100

150

200

250

300

Experiment 1

Experiment 2

String Length

P
o
lic

y
 P

a
ra

m
e
te

r

CSM(z) Learned with Different Samples

Figure 17: CSMs with different samples.

37

5.2 Learning Rate Model
Instead of predicting the reward with the upper endpoint of the 95% confidence
interval around the mean of GP, we proposed a learning rate model J(t) to predict
reward improvement if we continue optimizing the corresponding policy parameters
for ∆ policy updates in policy search. In order to model the learning rate, we did an
experiment where we learned ball-in-a-cup game for different task parameters with
the same initial policy parameters using PoWER. Then, we recorded each reward
value after each policy update of policy search until the reward converges.

5.2.1 Reward function with exponential

As the reward function we chose,

R = exp(−150 · d2) exp(−0.0005
∑

v) (41)
where d is the distance between ball and the center of the cup, v is the velocities of
the robot joints. We first built learning rate model with logistic regression

J(t; βJ) = d

c + exp(−a(t − b)) , (42)

where βJ = {a, b, c, d} is the hyper-parameters of the learning rate model. Logistic
regression is a better choice than Gaussian process regression, since the reward will
continue to improve during policy search and finally converge.

In order to simplify the learning rate model, we fixed the value of c and d. In
this case, d is the highest reward which is achieved by implementing PoWER on the
initial task parameter. Then, the updated model can be rewritten into

J(t; βJ) = 0.66
1 + exp(−a(t − b)) . (43)

Fig. 18 shows the learning rate model with logistic regression for different task
parameters. Different colors indicate different task parameters. The colorful points
are rewards we recorded during the learning process. All learning processes start
from the same human demonstration.

The result shows the logistic regression fits the observed data well. However,
the initial rewards with the same initial policy are the same 0 for different task
parameters, while the initial recorded distances between the ball and target for
different task parameters are not the same with the same initial reward. Thus, the
learning rate model cannot show the difference of the initial situation for different
task parameters.

38

Figure 18: Learning rate model for ball-in-a-cup experiment with different task
parameters.

5.2.2 Reward function without exponential

In order to solve the problem we mentioned above, we changed the reward function
into

R = −150 · d2 − 0.0005
∑

v. (44)
The learning rate model should be changed correspondingly,

J(t; βJ) = − exp(−a(t − b)). (45)

We used an exponential model to fit the learning rate model, and the result for
ball-in-a-cup game are shown in Fig. 19. It can be observed that the recorded initial
rewards are quite different with the same initial policy for different task parameters.
On the other hand, these curves are in perfect alignment, which means that we can
overlap them by translation, indicating that the learning rate is independent of the
task parameters. The improved learning rate model is better than the previous one
since it can show the difference of the initial situation very well. We observed similar
results in basketball experiment (see Fig. 20).

39

Figure 19: Learning rate model for ball-in-a-cup experiment with different task
parameters.

Figure 20: Learning rate model for basketball experiment with different task param-
eters.

5.3 Reward Model
During the learning process, different task parameters will have different task difficulty.
The reward model built only with optimal rewards cannot indicate the effort taken

40

for different task parameters. In order to model the reward R(τ) across all task
parameters with different task difficulty, we evaluated the reward for each task
parameter by executing the corresponding policy from the current skill model. Then,
we built the reward model with Gaussian process (GP)

R(τ ; βR) ∼ GP(τ , βR). (46)

Fig. 21 shows an example of the reward model. Blue stars mark the observed rewards
for each task parameters based on the current skill model, while the blue curve
indicates the reward model using the observed rewards. Red stars mark the predicted
reward after 2 iterations in policy search for each task parameter using learning
rate model, while the red curve indicates the predicted reward model if we continue
optimizing the corresponding policy parameters for the next task parameter τ = 43
(yellow star).

We updated the reward model R(τ), predicted the improvement in skill perfor-
mance after each ∆ iterations of RL, and then computed the expected improvement in
skill performance across a range of task parameters for each candidate. However, this
reward model is only useful when the learning rate can be predicted or modeled. The
intermediate policies have not yet converged to optima during the learning process,
thus we cannot to predict the reward after ∆ iterations of RL without learning rate
model of reward function.

Figure 21: Reward model for ball-in-a-cup experiment.

5.4 Active incremental learning
We applied the active incremental learning algorithm (see Algorithm 2) to actively
select a task step by step for learning ball-in-a-cup and basketball games. In order

41

to compare the skill performance, we used random task order as the baseline. For
each game, we performed both active and random task selection 5 times.

For ball-in-a-cup game, we chose the string length τ0 = 35 cm as the initial task
parameter. For basketball game, we chose the distance of the basket from the base of
the robot τ0 = 180 cm as the initial task parameter. We used PoWER [25] to train
the initial task parameter and achieved an optimized policy after 6 policy updates
for the ball-in-a-cup, and after 5 policy updates for the basketball. We run PoWER
for ∆ = 2 iterations for the selected task in order to update the corresponding policy
parameters in each policy search iteration.

We compared the skill performance SP over time for ball-in-a-cup (see Figs. 22)
and basketball (see Figs. 23). The blue curve denotes the proposed active incremental
learning method and the grey curve is the baseline (random learning), error bars
denoting 1 standard deviation. Generally, the skill performance improves over time
for both methods. However, active learning method learned faster on average and had
smaller variance. With the active learning, the CSM could provide successful zero-
shot generalization for the entire range of task parameters after 20 policy updates for
ball-in-a-cup and 23 policy updates for basketball. The success rate for the random
learning after the same number of policy updates was 75% for ball-in-a-cup and 80%
for basketball.

Figure 22: Skill performance on ball-in-a-cup skill: active (in blue) versus random
task selection (in grey).

42

Figure 23: Skill performance on basketball skill: active (in blue) versus random task
selection (in grey).

For both games, the average skill performance of random learning also improves
continuously which benefits from incremental learning. However, the result shows
that incremental learning combined with active learning could improve the skill
performance faster and more consistently, achieving the predictable improvement
behavior.

5.5 Conclusion
We choose ball-in-a-cup and basketball games as our research tasks, because the
task parameters can be observed, evaluated easily and the task space is regular and
continuous, which is beneficial to model the CSM with DMP. However, in fact, the
task parameter is not easy to determine in more complex RL problems and the task
might be inherently difficult to learn.

In [10], Da silva et al. considered equal task difficulty for all candidate task
parameters. However, this assumption is not clear and it is challenging to model
a task difficulty in a general case. The task difficulty can be indicated by reward,
reward uncertainty or learning time. In this case, we proposed to stop learning the
selected task and evaluate the skill performance for all candidate task parameters
after fixed learning time of RL until the CSM can achieve successful skills for all
task parameters. Compared to random task selection, the results show that active
learning had smaller variance in skill performance, led to almost consistent results
and achieved successful CSM in both ball-in-a-cup and basketball games. However,
this active incremental learning algorithm is useful when the learning rate of reward
can be modeled easily, otherwise EISP cannot be predicted.

43

6 Summary
The goal of this thesis was to learn a contextual skill model (CSM) which maps task
parameter to policy parameters using active incremental learning (see Algorithm 2).
The learned CSM shared information across task parameters and provided successful
policies for the entire range of task parameters at the end. The task order was
actively selected by maximizing the expected improvement of skill performance over
all task parameters. For both games, the result indicated that actively selecting the
task order could improve skill performance significantly.

Instead of directly learning a CSM with several optimal policies, we updated the
skill model iteratively. At each update stage, the next task parameter was actively
selected for the CSM and the intermediate CSM provided a better initial policy of
the selected task parameter than a human demonstration for the policy search. Then,
the intermediate CSM was updated with the intermediate policies which may not
have been optimized, since the selected task parameter is only optimized with a
fixed number of policy updates. In our experiments, we divided the task space into
three regions and always chose the most recent sample from each region to fit the
CSM. We compared the performance of using all samples and partial samples. The
result showed that the latter had a better performance, since the outdated samples
which have not been updated for a long time may not contribute to improve the CSM.

In order to predict the reward improvement after a fix number of policy updates,
we introduced the learning rate model which is determined at the initialization stage.
In our experiments, we found the shape of the learning rate model is similar for
different task parameters, which means the model is independent of task parameters,
although this is not true for most reinforcement learning problems due to high
stochasticity, where the learning rate model cannot be easily modeled or need to add
uncertainties to the parameters. In our experiment, the learning rate model could
also be parametrized with respect to task parameters, which require more data to
estimate at the beginning. Therefore, the task-independent learning rate model was
a better choice in our experiments.

In this thesis, the framework is agnostic to the type of policy representation,
contextual skill model, and policy search. The main assumption behind the framework
is that the reward function converges exponentially over time and the learning rate of
reward is independent of task parameters. However, the framework was only tested
in a simulated environment. Therefore, future studies should focus on implementing
the application of the framework on a real robot and addressing the challenge of how
to model the learning rate for more complex reinforcement learning problems.

44

References
[1] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill coordina-

tion with em-based reinforcement learning,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3232–3237, IEEE, 2010.

[2] J. Peters and S. Schaal, “Reinforcement learning of motor skills with policy
gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[3] S. Calinon, T. Alizadeh, and D. G. Caldwell, “On improving the extrapola-
tion capability of task-parameterized movement models,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 610–616, IEEE,
2013.

[4] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning compact
parameterized skills with a single regression,” in 2013 13th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids), pp. 417–422, IEEE,
2013.

[5] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion synthesis and
adaptation using a trajectory database,” Robotics and Autonomous Systems,
vol. 60, no. 10, pp. 1327–1339, 2012.

[6] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific generalization of
discrete and periodic dynamic movement primitives,” IEEE Transactions on
Robotics, vol. 26, no. 5, pp. 800–815, 2010.

[7] B. Nemec, R. Vuga, and A. Ude, “Efficient sensorimotor learning from multiple
demonstrations,” Advanced Robotics, vol. 27, no. 13, pp. 1023–1031, 2013.

[8] A. G. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann, “Data-efficient
generalization of robot skills with contextual policy search,” in Twenty-Seventh
AAAI Conference on Artificial Intelligence, 2013.

[9] G. Neumann et al., “Variational inference for policy search in changing situations,”
in Proceedings of the 28th International Conference on Machine Learning, ICML
2011, pp. 817–824, 2011.

[10] B. Da Silva, G. Konidaris, and A. Barto, “Active learning of parameterized
skills,” in International Conference on Machine Learning, pp. 1737–1745, 2014.

[11] J. Lundell, M. Hazara, and V. Kyrki, “Generalizing movement primitives to new
situations,” in Conference Towards Autonomous Robotic Systems, pp. 16–31,
Springer, 2017.

[12] B. Da Silva, G. Konidaris, and A. Barto, “Learning parameterized skills,” arXiv
preprint arXiv:1206.6398, 2012.

45

[13] T. Matsubara, S.-H. Hyon, and J. Morimoto, “Learning parametric dynamic
movement primitives from multiple demonstrations,” Neural Networks, vol. 24,
no. 5, pp. 493–500, 2011.

[14] A. Fabisch and J. H. Metzen, “Active contextual policy search,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 3371–3399, 2014.

[15] J. H. Metzen, “Active contextual entropy search,” arXiv preprint
arXiv:1511.04211, 2015.

[16] S. Thrun, “Is learning the n-th thing any easier than learning the first?,” in
Advances in neural information processing systems, pp. 640–646, 1996.

[17] Z. Chen and B. Liu, “Lifelong machine learning,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 10, no. 3, pp. 1–145, 2016.

[18] M. Hazara and V. Kyrki, “Speeding up incremental learning using data efficient
guided exploration,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1–8, May 2018.

[19] G. Fei, S. Wang, and B. Liu, “Learning cumulatively to become more knowl-
edgeable,” in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1565–1574, ACM, 2016.

[20] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with nonlinear
dynamical systems in humanoid robots,” in Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference on, vol. 2, pp. 1398–1403,
IEEE, 2002.

[21] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical
movement primitives: learning attractor models for motor behaviors,” Neural
computation, vol. 25, no. 2, pp. 328–373, 2013.

[22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[23] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus, “Google deep mind’s alphago,”
OR/MS Today, vol. 43, no. 5, pp. 24–29, 2016.

[24] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-efficient
approach to policy search,” in Proceedings of the 28th International Conference
on machine learning (ICML-11), pp. 465–472, 2011.

[25] J. Kober and J. R. Peters, “Policy search for motor primitives in robotics,” in
Advances in neural information processing systems, pp. 849–856, 2009.

[26] M. Hazara and V. Kyrki, “Reinforcement learning for improving imitated in-
contact skills,” in 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids), pp. 194–201, Nov 2016.

46

[27] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search.,” in AAAI,
pp. 1607–1612, Atlanta, 2010.

[28] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[29] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement learning for
imitating constrained reaching movements,” Advanced Robotics, vol. 21, no. 13,
pp. 1521–1544, 2007.

[30] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted regression
for operational space control,” in Proceedings of the 24th international conference
on Machine learning, pp. 745–750, ACM, 2007.

[31] T. Rückstieß, M. Felder, and J. Schmidhuber, “State-dependent exploration for
policy gradient methods,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 234–249, Springer, 2008.

[32] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, vol. 135.
MIT press Cambridge, 1998.

[33] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning,
vol. 1. MIT press Cambridge, 2006.

[34] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on gaussian process
regression: Modelling, exploring, and exploiting functions,” Journal of Mathe-
matical Psychology, vol. 85, pp. 1–16, 2018.

[35] J. H. Metzen, “Illustration of prior and posterior gaussian pro-
cess for different kernels.” https://scikit-learn.org/stable/auto_
examples/gaussian_process/plot_gpr_prior_posterior.html#
sphx-glr-auto-examples-gaussian-process-plot-gpr-prior-posterior-py.

[36] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer School
on Machine Learning, pp. 63–71, Springer, 2003.

[37] S. Vaara, T. Hirvola, K. Voutilainen, and J. Antonenko, “Simulating robot skills:
lwrsim.” https://wiki.aalto.fi/display/AEEproject/Simulating+robot+
skills.

[38] Roboti, “Mujoco: advanced physics simulation.” http://www.mujoco.org.

[39] M. Hazara and V. Kyrki, “Model selection for incremental learning of generaliz-
able movement primitives,” in 18th IEEE International Conference on Advanced
Robotics (ICAR 2017), Hong Kong, 2017.

[40] M. Hazara and V. Kyrki, “Transferring generalizable motor primitives from
simulation to real world,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 2172–2179, 2019.

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html#sphx-glr-auto-examples-gaussian-process-plot-gpr-prior-posterior-py
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html#sphx-glr-auto-examples-gaussian-process-plot-gpr-prior-posterior-py
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html#sphx-glr-auto-examples-gaussian-process-plot-gpr-prior-posterior-py
https://wiki.aalto.fi/display/AEEproject/Simulating+robot+skills
https://wiki.aalto.fi/display/AEEproject/Simulating+robot+skills
http://www.mujoco.org

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	2 Background
	2.1 Generalization using Regression
	2.2 Generalization using contextual policy search
	2.3 Active Learning
	2.4 Incremental Learning

	3 Research material and methods
	3.1 Dynamic Movement Primitives
	3.2 Reinforcement Learning
	3.2.1 Policy search
	3.2.2 Policy Learning by Weighted Exploration with the Returns

	3.3 Gaussian Processes
	3.4 Active Incremental Learning
	3.4.1 Problem Definition
	3.4.2 Algorithm

	4 Experiment
	4.1 Setting
	4.1.1 The KUKA LWR4+ Robot Arm
	4.1.2 Robot Operating System
	4.1.3 Learning a Robotic Skill in a Simulation Software

	4.2 Tasks
	4.2.1 Ball in a Cup
	4.2.2 Basketball

	5 Results
	5.1 Contextual Skill Model
	5.1.1 Learning CSM with RBF and GPDMP
	5.1.2 Learning CSM with Random task order
	5.1.3 Learning CSM with spatiotemporal kernel

	5.2 Learning Rate Model
	5.2.1 Reward function with exponential
	5.2.2 Reward function without exponential

	5.3 Reward Model
	5.4 Active incremental learning
	5.5 Conclusion

	6 Summary
	References

