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Abstract  

The objective of this thesis was to study thermodynamics and precipitation kinetics 
of lithium carbonate in liquid-liquid and gas-liquid system in a jacketed stirred tank 
reactor and study the influence of impeller speed, pump flow rate, residence time 
and ageing for precipitation of lithium carbonate in homogeneous system and gas 
flow rate, impeller speed, temperature, residence time and ageing for precipitation 
of lithium carbonate in heterogeneous system as operation variables. Filterability 
was studied to investigate efficient solid-liquid separation. The result obtained 
from homogeneous and heterogeneous reactive crystallization were investigated 
and compared. 
 

Solubility study of Li2CO3 in Li2CO3-Li2SO4-H2O ternary system modeled with 
Pitzer thermodynamic model indicated the effects of other electrolytes on the 
Li2CO3 solubility behavior. Mixing conditions such as flow patterns and internal 
stirring speed were theoretically studied to have efficient mixing and avoid flooding 
of gas. 
 

The crystals produced from crystallization in heterogeneous system and 
homogeneous system were characterized with scanning electron microscope 
(SEM), energy dispersion x-ray spectroscopy (EDS), and X-ray diffraction, particle 
size distribution. The crystals are mainly Li2CO3 that was identified by using 
HighScore software. Particles have flower-shape pellets and the size is in the 
range of 50-100 µm. 
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Overall, the study clearly shows that crystallization using CO2 gas in gas-liquid 
system and using Na2CO3 in liquid-liquid system can be used as a feasible way to 
recover lithium carbonate from lithium sulfate solution. It was noted that the high 
pH was necessary for the absorption of CO2 gas and to get the maximum crystals 
in heterogeneous reactive crystallization. In addition, the pH was dependent to the 
temperature which results difficulty in controlling the pH of the solution, product 
yield percentage, purity and uniform crystal shape. To predict the precipitation 
kinetics of Li2CO3, homogeneous reactive crystallization was easier because no 
pH adjustment required, rapid precipitation and more crystals obtained in less time 
as compared to the heterogeneous reactive crystallization. 

Keywords  Precipitation kinetics, reactive crystallization, dissolution, Pitzer model, 

lithium carbonate precipitation, mixing, stirred tank 
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A Filtration area m2 
dp Diameter of particle m 
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n Compressibility index - 
Δp Pressure difference - 
q Superficial velocity of filtrate m3/s 
Q Flow rate of filtrate L/min 
V Volume of filtrate L 
α Specific cake resistance m/s 
ε Porosity - 
μ Dynamic viscosity of liquid pa. s 
I Ionic strength mol/m3 
Re Reynolds number - 
N Stirrer speed revolutions per 

minute 
D Impeller diameter m 
ρ Density kg/m3 
Fgs Volumetric gas flow rate m3/s 
g Gravitational acceleration 9.8 m/s2 
DA2 Diameter of agitator of scale up vessel m 
DA1 Diameter of agitator of scale up vessel m 
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1. Introduction 

1.1 Background 

Lithium is available in the brines and lithium ores, which are the main sources of 

the production of lithium. Commercially and industrially, the most important lithium 

ores are lepidolite, spodumene, petalite and amblygonite. The price of lithium is 

constantly increasing due to increasing in demand of lithium-ion batteries, ceramics 

and special glass production, manufacturing of aluminum temperature tolerant 

lubricant greases, air conditioning and catalyst in manufacturing of rubber, nuclear 

industry, pharmaceutical industry, synthesis of vitamins, formation of organic 

compounds and silver solders and underwater buoyancy devices (Mohr et al., 

2012). Lithium-ion batteries (LIB) is seen as the most efficient electro-chemical 

energy storage technology (Bi et al., 2016;Swain, 2017). 

Lithium carbonate is seen as one of the most important lithium chemical compound 

representing about 39% of total lithium demand. The main application of lithium 

carbonate are batteries (60%) and ceramics and glass (27%) in merchant market 

2017. Lithium carbonate is forecast to increase significantly and it is estimated that 

demand of lithium for industry related to batteries will reach 12,000 tons by 2020 

and 22,000 tons by 2025 (Swain, 2017). 

The main driver for the growth is the increasing use of lithium in larger batteries 

about 290,000 tons are expected to be demand for batteries in 2035 (Conservative 

Scenario). CORFO estimated that the world market for lithium batteries by 2022 is 

expected to continue its accelerated growth to double the actual market, reaching 

USD 40~46 Billion (CORFO, 2017). The Figure 1 and Figure 2 Market research 

Lithium 101 by Deutsche bank published in 2016 shows the global growth forecast 

of the lithium demand by applications and Figure 3 shows the lithium demand by 

end applications (2015-25). The lithium batteries production have raised globally to 

30% of the overall production in 2025 (Deutsche Bank, 2016). Production of lithium 

between 127 and 405 kt lithium per year will be required in the year 2050 (Mohr et 

al., 2012).  
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Figure 1: 2015 Lithium demand by 

applications (Deutsche Bank, 2016) 

 

Figure 2: 2025 Lithium demand by 

applications (Deutsche Bank, 2016) 

 

 

Figure 3: Lithium demand by end applications (2015-25) (Deutsche Bank, 2016) 

 

The largest manufacturers of battery are the Asian companies. Europe and Finland 

seeks this as a business opportunity to become world leaders in circular economy 

in batteries and aims to accelerate to acquire a lead in Battery technology in Europe 

so that they can reduce the imports of lithium and lithium products. The Keliber oy, 

which is a mining company, is going to start mining operations and lithium 

chemicals production during the year 2021. In addition to lithium mining, Keliber is 

also developing a chemical plant in Kokkola. The objective is to produce 11,000 

tons of high-quality lithium carbonate per year driven by the fast growing market for 

lithium battery worldwide (Poe, 2018). 
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Batteries from Finland activation two-year program started by Business Finland to 

establish battery market in Finland. Market of lithium carbonate internationally has 

been quite changing aggressively during the last few years. According to Banco 

Bilbao Vizcaya Argentaria’s (BBVA) research, the price of lithium rose significantly 

since 2016. The rise in production of electric vehicles resulted in the increased 

demand of lithium worldwide from 20% in 2014 to 49% in 2018 and it is stated that 

the lithium share of demand could achieve 90% by 2030 (Casillas and Marcial, 

2018).  

To meet lithium demand in future it is essential to raise the recycle the lithium-ion 

batteries from approximately 3 percent to 95 percent (Sonoc et al., 2015). Recycling 

of the battery waste provides the advantage of abiding the regulations concerning 

the waste such as imposing restrictions in the hazardous sub- stances usage in the 

EEE (RoHS) directive and waste electrical and electronic equipment (WEEE) 

directive. Through recycling, importance was given to United Nations Environment 

Program e-waste management program, strategy related to extend producer 

responsibility (EPR) waste management and helped to follow e-waste crime. 

Lithium ion battery should be 100 percent recycled with at least 90 percent recovery 

of lithium to prevent the upcoming supply crises (Sonoc et al., 2015). To meet 

lithium need, it is important to search the alternative methods to meet the lithium 

demand in an efficient way (Swain, 2017). 

  

https://www.businessfinland.fi/en/for-finnish-customers/services/build-your-network/bioeconomy-and-cleantech/smart-energy/#batteries
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1.2 Objective and scope of the work 

This research aims to study and compare the thermodynamics and lithium 

carbonate precipitation kinetics on the gas-liquid heterogeneous reactive 

crystallization using Li2SO4 and CO2, and in liquid-liquid homogeneous reactive 

crystallization by using Li2SO4 and Na2CO3. In both cases major phenomenon is 

investigated during the process. Key factors affecting the precipitation of lithium 

carbonate and kinetics studies regarding nucleation and crystal growth were 

investigated. 

 

The goal is to study the influence of impeller speed, pump flow rate, residence time 

and ageing for precipitation of lithium carbonate in homogeneous system and gas 

flow rate, impeller speed, temperature, residence time and ageing for precipitation 

of lithium carbonate in heterogeneous system to find the optimal condition to 

develop and manufacture crystals having desired attributes such as uniform crystal 

to provide the knowledge for process optimization and scale up in an industrial 

level. 

 

The studies concerning mixing in crystallizer to select optimum impeller speed for 

turbulent flow and gas flow rates to have efficient mixing and avoid flooding of gas 

were investigated. Cake filtration at constant pressure is one of the most important 

techniques for separation of a solid and a liquid phase from a slurry is considered 

in this study. 

 

The influence of Li2SO4 concentration in the solution of ternary system Li2SO4-

Li2CO3-H2O on the solubility of Li2CO3 was studied with Pitzer model. 

 

The produced samples were examined with Scanning Electron Microscope (SEM) 

and X-ray diffraction (XRD). Crystallization mechanisms such as nucleation and 

growth can be observed under ParticleTrack with Focused Beam Reflectance 

Measurement (FBRM) technology. Particle size distribution (PSD) was analyzed 

with the Malvern masterizer 2000. 

 

https://www.mt.com/int/en/home/products/L1_AutochemProducts/FBRM-PVM-Particle-System-Characterization/FBRM.html
https://www.mt.com/int/en/home/products/L1_AutochemProducts/FBRM-PVM-Particle-System-Characterization/FBRM.html


12 
 

The results obtained from the gas-liquid heterogeneous reactive crystallization and 

liquid-liquid homogeneous reactive crystallization were compared. Filterability, 

compressibility, particle shape, particle size distribution, product yield, nucleation, 

crystal growth, influence of process parameters and ageing were included. 
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Literature part 

2 Industrial and battery grade lithium carbonate  

Lithium can be found as third element on the periodic table and lithium is the first 

element in group of alkali metals. Lithium has the ability to be the most polarized 

element in the alkali metals and have the potential to possess chemical energy 

more efficiently due to the fact that it has very high electronegativity. Lithium in the 

form of lithium carbonate have many applications, such as in medications for the 

treatment of patients, manufacturing of metal alloys, glasses, ceramics, enamel, 

fritted grazes and refractories. Lithium is used to manufacture lithium grease for 

waterproofing purpose and potential to attain high viscosity, low melting point, 

attains mechanically high strength and potential of having high thermal resistance. 

Lithium is also used medically to treat hypertension, epilepsy, headaches and even 

in treatment of teethes (Kavanagh et al., 2018). 

The battery grade lithium carbonate requires sodium less than 6x10-4 % because 

this metal has ability to react and oxidize with oxygen resulting in potential to ignite. 

The quantity of magnesium in battery grade lithium carbonate should be also less 

than 5x10-3 % because this metal makes a layer on the electrolyte during electro-

winning of lithium results in shot circuiting of the cells (Swain, 2017).  

3. Precipitation of lithium carbonate  

Kelkar and Ng (1999) briefly describe that reactive crystallization, or precipitation is 

a process which precipitate solids as a result of reaction between the reactants. 

Precipitation is a process involving same time reaction, mass transfer, nucleation 

and growth, including aging, ripening, agglomeration and breakage as a secondary 

processes (Kelkar and Ng, 1999). 

Pyrometallurgy and hydrometallurgy are the main processes which are engaged in 

precipitation of lithium from sources categorize as secondary and primary (Swain, 

2017), (Ordoñez et al., 2016), (Meshram et al., 2014). Precipitation of Li2CO3 from 

hydrometallurgical process is considered more feasible as compared to 

pyrometallurgy that needs big investment and causes pollution because of 

Advantages of this technology include of having ability to produce in small scale, 
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reducing hazardous emissions of gases, and having efficient energy usage and 

waste disposal (An et al., 2012), (Nguyen et al., 2018). According to Nguyen et al, 

(2018), disadvantage of precipitation are involving impurities present in the 

precipitates, the simultaneous precipitation of more than one compound from a 

solution and slow reaction kinetics. 

3.1 Precipitation of lithium carbonate by heterogeneous reactive 

crystallization 

The demand of Li2CO3 is increasing due to the use in batteries, pharmaceutical, 

atomic industry and information industry for microelectronic devices. Therefore 

there is a need to make efforts on manufacture lithium carbonate with highest purity. 

Precipitation of carbonate is one of the important proceses in synthesis of lithium 

carbonate. However, the study of thermodynamics and precipitation kinetics of 

CO2-Li2SO4 reactive crystallization has not been studied yet. A typical gas-liquid 

reactive crystallization mechanism where the reactants, products, or both are in 

more than one phase is most suitable in the stirred tank reactor. In addition, it is 

difficult to maintain the quality of the precipitates because the crystal size and shape 

is not always the same after each batch during manufacturing (Sun et al., 2012). 

Carbon dioxide is one of the gases that is contributing in the global warming 

(Gangopadhyay et al., 2008; Zhao et al., 2006). To overcome the climate changes 

the efforts in CO2 reduction are made by many countries (Yoo et al., 2013). 

According to Yoo et al., (2013), the potential method of capturing CO2 is chemical 

absorption of CO2 in a NaOH aqueous solution in a heterogeneous gas-liquid 

reaction. 

One of the advantages of using CO2 is economical and properties like low toxicity, 

easily recyclable and nonflammable, which makes it feasible in crystallization of 

Li2CO3 (Wang and Chiu, 2009). According to Jandova et al., (2012), one of the 

application is precipitation of Li2CO3 by CO2 from waste water. Firstly, the solution  

is concentrated to achieve lithium concentration of 12-13 g Li/L by solvent. The 

condensation process allows recovery of some volatile organic compounds. Then, 

CO2 in gaseous phase is fed at 40oC resulting LiHCO3 then the Li2CO3 is 

precipitated after solution temperature is elevated to 95oC, as shown in Figure 4. 
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Figure 4. Li2CO3 precipitation process from waste water (Jandova et al., 2012). 

Yoo et al., (2013) have explained the absorption process of CO2 in NaOH aqueous 

solution in detail where CO2 is physically absorbed in the NaOH aqueous solution 

The physical absorption is listed in the Eq. 1 (Yoo et al., 2013). 

 

CO2(g) → CO2(aq) Eq. 1 

Subsequently, aqueous CO2  reacts with OH− to produce HCO3
− and CO3

2−, as shown 

in Eqs. (2) and (3). 

CO2(aq) + OH− ⇄  HCO3
−(aq) Eq. 2 

 

HCO3
−(aq) + OH−(aq) ⇄ H2O(l) + CO3

2−(aq) Eq. 3 

 

While CO2 concentration is same during whole system it is considered to be as a 

pseudo first-order reaction. The reactions in Eq. 2 and Eq. 3 are reversible and fast 

at elevated pH. H2O and CO3
2− is produced as shown in Eq. 3 instantly after the 

reaction in Eq. 2. After the gaseous CO2 is converted into aqueous CO2 as seen in 

Eq. 2 and Eq. 3. High alkanity results in Eq. 3 to dominate which increases the CO3
2− 

concentration whereas HCO3
− concentration decreases. The pH constantly 

decreases during the reaction and concentration of CO3
2− increases. Considering 

the above mentioned absorption of CO2 mechanism, the net reaction is expressed 

in Eq. 4 (Yoo et al., 2013). 

2𝑁𝑎𝑂𝐻(𝑎𝑞) + 𝐶𝑂2(𝑔) → 𝑁𝑎2𝐶𝑂3(𝑎𝑞) + 𝐻2𝑂(𝑙) Eq. 4 
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According to Xu et al., (2014), industrial grade lithium carbonate was produced by 

reacting lithium sulfate with sodium carbonate shown in Eq. 5.  

𝐿𝑖2𝑆𝑂4 +  𝑁𝑎2𝐶𝑂3 →  𝐿𝑖2𝐶𝑂3 + 𝑁𝑎2𝐶𝑂3 Eq. 5 

 
According to Yoo et al., (2013), Eq. 6 represents the overall reaction in CO2 

absorption if the NaOH is limiting reactant, which represents the net reaction of Eq. 

2 and Eq. 3. 

 

𝑁𝑎𝑂𝐻(𝑎𝑞) + 𝐶𝑂2(𝑔) → 𝑁𝑎𝐻𝐶𝑂3(𝑎𝑞) Eq. 6 

 

According to Jandova et al., (2012), lithium carbonate solubility is lower in water at 

lower temperature and it produces lithium bicarbonate in the presence of aqueous 

CO2 as shown in Eq. 7. According to Martin et al., (2017), the LiHCO3/Li2CO3 

equilibrium in the Eq. 7 shifts to Li2CO3 when the temperature is increased above 

50oC. Solubility of lithium carbonate in water is much lower than the solubility of 

lithium bicarbonate as compared to bicarbonate of lithium. According to Jandova et 

al., (2012), heating the solution above 50oC results in convert of LiHCO3 to less 

soluble Li2CO3. 

 

𝐻2𝑂 + 𝐶𝑂2 + 𝐿𝑖2𝐶𝑂3 ⇄ 2LiH𝐶𝑂3 Eq. 7 

 

According to Xu et al., (2014), solubility of lithium carbonate decreases as the 

temperature increases and solubility of lithium sulfate slightly decreases as the 

temperature increases, which are shown in Figure 5 with the solubility curves of 

different lithium salts. 
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Figure 5. Solubility curves of different lithium salts with change of temperature (Xu et al., 2014) R=Secondary Y-

axis and L=primary Y-axis. 

3.1.1 Concentration at different pH 

According to Sun et al., (2012), the point at which the carbonation process is 

stopped is important to obtain the highest yield. Figure 6 shows that the most 

suitable end pH to have the highest yield is 9-9.5 as it can be seen from Figure 6 

that the concentration of [Li+] and [OH-] falls at constant pH 12, later when the pH 

decreases the concentration of [Li+] decreases and then increases. The optimum 

pH to obtain the maximum yield is between 9 and 9.5 (Sun et al., 2012). 

 

Figure 6. Concentration of ions present as the pH changes in the carbonation process (Sun et al., 2012). 
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3.1.2 Effects of operational variables 

Sun et al, (2012) investigated the influence of operation variables on nucleation 

rate, crystal growth rate and crystal breakage with the aim to obtain high crystal 

yield and uniform crystal quality. According to Sun et al., (2012), temperature is one 

of the most important aspect in the heterogeneous reactive crystallization. The 

reason for the rise in absorption is that the reaction rate increases as the 

temperature of the solution is increased. In addition, increase in temperature 

reduces the viscosity, which results in reduction in mass transfer limitations and 

increase in mass transfer coefficient.  

According to Sun et al., (2012), concentration of lithium in the solution controls the 

product yield since the rise of lithium concentration increases the reaction rate. The 

concentration of lithium should be above 2.0 mol/L to obtain the maximum Li2CO3 

precipitates.  

According to Sun et al., (2012), increase of CO2 gas flow rate causes decrease in 

precipitates yield. Increase in CO2 feed rate accelerates CO2 absorption in the 

interface and accelerates of CO3
2−  ions in gas-liquid interface phase. 

3.2 Precipitation of lithium carbonate by homogeneous reactive 

crystallization 

According to Han et al., (2018), a lithium carbonate was precipitated in a reactive 

crystallization in a homogeneous system which was depending on different 

conditions. The parameters affecting the precipitation of lithium carbonate are pH, 

lithium carbonate concentrations, temperature, impurities and residence time. 

According to Mikami et al., (2014), temperature 60 to 75oC, residence time of 90 

min, agitation speed of 300rpm and 1.0 mol/L of Na2CO3 aqueous solution are used 

to precipitate lithium carbonate. The crystal size and crystal size distribution were 

varied with the concentration of impurities in the solution. The increase of 

temperature resulted in higher yield of lithium carbonate (Mikami et al., 2014). 

According to Xu et al., (2014), industrial grade lithium carbonate was produced by 

reacting lithium sulfate with sodium carbonate, shown in Eq. 8.  

 

𝐿𝑖2𝑆𝑂4 + 𝑁𝑎2𝐶𝑂3 =  𝐿𝑖2𝐶𝑂3 + 𝑁𝑎2𝐶𝑂3 Eq. 8 
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According to Zhang et al., (1998), the lithium carbonate solubility concentration is 

inversely proportion to the temperature. Therefore the optimum temperature to 

precipitate the lithium carbonate is 100oC. 

The increase in agitation had a negative effect on the rate of nucleation since 

agitation increased the rate of molecules movement, which rose the collision 

between the molecules (McLeod et al., 2016). 

According to Han et al., (2018), lithium carbonate was successfully precipitated 

shown in SEM images in Figure 7 in a batch and semi-batch crystallization with the 

Na2CO3 with different pump rates and agitation rates at 50oC. Particle size 

distribution was affected by the rotation speed of impeller. Results showed that the 

particle size decreased when rotation speed of impeller increased. The reason 

behind this was the reduction in reaction time to crystallize the solids. Particles with 

smaller size increased due to higher chemical reaction time.  

 
Figure 7. SEM analysis of lithium carbonate precipitates under different residence time (Han et al., 2018). 

According to Peng et al., (2019), volume weight mean diameter and specific surface 

area of lithium carbonate produced was sulfate solution was 0.36 m2g-1 and 63.34 

µm, respectively. The particles were larger compared to the lithium carbonate 

production in nitrate system with mean diameter 24.10 m2g-1 and specific area of 

5.10 µm under the same parameters shown in Figure 8. 
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Figure 8. Crystal size distribution of lithium carbonate produced in sulfate system and nitrate system 

(Peng et al., 2019) 

4 Solubility curves of the system being studied 

4.1 Introduction 

In precipitation and crystallization process, solubility plays an important role in 

production and purity of the solid products. In crystallization or precipitation it is 

important to study the compound solubility in the solvent used. To obtain high purity 

solids, it is necessary to study the solubility of impurities in the solvent. Solubility is 

known as a tendency of a solute in solid, liquids and gaseous phase to dissolve in 

solvent solid, liquid or gaseous phase. The properties of the solute and solvent 

have an effect on the solubility of the solute e.g. pressure, temperature and 

impurities in solution. The study of solubility model provides the data of solute 

concentration changes. Crystal properties were predicted with the solubility model 

(Widenski et al., 2010). 
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4.4.1 Pitzer thermodynamics modelling (Li2CO3-Li2SO4-H2O) 

Pitzer model is considered one of the thermodynamics models to predict the 

electrolyte behavior in aqueous electrolyte solutions, especially at high ionic 

strengths. Pitzer model is the model which helps to predict the ions behavior 

dissolved in water. Chemist Kenneth Pitzer was the first person who introduced the 

model and defined the interactions between the solvent and the ions through linear 

combined parameters having a viral expansion of the Gibbs free energy. In addition, 

to predicting the behavior of the ions, Pitzer model can be used for several 

electrolytes up to 6 mol/kg molarity solutions (Simons el al,. 2016). 

4.4.2 Activity coefficient of Li2CO3 in binary system 

Solubility-product constant is also known as equilibrium constant Ksp. Solubility 

product constant is known to be equilibrium constant in solid ion and solution 

equilibrium and it indicates the solubility of salts in molar solubility (mol dm-3). At 

constant temperature solubility product remains same (Mayerser 2002). 

 

𝑙𝑛γ−
+ = |𝑍𝑀𝑍𝑋|𝑓γ + 𝑚 (

2𝑣𝑀𝑣𝑋

𝑣
) 𝐵𝑀𝑋

γ
+ 𝑚2 [

2(𝑣𝑀𝑣𝑋)
3
2

𝑣
] 𝐶𝑀𝑋

γ
 Eq. 9 

Where Zm and ZX represents the charges of the anion X and the cation M. In 

electrolyte system vM and vX are the number of cations and anions. The expressions 

of 𝑓ɸ , 𝑓𝛾, 𝐵𝑀𝑋
ϒ  and 𝐵𝑀𝑋

ɸ
 are shown in following equations (Eq. 10-14). 

𝑓ɸ = 𝐴ɸ
𝐼1/2

1 + 𝑏𝐼1/2
 Eq. 10 

 

𝑓𝛾 = −𝐴ɸ[
𝐼1/2

1 + 𝑏𝐼1/2
+  

2

𝑏
ln (1 + 𝑏𝐼1/2)] Eq. 11 

 

𝐵𝑀𝑋
ɸ

= 𝛽𝑀𝑋
(0)

+ 𝛽𝑀𝑋
(1)

exp(−𝛼1𝐼1/2) +  𝛽𝑀𝑋
(2)

exp (−𝛼2𝐼1/2) Eq. 12 

 

𝐵𝑀𝑋
ϒ = 2𝛽𝑀𝑋

(0)
+

2𝛽𝑀𝑋
(1)

𝛼1
2𝐼

[1 − (1 + 𝛼1𝐼2 −
𝐼2

2
) exp(−𝛼1𝐼1/2)] +

2𝛽𝑀𝑋
(2)

𝛼2
2𝐼

[1 − (1 + 𝛼2𝐼1/2 −
𝛼2

2𝐼

2
)exp (−𝛼2𝐼1/2)] Eq. 13 
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𝐼𝑚 = (∑ 𝑍𝑖
2𝑚𝑖

𝑖

)/2 Eq. 14 

 

Where I is known as ionic strength. The function f indicates the contribution of 

electrostatic forces in accordance with the Debye-Hückel theory. At 25oC, the 

Debye-Hückel constant Aɸ = 0.392. For all kinds of electrolytes, the coefficient b= 

1.2. The BMX function is a set of the second viral coefficients indicating the short 

range interaction of ions. α1 = 1.4, α2 = 12 are the optimum values for 2-2 

electrolytes, and α1 = 2 for other types of electrolytes. The set of parameters β(0) , 

β(1) , β(2) , Cɸ  for lithium carbonate are -0.38934, -2.2737, 0 and -0.162859 

respectively (Filippov et al., 1986). 

4.4.3 Activity coefficient for ternary system Equations  

 

f ′(B) = ∑ MX mMmXβMX
1 f3 Eq. 15 

 

f2 =
1

2I
[1 − (1 + 2√I)e−2√I] Eq. 16 

 

Z = ∑ mi|zi|
i

 Eq. 17 

 

lnγx = zx
2f γ + ∑ mc

c
(2Bcx + ZCcx)

+ ∑ ma (2θxa + ∑ mcψcXa
c

)
a

+ ∑ ∑ mcmc′ψcc′x + |zX| ∑ ∑ mcmaCca + zC
2f ′(B)

acc<c′c
 

Eq. 18 

 

lnγM = zM
2 f γ + ∑ ma

a
(2BMa + ZCMa)

+ ∑ mc (2θMc + ∑ maψMca
a

)
c

+ ∑ ∑ mama′ψMaa′ + |zM| ∑ ∑ mcmaCca + zM
2 f ′(B)

aca<a′a
 

Eq. 19 

 

BMX = βMX
0 + βMX

1 f2 Eq. 20 
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f γ = −Aφ [
√I

1 + b√I
+

2

b
ln (1 + b√I)] Eq. 21 

 

f3 =
1

2I2 [−1 + (1 + 2√I + 2I)e−2√I] Eq. 22 

 

γMX = (γM
vM ∗ γX

vX)
1

(vM+vX) Eq. 23 

 

In case of ternary systems with a common anion, MX-NX-H2O, two more 

parameters, θMN and ψMNX, appear in the Pitzer equations for ɸ and γ. 

θMN ψMNX , appears in the Pitzer equations for φ and lnγ. The parameter θMN is a 

combination of second virial coefficients characterizing the interaction between MN, 

MM, and NN. The parameter ψMNX corresponding to the interactions between MNX, 

MMX and NNX. 

5. Crystallization kinetics 

Crystallization is a term describing the change of phase that precipitates as the 

crystalline solids. One of the common type of crystallization is crystallization from 

solution. First the solute is dissolved in the solvent at required temperature and then 

at certain parameters (temperature, pressure, concentration, etc.) which causes the 

solute solubility to reduce and results in the crystals. 

Reactive crystallization is a type of crystallization in which chemical reaction and 

crystallization simultaneously. During crystallization the driving force in the 

precipitation is due to the formation of super-saturation caused by chemical reaction 

(Nandi et al., 2014). 

The precipitation kinetics is explained in terms of nucleation and crystal growth. The 

crystal properties (purity, crystal size, etc.) are obtained as a result of relation 

between nucleation rate and crystal growth rate. 
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Figure 9. Different regions of solution conditions diagram (Beckmann, 2000). Solid line shows the 

solubility curve where the solution is saturated. 

Saturated, undersaturated and supersaturated solution are three different 

conditions of a solution shown in Figure 9. The saturated solution respect to solute 

is at thermodynamic equilibrium. The rates of crystallization and dissolution is equal 

under the thermodynamic equilibrium. 

The term undersatured solution is referred to the solution having solute 

concentration below the saturation value. Non-equilibrium conditions is required for 

the crystallization where the solute concentration exceeds the equilibrium 

concentration. 

The region where spontaneous precipitation occurs is the metastable zone 

bounded by solubility curve and metastable limit. Methods to establish super-

saturation in solution are evaporation of solvent, change in temperature, chemical 

reaction, change in pH, and change in concentration (Beckmann, 2000). 

5.1 Crystal nucleation 

Nucleation is described as the first process in the crystal formation and an important 

mechanism of the first order phase transition, transfer from old phase to new phase.  

Spontaneous nucleation occurs when the upper limit of metastable zone shown in 

Figure 9. Different regions of solution conditions diagram (Beckmann, 2000). The 

old phase has the higher free energy than that of new phase formed. (Hohenberg 

and Halperin 1977; Chaikin and Lubensky 1995). Nucleation is a mechanism in 

which formation of organized small cluster (embryos) as a newly built phase inside 

old phase. 
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Figure 10. Nucleation mechanisms, according to [Mullin 2001, p. 181] 

 

Crystal nucleation is divided into primary nucleation and secondary nucleation 

shown in Figure 10. In primary nucleation, solution does not contain any foreign 

particles. In secondary nucleation solution contains foreign particles mixed in the 

solution as seeds. The primary nucleation is divided into homogeneous and 

heterogeneous mechanisms. In homogeneous nucleation the crystallization occurs 

spontaneously in the solution that do not contain any foreign particles. If the foreign 

particles are already present or added as seeds in the solution. The nucleation is 

termed as heterogeneous nucleation. If the crystal is formed in a system that 

already contains crystals, which is termed as secondary nucleation (Mullin 2001, p. 

181-204). 

Nucleation has a major influence on crystal characteristics such as size distribution, 

polymorphic form and particle size (Lui et al., 2015). 

5.2 Crystal growth 

Crystal growth is the process that causes the growth of the crystal by addition of 

molecules and atoms and accumulates on the surface of the pre-existing crystal. 

Crystal growth is termed as discontinuation process and it is explained in absorption 

layer theories (Mullin 2001, p. 181-204). 
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Figure 11. Terraces, kinks and step showing on a crystal surface. 

The crystal surface is built up from a flat zone called terrace and constructed by the 

incomplete layers called steps having kinks shown in Figure 11. The sites of the 

kinks are important as it allows more bonds with the neighboring molecules as 

compared to the edges at the flat step and the molecules attached to the terraces 

(Chernov AA, 1961). 

6 Filtration 

Filtration is performed after the crystallization process. According to Bourcier et al., 

(2016), solid-liquid separation has great important in the industries. Solid-liquid 

separations are required in several industries such as chemistry, biotechnology, 

pharmaceutical and oil. Solid-liquid separation is mechanism of separating the 

solids from suspension. One of the most important procedures for solid-liquid 

separation is the cake filtration. Compressibility and filterability are two most 

important factors in the solid-liquid separation such as cake filtration. 

According to Kobe (1958), pressure-driven filtration shown in Figure 12 is one type 

of batch filtration which is the best for solid-liquid separation. Pressure-driven 

filtration is suitable for high solid ratio and the solids are recovered from solid-liquid 

suspension. In batch filtration where a vacuum pump is attached to create a 

constant vacuum pressure. Solid particles accumulates on the filter cloth forming a 

cake. Some of the limitations of filtration are that the process is not efficient for 

example, few fractions of solids flow with the liquid phase and some of the liquid 

still remains in the filter cake. 



27 
 

 

 

Figure 12. Schematic drawing showing Batch filtration at constant pressure 

According to Kobe (1958), selection of the filter is depends on many factors such 

as material density, viscosity, and how corrosive a material behave. Temperature, 

concentration, particle size, particle size distribution, crystal shape, pressure drop, 

filtration surface area, cake resistance and filter medium resistance are important 

factors that affect filtration rate. These factors depends on the operational 

conditions applied in the crystallization process. According to the Pöllänen et al. 

(2005), the operational variables in the crystallization have effects on the filtration 

process. 

6.1 Cake resistance 

According to Bourcier et al. (2016), the cake resistance or permeability determined 

at constant pressure gives information how easily the fluid can pass through the 

voids of the cake. Particle size, particle size distribution and shape have an impacts 

on the cake resistance. Specific cake resistance increases as the particle size 

reduces. Cake resistance or cake permeability is one of the most important factors 

in designing filter. 

According to Kobe (1958), viscosity of the filtrate and cake resistance have negative 

effects on the filtration rate. 
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6.2 Cake porosity 

The cake porosity is one factor that affects the cake resistance is known as volume 

fraction of voids and the structure of packing is the factor affecting the porosity 

(Shirato et al., 1971). 

ε =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑒 𝑣𝑜𝑖𝑑𝑠

(𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑣𝑜𝑖𝑑𝑠 + 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑙𝑖𝑑𝑠)
 Eq. 24 

 

6.3 Compressibility 

According to Bourcier et al. (2016), as the filtering pressure is increased in a 

compressible cake, it has a negative effect on the cake porosity, and thus results 

in the increase the resistance of liquid flow passing the cake. 

During filtration loosely packed layers are formed. As time passes during the 

filtration, cake is formed and the layers in the bottom exerts the pressure on the 

particles. Incompressible cake does not have any effect on the porosity of the cake. 

The filter cake is considered as compressible if the porosity is affected by the force 

applied to its particle distribution (Pöllänen et al., 2005). 

According to Pöllänen et al., (2005), compressibility is effected by particle shape, 

particle size distribution, average particle size and surface properties of the 

particles. Higher filtration pressure cause for compressible filter cakes decrease in 

cake porosity and increase in cake resistance. 

6.4 Effects of factors on the filtration 

Particle size is one of the important factors in filtration process and selection of the 

filtration equipment. The separation becomes difficult as the particle size becomes 

finer. Particle shape has an influence on the distribution of filter cake and porosity 

increases as the shape of the particles changes from sphere to cubes, needles and 

platelets. Particle size distribution strongly affects the porosity. The porosity 

decreases because the voids can be filled with the small particle, which resulting in 

the increase in the cake resistance. Properties of the liquid phase such as viscosity 

is the one of the most important factors affecting the suspension filterability. 

Viscosity plays an important role in the fluid flow through the cake. Liquids having 

low viscosity can flow easily through the fluids (Pöllänen et al., 2005) 
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7 Understanding the mixing in crystallizer.  

A careful selection of optimized stirred tank design is necessary to have maximum 

efficiency of mixing that produces turbulence in the process to obtain quality product 

and to minimize cost of production. Mixing has an important role in the mass 

transfer between the phases by increasing interfacial area and preventing settling 

(Torotwa and Torotwa, 2018). Crystallizers are mostly stirred tank reactors and 

impeller is placed centrally for better mass and heat transfer in the vessel to prevent 

the crystals to settle during the process, reduce the formation of scale, and provide 

uniform crystal shape and size. Baffles are important for properly dispersed flow 

conditions in a stirred tank which is required to enhance the mixing, mass and heat 

transfer. Therefore it is necessary to have baffles with specified structure.  Baffle 

also helps to reduce the swirling flow in a vessel (Pöllänen et al., 2005).  

Cavities are formed in the low-pressure regions of the impellers blade as the gas 

feed is increased. Figure 13 shows the fluid flow when six blades Rhuston turbine 

impeller is used in a vessel. Rushton turbine used was selected because of its 

ability of gas-handling. Flooding can be avoided even at high gas feeding rate (Paul 

et al., 2004, p. 601). 

 

 

Figure 13. Flow pattern produced by a radial-flow impeller in a baffled tank. 
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7.1 Sparger 

There are different designs of sparger such as perforated tubes, simple open pipes, 

two-phase complex injector devices and porous diffusers. Point sparger, which 

spreads bubbles at specified location in the tank. Ring sparger releases the gas 

from multiple outlets. Bubbles released through the sparger have a range of narrow 

size depending on type of sparger. As the bubble rises from the sparger into 

impeller zone, it was broke-up by the shear force with the agitator. Usually sparger 

type has no influence on the mixing in the vessel although the number of outlet 

bubbles, and distance between the sparger and agitator have influences on 

efficiency of the dispersion of the gas (Doran, 2013). 

7.2 Design of crystallizer 

A cylindrical tank equipped with four baffles symmetrically arranged on the inner 

side of the wall of the stirred tank is shown in Figure 14. It presents the experimental 

stirred tank, with one baffle cut off to explain the inner design of the stirred tank for 

crystallization (Torotwa and Torotwa, 2018). 

 

Figure 14. 3 dimensional representation of a stirred tank with other components (Torotwa and 

Torotwa, 2018). 
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Experimental part 

8 Mixing 

8.1 Reynolds number and flow regime 

According to Doran, (2013), mixing is affected by several parameters. The first 

important parameter is Reynolds number. Reynolds number depends on the 

impeller diameter and its tip speed stated in Eq. 25. The flow regime of turbulent, 

laminar and transition is predicted. 

𝑅𝑒 =
𝜌𝑁𝐷2

µ
 Eq. 25 

Where Re is the impeller Reynolds number, N is the stirrer speed, D is the impeller 

diameter, ρ is the fluid density, and µ is the fluid viscosity. 

The Reynolds number is a dimensionless variable. Flow is laminar at Re<10 and 

turbulent at Re>104. Transition region of Reynolds number is between 10 and 104 

(Doran, 2013). 

Table 1. Flow prediction by calculating Reynolds number. 

Agitation, rpm 
Reynolds number (Re) at 

25oC temperature 
Reynolds number (Re) at 

50oC temperature 
Flow-regime 

400 13790 22474 Turbulent 

500 17238 28069 Turbulent 

600 24637 33704 Turbulent 

 

Table 1 shows the flow-regime prediction at different impeller agitation (400 rpm, 

500 rpm and 600 rpm) by calculating Reynolds number using Eq. 25 and it was 

observed that the flow is turbulent at 400, 500 and 600 rpm. 
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8.2 Power number and power consumption 

For a specific speed of stirrer, the required power depends on solution in a vessel. 

It is important to know about the energy consumption for optimization of the process 

economics. 

𝑁𝑝 =
𝑃

𝜌𝑁3𝐷5
 Eq. 26 

In Eq. 26, Np is stirrer speed, D is impeller diameter, ρ is fluid density, µ is fluid 

viscosity, and P is power. 

Reynolds number and power number relationship is evaluated experimentally for 

specified impeller and tank dimension shown in Figure 15. 

 
Figure 15 Power number at different Reynolds number for different kind of impellers (Robert et al. 

1988). 

 

For Rushton turbine (impeller 1), according to Reynolds number listed in Table 1 

the power number (Np) is 5 for impeller speed 400, 500 and 600 rpm. Detailed 

calculated data is shown in Table 2. 
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Table 2. Power number (Np) and power consumption calculation at different impeller speed 

Agitation 
rpm 

Reynolds number 
(Re) at 25oC 
temperature 

Reynolds number 
(Re) at 50oC 
temperature 

Power 
number (Np) 

Power, W 

400 13790 22474 5 0.15 

500 17238 28069 5 0.29 

600 24637 33704 5 0.60 

 

Once the value of Np is known, the power can be calculated from Eq. 26. Mixing 

power is affected by the impeller configuration, impeller speed and fluid properties 

such as viscosity and density. 

The power (W) calculated are 0.15, 0.29 and 0.6 at impeller speed of 400, 500 and 

600 rpm respectively, which is shown in Table 2. 

8.3 Impeller flooding for gassed tanks 

In the aerated stirred tank reactor system, to minimize losses in aerated stirred tank 

reactor under optimal operating condition, flooding characteristics in stirred tank 

plays an important role (Cai et al., 2010). 

 

Figure 16. Gas spreading arrangements in an aerated stirred tank having Rushton turbine in used 
as agitator is represented by Ni and gas feed rate Fg. (a) impeller flooding, (b) impeller loading, (c) 

complete gas dispersion (CAI et al., 2010) 

 

According to Cai et al. (2010), poor gas hold up and performance is due to the 

passing around of gas bubbles through the shaft and impeller, loading shown in 
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Figure 16. The gas is well dispersed in the upper region of the vessel by the impeller 

and the vessel where the gas is scattered evenly in all parts by the impeller is known 

as complete gas dispersion. 
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8.4 Impeller speed calculation to avoid flooding 

Eq. 27 shows complete gas dispersion in an aerated stirred tank (Van’t Riet 1991). 

𝐹𝑔𝑠

𝑁𝐷3
< 0.3

𝑁2𝐷

𝑔
 Eq. 27 

Where Fgs is volumetric gas flow rate at constant pressure, N is stirring speed. D is 

impeller diameter and g is gravitational acceleration (Van’t Riet 1991). 

It can be seen from Table 3 that the minimum impeller speed calculated using Eq. 

27 is less than the impeller speed 500 and 600 rpm used in the experiment. The 

value of  
Fgs

ND3 is less than 0.3
N2D

g
  for the parameters used in the stirred tank 

experiment. Therefore, it can be predicted that there is no gas flooding at gas flow 

rate of 0.5 L/min and 0.3L/ with impeller speed of 500 and 600 rpm. 

Table 3. Prediction of gas flooding characteristics with the parameters used in aerated stirred tank 
experiment 

     

Volumetric gas 
flow rate , L/min 

Impeller speed, 
rpm 

  

Minimum impeller speed 
to avoid flooding, rpm 

0.5 500 0.018 0.081 304.37 

0.3 500 0.011 0.081 256.72 

0.5 600 0.015 0.116 304.37 

0.3 600 0.009 0.116 256.72 

 

8.5 Dimension of the crystallizer set-up 

The schematic drawing of the tank and Rushton impeller are shown in Figure 18. 

The gas sparger used in this study is shown in Figure 17. 

𝐹𝑔𝑠

𝑁𝐷3
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Figure 17. Sparger used in this study. 

 

 

Figure 18. Dimensions of the Rushton impeller and tank used in this work 

 

Table 4. Stirred tank specification used in this work 

Stirred tank parts Symbol Value 

Tank diameter T 0.1 m 

Impeller diameter D 0.037 m 

Blade height W 0.003 m 
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Impeller distance from 
bottom  

C 0.037 m 

Baffle width IBaffle 0.01 m 

Liquid height H 0.01 m 

 

8.6 Scale up of crystallizer 

It is expensive and time consuming to study the optimum operating parameters at 

large scale production. Therefore, it is always recommended to study the optimum 

condition in a small scale before it is constructed in large scale. 

Problems in scale up are the reasonable dissolution time, foam formation, the effect 

of geometry of the tank, selection of the mixing equipment and their critical 

operating variables such as temperature, gas feed rate, impeller speed (Robert et 

al, 1988). 

Determine scale up ratio R (Robert et al, 1988). 

V2

V1
=

πDT2
3 /4

πT1
3 /4

=
DT1

3

DT1
3  Eq. 28 

Where, V2 is the volume of scale up vessel, V1 is the volume of original vessel, DT2 

is the tank diameter of scale up vessel and DT1 is the diameter of original vessel 

R =
DT2

DT1
= (

VT2

VT1
)

1
3
 

Eq. 29 

Using the value of R, calculate the new dimensions of geometric sizes. That is  

R = (
400L

0.4L
)

1
3
 

Eq. 30 

 

R = 0.1 Eq. 31 

 

DA2 = RDA1 Eq. 32 

Where DA2 is the diameter of agitator of scale up vessel and DA1 is the diameter of 

agitator of original vessel. 
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9 Solubility of Li2CO3 in the Li2SO4-Li2CO3-H2O ternary system 

Solubility data is important in several experimental work for optimization and 

designing such as crystallization, process development of organic materials, 

screening of polymorph and salts, and analysis of chemicals (Black et al., 2013). 

The objective of this work is to gain knowledge about solubility which is important 

in prediction of solubility of chemicals in solution and it is prerequisite for 

crystallization process by verifying the data of Stephen & Stephen, p668 solubility 

data of Li2CO3-Li2SO4-H2O ternary electrolyte system with the help of FBRM 

(focused laser beam reflectance measurement) technology. The Particle Track is 

placed into the beaker containing dispersed system where the slurry flows closely 

the probe window. The focused beam reflectance measurement worked in such a 

way that the high speed rotation of laser beam and spread over the particles in the 

slurry which is being studied. The backscattering of the signal into the probe 

happens when the particle comes in front of the probe and focused beam crosses 

that particle. The chord length is calculated in electrical system and these electrical 

signals are converted into the chord particle count and information of the dimension 

of the particle. Sampling time can be of 2 seconds where a new CLD information 

can be recorded the process dynamics (Dave et al., 2017) 

9.1 Solubility prediction of Li2CO3 in the Li2SO4-Li2CO3-H2O electrolyte 

system 

Pitzer model parameters database for this Li2CO3-Li2SO4-H2O is not developed 

extensively. The predicted model did not fit with the reference data due to lacking 

data on Pitzer parameters. 

Pitzer thermodynamic modeling requires three stages. Firstly, the average activity 

coefficient of Li2CO3 calculated by using different modalities in a pure binary Li2CO3-

H2O solution at 25oC, which is shown in Eq. 9. Secondly, solubility product constant 

is calculated of Li2CO3 at 25oC. Solubility product is calculated using the solubility 

of Li2CO3 in the Li2CO3-H2O binary system at 25oC (Myerson 2002). 

𝐾𝑆𝑃(𝐿𝑖2𝐶𝑂3) = (γ ∗ 𝑚)2 ∗ (γ ∗ 𝑚) Eq. 33 

To calculate activity coefficient in the ternary system, Eq. 18 and Eq. 19 can be 

used. 
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Ion-Interaction parameters for lithium carbonate for predicting Pitzer 

thermodynamic model at 25oC are shown in Table 5. 

Table 5. Ion-Interaction parameters for predicting Pitzer thermodynamic model at 25oC (Denf et al., 
2002) 

Interaction 𝛽𝐿𝑖2𝐶𝑂3

0  𝛽𝐿𝑖2𝐶𝑂3

1  𝐶𝐿𝑖2𝐶𝑂3

𝜑
 

 -0.389335 -2.27267 -0.162859 

Pitzer mixing parameters for Li+, CO3
−2 and SO4

−2 was not available and the mixing 

parameters shown in Table 6 are used to develop the model. 

Table 6. Pitzer model parameters (Pitzer, 2019) 

Mixing parameters 𝜃𝐶𝑂3
−2,𝑆𝑂4

−2 𝜃𝑁𝑎+,𝑆𝑂4
−2 

 0.02 -0.005 

Predicted solubility model is compared with the reference data, which is shown in 

Figure 19. 

 

Figure 19. Predicted solubility data compared with reference data. 

 

9.2 Characterization of precipitated lithium carbonate. 

All the crystallized lithium carbonate samples were analyzed with X-Ray Diffraction 

with PANalytical X’pert Pro MPD Powder using Cobalt radiation source and 
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operated at 40kV with 40 mA. In addition, Scanning Electron Microscope (SEM) 

Hitachi TM-4000Plus was used to identify lithium carbonate morphology. SEM 

pictures were taken at least using three different magnifications. To determine 

crystal size distributions, Mastersizer 2000 was used. Counts were observed with 

Mettler Toledo Particle Track having (FBRM) technology. Conductivity and pH were 

recorded and observed with Consort C3050. 

9.3 Chemicals 

For the solubility measurements of lithium carbonate in lithium sulfate solution, the 

synthetic solution was prepared with analytical-grade lithium sulfate anhydrous 

[Li2SO4] (purity ≥ 99.7 %, Alfa Aesar) and lithium carbonate [Li2CO3] (purity≥99%). 

9.4 Experimental setup and procedure 

The experiments were carried out according to the procedure published in the 

reference Black et al., 2013. The solid-liquid equilibrium experiments were carried 

out by adding a water into the supersaturated solution (Li2CO3-Li2SO4-H2O) in a 

250mL cylindrical beaker and particle track immersed into the beaker, which is 

shown in Figure 20. Each sample was stirred at room temperature. Supersaturated 

solutions of initial mass of 100g Li2CO3-Li2SO4-H2O was prepared for each 

experiments. 
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Figure 20. Experimental set-up of the solubility measurement of Lithium in ternary electrolyte 
system. 

To prepare a Li2CO3-Li2SO4-H2O supersaturated solution, Table 8 shows that three 

experiments were performed with weight of lithium sulfate of 3.26g, 27.41g and 

35.01g and weight of lithium carbonate was 0.5g, 0.2g and 0.2g respectively with 

70g of water initially according to the measured solubility results published by 

Stephen and Stephen (Table 7). Firstly, required amount of lithium sulfate was 

weighted on balance with accuracy 0.01g. Then 70g of water was added and stirred 

with a magnetic stirrer. Time of 10-15 min was given for dissolution. Compete 

dissolution was verified visually to check that there was no solids remained. While 

preparing lithium sulfate solution, there were initial yellow precipitates similar as in 

heterogeneous reactive crystallization, which is shown in Figure 23. 2.7-μm micro-

filters Whatman filter paper (No. 50) was used to remove the yellow precipitates 

through filtration under vacuum using Büchner funnel. The filter paper was wetted 

with the distilled water and tap water made a certain vacuum. The impurities 

obtained after filtration, similar as impurities obtained in heterogeneous reactive 

crystallization, which is shown in Figure 25 which was later analyzed in Energy 

Dispersive X-Ray Spectroscopy (EDS). A clear filtrate was obtained after filtering 

out the initial impurities, and then poured into 250mL glass beaker. Mettler Toledo 
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Particle track with FBRM technology was immersed in the beaker for the real time 

particle size and count analysis. Then water is weighed and added in the Li2CO3-

Li2SO4-H2O supersaturated solution drop by drop with the help of laboratory plastic 

pipette and gradually all the solid dissolve. It is important to check that the slurry 

has been in a homogeneous state. Mettler Toledo Particle track was used to 

observe the equilibrium status between solid and liquid due to the increase of 

solvent volume. 

Table 7. Solubility data of Li2CO3-Li2SO4-H2O (Stephen and Stephen 1964). 

Weight percent 
Li2CO3 

Weight percent 
Li2SO4 

Weight percent 
water 

Temperature, oC Comp. of solid phase 

1.32 0 98.68 25 Li2CO3 

0.81 2.17 97.02 25 Li2CO3 

0.35 9.24 90.41 25 Li2CO3 

0.18 12.76 87.06 25 Li2CO3 

0.22 14.69 85.09 25 Li2CO3 

0.28 17.61 82.11 25 Li2CO3 

0.15 18.27 81.58 25 Li2CO3 

0.16 23.34 76.5 25 Li2CO3 

 

Table 8. Weight of chemicals required according to stephen and stephen data for 100 g of total 
solution. 

Li2CO3 , g Li2SO4 , g Water, g 

0.8 2.17 97.02 

0.4 9.24 90.41 

0.2 18.27 81.58 

0.2 23.34 76.50 

10 Precipitation of lithium carbonate from heterogeneous and 

homogeneous reactive crystallization 

10.1 Materials and Methods 

10.2 Chemicals 

For the lithium carbonate precipitation in heterogeneous system, the synthetic 

solution was prepared with analytical-grade lithium sulfate anhydrous [Li2SO4] 

(purity ≥ 99.7 %, Alfa Aesar). Sodium hydroxide  [NaOH] (≥ 98 %, Sigma-Aldrich) 

solution was prepared. Carbon dioxide (CO2) and used to precipitate lithium 

carbonate. 
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For the lithium carbonate precipitation in homogeneous system, the synthetic 

solution was prepared with analytical-grade lithium sulfate anhydrous [Li2SO4] 

(purity ≥ 99.7 %, Alfa Aesar), instead of sodium hydroxide [NaOH] and carbon 

dioxide (CO2), anhydrous sodium carbonate [Na2CO3] (purity ≥ 99.9%, EMSURE®) 

was selected and used to precipitate lithium carbonate. 

10.3 Precipitation of Li2CO3 by heterogeneous reactive crystallization 

10.3.1 Experimental setup and procedure 

The experimental setup can be seen in Figure 21 and Figure 22. The experiments 

were all carried out in a baffled stirred vessel, with a diameter of 0.1m and a height 

of 0.13m. Teflon Rushton turbine with 6 blades having diameter of 0.037m was 

used to achieve the desired stirring rate, which is shown in Figure 18. The Rushton 

turbine used was selected because of efficient gas-handling. 

 
Figure 21. Schematic drawing of precipitation of lithium carbonate in heterogeneous system setup. 
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Figure 22. Experimental setup of lithium carbonate precipitation in heterogeneous system.  

Lithium sulfate is soluble in water. The trend of lithium sulfate solubility shows that 

its solubility decrease with increase of temperature. The density of anhydrous 

lithium sulfate is 2.22 g/cm3. Lithium sulfate has the ability to absorb moisture from 

the environment, therefore it was stored under the nitrogen atmosphere. 

To prepare a solution having lithium concentration of 20g/L, 47.5 gms of lithium 

sulfate were weighed using a balance manufactured by Kern 572 precision of 0.001 

g in a 600 mL beaker. 300 mL of water was added and stirred with a magnetic 

stirrer. The solution was mixed for 10-15 min and verified visually to check that no 

solids remained. There were some initial yellow precipitates formed while preparing 

lithium sulfate solution shown in Figure 23 and the impurities were separated using 

same procedure and analyzed in same way as mentioned previously in solubility 

studies of lithium carbonate in ternary system. 
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Figure 23. Yellow precipitates in the lithium sulfate solution (A) and impurities attached to the stirrer 
(B). 

 

Figure 24. Vacuum filtration under Büchner funnel. 
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Figure 25. Impurities obtained after filtration. 

Sodium hydroxide is termed as inorganic compound, also known as caustic soda.  

Sodium hydroxide is an extremely caustic base and alkali. Sodium hydroxide is 

extremely soluble in water and absorbs carbon dioxide and moisture from air. 

Different molarities of sodium hydroxide (NaOH) such as 1M and 5M were 

prepared. Molecular weight of sodium hydroxide is 40 gms (Addition of atomic mass 

of Na=23, O=16, H=1). Sodium hydroxide with concentration of 5 M was used to 

adjust the pH. To prepare 5 M sodium hydroxide solution, Firstly, 20g sodium 

hydroxide pellets and 50 mL of distilled water were added in 300 mL beaker and 

stirred with a magnetic stirrer. Then, it was transferred to a 100 mL volumetric flask 

after the solution cooled down. More distilled water was then added to the scale 

mark and stored in a glass sealed bottle. 

The lithium sulfate solution after removal of impurities solution was transferred to a 

jacketed Pyrex cylindrical stirred reactor equipped with a thermostat (Lauda RK 8 

CS). An external temperature probe connected with the thermostat was immersed 

into the solution and the temperature of the solution is thermostatically controlled. 

pH probe, and conductivity probe were immersed into the solution in the reactor to 

monitor the changes of conductivity, pH and temperature with a multiparameter 

analyzer (Consort C3050). The Mettler Toledo Particle Track with FBRM 

technology was immersed in the reactor for the real time particle size and count 

analysis. Four baffles in the reactor were placed symmetrically for efficiency mixing 

and ensure that there was no vortex formation. The mixing of the solution was done 

by using a Rushton impeller with 6 blades to reduce the effect of temperature and 

concentration gradient in the solution.  
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Experiments were carried out with various parameters shown in Table 9. When the 

solution achieved the target temperature, then 100 ml of 5 M soda (NaOH) was 

poured into the reactor and then wait till the temperature was constant. Then carbon 

dioxide (CO2) gas was fed to the reactor through a pipe connected to a gas cylinder. 

A sparger with 1mm pore size was placed at the bottom of the reactor and used to 

distribute CO2. The CO2 was stopped when target pH achieved. Then the whole 

system was kept stirring 30min for ageing. After adding CO2 gas, the suspension 

was seen in a short time. After ageing, precipitates were vacuum filtered with a 

Büchner funnel and a filter paper (VWR European Cat. Not. 516-0350 12-15-μm). 

The weight of crystals, dish, moisture and filter paper were recorded and placed 

into the oven for 24 hours drying. Yield was calculated based on the mass of the 

dry samples. The crystals were analyzed with XRD, SEM and particle size 

distribution. 

Table 9. Parameters used in the precipitation of lithium carbonate in heterogeneous system. 

Temperature, oC 
Gas flow rate, 

L/min 
Impeller, rpm 

25 0.3 600 

25 0.3 500 

25 0.5 600 

25 0.5 500 

50 0.5 600 

50 0.5 500 

50 0.3 600 

50 0.3 500 

 

10.4 Precipitation of Li2CO3 by homogeneous reactive crystallization 

10.4.1 Experimental setup and procedure 

Preliminary experiments were carried out in a 40ml beaker. The experimental setup 

shown in Figure 26 was used in lithium carbonate precipitation based on 

homogeneous system. Experiments consist of a 40 ml beakers having a magnetic 

stirrer, a syringe needed to add sodium carbonate into the 40mL containing lithium 

sulfate solution.  Conductivity and pH probe were immersed in the reactor to 

monitor the changes of conductivity and pH with a multiparameter analyzer 

(Consort C3050). 
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Figure 26. Experimental set-up used for preliminary tests (Homogeneous system). 

45.79 g of sodium carbonate was prepared in 102mL deionized water and kept in 

a water bath shaker at 50oC for 72 hours. 15.84 g of lithium sulfate was added in 

100mL deionized water. At the beginning 30mL lithium sulfate solution was taken 

into the 40mL beaker. 10mL saturated sodium carbonate was added. First 

experiment was performed without adding sodium hydroxide and rest with sodium 

hydroxide at stirring speed of 500 rpm. 

After the preliminary tests, 47.51 g lithium sulfate in 300mL of distilled water was 

prepared as discussed before in heterogeneous reactive crystallization and 

transferred in a baffled stirred vessel as discussed before, which is shown in Figure 

29. Saturated sodium carbonate solution was prepared in a 300mL jacketed Pyrex 

cylindrical reactor shown in Figure 30. The reactor was equipped with a thermostat 

(Lauda E 200) and the solution was mixed with a magnetic stirrer and complete 

dissolution was ensured by visual examination. An external temperature probe was 

immersed into the disperse system and used to control the temperature of solution 

thermostatically. The arrangement of the set-up was similar as discussed before in 

heterogeneous reactive crystallization. Experiments were carried out at 50oC, two 

stirring speed (500 and 600 rpm) and 30 min ageing.  
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Table 10. Parameters in the precipitation of lithium carbonate in homogeneous system. 

Impeller 
speed, rpm 

Na2CO3 flow rate, 
mL/min 

Residence time, min 

500 2.54 40 

600 2.54 40 

600 4.42 23 

500 4.42 23 

500 5.65 18 

600 5.65 18 

 

When the lithium sulfate and sodium carbonate solution achieved 50oC, sodium 

carbonate was pumped into the reactor containing lithium sulfate solution with a 

peristaltic pump (Easy Load II 77200-60) at different flow rates of 2.54, 4.42 and 

5.65 mL/min (residence time 40, 23, and 18 min, respectively). In the experiments, 

two different mixing rates and three different residence times were used show in 

Table 10. A schematic representation of experimental setup is given in Figure 27.  

 

Figure 27. Schematic drawing of homogeneous reactive crystallization set-up. 
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Figure 28. Experimental setup of lithium carbonate homogeneous reactive crystallization system. 

The crystal yield and filter cake moisture were determined in a similar manner as 

described in section 10.3.1. 
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Figure 29. Close-up of the continuous stirred tank reactor used in the experiment. 

 

 

Figure 30. Close-up of the sodium carbonate dissolution vessel. 

11 Cake filterability and Compressibility 

The objective of this work was to perform experimental study to observe the 

filterability and compressibility concerning the product obtained through 

precipitation in homogeneous and heterogeneous system. Laboratory scale tests 

are important to provide useful information required for a filter design and crystal 

properties. 
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11.1 Material, experimental setup and method 

11.1.1 Material preparation 

The material used here was the precipitates obtained from crystallization in 

homogeneous and heterogeneous system. 10g of solids was added in a 350mL 

clear solution (mother liquor) obtained from the filtration by Büchner funnel after 

crystallization. The density of the suspension was around 1100 kg/m3 and all the 

experiments were performed at solid concentration of 28 g/L. 

11.1.2 Experimental setup and procedure  

The filterability test performed was explained by Kobe et al., 1958. Firstly, 

approximately 10 Vol-% of solid concentration of slurry was prepared and then the 

solids-liquid separation was performed through the vacuum filtration. The filtration 

experiments were carried out with a laboratory-scale vacuum filtration unit prepared 

by eLabs having a data collection program which has the accuracy of 0.01bar. A 

photo of the filter is shown in Figure 32 and the schematic experimental setup can 

be seen in Figure 31.  Filtration was performed using filter paper provided by VWR 

European Cat. Not. 516-0350 12-15μm that having 0.06m diameter and area of 

0.002827m2. The vacuum was created by a vacuum pump. Data collection program 

can record data every 2 s. The constant vacuum filtration experiments were 

conducted in 80 mbar, 60 mbar, and 40 mbar. In each filtration experiment, the 

pressure was kept constant. 
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Figure 31. Schematic drawing of experimental setup of vacuum filtration. 

 
Figure 32. Experimental setup-up of vacuum filtration. 
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Fluid flows through a filter medium by virtual of pressure differential across the 

medium when solids are separated forming a filter cake.  

The overall pressure drop is △ 𝑝  (△ 𝑝 =△ 𝑝𝐾 +△ 𝑝𝑆𝑉 = (𝑝1 − 𝑝2) + (𝑝2 − 𝑝2)). 

 Eq. 34 was used to plot t/V versus V. Then, K/2 is calculated as it is slope of the 

line while B is the y intercept. 

 

𝑡

𝑉
=

𝐾

2
𝑉 + 𝐵 

Eq. 34 

 

Where, 
 
K and B= constants  

V = Volume of filtrate, m3 

△ 𝑝 = Change in pressure, pa 

△ 𝑝𝐾 = Pressure drop through cake, pa 

△ 𝑝𝑆𝑉 = Pressure drop through filter media, pa 

 

Specific cake resistance (α) and compressibility (S) is obtained from Eq. 35. 

 

log(𝛼) = log(𝛼0) + 𝑆𝑙𝑜𝑔(△ 𝑝) Eq. 35 

Where  

α = Specific cake resistance, m/kg 

S = Compressibility of cake, dimensionless 
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12 Results and Discussion 

12.1 Solubility of Li2CO3 in the Li2SO4-Li2CO3-H2O ternary system 

As mentioned before, solubility data of Li2CO3-Li2SO4-H2O ternary system at 25oC 

have not been extensively study by other authors. Points from literature data 

chosen for solubility test and verify the solubility data from the literature is presented 

in Table 11 which shows mass of components in ternary system for comparison. It 

is concluded that the results from this work was not able to compare with the 

solubility data from the literature (Stephen and Stephen 1964), which is shown 

previously Table 7. 

It can be seen in Figure 33 and Figure 34 , particle counts which is shown in the 

graph plotted by the Particle Track was not zero even after adding water stepwise 

for 1 hour. This was because the lithium sulfate solution still having some impurities 

even after filtration because the filter paper do not make a perfect seal on the 

Buchner, causing liquids to be able to get underneath the filter paper. The filter 

paper was wetted before filtration but still solution passes under the paper, resulting 

in not so efficient filtration. 

The change in particle counts for solution with different weight percentage of lithium 

carbonate and lithium sulfate are shown in appendix II. 

Table 11. Weight of components according to the solubility points of the literature. 

Li2CO3 , g Li2SO4 , g Water, g 

0.8 2.17 97.02 

0.4 9.24 90.41 

0.2 18.27 81.58 

0.2 23.34 76.50 
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Figure 33. Change of particle counts as distilled water is added in solution having 0.2g of lithium carbonate 
and 18.27g of lithium sulfate. 

 

Figure 34. Chord length distribution of solution as distilled water is added 0.2g of lithium carbonate and 
18.27g of lithium sulfate. 

12.2 Precipitation of lithium carbonate from heterogeneous reactive 

crystallization 

All the obtained results from precipitation of lithium carbonate in heterogeneous 

system experiments are explained in this chapter. The overall procedure of 

experimental structure is shown in Figure 35. 
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Figure 35. Experimental procedure 

This chapters contains information of conductivity, pH, particle size distribution, 

shape of the crystals and impurities for the obtained crystal products.  

Precipitation of lithium carbonate in heterogeneous system was investigated with 

different gas flow rates, two stirring rates, and two different temperature, which are 

tabulated in Table 9. 

The first part of the experiments was carried out to determine the pH and 

conductivity of the experiments at 25oC and 50oC temperature. 100mL of sodium 

hydroxide was used to adjust the pH for all the experiments and it can be seen that 

the initial pH of the solution at 50oC was between 9 and 9.5 shown in Figure 36 and 

initial pH of the solution at 25oC was between 11 and 11.5. 
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Figure 36. Conductivity and pH curves of experiment at 50oC, 500 rpm stirring rate, 0.3 L/min gas 
flow rate (29min residence time), 30min ageing. The experiment was stopped at pH 8. 

Results in Li2CO3 precipitation shown in Figure 39 and Figure 41 indicate that the 

counts increases as a function of time.  

Higher yield was obtained at 50oC, which is because the solubility of lithium 

carbonate is lower at higher temperature. The primary vertical axis shows pH 

curves and secondary vertical axis shows the conductivity changes in Figure 36. 

pH of the solution began around 9.6. After approximately 5 minutes suspension 

was seen and pH decreased sharply till the end of the reaction. The pH slightly 

increased during the ageing. 
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Figure 37. pH and conductivity curves of experiment at 25oC, stirring rate of 500, gas flow rate of 0.3 
L/min (68.03min residence time) and ageing of 30min. The experiment was stopped at pH 8. 

Primary and secondary nucleation data obtained by the Particle Track, which is 

shown in Figure 39 and Figure 41. It was seen that crystals obtained by 

crystallization at 25oC and 50oC was less than 100 microns in terms of chord length. 

 

Figure 38. Counts with respect to time of experiment at 50oC, stirring rate of 600 rpm, gas flow rate 

of 0.5 L/min (16.1min residence time), ageing of 30min. The experiment was stopped at pH 8. 
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Figure 39. Chord length distribution of crystals obtained in experiment at 50oC, 600 rpm stirring rate, 
0.5 L/min gas flow rate(16.1min residence time), 30min ageing. The experiment was stopped at pH 
8. 

Lower yield was obtained at 25oC. This could be because the LiHCO3/Li2CO3 

equilibrium reaction shifts towards LiHCO3 at temperature below 50oC, which is 

shown previously in Eq. 7. Figure 37 shows the change in pH curve and conductivity 

in the heterogeneous reactive crystallization at 25oC. Nucleation time can be 

recognized from the counts curve obtained by particle track. pH of the solution 

begins with 11. After approximately 5 minutes suspension was seen and pH 

decreased sharply till the end of reaction. When the desired pH was achieved, CO2 

feed was stopped. pH and conductivity became constant during the ageing. On the 

other hand constant counts during ageing in Figure 40 shows that no significant 

change was seen during ageing. 
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Figure 40. Counts with respect of time of experiment at 25oC, 500 rpm stirring rate, 0.3 L/min gas flow rate 
(68.03min residence time), 30min ageing. The experiment was stopped at pH 8. 

 

Figure 41. Chord length distribution of crystals obtained in experiment at 25oC, 500 rpm stirring rate, 0.3 
L/min gas flow rate (68.03min residence time), 30min ageing. The experiment was stopped at pH 8. 

12.2.1 Effect of temperature 

Maximum product yield obtained at 25oC was around 44% and at 50oC was 78%. 

XRD analysis of the sample shows that the lithium carbonate was produced at 

25oC. This result contradicts to the results obtained from Martin et al., (2017). 

According to Martin et al., (2017), at temperature higher than 50oC LiHCO3/Li2CO3 

equilibrium reaction shifts towards Li2CO3. In this study Li2CO3 was precipitated at 

temperature below 50oC. 
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Although the operational parameters are different, it is clear by comparing the trend 

of particle counts for two different temperatures (25oC and 50oC) during the 

experiment in Figure 38 and Figure 40 that the precipitation rate increases and 

desired pH is achieved in less time at temperature of 50oC. 

The pH decreased sharply and attained the desired pH faster at temperature of 

50oC than experiment at 25oC with same operational variables, which is shown in 

Figure 36. Figure 37 shows that the pH 8 is achieved in less time at higher 

temperature (50oC) than lower temperature (25oC) with same operational variables. 

12.2.2 Effect of impelling stirring 

Rate of nucleation increases as the impeller agitation is increased, which is shown 

in Figure 42 and Figure 43. Increase in stirring rate of impeller promotes collision 

molecules with the neighboring molecules. Agitation have an impact on the time 

needed to achieve desired pH. 

Table 12 shows the product yield obtained from experiments with different stirring 

rates (500 and 600 rpm), gas flow rates (0.3 and 0.5 L/min) and initial pH and final 

pH of the experiment. 

It was calculated in section 8.4 that the stirring rates of 500 and 600 rpm are in 

turbulent-flow range so that no flooding of gas in the reactor for heterogeneous 

reactive crystallization of lithium carbonate. The increase of the stirring speed at 

constant gas flow rate increased the rate of absorption of gas (CO2). Thus it 

accelerated gas liquid mass transfer due to enhanced interaction between CO2 gas 

bubbles and active molecules. 

Table 12. Product yield of precipitated lithium carbonate obtained from heterogeneous system with 
different parameters at 50oC. 

Impeller 
speed, rpm 

Gas feeding 
rate, L/min 

Residence 
time, min 

pHinitial pHfinal 
Precipitated lithium 

carbonate, % 

600 0.3 23.5 9.18 8 78.39 

500 0.3 29.33 9.66 8 74.43 

600 0.5 16.07 9.35 8 73.14 

500 0.5 21.23 9.44 8 71.57 
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Figure 42. pH and conductivity curves for two different stirring speed (500 and 600 rpm) at 
temperature of 50oC, gas flow rate of 0.3 L/min and ageing of 30min. 

 

Figure 43. pH and Conductivity curves for two different stirring speed (500 and 600 rpm) at 

Temperature of 50oC, gas flow rate of 0.5 L/min and ageing of 30min. 

At CO2 flow rate of 0.3 L/min, Figure 44 shows the reduction in particle size of the 

crystals at higher stirring speed, which means smaller particles were formed at 

higher stirring speed. However, when the CO2 flow rate was increased to 0.5 L/min, 

particle size distribution of lithium carbonate were almost the same at both stirring 

speeds, which is shown in Figure 45. 
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Figure 44. Particle size distribution of samples for two different stirring speed (500 and 600 rpm) at 

temperature of 50oC, gas flow rate of 0.3 LPM and ageing of 30min. 

 

Figure 45. Particle size distribution of samples for two different stirring speed (500 and 600 rpm) at 

temperature of 50oC, gas flow rate of 0.5 LPM and ageing of 30min. 

Figure 46 and Figure 47 show SEM images taken from the samples obtained by 

crystallization in heterogeneous system at 50oC with different impeller speeds for 

gas flow rate 0.3 L/min and 0.5 L/min, respectively. It can be seen that similar kind 

of morphology of flower shape crystals were obtained. 
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Figure 46. SEM images of samples obtained from stirring speed of 600 rpm (A, C and E) and 500 
rpm (B, D and F) at constant temperature of 50oC, gas flow rate of 0.3 L/min and ageing of 30min. 
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Figure 47. SEM images of samples obtained from stirring speed of 600 rpm (A, C and E) and 500 
rpm (B, D and F) at constant temperature of 50oC, gas flow rate of 0.5 L/min and ageing of 30min. 

The crystals obtained from heterogeneous system was characterized by XRD. It 

can be seen in appendix I that the samples analyzed obtained at different operating 

parameters have the same XRD peaks. 

The XRD data was compared with the reference pattern in MATCH program. It can 

be seen in Figure 48 that peaks of the sample obtained by crystallization is 

consistent with the reference pattern (ICSD 98-010-0324 C1 Li2O3). 
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Figure 48. XRD analysis of samples obtained from stirring speed of 600 rpm and 500 rpm at 
constant temperature of 50oC, gas flow rate of 0.5 L/min and ageing of 30min. 

For heterogeneous reactive crystallization at 25oC, similar results were obtained 

compare to the results obtained at 50oC, which are shown in Figure 49, Figure 50 

and Table 13. 

From pH measurements, it was found that all solutions before crystallization had a 

pH range between 10.87 and 11.27. The yield of the product was around 44%, 

which is shown in Table 13. 

Table 13.  Product yield of precipitated lithium carbonate obtained from heterogeneous system with 
different parameters at 25oC 

Impeller 
speed, rpm 

Gas feeding 
rate, L/min 

Residence time, 
min 

pHinitial pHfinal 
Precipitated lithium 

carbonate, % 

600 0.3 30.4 10.92 9 41.47 

500 0.3 38.90 11.27 9 42.06 

600 0.5 24.33 11.17 9 44.01 

500 0.5 26.07 10.87 9 38.60 
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Figure 49. pH and conductivity curves for two different stirring speed (500 and 600 rpm) at 

temperature of 25oC, gas flow rate of 0.3 L/min and ageing of 30min. 

 

Figure 50. pH and conductivity curves for two different stirring speed (500 and 600 rpm) at 
temperature of 25oC, gas flow rate of 0.5 L/min, ageing of 30min. 

For heterogeneous reactive crystallization at 25oC, similar results of crystal shape 

were obtained compare to the results obtained at 500 and 600 rpm, which are 

shown in Figure 51 and Figure 52. It can be seen that small particles are obtained 

at 600 rpm and particles obtained at 500rpm were agglomerates. 
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Figure 51. SEM images of samples obtained from stirring speed of 600 rpm (A, C and E) and 500 

rpm (B, D and F) at constant temperature of 25oC, gas flow rate of 0.3 L/min and ageing of 30min. 
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Figure 52. SEM images of samples obtained from stirring speed of 600 rpm (A, C and E) and 500 
rpm (B, D and F) at constant temperature of 25oC, gas flow rate of 0.5 L/min and ageing of 30min. 

At CO2 flow rate of 0.3 L/min, particle size distribution shown in Figure 53 indicates 

the reduction in particle size with higher stirring speed. However, when the CO2 

flow rate was increased to 0.5 LPM, particle size distributions of lithium carbonate 

at two stirring speeds were the same shown in Figure 54 and Figure 45. 
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Figure 53. Particle size distribution of samples for two different stirring speed (500 and 600 rpm) at 

temperature of 25oC, gas flow rate of 0.3 L/min and ageing of 30min. 

 

Figure 54. Particle size distribution of samples for two different stirring speed (500 and 600 rpm) at 
temperature of 25oC, gas flow rate of 0.5 L/min and ageing of 30min. 

12.2.3 Effect of gas feeding rate 

Precipitation rate rises as the CO2 gas flow rate is increased from 0.3 to 0.5 L/min 

at constant temperature and mixing condition. Time to reach the desired pH 

increases as the gas flow rate is decreased, which is shown in Figure 55-59. It can 

be seen from Table 14 and Table 15 that more crystals were obtained at lower gas 

flow rate for both the impeller speeds (500 and 600 rpm). At lower gas feeding, gas 
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bubbles was prevented to be in the reactor center and uniform mixture is obtained 

resulting in efficient mass transfer of CO2 gas with active molecules. 

For heterogeneous reactive crystallization at 50oC, similar flower-shape pellets 

were obtained compare to the results obtained at two different stirring speeds (500 

and 600 rpm), which are shown in Figure 59 and Figure 60 . 

Particle size distribution of precipitates obtain at different operational conditions are 

shown in Figure 63, Figure 64, Figure 65 and Figure 66. The results show that there 

is not any significant difference of PSD at different stirring speed. 

Table 14. Product yield of precipitated lithium carbonate obtained at two different gas flow rates (0.3 
and 0.5 L/min) from heterogeneous system with different parameters at temperature of 50oC. 

Impeller 
speed, rpm 

Gas 
feeding 

rate, L/min 

Residence 
time, min 

pHinitial pHfinal 
Precipitated lithium 

carbonate, % 

600 0.3 23.48 9.18 8 78.39 

600 0.5 16.07 9.35 8 73.14 

500 0.3 29.33 9.66 8 74.43 

500 0.5 21.23 9.44 8 71.57 

 

 

Figure 55. pH and conductivity curves for two different gas flow rates (0.3 and 0.5 L/min) at 
temperature of 50oC, impeller speed of 500 rpm, ageing of 30min. 
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Figure 56. pH and conductivity curves for two different gas flow rates (0.3 and 0.5 L/min) at 

Temperature of 50oC, impeller speed of 600 rpm, ageing of 30min. 

Table 15. Product yield of precipitated lithium carbonate obtained at two different gas flow rates (0.3 
and 0.5 L/min) from heterogeneous system with different parameters at temperature of 25oC. 

Impeller 
speed, rpm 

Gas feeding rate, 
L/min 

Residen
ce time, 

min 
pHinitial pHfinal 

Precipitated lithium 
carbonate, % 

600 0.3 30.43 10.92 9 41.47 

600 0.5 24.33 11.17 9 44.01 

500 0.3 38.90 11.27 9 42.06 

500 0.5 26.07 10.87 9 38.60 
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Figure 57. pH and conductivity curves for two different gas flow rates (0.3 and 0.5 L/min) at 
temperature of 25oC, impeller speed of 500 rpm and ageing of 30min. 

 

Figure 58. pH and conductivity curves for two different gas flow rates (0.3 and 0.5 L/min) at 
temperature of 25oC, impeller speed of 600 rpm and ageing of 30min. 
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Figure 59. SEM images of samples obtained from gas flow rate of 0.3 L/min (A, C and E) and gas 
flow rate of 0.5 L/min (B, D and F) at constant temperature of 50oC, impeller speed of 500 rpm and 

ageing of 30min. 
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Figure 60. SEM images of samples obtained from gas flow rate of 0.3 L/min (A, C and E) and gas 

flow rate of 0.5 L/min (B, D and F) at constant temperature of 50oC, impeller speed of 600 rpm and 
ageing of 30min. 
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Figure 61. SEM images of samples obtained from gas flow rate of 0.3 L/min (A, C and E) and gas 
flow rate of 0.5 L/min (B, D and F) at constant temperature of 25oC, impeller speed of 500 rpm and 
ageing of 30min. 



78 
 

 

Figure 62. SEM images of samples obtained from gas flow rate of 0.3 L/min (A, C and E) and gas 
flow rate of 0.5 L/min (B, D and F) at constant temperature of 25oC, impeller speed of 600 rpm and 
ageing of 30min. 
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Figure 63. Particle size distribution of samples for two different gas flow rates (0.3 L/min and 0.5 
L/min) at temperature of 25oC, impeller speed of 600 rpm and ageing of 30min. 

 

Figure 64. Particle size distribution of samples for two different gas flow rates (0.3 L/min and 0.5 

L/min) at temperature of 25oC, impeller speed of 500 rpm and ageing of 30min. 
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Figure 65. Particle size distribution of samples for two different gas flow rates (0.3 L/min and 0.5 
L/min) at temperature of 50oC, impeller speed of 600 rpm and ageing of 30min. 

 

Figure 66. Particle size distribution of samples for two different gas flow rates (0.3 L/min and 0.5 
L/min) at temperature of 50oC, impeller speed of 500 rpm and ageing of 30min. 
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12.3 Homogeneous reactive crystallization of lithium carbonate 

12.3.1 Effect of pump flow rate 

Nucleation is accelerated with the increase of feed rate since the reaction is 

enhanced. It can be seen in the Figure 67 and Figure 68 that the pump flow rate 

have an impact on the rate of nucleation and on the time needed to achieve 

equilibrium. 

Table 16 shows the product yield obtained from experiments with different stirring 

rates (500 and 600 rpm), Na2CO3 pump flow rate (2.54 and 4.42 mL/min), pHinitial, 

and pHfinal of the experiment at 50oC. 

Figure 69 and Figure 70 show SEM images taken of the samples obtained by 

homogeneous reactive crystallization at 50oC, two Na2CO3 pump flow rates and 

ageing of 30min for impeller speed of 500 and 600 rpm, respectively. 

Similar results were obtained as the results obtained from effects of gas flow rate 

in heterogeneous reactive crystallization. It can be seen that in each case similar 

kind of morphology of flower shape crystal is obtained. Particle size distribution can 

be seen in Figure 71 and Figure 72. It indicates that same particle size distribution 

were obtained for different impeller speed at constant Na2CO3 pump flow rate and 

50oC. 

Table 16. Product yield of precipitated lithium carbonate obtained from homogeneous system with 

different parameters at 50oC. 

Impeller 
speed, rpm 

Pump flow rate, 
mL/min 

Residence 
time, min 

pHinitial pHfinal 
Precipitated lithium 

carbonate, % 

500 2.54 43.37 9.17 9.76 72.25 

500 4.42 23.70 9.03 9.65 74.19 

600 2.54 46.67 8.96 9.6 72.00 

600 4.42 28.28 8.22 9.64 73.79 
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Figure 67. pH and conductivity curves for two different Na2CO3 pump flow rates (2.54 and 4.42 
mL/min) at temperature of 50oC, impeller speed of 500 rpm and ageing of 30min. 

 

Figure 68. pH and conductivity curves for two different Na2CO3 pump flow rates (2.54 and 4.42 

mL/min) at temperature of 50oC, impeller speed of 600 rpm and ageing of 30min. 
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Figure 69. SEM images of samples obtained from Na2CO3 pump flow rate of 2.54 mL/min (A, C and 
E) and Na2CO3 pump flow rate of 4.42 mL/min (B, D and F) at constant temperature of 50oC, 

impeller speed of 500 rpm and ageing of 30min. 
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Figure 70. SEM images of samples obtained from Na2CO3 pump flow rate of 2.54 mL/min (A, C and 
E) and Na2CO3 pump flow rate of 4.42 mL/min (B, D and F) at constant temperature of 50oC, 
impeller speed of 600 rpm and ageing of 30min. 
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Figure 71. Particle size distribution of samples for two different Na2CO3 pump flow rates (2.54 L/min 

and 4.42 L/min) at temperature of 50oC, impeller speed of 500 rpm and ageing of 30min. 

 

Figure 72. Particle size distribution of samples for two different Na2CO3 pump flow rates (2.54 L/min 
and 4.42 L/min) at temperature of 50oC, impeller speed of 600 rpm and ageing of 30min. 

12.3.2 Effect of impeller speed 

There is no significant effect on the precipitation as the impeller speed is increased 

from 500 to 600 rpm at constant temperature and feeding rate. Time to reach the 

desired pH remains the same for two mixing rates. Figure 73 and Figure 74 show 

that the trends of pH and conductivity obtained were similar at two different impeller 



86 
 

speed (500 and 600 rpm). It can be seen in Table 17 that there was no significant 

change on the amount of crystals obtained at two different impeller speeds (500 

and 600 rpm). 

Figure 75 and Figure 76 show SEM images taken of the samples obtained by 

homogeneous reactive crystallization at 50oC, two Na2CO3 pump flow rates and 

ageing of 30min for impeller speed of 500 and 600 rpm, respectively. Similar results 

were obtained as the results obtained from effects of gas flow rate in heterogeneous 

reactive crystallization. It can be seen that in each case similar kind of morphology 

of flower shape crystal is obtained.  

Figure 77 and Figure 78 show that smaller particles were obtained at higher 

impeller speed at constant temperature and feeding rate, which is consistent with 

the findings obtained from the literature (Han et al. 2018). 

In fact, all the XRD results were same and consistent with the reference patterns 

(ICSD 98-010-0324 C1 Li2O3), which is shown in Figure 79. 

Table 17. Product yield of precipitated lithium carbonate obtained from homogeneous system with 
different parameters at 50oC. 

Impeller 
speed, rpm 

Pump flow rate, 
mL/min 

Residence 
time, min 

pHinitial pHfinal 
Precipitated lithium 

carbonate, % 

500 2.54 43.37 9.17 9.76 72.25 

600 2.54 46.67 8.96 9.6 72.00 

500 4.42 23.70 9.03 9.65 74.19 

600 4.42 28.28 8.22 9.64 73.79 
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Figure 73. pH and conductivity curves for two different impeller speeds (500 and 500 rpm) at 

temperature of 50oC, Na2CO3 Pump flow rate of 2.54 mL/min and ageing of 30min. 

 

Figure 74. pH and conductivity curves for two different impeller speeds (500 and 500 rpm) at 

temperature of 50oC, Na2CO3 Pump flow rate of 4.42 mL/min and ageing of 30min. 
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Figure 75. SEM images of samples obtained from impeller speed of 500 rpm (A, C and E) and 
impeller speed of 600 rpm (B, D and F) at constant temperature of 50oC, Na2CO3 pump flow rate of 
2.54 mL/min and ageing of 30min. 
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Figure 76. SEM images of samples obtained from impeller speed of 500 rpm (A, C and E) and 
impeller speed of 600 rpm (B, D and F) at constant temperature of 50oC, Na2CO3 pump flow rate of 

4.42 mL/min and ageing of 30min. 
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Figure 77. Particle size distribution of samples for impeller speeds (500 rpm and 600 rpm) at 
temperature of 50oC, Na2CO3 pump flow rate of 2.54 mL/min and ageing of 30min. 

 

Figure 78. Particle size distribution of samples for impeller speeds (500 rpm and 600 rpm) at 
temperature of 50oC, Na2CO3 pump flow rate of 4.42 mL/min and ageing of 30min. 



91 
 

 

Figure 79. XRD analysis of sample obtained by homogeneous reactive crystallization (Temperature 

of 50oC, Na2CO3 pump flow rate of 4.42 mL/min, ageing of 30min and impeller agitation of 500 rpm). 

12.4 Impurities 

The sample by heterogeneous reactive crystallization and impurities obtained after 

filtering the lithium sulfate solution were analyzed with (EDS), which is shown in 

Figure 80, Figure 81 and Figure 82. 

The impurities obtained on filter paper after filtration of impure lithium sulfate 

solution was dried under room temperature and analyzed by the EDS technique. It 

can be seen that amount of oxygen, sulfur, carbon, aluminum and iron were present 

on the surface, which is shown in Figure 81. The impurities attached with the 

magnetic stirrer were also analyzed. It can be seen that amount of oxygen, iron, 

sulfur, chromium and some traces of aluminum were seen, which is shown in Figure 

80. 

From Figure 82, it can be seen that slight amount of sodium, chromium and 

aluminum were present on the surface of crystals. 
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Figure 80. Analyzes through EDS technique of impurities obtained on the magnetic stirrer. 
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Figure 81. Analyzes by EDS technique of impurities obtained by filter paper from the lithium sulfate solution. 
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Figure 82. EDS analyzes of the sample obtained from heterogeneous reactive crystallization at 25oC 
temperature, 0.3 L/min gas flow rate, 600 rpm impeller stirring rate and 30 min ageing. 

12.5 A comparison of heterogeneous and homogenous reactive 

crystallization of lithium carbonate 

The homogeneous reactive crystallization of lithium carbonate conducted at 5.56 

mL/min sodium carbonate pumping rate, impeller stirring rate of 500 rpm, and 

heterogeneous reactive crystallization was conducted at 0.5 L/min gas flow rate 

and, impeller speed of 600 rpm at 50oC. The residence time of both the experiments 

was between 16 to 18 minutes. That is why they were chosen to compare 

precipitation kinetics, specific cake resistance, compressibility, crystal shape purity, 
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and product yield. The concentration of lithium in the lithium sulfate solution was 

20g/L which was same for both of the system. pH was adjusted to 9.35 with the 5M 

NaOH in heterogeneous system because pH needs to be high enough for 

carbonation precipitation. For homogeneous system there was no need of NaOH. 

pH curves can be seen in Figure 84 and Figure 86 for both processes. 

From Table 18, it can be seen that the crystal yield is almost same for 

homogeneous and heterogeneous precipitation processes. 

Figure 83 and Figure 85 reveal that the nucleation starts more quickly in 

homogeneous reactive crystallization as compared to heterogeneous reactive 

crystallization. This is because a saturated solution of Na2CO3 can provide a high 

amount of carbonate ions. Thus the process is faster than the heterogeneous 

reaction that including gas-liquid mass transfer step. 

The XRD patterns is shown in Figure 93. Particle size distribution of final product 

shown is in Figure 90. SEM analysis revealed that crystals obtained from both 

experiments were flower shaped crystals, which is shown in Figure 87. 

Table 18. Product yield of precipitated lithium carbonate obtained from homogeneous and 
heterogeneous reactive crystallization with different parameters at 50oC. 

System 
Impeller 
speed, 

rpm 

Pump 
flow 
rate, 

mL/min 

Gas Flow 
Rate, 
L/min 

Residence 
time, min 

pH 
initial 

pH 
final 

Product 
Yield % 

Heterogeneous  500 5.56 - 18 9.01 9.71 74 

Homogeneous 600 - 0.5 16 9.35 8.01 73 
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Figure 83. particles count rate obtained by homogeneous reactive crystallization of lithium carbonate at 
temperature of 50oC, stirring rate of 500 rpm, Na2CO3 pump flow rate of 5.65 (18.4 min residence time), 
30min ageing. The experiment was stopped at pH 8. 

 

Figure 84. pH and conductivity curves obtained from homogeneous reactive crystallization of lithium 
carbonate at  temperature of 50oC, impeller speed of 500 rpm), Na2CO3 pump flow rate of 5.65 
mL/min (residence time of 18.4 min and ageing of 30 min. 
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Figure 85. particles count rate obtained by heterogeneous reactive crystallization of lithium 
carbonate at temperature of 50oC, stirring rate of 600 rpm, gas flow rate of 0.5 L/min (16.1 min 
residence time) and ageing of 30 min. The experiment was stopped at pH 8. 

 

Figure 86. pH and conductivity curves obtained from heterogeneous reactive crystallization of 
lithium carbonate at  temperature of 50oC, impeller speed of 600 rpm, gas flow rate of 0.5 L/min 

(residence time of 16.1 min) and ageing of 30 min. 
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Figure 87. SEM images of samples obtained from heterogeneous reactive crystallization at 
temperature of 50oC, impeller speed of 600 rpm, gas flow rate of 0.5 L/min (residence time of 
18.4min) and ageing of 30 min (A, C and E) and SEM images of samples obtained from 
homogeneous reactive crystallization at temperature of 50oC, impeller speed of 500 rpm, Na2CO3 
pump flow rate of 5.56 mL/min (residence time of 18 min) and ageing of 30 min (B, D and F). 

12.5.1 Filterability and compressibility 

The filtration characteristics of solid liquid suspension obtained through 

heterogeneous and homogeneous reactive crystallization was described by means 

of filter cake resistance and compressibility. Specific cake resistance of the 

suspension obtained through heterogeneous and homogeneous reactive 

crystallization are shown in Table 19 and Table 20, respectively. The most 

important factors influencing the filtration characteristics are particle size, particle 
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shape and viscosity of the suspension.  By increasing the pressure, the filtration 

rate observed was increased sequentially. 

Collected filtration data for suspension obtained by heterogeneous and 

homogeneous reactive crystallization is presented in Figure 88 and Figure 89, 

respectively. The figures presents the cumulative filtrate curves with three different 

pressure. Particle shape is shown in Figure 87 and particle size distribution of the 

lithium carbonate crystals used in the filtration is shown in Figure 90. 

In Figure 88 and Figure 89, mass of filtrate over time was not smooth. This could 

be because the cracks produced in the filter cake during the filtration under vacuum 

pressure. 

Comparison between the compressibility from different suspension and average 

specific cake resistances reveals that the difference may due to the difference of 

solution viscosity. More solids were obtained in homogeneous reactive 

crystallization from same lithium sulfate solution which results in difference in 

viscosity of the mother liquor with the comparison of the solution obtained from 

heterogeneous reactive crystallization. 

 

Figure 88. Filtrate mass as a function of time during filtration for the sample obtained from heterogeneous 
reactive crystallization at stirring rate of 600 rpm, gas flow rate of 0.5 L/min (residence time of 18.4 min) and 
ageing of 30 min. 
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Table 19. Specific cake resistance at 80, 60 and 40 mbar pressure of sample obtained by precipitation in 
heterogeneous system at stirring rate of 600 rpm, gas flow rate of 0.5 L/min (residence time of 18.4 min) and 
ageing of 30 min. 

filtration vacuum 
(mbar) 

Specific cake resistant 
(alpha), m/kg 

80 79477 

60 93390 

40 115624 

 

 

Figure 89. Filtrate mass as a function of time during filtration for the sample obtained from homogeneous 
reactive crystallization at stirring rate of 500 rpm, Na2CO3 pump flow rate of 5.56 mL/min (residence time of 
18 min) and ageing of 30 min. 

Table 20. Specific cake resistance at 80, 60 and 40 mbar pressure of sample obtained by homogeneous 
reactive crystallization at stirring rate of 500 rpm, Na2CO3 pump rate of 5.56 mL/min (residence time of 18 
min) and ageing of 30 min. 

filtration vacuum 
(mbar) 

Specific cake resistant 
(alpha), m/kg 

80 82574 

60 115990 

40 
136176 

 
Table 21. Compressibility of the product obtained by homogeneous and heterogeneous reactive 
crystallization. 

Precipitation system 
Residence 
time, min 

Compressibility 

Heterogeneous 18.4 0.113 

Homogeneous 18 0.082 
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Figure 90. Particle size distribution of sample obtained by heterogeneous reactive crystallization at 
temperature of 50oC, impeller speed of 600 rpm, gas flow rate of 0.5 L/min (residence time of 18.4 
min) and ageing of 30 min and Particle size distribution of sample obtained by homogeneous 
reactive crystallization at impeller speed of 500 rpm, Na2CO3 pump rate of 5.56 mL/min (residence 
time of 18 min) and ageing of 30 min. 

Match software was used for XRD analysis report for each crystal sample. All the 

peaks were visually examined and compared with the reference data to determine 

the final composition of the crystal phase. Both the samples correlate with reference 

data (ICSD 98-010-0324), which indicates that Li2CO3 mainly crystallizes from the 

solutions. 
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Figure 91. XRD analysis of the sample obtained by homogeneous reactive crystallization at temperature of 
50oC, impeller speed of 500 rpm, Na2CO3 pump flow rate 4.42mL/min (Residence time of 23.7 min) and 
ageing of 30 min. 

 

Figure 92. XRD analysis of the sample obtained by heterogeneous reactive crystallization at temperature of 
50oC, impeller speed of 600 rpm, gas flow rate of 0.5 L/min and ageing of 30 min. 



103 
 

 

Figure 93. XRD analysis of sample Li2CO3 commercial grade and sample obtained from homogeneous reactive 
crystallization at temperature 50oC, impeller speed of 600 rpm, gas flow rate of 0.5 L/min (Residence time of 
18.4 min) and ageing of 30 min and sample obtained by homogeneous reactive crystallization at 
temperature of 50oC, impeller speed of 500 rpm, Na2CO3 pump rate of 4.42 mL/min. 

Conclusion 

In this work, Pitzer thermodynamic model was studied to predict the Li2CO3 

solubility in the Li2CO3-Li2SO4-H2O ternary system. It can be concluded that the 

predicted activity coefficient of lithium carbonate was not consistent with literature 

data, which may be because the Pitzer parameters are lacking from the literature. 

The aim of this study was to use carbon dioxide as a reactant for carbonation 

process which can help in decreasing the greenhouse gas emission and produce 

high quality lithium carbonate. The effects of temperature, gas flow rate, stirring rate 

and ageing on carbonation rate and particle size distribution was investigated. The 

Match program was used to obtain XRD analysis report for each sample, and most 

of the characteristic peaks were compared with the reference data to determine the 

final crystal phase composition. It can be observed from Figure 93 that peaks 

related to the final product in XRD analysis were identical for both product obtained 

by crystallization in homogeneous and heterogeneous system, which was identified 

as Li2CO3 with some impurities. 

The maximum lithium carbonate yield obtained from homogeneous and 

heterogeneous reactive crystallization reaches approximately 74% at temperature 

of 50°C. The yield of lithium carbonate obtained from heterogeneous reactive 
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crystallization was approximately 40% at temperature of 25oC. It is concluded that 

carbonation process is a favorable technique for both utilization of CO2 in strong 

alkaline solutions and by using saturated Na2CO3 solution in production of lithium 

carbonate. 

There is not any big difference of particle size and shape for both studied 

temperature. Time to achieve equilibrium was less at temperature of 50oC 

compared to 25oC. It was noticed that the initial pH of solution in heterogeneous 

reactive crystallization was important for the absorption of CO2 to get maximum 

yield of lithium carbonate. It should be noticed that pH was sensitive to temperature.  

The results from heterogeneous reactive crystallization show that, more crystals 

was obtained at lower gas flow rate. Time to achieve the desired pH increases as 

the decrease of gas flow rate. There is not any significant difference of particle size 

distribution at different gas flow rates (0.3 and 0.5 L/min) for both the impeller 

speeds (500 and 600 rpm). Reduction in particle size of the crystals was seen at 

higher stirring speed. It was noted that ageing does not have significant effect in 

the process. 

 

The crystallization of lithium carbonate was carried out with Na2CO3 pump flow 

rates of 2.54, 4.42 and 5.65 with residence time of 40, 23, and 18 minutes, 

respectively and impeller speed of 500 and 600 rpm. The results obtained from 

homogeneous reactive crystallization conclude that increase in pump flow rate 

results in acceleration of the reaction, and thus more crystals was produced. XRD 

analysis and SEM images showed that the precipitated lithium carbonate were 

flower shape crystals and the size were between 50-100 µm. 

 
The last chapter of this thesis is to investigate and compare the particle shape, 

particle size distribution, purity of solids, filterability and compressibility of the 

crystals obtained by heterogeneous and homogeneous system. It is observed that 

the crystals obtained from both the cases have same particle shape and particle 

size distribution. It is noted that vacuum filtration is a promising technique in spatting 

all the crystal samples from the mother liquor. As the pressure is increased, the 

filtration rate increases. It is observed that the filtration characteristics is different 
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for different suspensions. Compressibility is affected by the shape of particles, 

particle size distribution and viscosity of the filtrate. It is observed from the particle 

size distribution that the crystals obtained from homogenous and heterogeneous 

reactive crystallization was same and from SEM images that the particles have 

same shape but the viscosity of the filtrate obtained in both cases differs because 

of more crystals obtained in homogeneous reactive crystallization which affected 

the compressibility. 

Overall, the study clearly shows that using CO2 gas in heterogeneous reactive 

crystallization and using Na2CO3 in homogeneous reactive crystallization can be 

used as a feasible way to recover lithium carbonate from lithium sulfate solution. 

Nevertheless, to crystalize the lithium carbonate of battery grade requires more 

research. To improve the crystal purity and to obtain battery grade lithium carbonate 

some suggestions are explained. First, lithium sulfate can be used with less 

impurities for crystallization. Second, ethanol washing is needed to remove mother 

liquor residue from the crystals. Finally, higher temperature than 50oC can reduce 

the impurity. In the future, it is needed to perform more experiments to find the 

method to control the initial pH of the solution. These would provide some extra 

information which will help in understanding to control the initial pH and operating 

parameters for better control the crystallization process which result in 

crystallization of battery grade lithium carbonate with less impurities. 
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APPENDICES 

Appendix I, 1. 

XRD analysis of different samples obtained by heterogeneous reactive crystallization. 
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Appendix II, 1. 

Chord length distribution and rate of change of counts during the solubility check 

of 0.8 g of lithium carbonate, 2.17 g of lithium sulfate and 97.02 g of water. 
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Appendix II, 2. 

Chord length distribution and rate of change of counts during the solubility check 

of 0.4 g of lithium carbonate, 9.24 g of lithium sulfate and 90.41 g of water. 
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Appendix II, 3. 

Chord length distribution and rate of change of counts during the solubility check 

of 0.2 g of lithium carbonate, 23.34 g of lithium sulfate and 76.50 g of water. 

 

 


