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Cellular and circuit hyperexcitability are core features of Fragile X Syndrome and related autism 6 

spectrum disorder models. However, the cellular and synaptic bases of this hyperexcitability 7 

have proved elusive. We show in a mouse model of Fragile X Syndrome, glutamate uncaging 8 

onto individual dendritic spines yields stronger single-spine excitation than wild-type, with more 9 

silent spines. Furthermore, near-simultaneous uncaging at multiple spines revealed fewer 10 

spines are required to trigger an action potential. This arose, in part, from increased dendritic 11 

gain due to increased intrinsic excitability, resulting from reduced hyperpolarization-activated 12 

currents, and increased NMDA receptor signaling. Super-resolution microscopy revealed no 13 

change in dendritic spine morphology, indicating no structure-function relationship at this age. 14 

However, ultrastructural analysis revealed a 3-fold increase in multiply-innervated spines, 15 

accounting for the increased single-spine glutamate currents. Thus, loss of FMRP causes 16 

abnormal synaptogenesis, leading to large numbers of poly-synaptic spines despite normal 17 

spine morphology, thus explaining the synaptic perturbations underlying circuit hyperexcitability. 18 

19 
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Introduction: 20 

Cell and circuit hyperexcitability have long been hypothesized to underlie many core symptoms 21 

of Fragile X Syndrome (FXS) and autism spectrum disorders more generally, which include 22 

sensory hypersensitivity, seizures and irritability 1. The fundamental role of cellular excitability in 23 

circuit function raises the possibility that alterations in neuronal intrinsic physiology may underlie 24 

a range of functional endophenotypes in FXS. Despite this potential link, few studies have 25 

examined the combined synaptic, dendritic, and cellular mechanisms that lead to generation of 26 

neuronal hyperexcitability during early postnatal development.  27 

 28 

Many cellular properties are known to regulate neuronal excitability, such as neuronal 29 

morphology, intrinsic physiology, synaptic transmission and plasticity. In FXS, a central 30 

hypothesis is that glutamatergic signalling at dendritic spines is impaired 2,3 concomitant with 31 

changes to intrinsic cellular excitability 4. The first major alteration described was a change in 32 

dendritic spine density and morphology 3,5, however this observation was not apparent when 33 

examined at the nanoscale using super-resolution imaging methods 6, despite an increase in 34 

synapse and spine density in the neocortex 7-9. Notwithstanding, no study has yet observed a 35 

change in synaptic event frequency that would be predicted by a change in spine or synapse 36 

density. This has important implications for our understanding of the synaptic aetiology of FXS, 37 

as many of the current theories are reliant on altered synaptic function 10,11.  38 

 39 

The rodent somatosensory cortex (S1) is well characterised in terms of its processing of tactile 40 

inputs, which, in the case of the barrel cortex arise from the whiskers on the facepad via relay 41 

synapses in the brainstem and ventrobasal thalamus 12. The thalamic inputs arrive predominantly 42 

onto layer 4 stellate cells (L4 SCs) which integrate this information within L4, then project to L2/3 43 

and L6. Furthermore, L4 SCs undergo a well described critical period for synaptic plasticity, which 44 

closes at postnatal day 7-8 (P7-8). For these reasons, L4 of S1 provides a well-described 45 

reductionist system to examine sensory processing 13,14. Indeed, hyperexcitability has been 46 

observed within S1 of Fmr1-/y mice, due in part to changes in intrinsic neuronal excitability, axonal 47 

morphology, and synaptic connectivity, which together result in increased network excitability 15-48 

17. The finding that the critical period for thalamocortical synaptic plasticity is delayed in Fmr1-/y 49 

mice compared to wildtype (WT) gave a suggestion as to how cellular and circuit deficits may 50 

arise 18. How this delay in synapse development delay affects dendritic spine function is not 51 

known. Furthermore, no study has directly examined how dendrites integrate synaptic inputs in 52 

the absence of FMRP, despite the fact that dendritic integration plays a key role in regulating 53 
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cellular excitability 19-21. Of particular relevance are findings that HCN channel expression is 54 

altered, leading to changes in intrinsic physiology and dendritic integration 16,17,22. Here, we directly 55 

test whether there is a functional relationship between dendritic spine function, intrinsic neuronal 56 

physiology, HCN channel function, dendritic integration, and ultimately neuronal output. To 57 

address this question, we use an integrative approach that combines whole-cell patch-clamp 58 

recording from neurons in S1 at P10-14 with 2-photon glutamate uncaging, post-hoc stimulated 59 

emission-depletion (STED) microscopy, and serial block-face scanning electron microscopy.  60 

 61 

Results:  62 

Larger single dendritic spine currents in Fmr1-/y L4 SCs: 63 

To first assess the function of identified dendritic spines in Fmr1-/y mice, we performed single spine 64 

2-photon glutamate uncaging. Whole-cell patch-clamp recordings were performed from L4 SCs 65 

in voltage-clamp with a Cs-gluconate based intracellular solution containing a fluorescent dye 66 

(Alexafluor 488, 100 µM) and biocytin to allow on-line and post-hoc visualization of dendritic 67 

spines. Following filling, we performed 2-photon uncaging of Rubi-glutamate (Rubi-Glu) to elicit 68 

uncaging excitatory post-synaptic currents (uEPSCs; Figure 1A). From both the concentration- 69 

and power-response relationships (Supplementary Figure 1A, B), we determined that 300 µM 70 

[Rubi-Glu] and 80-100 mW laser power (λ780 nm) were optimal to produce saturating uEPSCs at 71 

-70 mV. Analysis of the spatial properties of Rubi-Glu uncaging confirmed that the optimal position 72 

for photolysis was 0-1 µm from the edge of the spine head (Supplementary Figure 1C), and the 73 

resulting uEPSCs were blocked with CNQX, confirming that they were produced by AMPA 74 

receptors (AMPARs, Supplementary Figure 1D). We also found no difference in spine distance 75 

from cell soma and uEPSC rise or decay time and amplitude suggesting equal space clamp of 76 

the neurons across the dendritic distances examined (Supplementary Figure 1F-H). All details of 77 

statistical tests performed can be found in Supplementary Table 1. 78 

 79 

Comparison between genotypes revealed that the single spine uEPSCs in WT mice had an 80 

amplitude of 6.9 ± 0.4 pA (n=17 mice), while Fmr1-/y mice (n=14 mice) showed a larger uEPSC 81 

amplitude of 9.8 ± 0.5 pA (d.f: 4, 5 χ2 = 8.26 p = 0.004; LMM, Figure 1 and Supplementary Figure 82 

2), indicating that spines in Fmr1-/y mice are enriched for AMPAR-mediated currents (Figure 1B, 83 

C). This difference appeared to be due to a greater population of uEPSCs at Fmr1-/y spines with 84 

amplitudes over 10 pA (Figure 1B). As expected from larger underlying currents, the single spine 85 

uncaging excitatory post-synaptic potential (uEPSP) was also larger in Fmr1-/y mice 86 

(0.73 ± 0.12 mV, n = 10 mice), when compared to WT littermates (0.47 ± 0.06 mV, n = 16 mice; 87 
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d.f.: 24; t = 2.09; p = 0.046; T-test; Figure 1D). In a subset of dendritic spines we observed no 88 

AMPAR current at -70 mV, however a large NMDA receptor (NMDAR) current was present at 89 

+40 mV, indicating the presence of silent dendritic spines (Figure 1E). Quantification of the silent 90 

spines revealed an occurrence of 17.6 ± 3.5% in Fmr1-/y mice (n=13 mice), almost 3-fold higher 91 

than in WT mice (6.4 ± 1.6%, n=17 mice; d.f.: 27; t = 3.1; p = 0.005; T-test; Figure 1F). When 92 

measured across all spines, the NMDA/AMPA ratio was significantly elevated as both a 93 

population average (d.f.: 1, 331; F = 37.36; p <0.0001; F-test; Figure 1G) and also as a spine 94 

average with Fmr1-/y mice having a ratio of 1.26 ± 0.05 (n=117 spines) and WT of 0.97 ± 0.03 95 

(n=194 spines; χ2 = 6.27 p = 0.012, LMM, Figure 1H and Supplementary Figure 3).  96 

 97 

Given that the majority of L4 SC dendritic spines are formed by cortico-cortical synapses in WT 98 

mice 23, and therefore likely comprise the majority of uncaged spines, we next asked whether 99 

synapses formed between L4 SCs had larger EPSC amplitudes by performing paired recordings 100 

between synaptically-coupled neurons (Figure 2). As previously described in 2-week old mice 16, 101 

we observed a low connectivity between L4 SCs in Fmr1-/y mice of 14.8%, that is significantly 102 

lower than that of WT mice which had a connectivity of 33.6% (p = 0.015, Fisher’s exact test, 103 

Figure 2C). Despite this reduced connectivity, there was no difference in either failure rate (d.f.: 104 

41; t = 0.25, p = 0.80; GLMM; Figure 2D) or unitary EPSC amplitude (d.f.: 41; t = 1.53, p = 0.15; 105 

LMM; Figure 2E), suggesting that synaptic strength is unchanged at the majority of synapses in 106 

Fmr1-/y mice.  107 

 108 

Fmr1-/y spines have typical morphology but more synapses 109 

The inclusion of biocytin within the internal solution allowed post-hoc visualisation of the recorded 110 

neurons, following fixation and re-sectioning. We next performed correlated Stimulated Emission-111 

Depletion (STED) imaging of the same dendritic spines we had uncaged upon (Figure 3A-E). 112 

Measurement of nanoscale spine morphology revealed that there was no difference in either 113 

spine head width (Figure 3B), nor neck-length (Figure 3D), between WT (n=6 mice) and Fmr1-/y 114 

(n=4 mice) mice. Consistent with earlier findings 24, we observed a weak positive correlation with 115 

spine head width and EPSC amplitude in WT mice (7.8 ± 3.8 pA/µm, R2=0.06, F=4.3, p=0.042, 116 

F-test), which was not different to that of Fmr1-/y mice (F=0.02, p=0.89, Sum-of-Squares F-test; 117 

Figure 3C). We observed no correlation with spine neck length and EPSC amplitude (Figure 3E). 118 

To confirm that uncaging itself did not result in spine remodelling, we also measured spines from 119 

non-uncaged dendrites on filled neurons. Spine density itself was not different between genotypes 120 
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(Figure 3F), nor were head width (Figure 3G, H) and neck length (Figure 3I, J), in agreement with 121 

previous findings from L5 of S1 and CA1 of the hippocampus 6. 122 

 123 

Given the strengthening of dendritic spines, but no change in unitary EPSC amplitude or spine 124 

morphology, we next asked whether the ultrastructure of dendritic spines was altered. To achieve 125 

this, we used serial block-face scanning electron microscopy in L4 of S1 from mice perfusion fixed 126 

at P14. In serial stacks (50 nm sections; Figure 4) we identified Type-1 asymmetric synapses on 127 

dendritic spines, based on the presence an electron dense post-synaptic density (PSD) opposing 128 

an axon bouton containing round vesicles. Following 3-dimensional reconstruction, we identified 129 

a subset of dendritic spines that contained more than one PSD, which were each contacted by 130 

an independent presynaptic axon bouton (Figure 4A, B), and henceforth referred to as multi-131 

innervated spines (MIS). These MIS were present in both genotypes, however the incidence in 132 

Fmr1-/y mice was 20.5 ± 1.6% of all spines (n=7 mice), approximately 3-fold higher than in WT 133 

littermates (7.2 ± 1.5% of spines, n=3 mice, d.f.: 8; t = 4.9; p = 0.001; T-test; Figure 4C), which is 134 

similar to that observed in organotypic hippocampal cultures from WT mice 25.  135 

 136 

The presence of higher numbers of MIS in Fmr1-/y mice, and larger single spines uEPSCs, despite 137 

a similar density of spines and similar dendritic morphologies 26, would suggest an increased 138 

number of synapses for each L4 SC. The conventional method to assess such a change in 139 

synapse number is to perform miniature EPSC (mEPSC) recordings (Figure 5A). AMPAR 140 

mEPSCs recorded at -70 mV in Fmr1-/y mice were very similar to WT in both amplitude (d.f.: 46; 141 

U = 245; p = 0.28; Mann-Whitney test) and frequency (d.f.: 46; U = 240; p = 0.24; Mann-Whitney 142 

test; Figure 5B). NMDAR mEPSCs, recorded at +40 mV in the presence of CNQX, also had very 143 

similar amplitudes (d.f.: 17; U = 37; p = 0.59; Mann-Whitney test). However, Fmr1-/y mice showed 144 

a 54% increase in NMDAR mEPSC frequency compared to WT mice (d.f.: 17; U = 18; p = 0.03; 145 

Mann-Whitney test; Figure 5C). These data indicate that while AMPAR-containing synapses 146 

number and strength are unaltered in Fmr1-/y mice, they possess ~50% more NMDAR containing 147 

synapses. 148 

 149 

Fmr1-/y L4 SCs are hyperexcitable due to lower HCN currents 150 

While these observed changes in synaptic properties reveal differences in dendritic spine 151 

function, alone they do not reveal how neurons integrate excitatory inputs leading to 152 

hyperexcitability. Dendritic spines act as spatiotemporal filters whose summation is dependent 153 

upon synaptic receptor content 21 and intrinsic membrane properties 20,27, the latter of which 154 
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contributes to the cable properties of dendrites 28. To explore the effect of altered synaptic 155 

properties on dendritic integration in Fmr1-/y SCs, we next measured the intrinsic excitability of L4 156 

SCs by assessing their response to hyperpolarising and depolarising current injections (Figure 157 

6A, B). In Fmr1-/y mice, L4 SC input resistance (RI) was increased compared to WT mice, as 158 

measured from the steady-state current-voltage relationship (Interaction: d.f.: 5, 230; F = 7.03; 159 

p < 0.0001; 2-way RM ANOVA Figure 6C) and smallest current step response (d.f.: 222; t = 2.21, 160 

p = 0.023; GLMM; Figure 6C, inset). This increase in RI in Fmr1-/y mice was associated with an 161 

increase in action potential (AP) discharge (Interaction: d.f.: 5, 230; F = 6.17; p < 0.0002; 2-way 162 

RM ANOVA, Figure 6D), resulting from a decreased rheobase currents in the recorded L4 SCs 163 

(d.f.: 222; t = 2.15, p = 0.035; GLMM, Figure 6D, inset). The dynamic response of neurons to 164 

modulating current when measured with a sinusoidal wave of current injection (0.2 – 20 Hz, 165 

50 pA, 20 s duration, Figure 6E) led to a resonant frequency of 1.1 ± 0.1 Hz in L4 SCs from Fmr1-166 

/y mice, which was higher than that of 0.8 ± 0.1 Hz in WT littermates (d.f.: 25; t = 3.25; p = 0.002; 167 

LMM; Figure 6F). Furthermore, there was no change in resonant dampening (Q-factor: WT: 168 

1.23 ± 0.07; Fmr1-/y; 1.13 ± 0.03; d.f.: 24; t = 0.7; p = 0.49; T-test) indicating equally sustained 169 

activity at these frequencies between genotypes. Further analysis of passive membrane 170 

properties (Supplementary Figure 6B and 6C) did not reveal genotype specific differences. While 171 

AP amplitude was minimally reduced (Supplementary Figure 6E), no other parameter was 172 

significantly altered, confirming the specificity of RI leading to altered cellular excitability. These 173 

analyses demonstrate that L4 SCs from Fmr1-/y mice are intrinsically more excitable than their 174 

WT counterparts. 175 

 176 

In S1 L5 pyramidal cells, HCN channel density is reduced leading to reduced Ih as measured 177 

indirectly as a voltage-sag in current-clamp 17,22. Therefore, we next asked whether Ih mediated 178 

sag is also reduced in L4 SCs and contributes to the genotypic differences in intrinsic excitability 179 

we have observed. We first measured the sag and membrane rebound in response to 180 

hyperpolarising current steps in current-clamp from -60 mV (0 to -125 pA, 25 pA steps, 500 ms 181 

duration; Figure 7A). The voltage sag, as measured as a percentage of the maximum 182 

hyperpolarisation (Figure 7B) was significantly reduced in Fmr1-/y mice (7.6 ± 0.6% of maximum) 183 

when compared to WT controls (10.9 ± 0.5% of maximum, d.f.: 218; t = 3.59, p = 0.0003; GLMM), 184 

indicating reduced Ih. A further measure of Ih is the rebound potential produced on return to -185 

60 mV 22,29. Consistent with reduced sag, we observed a lower rebound potential in Fmr1-/y L4 186 

SCs when measured relative to the steady-state potential (Figure 7C). Furthermore, the rebound 187 
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slope from individual cells was -0.09 ± 0.01 mV/mV in Fmr1-/y neurons, lower than that of WT (-188 

0.11 ± 0.01 mV/mV d.f.: 207; t = 2.28, p = 0.024; LMM, Figure 7D). 189 

 190 

We next applied the Ih blocker ZD-7,288 (ZD; 20 µM) to a subset of cells to assess the effect of Ih 191 

on intrinsic excitability. We observed a tendency to greater RI in Fmr1-/y than in WT mice (d.f.: 57; 192 

t = 1.85, p = 0.078; LMM; Figure 7E), similar to that we had observed previously (Figure 6C). 193 

Following ZD application in WT L4 SCs, RI increased by 49% (d.f.: 28; t = 6.05, p = 1.99×10-7; 194 

LMM; Figure 7E), while Fmr1-/y L4 SCs only showed a 14% increase (d.f.: 28; t = 1.28, p = 0.20; 195 

LMM; Figure 7E). The ZD effect on RI was significantly lower Fmr1-/y L4 SCs compared to WT 196 

(d.f.: 57; t = 4.37, p = 6.3×10-5; LMM; Figure 7F). Given the observed differences in AP discharge 197 

between genotypes (Figure 6D), we next tested whether ZD normalised this genotypic difference. 198 

In WT L4 SCs, ZD application significantly increased AP firing (d.f.: 5, 80; F = 3.2; p = 0.011 for 199 

interaction; 2-way RM ANOVA; Figure 7G). However, ZD had no effect on the AP discharge of 200 

Fmr1-/y L4 SCs (d.f.: 5, 174; F = 0.23; p = 0.95 for interaction; 2-way ANOVA; Figure 7H), 201 

consistent with reduced sag. Finally, we examined the effect ZD had on the resonance of L4 SCs. 202 

In WT L4 SCs, ZD increased the impedance at low frequencies by 33% (d.f.: 15; t = 2.66, p = 203 

0.017; GLMM; Figure 7I, K), whereas ZD had no effect on impedance in Fmr1-/y neurons (d.f.: 13; 204 

t = 0.83, p = 0.41; GLMM; Figure 7J, K). These data show that the intrinsic excitability of L4 SCs 205 

is increased in Fmr1-/y
 mice, with WT L4 SC excitability increased by ZD application, potentially 206 

explaining genotype specific differences in cellular intrinsic excitability.  207 

 208 

Voltage sag and rebound are indicative of altered Ih. To directly measure Ih in L4 SCs we next 209 

performed dedicated voltage-clamp experiments using a paradigm described previously 30. Ih was 210 

recorded from L4 SCs in the presence of sodium channel, potassium channel, calcium channel, 211 

and GABAA receptor blockers, as well as AMPA and NMDA antagonists, from -50 mV with 212 

hyperpolarising steps (10 mV steps, 5 second duration, Figure 8A). Ih had a half-maximal 213 

activation potential (V1/2 max) in WT L4 SCs of -86 mV, which in Fmr1-/y was more hyperpolarised 214 

at -92 mV (d.f.: 4, 584; F = 4.58, p= 0.001; F-test; Figure 8B). Despite this difference, Ih elicited at 215 

the most hyperpolarised voltage steps was similar (d.f.: 1, 370; F = 0.001, p= 0.97; F-test), 216 

suggesting a normal complement of HCN channels (these currents in both WT and Fmr1-/y L4 217 

SCs were sensitive to ZD, Figure 8B, inset). As the activation of Ih is directly associated to the 218 

intracellular cyclic-AMP concentration 31, we next asked if increasing intracellular cyclic-AMP 219 

could rescue Ih activation in Fmr1-/y neurons. To increase cyclic-AMP levels, we bath applied the 220 

adenylyl cyclase activator forskolin (50 µM) to the bath. Forskolin significantly increased the 221 
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activation of Ih in both WT and Fmr1-/y L4 SCs (Figure 8C), normalising the Ih activation curves 222 

between genotypes (d.f.: 4, 310; F = 0.2, p= 0.94; F-test, Figure 8D). This data indicates that the 223 

decrease in Ih and hence increase in intrinsic excitability, in Fmr1-/y L4 SCs results from a reduced 224 

cAMP-mediated shift in HCN activation.  225 

 226 

Enhanced dendritic summation in L4 SCs from Fmr1-/y mice 227 

Given that NMDARs and HCN channels are a key determinants of dendritic integration 19,20, we 228 

next assessed both spatial and temporal dendritic summation in the Fmr1-/y L4 SCs. To address 229 

spatial summation in L4 SC dendrites we performed near-simultaneous glutamate uncaging at 230 

multiple spines (Fig. 9A), by focal puff application of Rubi-Glu (10 mM) and rapidly uncaged on 231 

dendritic spines (0.5 ms/spine). We first performed a sequential uncaging (i.e. each spine 232 

individually), then near simultaneous uncaging of spine ensembles (i.e. groups of spines; Figure 233 

9B).  234 

 235 

Summating EPSPs ultimately resulted in a AP discharge from L4 SCs. Fmr1-/y L4 SCs required 236 

activation of fewer spines on average to initiate an AP (d.f.: 23; t = 2.3; p = 0.03, T-test; Figure 237 

9C), which was more pronounced when silent-spines excluded from analysis (d.f.: 18; t = 3.2; p = 238 

0.005). In five Fmr1-/y L4 SCs, uncaging at spines individual was not performed, thus were not 239 

included in further analysis. Measurement of the summated EPSP, with respect to number of 240 

spines near-simultaneously uncaged showed that both WT and Fmr1-/y L4 SC dendrites showed 241 

an increase in EPSP amplitude with increasing number of spines (Figure 9D), which was 242 

significantly greater in the Fmr1-/y L4 SCs (d.f.: 1, 170; F = 8.98; p = 0.003; F-test). This measure 243 

will include effects due to increased spine synaptic strength and input resistance, in addition to 244 

dendritic integrative properties. Therefore, we next compared the expected linear sum of single 245 

spine EPSPs to that of the observed summated EPSP (Figure 9E), thereby excluding individual 246 

spine strength and input resistance effects on EPSP amplitude. We observed sublinear 247 

integration in WT and Fmr1-/y L4 SCs, however WT neurons showed low levels of integration 248 

(Slope: 0.50 ± 0.09), while Fmr1-/y neurons presented over 50% higher summation (Slope: 249 

0.79 ± 0.08; d.f.: 1, 195; F = 3.18; p = 0.044; F-test). These data clearly show that the dendrites 250 

of Fmr1-/y L4 SCs undergo excessive dendritic summation of synaptic inputs. To confirm that 251 

dendritic summation is altered in response to endogenous synaptic transmission, we next 252 

provided extracellular stimulation to thalamocortical afferents (TCA) from the ventrobasal 253 

thalamus, whilst recording from L4 SCs (Figure 9F). Stimulus intensity was titrated so that an 254 

EPSC of ~150 pA was produced, then trains of EPSPs were elicited in current-clamp at either 5 255 
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or 10 Hz. At these stimulation intensities summating EPSPs in L4 SCs in WT mice never produced 256 

a somatic AP, however in Fmr1-/y mice 5 Hz stimulation resulted in an AP in 19 ± 7% of recordings 257 

(d.f.: 16; t = 2.57 & 3.81; p = 0.02 & 0.002, T-test) and 10 Hz stimulation 55 ± 13% of the time 258 

(d.f.: 16; t = 3.81; p = 0.002, T-test), confirming that dendritic integration properties alter the output 259 

of L4 SCs, to promote hyperexcitability (Figure 9G). 260 

 261 

As Ih has known effects on dendritic summation 19, we next asked whether ZD altered summation 262 

properties. First, we determined whether inhibition of HCN channels altered amplitude or kinetics 263 

of synaptic events. Application of ZD itself had no effect on spontaneous EPSC amplitudes, 264 

frequencies, or kinetics (Supplementary Figure 8). However, spontaneous EPSCs were of higher 265 

frequency in Fmr1-/y L4 SCs, potentially indicating underlying circuit hyperexcitability (d.f.: 25; t = 266 

2.99, p = 0.016; GLMM).Summating uEPSPs from WT mice (normalised to the initial uEPSP) 267 

displayed long decay times at low summation, which were more rapid at higher summation levels 268 

(Supplementary Figure 9A and 9B). By comparison, in Fmr1-/y mice we did not observe this 269 

relationship and the genotype-specific log(EPSP summation) was divergent (d.f.: 1, 109; F = 32.1, 270 

p <0.0001; F-test). The summation-dependent temporal sharpening of EPSPs in WT neurons was 271 

abolished following application of ZD (Comparing slope: d.f.: 1, 85; F = 6.4, p= 0.01; F-test; 272 

Supplementary Figure 6D) and also prolonged decay times of the first EPSP (Figure 9F, d.f.: 15; 273 

t = 2.34; p = 0.034; T-test; Supplementary Figure 9C). ZD had no observable effect on summating 274 

EPSPs in Fmr1-/y L4 SCs (Supplementary Figure 9E). Finally to confirm that altered Ih and NMDAR 275 

function contribute to the observed aberrant dendritic summation, in a subset of experiments we 276 

examined the effects of both ZD and AP-5 on EPSP summation during multispine uncaging. 277 

Application of either ZD or AP-5 to near-simultaneous uncaging of uEPSPs in WT L4-SCs had 278 

minimal effect on the observed summation when compared to the expected linear sum 279 

(Supplementary Figure 10A), consistent with an absence of non-linear summation. However, bath 280 

application of either ZD or AP-5 significantly reduced the summation of Fmr1-/y L4 SCs 281 

(Supplementary Figure 10B). These findings confirm that both reduced HCN activation and 282 

increased NMDARs contribute to the enhanced summation in dendrites of Fmr1-/y L4 SCs relative 283 

to WT cells.  284 

 285 

Discussion:  286 

L4 of the primary somatosensory cortex is the first layer to receive and integrate incoming sensory 287 

information, which is integrated and relayed within the cortex. As such, L4 SCs play a crucial role 288 

in sensory perception 14. Individuals with FXS show altered sensory processing 32,33 and mouse 289 
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models show altered circuit processing in primary sensory areas 1,15,17,18,34,35. Furthermore, while 290 

FMRP has been shown repeatedly to regulate synapse function and plasticity, little is known about 291 

how these alterations affect dendritic spine function and dendritic integration to sensory input. To 292 

address these questions, we used glutamate uncaging at L4 SC dendritic spines to examine how 293 

they integrate and generate action potentials following synaptic stimulation. We show that L4 SCs 294 

in S1 have dendritic and synaptic properties that result in increased action potential generation in 295 

Fmr1-/y mice relative to WT controls. Specifically, we show increased excitatory synaptic currents 296 

at individual spines resulting from increased AMPAR and NMDAR content.  Despite this, we 297 

observed no change in spine morphology using STED microscopy and there was little correlation 298 

between spine structure and function, indicating that spine morphology is not an effective proxy 299 

for spine function, at least at the age used in this study. However, electron microscopic analysis 300 

revealed an increase in multiply-innervated spines which likely accounts for the increase in single-301 

spine synaptic currents. Interestingly there was also an increase in silent spines which agrees 302 

with the increase in NMDAR mEPSC frequency, but not AMPAR mEPSC frequency. The overall 303 

increase in dendritic spine currents was accompanied by enhanced dendritic integration likely 304 

resulting, at least in part, from a ~50% reduction in Ih. This reduced Ih was causal to the altered 305 

intrinsic physiology of L4 SCs at P12-14. Finally, TCA stimulation at frequencies that fail to elicit 306 

AP discharge from L4 SCs in WT mice, in the presence of intact synaptic inhibition, reliably elicits 307 

APs in Fmr1-/y neurons, indicating that the local inhibitory circuit cannot compensate for the 308 

increase in synaptic and dendritic excitability. Together these findings demonstrate that aberrant 309 

dendritic spine function and dendritic integration combine to result in cellular hyperexcitability in 310 

L4 SCs. As the first cortical cells to receive input from the sensory periphery, the resultant 311 

hyperexcitability likely contributes previously reported circuit excitability in Fmr1-/y mice and the 312 

sensory hypersensitivities in individuals with FXS. 313 

 314 

Our study quantifies the incidence of MIS in intact tissue and implicates their presence in 315 

pathological states associated with disease models. Indeed, the mean increase in spine uEPSC 316 

amplitude, but not miniature, spontaneous or unitary EPSCs, in Fmr1-/y mice is likely caused by 317 

the increase in the number of MIS. Indeed, the presence of MIS in both WT and Fmr1-/y mice 318 

disagrees with the one spine/one synapse hypothesis 36. A potential mechanistic link between 319 

loss of FMRP and the increase in MIS may come from its ability to regulate PSD-95.  Psd-95 320 

mRNA is a known FMRP target 37 and an increase in PSD-95 puncta in L4 of S1 has been 321 

observed 7, with no change in cell number, dendritic morphology, or spine density in Fmr1-/y mice 322 

26. Furthermore, transient overexpression of PSD-95 results in increased MIS incidence through 323 
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nitric oxide synthase, as well as NMDARs and other LTP mechanisms 22,25,38-40. Future 324 

experiments exploring the effect of NOS blockade, PSD-95, and NMDAR function in Fmr1-/y mice 325 

should test the mechanism of MIS formation and influence on dendritic protein synthesis, as well 326 

as potential therapeutic targeting. 327 

 328 

Interestingly the increase in spines with increased uEPSC amplitudes and MIS was mirrored by 329 

an increase in silent spines, though their number was insufficient to compensate for the overall 330 

increase in dendritic currents in other spines.  An increase in silent TCA synapses at P7 18 was 331 

previously reported in Fmr1-/y mice. However, this study also reported a delay in the critical period 332 

for inducing LTP at these synapses which terminated at P10. Therefore, the period of synaptic 333 

potentiation at TCA synapses is complete by the age we tested in this study. Hence the 334 

percentage of silent spines receiving TCA input would be expected to be low 41. Furthermore, the 335 

reduced connectivity between L4 SCs at P12-14, despite no change in spine density (Till et al., 336 

2012), strongly indicates that SC to SC synapses are preferentially silent at this developmental 337 

stage in the Fmr1-/y mouse. Together, these findings suggest that silent spines measured in our 338 

study reflect cortico-cortical, rather than TCA, synapses. Given the hierarchical nature of sensory 339 

system development, it would not be surprising if a delay in intra-cortical synapse development in 340 

Fmr1-/y mice follows the aforementioned delay in TCA synapse development, but this remains to 341 

be directly tested.  342 

 343 

While dendritic spines are functionally disrupted in the Fmr1-/y mouse, using super resolution 344 

microscopy we found no evidence of a genotypic difference in spine morphology of L4 SC 345 

neurons. This is in good agreement with our previous findings that spine morphology is unaffected 346 

in hippocampal CA1 and layer 5 S1 neurons 6. Furthermore, we find only a weak correlation 347 

between dendritic spine structure and function, demonstrating the pitfalls of using spine structure 348 

as a proxy for synaptic function, especially in young animals and genetic models of disease. 349 

These findings are in stark contrast to those observed from post-mortem human tissue 3 or from 350 

other mouse studies 5; however these studies were only performed with diffraction-limited 351 

microscopy, suggesting that super-resolution imaging techniques should be the gold-standard for 352 

dendritic spine morphological studies in future. Single dendritic spines do not typically produce 353 

AP discharge from neurons, rather they require co-activation and summation of multiple synaptic 354 

inputs arriving with high temporal precision 42. L4 SCs have been previously been shown to 355 

possess linear integration of Ca2+ influx in their dendrites 43. We show that synaptic potentials 356 

sublinearly integrate in L4 SCs of WT mice, and that this integration is strongly enhanced in Fmr1-357 
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/y mice, leading to more efficient discharge of APs, due in large part to a combination of increased 358 

NMDARs and reduced Ih.  The latter has been implicated in the altered neuronal excitability of 359 

FXS 17,22, with the HCN1 channel expression dictating whether the current is increased or 360 

decreased. Unlike these former studies, we provide evidence that Ih is not reduced in L4 SCs, but 361 

rather displays shifted activation properties, likely due to reduced cyclic-AMP levels. This finding 362 

in in agreement with previous work implicating altered cAMP levels in the aetiology of FXS 44-48. 363 

Whether the altered Ih currents in the absence of FMRP reported in other cell types 17,22 could 364 

also be explained by altered cAMP levels is not known; however, at least for layer 5 neurons in 365 

somatosensory cortex, a reduced level of HCN channels has also been reported 17. Future 366 

experiments will be needed to determine the developmental and cell-specific nature of cellular 367 

hyperexcitability in Fmr1-/y mice.  368 

 369 

Our observations showing sublinear dendritic integration in layer 4 SCs are at odds with reported 370 

NMDAR-dependent non-linear (supra-linear) summation of cortical cells reported from many 371 

laboratories 20,21,49,50. However, many factors may account for this discrepancy, including 372 

recording conditions, stimulation paradigms, cell type and developmental age. Furthermore, the 373 

somatosensory cortex has a well described developmental profile of membrane properties, 374 

notably decreasing membrane resistance as a function of age 51. This combined with the compact 375 

dendritic arbour of L4 SCs 26, will lead to these neurons at the age of ~14 days likely having very 376 

uniform cable properties 28. It is possible that as L4 SCs mature, their dendrites may develop non-377 

linear properties. Irrespective of the differences between studies, we provide the first direct 378 

evidence in Fmr1-/y neurons for a functional deficit at excitatory synapses onto dendritic spines 379 

and that these alterations contribute to an increase in dendritic integration. The summation of 380 

synaptic responses contributes to hyperexcitability of sensory neurons in the Fmr1-/y mouse, 381 

which along with changes in intrinsic excitability, may underlie pathophysiology associated with 382 

altered sensory function. 383 

 384 

385 
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Methods:  386 

Animals and ethics: 387 

All procedures were performed in line with Home Office (ASPA, 2013; HO license: P1351480E) 388 

and institutional guidelines. All experiments were performed on C57/Bl6J mice, bred from Fmr1+/- 389 

mothers, cross-bred with Fmr1+/y male mice, giving a Mendelian 1:1 ratio of Fmr1+/y and Fmr1-/y 390 

amongst male offspring. Only male mice were used for the present study and all mice were killed 391 

at P10-15, before separation from the mother.  Mothers were given ad libitum access to food and 392 

water and housed on a 12 hr light/dark cycle. All experiments and analysis were performed blind 393 

to genotype.  394 

 395 

Acute slice preparation: 396 

Acute brain slices were prepared similar to previously described 52,53. Briefly, mice were 397 

decapitated without anaesthesia and the brain rapidly removed and placed in ice-cold 398 

carbogenated (95 % O2/5 % CO2) sucrose-modified artificial cerebrospinal fluid (in mM: 87 NaCl, 399 

2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 25 glucose, 75 sucrose, 7 MgCl2, 0.5 CaCl2). 400 μm thick 400 

thalamocortical (TC) slices were then cut on a Vibratome (VT1200s, Leica, Germany) and then 401 

stored submerged in sucrose-ACSF warmed to 34°C for 30 min and transferred to room 402 

temperature until needed.  403 

 404 

Whole-Cell Patch-Clamp Recordings: 405 

For electrophysiological recordings slices were transferred to a submerged recording chamber 406 

perfused with carbogenated normal ACSF (in mM: 125 NaCl, 2.5 KCl, 25 NaHCO3, 407 

1.25 NaH2PO4, 25 glucose, 1 MgCl2, 2 CaCl2) maintained at near physiological temperatures 408 

(32 ± 1°C) with an inline heater (LinLab, Scientifica, UK) at a flow rate of 6-8 ml/min. Slices were 409 

visualized with IR-DIC illumination (BX-51, Olympus, Hamburg, Germany) initially with a 4x 410 

objective lens (N.A. 0.1) to position above a L4 barrel, and then with a 20x water-immersion 411 

objective (N.A. 1.0, Olympus). Whole-cell patch-clamp recordings were made with a Multiclamp 412 

700B amplifier (Molecular Devices, USA). Recording pipettes were pulled from borosilicate glass 413 

capillaries (1.7 mm outer/1mm inner diameter, Harvard Apparatus, UK) on a horizontal electrode 414 

puller (P-97, Sutter Instruments, CA, USA), which when filled with intracellular solution gave a 415 

pipette resistance of 4-5 MΩ. Unless otherwise stated, all V-clamp recordings were performed at 416 

VM= -70 mV. All signals were filtered at 10 kHz using the built in 4-pole Bessel filter of the amplifier, 417 

digitized at 20 kHz on an analogue-digital interface (Digidata 1440, Axon Instruments, CA, USA), 418 

and acquired with pClamp software (pClamp 10, Axon Instruments, CA, USA). Data was analysed 419 
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offline using the open source Stimfit software package 54 (http://www.stimfit.org).  Cells were 420 

rejected if the Ihold was >150pA in voltage-clamp, membrane potential more depolarised than -421 

50 mV in current-clamp, series resistance >30 MΩ, or the series resistance changed by more 422 

than 20% over the course of the recording.   423 

 424 

Sequential dendritic spine 2-photon glutamate uncaging: 425 

Slices were transferred to the recording chamber, which was perfused with normal ACSF, 426 

containing 50 µM picrotoxin (PTX) and 300 nM tetrodotoxin (TTX). For voltage clamp recordings 427 

of dendritic spine uncaging neurons were filled with an internal solution containing (in mM): 428 

140 Cs-gluconate, 3 CsCl, 0.5 EGTA, 10 HEPES, 2 Mg-ATP, 2 Na2-ATP, 0.3 Na2-GTP, 1 429 

phosphocreatine, 5 QX-314 chloride,  0.1% biotinoylated-lysine (Biocytin, Invitrogen, UK), and 0.1 430 

AlexaFluor 488 or 594 (Invitrogen, UK), corrected to pH 7.4 with CsOH, Osm = 295 – 305 mOsm. 431 

Whole-cell patch clamp was then achieved and cells allowed to dye fill for 10 minutes prior to 432 

imaging. During this period, we collected 5 minutes of spontaneous recording, to analyse 433 

mEPSCs from recorded neurons at -70 mV voltage clamp. For all imaging and uncaging 434 

experiments we used a galvanometric scanning 2-photon microscope (Femto2D-Galvo, 435 

Femtonics, Budapest, Hungary) fitted with a femtosecond aligned, tuneable wavelength 436 

Ti:Sapphire laser (Chameleon, Coherent, CA, USA), controlled by a Pockel cell (Conoptics, CT, 437 

USA). Following dye filling, a short, low zoom z-stack was collected (2 µm steps, 2-3 pixel 438 

averaging, 512 x 512 pixels) over the whole dendritic extent of the cell at low laser power (<5 mW) 439 

with a high numerical aperture 20x lens (N.A. 1.0, Olympus, Japan). Then a short section of spiny 440 

dendrite, 50-100 µm from the cell somata, within the top 50 µm of the slice, and running parallel 441 

to the slice surface was selected and imaged at higher zoom. Between 7-10 spines were then 442 

selected based on being morphologically distinct from neighbouring spines, ordered distal to 443 

proximal to soma, and then 300 µM Rubi-Glutamate (Rubi-Glu; Ascent Scientific, Bristol, UK) was 444 

applied to the bath, and recirculated (total volume: 12.5 ml; flow rate: 6-8 mls/minute). Following 445 

wash-in of Rubi-Glu (<2 minutes), short duration, high power laser pulses (1 ms, λ780 nm, 80-446 

100 mW, 0.2 µm diameter) local photolysis was performed ~1 µm adjacent to individual spines. 447 

In a subset of recordings from WT mice, we confirmed spatial, quantal release, and 448 

pharmacological properties of Rubi-Glu uncaging under our recording conditions (Supplementary 449 

Figure 1). Individual spines were sequentially uncaged at 2 second intervals followed by a 40 450 

second pause; therefore each spine receiving Rubi-Glu photolysis every 60 seconds. All spines 451 

underwent photolysis at least 3 times and the average uncaging-EPSC (uEPSC) at -70 mV 452 

measured. In a subset of experiments we confirmed that these uEPSCs were mediated by direct 453 

http://www.stimfit.org/
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activation of AMPARs by subsequent application of 10 µM CNQX to the perfusing ACSF 454 

(Supplementary Figure 1D). Following each 3 repetition cycle, the focal plane and dendritic health 455 

was checked with short scans, at low power (<5 mW) to prevent background photolysis.  456 

Following successful recording of AMPA uEPSCs, we increased the holding potential to +40 mV 457 

and recorded the outward mixed AMPA/NMDA currents. In a subset of experiments we confirmed 458 

the AMPAR and NMDAR dependence of these outward currents by bath applying 10 µM CNQX 459 

and then 50 µM D-AP5 (Supplementary Figure 1E). AMPA uEPSCs were measured over the first 460 

10 ms following the uncaging stimulus (0.5 ms peak average) at both -70 and +40 mV. NMDA 461 

currents were measured from 20-50 ms post-photolysis, which was confirmed to be following 462 

complete decay of the AMPA uEPSC at -70 mV. All sequential spine uncaging experiments were 463 

performed as quickly as possible following dye filling, to prevent phototoxic damage to the 464 

recorded neurons, and L4 SCs resealed with an outside-out patch. Cells were rejected if 465 

photolysis resulted in blebbing of dendrites or depolarisation of the membrane potential. 466 

 467 

In a subset of experiments, we performed mEPSC analysis of L4 SCs independent of Rubi-Glu 468 

photolysis, under the same conditions as above (with no AlexaFluor dye), recording 5 minutes of 469 

mEPSCs at -70 mV voltage clamp. Cells were then depolarised to +40 mV voltage-clamp and 470 

mixed AMPA/NMDA mEPSCs recorded for 1 minute, after which 10 µM CNQX was applied to the 471 

bath. Following full wash in of CNQX (~2-3 minutes) a further 5 minutes of pure NMDA mEPSCs 472 

were recorded. In all experiments 50 µM AP-5 was then bath applied, to confirm that the mEPSCs 473 

recorded were NMDAR-mediated. All mEPSC data was analysed using a moving-template 474 

algorithm 55, with templates made from the tri-exponential non-linear fit to optimal mEPSCs at 475 

each holding potential using the event-detection interface of Stimfit. For mEPSCs at -70 mV, the 476 

minimum time between EPSCs was set to 7.5 ms, and 25 ms for those at +40 mV. Detected 477 

events were analysed if they had an amplitude greater than 3x the SD of the 5 ms preceding 478 

baseline of the mEPSC.  479 

 480 

HCN-mediated currents were measured as previously reported 30. Briefly, slices were transferred 481 

to the recording chamber perfused with modified recording ACSF (in mM: 115 NaCl, 5 KCl, 482 

25 NaHCO3, 1.2 NaH2PO4, 2 glucose, 1 MgCl2, 2 CaCl2) which was supplemented with channel 483 

blockers TEA (5 mM), CdCl2 (0.1 mM), BaCl2 (1 mM), 4-aminopyridine (1 mM), and TTX (300 nM); 484 

and blockers for ionotropic receptors CNQX (10 µM), AP-5 (50 µM), and picrotoxin (50 µM), with 485 

a flow rate of 4-6 ml/minute at room temperature. Cells were recorded with K-gluconate based 486 

intracellular solution (in mM: 142 K-gluconate, 4 KCl, 0.5 EGTA, 10 HEPES, 2 MgCl2, 2 Na2-ATP, 487 
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0.3 Na2-GTP, 10 phosphocreatine, 0.1% Biocytin, corrected to pH 7.4 with KOH, 488 

Osm = 295 – 305 mOsm). Ih was recorded in voltage-clamp from a holding potential of -50 mV 489 

and activated by applying hyperpolarising voltage steps (-10 mV, 5 s duration). Ih was measured 490 

as the difference in peak to steady state current during the hyperpolarising step over the full range 491 

of potentials. In subsets of experiments, the HCN channel blocker ZD-7,288 was bath applied 492 

(20 µM) to confirm the identity of the current or the adenylyl cyclase activator forskolin (50 µM) 493 

was bath applied. Currents were plotted and fitted with a variable slope sigmoidal function to 494 

determine the 50% maximum activation. Representative traces are shown as P/N subtractions of 495 

the -10 mV from the -50 mV step.  496 

 497 

Summation of thalamic inputs to L4 SCs was measured by electrical stimulation of the ventrobasal 498 

thalamus with a twisted bipolar Ni-Chrome wire. Synaptically coupled barrels were identified by 499 

placing a field electrode (a patch electrode filled with ACSF) in visually identified barrels and 500 

stimulating the thalamus. When a field response was observed, then a L4 SC was recorded in 501 

whole-cell patch clamp with K-gluconate internal solution, as described above. Trains of 5 stimuli 502 

were then delivered at 5-10 Hz, with a stimulation intensity sufficient to produce an EPSC of large 503 

amplitude similar between genotypes (20 to 540 pA; WT: 181 ± 35 pA; Fmr1-/y: 159 ± 34pA; D.F. 504 

= 23, t=0.44, P=0.66, T-test). In current clamp the EPSP summation was assessed as the ability 505 

of the recorded cell to fire an AP in response to this stimulus. Data are show as the average Pspike 506 

from 10 trials. 507 

 508 

Near-simultaneous dendritic spine 2-photon glutamate uncaging: 509 

To determine the summation properties of dendrites in L4 SCs we performed near simultaneous 510 

photolysis of Rubi-Glu at multiple dendritic spines 20,49. Using a current-clamp optimized K-511 

gluconate based internal solution supplemented with 0.1 AlexaFluor 488 (Invitrogen, UK) we dye 512 

filled neurons as for sequential photolysis described above, in normal ACSF containing PTX and 513 

TTX, but not Rubi-Glu. Once dye filling was complete (<10 minutes) we imaged the L4 SC (as 514 

above) at low zoom, then identified a superficial spiny dendrite 50-100 µm from the soma. At this 515 

point we placed a wide puff pipette (borosilicate patch pipette with tip broken to ~20 µm diameter) 516 

just above the surface of the slice, adjacent to the dendrite of interest. The puff pipette was filled 517 

with 10 mM Rubi-Glu in a HEPES buffered ACSF (in mM: 140 NaCl, 2.5 KCl, 10 HEPES, 518 

1.25 NaH2PO4, 25 glucose, 1 MgCl2, 2.5 CaCl2; adjusted to pH 7.4 with HCl). At this point the 519 

dendrite was imaged at high magnification and 7-10 spines chosen and a very low pressure 520 

stimulus given to the puff-pipette (3-5 mBar), sufficient to cause dialysis of the Rubi-Glu, but not 521 
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powerful enough to cause obvious movement of the tissue. The dialysis of Rubi-Glu was 522 

maintained throughout the remainder of the recording. The cell was then switched to current-523 

clamp mode, membrane potential held at -60 mV with a bias current, and spines 1-7 sequentially 524 

uncaged (0.5 ms laser duration, 80 mW power) to give the individual spines uEPSP amplitude. 525 

Following 3 repetitions and correction of focus, a line scan was created, with 0.5 ms dwell time at 526 

each spine ROI in order from distal to proximal. Spines were then uncaged in a cumulative 527 

manner, with 1, 2, 3 … n spines uncaged near simultaneously. The total duration of uncaging was 528 

5.5 ms for 10 spines and there was a 10 second delay between each run of photolysis, with the 529 

total protocol lasting minimally 4-5 minutes. At least 3 repetitions of this protocol were run and 530 

focus re-checked. In a subset of experiments the HCN inhibitor ZD was applied to the perfusing 531 

ACSF and a further 3 repetitions collected. All uEPSP data was analysed as peak amplitude 532 

measured over the 20 ms directly following beginning of the photolysis stimuli. Data was either 533 

normalised to the first EPSP amplitude, or measured as the absolute simultaneous uEPSP, as 534 

plotted against the summed individual uEPSP amplitude for the same spines.  535 

 536 

In a set of experiments (without PTX, TTX or AlexaFluor 488), intrinsic electrophysiological 537 

properties of L4 SCs were measured, also in current-clamp mode. From resting membrane 538 

potential a hyper- to depolarizing family of current injections (-125 to +125 pA, 500ms duration) 539 

were given to the recorded neuron. The input resistance, rheobase current, and action potential 540 

discharge frequency were all measured from triplicate repetitions. In a further subset of 541 

experiments, 3x series of voltage steps were given (in voltage-clamp) from -60 mV to -110 mV 542 

(10 mV steps, 500 ms duration) to estimate the amplitude of Ih in the recorded L4 SCs. ZD was 543 

then applied to the bath and the same steps repeated. Ih was estimated as the amplitude of the 544 

current produced in response to hyperpolarizing voltage steps.  545 

 546 

Visualisation and STED microscopy of recorded neurons 547 

Following completion of experiments and resealing of the neuron, slices were immediately 548 

immersion fixed in 4% paraformaldehyde (PFA) overnight at 4 °C. Slices were then transferred to 549 

phosphate buffered saline (PBS; 0.025 M phosphate buffer + 0.9% NaCl; pH: 7.4) and kept at 550 

4 °C until processed (<3 weeks). Slices were then cryoprotected in a solution containing 30% 551 

sucrose in PBS overnight at 4 °C and then freeze-thaw permeablised on lN2, and returned to 552 

cryoprotectant solution for 1 - 2 hrs. The slices were then mounted, recording side up, on the 553 

stage of a freezing microtome; which had been prepared with a plateau of OCT medium and 554 

slices embedded within OCT prior to sectioning. The OCT block containing the recorded slice was 555 
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trimmed to the slice surface and then 50 µm sections taken from the top 200 µm. The sections 556 

were rinsed 3 times in PBS and then incubated with streptavidin conjugated to AlexaFluor488 557 

(1:500, Invitrogen, UK) at 4 °C for 3-5 days. The slices were then washed for 2 hours in repeated 558 

washes of PBS and then desalted with PB and mounted on glass slides with fluorescence 559 

protecting mounting medium (Vectorshield, Vector Labs, UK).  560 

 561 

Sections were imaged on a gated-Stimulated emission depletion (STED) microscope (SP8 562 

gSTED, Leica, Germany). Cells were found using epifluorescent illumination (488 nm excitation) 563 

under direct optics at low magnification (20x air immersion objective lens, N.A. 0.75) and then 564 

positioned under high magnification (100x oil-immersion objective lens, N.A. 1.4, Olympus, 565 

Japan) and then switched to gSTED imaging. Sections were illuminated with 488 nm light, 566 

produced by a continuous-wave laser, and short sections of non-uncaged dendrite used to 567 

optimize acquisition parameters, first under conventional confocal detection, then by gSTED 568 

imaging. The 488 nm illumination laser was set to 60-70% of maximum power, and the continuous 569 

wave STED laser (592 nm) set to 25% and gated according to the best STED-depletion 570 

achievable in the samples (1.5 – 8 ms gating). Once optimized, a region of interest (ROI) was 571 

selected over the uncaged dendrite, which at 1024x1024 pixel size, gave a pixel resolution of 20-572 

30 nm. Short stacks were taken over dendritic sections containing uncaged and non-spines 573 

(0.5 µm steps) with STED images interleaved with confocal images for confirmation of STED 574 

effect. STED images were deconvolved (Huygen’s STED option, Scientific Volume Imaging, 575 

Netherlands) and uncaged spines identified by comparison to live 2-photon images (see Figure 576 

2A). Measurements of head width and neck length were then made on the deconvolved images 577 

in FIJI (ImageJ)56. 578 

 579 

Serial block face scanning-electron microscopy (SBF-SEM) of L4 SCs 580 

For SBF-SEM, 10 P14 mice (3 WT / 7 Fmr1-/y) were perfusion fixed. Briefly, mice were sedated 581 

with isoflurane and terminally anaesthetized with I.P. sodium pentobarbital (50 mg/mouse). The 582 

chest was opened and 10 mls of PBS (pH 7.4, filtered) transcardially perfused (~0.5 mls/second); 583 

once cleared the PBS was replaced with ice-cold fixative solution containing (3.5% PFA, 0.5% 584 

glutaraldehyde, and 15% saturated picric acid; pH 7.4), and 20 mls perfused. Brains were then 585 

removed and post-fixed overnight at 4 °C in the same fixative solution. 60 µm coronal sections 586 

were cut on a vibratome (Leica VT1000) and S1 identified based on visual identification. Sections 587 

were then heavy-metal substituted: first sections were rinsed in chilled PBS (5 x 3 mins) and then 588 

incubated with 3% potassium ferrocyanide and 2% w/v OsO4 in PBS for 1 hr at 4 °C. Sections 589 
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were rinsed liberally in double distilled (dd) H2O and then incubated with 1% w/v 590 

thiocarbohydroxide for 20 minutes at room temperature. Sections were rinsed again in ddH20, 591 

and then incubated with 2% w/v OsO4 for 30 minutes at room temperature, rinsed in ddH20 and 592 

contrasted in 1% w/v uranyl acetate overnight at 4 °C. Sections were rinsed in ddH2O and then 593 

contrasted with 0.6% w/v lead aspartate for 30 mins at 60 °C. Sections were then rinsed in ddH2O, 594 

dehydrated in serial dilutions of ethanol for 30 minutes each at 4 °C, then finally dehydrated twice 595 

in 100% ethanol and then 100% acetone both at 4 °C for 30 minutes. Sections were then 596 

impregnated with serial dilutions (25%, 50%, 75%, diluted in acetone) of Durcupan ACM (Sigma 597 

Aldrich, UK) at room temperature for 2 hours per dilution, followed by 100% Durcopan ACM 598 

overnight in a dissector at room temperature. Sections were transferred to fresh Durcupan ACM 599 

for 1 hour at room temperature and then flat-embedded on glass slides, coated with mould-600 

release agent, cover-slipped, and then cured for 12 hours at 60 °C.  601 

For SFB-SEM imaging, small pieces of L4 of S1 were dissected from flat-embedded sections, 602 

with aid of a stereo microscope and glued with cyanoacrylate to stage mounting pins. The 603 

mounted tissue was then trimmed and gold-plated prior to insertion imaging. Initially, semi-thin 604 

sections trimmed from the surface of the block, and imaged under transmission electron 605 

microscopy at low power to confirm tissue ultrastructure and ROI selection for SBF-SEM. Next 606 

the tissue blocks were mounted in an SBF-SEM (3View, Gatan, CA, USA) and 3 x ~10 µm2 ROIs 607 

chosen on the surface of the block, avoiding blood vessels or L4 SC somata, and imaged at 50 nm 608 

steps at 8000x magnification (1024x1024, 10 nm pixel size). Approximately 100 sections were 609 

collected from each block, giving a total depth of 5 µm. SBF-SEM images were analysed offline 610 

using the TrakEM module of FIJI 57. Dendrites and spines were traced as surface profiles and 611 

then PSDs identified on dendritic spines as electron dense regions within 25 nm of the lipid 612 

bilayer. 6-11 dendrites were reconstructed from each mouse, which possessed a total of 38-49 613 

spines (average= 4.4 spines/dendrite). The incidence of PSDs was calculated as an average 614 

within each mouse, and final averages produced as an animal average.  615 

 616 

Data analysis 617 

All data is presented as the mean ± SEM. Where appropriate, data were analysed with a linear 618 

(LMM) or generalised linear mixed-effects model (GLMM). Probability distributions for models 619 

were chosen by goodness of fit to normal, log-normal or gamma distributions (Figures S2 and 620 

S3). Appropriate to the particular experiment and statistical model, genotype, drug treatment and 621 

potentially their interaction were used as fixed effects, while litter, animal and slice were used as 622 

random effects. Statistical significance was assessed by likelihood ratio tests with models in which 623 
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the parameter of interest had been dropped and expressed as a p-value. When animal or paired 624 

cell data is shown and not modelled, datasets were tested for normality (d’Agostino-Pearson test) 625 

and either Student’s t-test, Mann-Whitney non-parametric U-test, or Wilcoxon signed-rank tests 626 

performed. Comparison of linear and non-linear regression was performed with a Sum-of-Squares 627 

F-test. Statistically significant differences were assumed if p<0.05. Which statistical test employed 628 

is indicated throughout the text. Either GraphPad Prism or R was used for all statistical analyses. 629 

All statistical tests performed are presented in supplementary materials (Table S1). 630 

 631 

Data availability:  632 

All datasets will be made available upon reasonable request. 633 

 634 

635 



22 
 

References: 636 

1 Contractor, A., Klyachko, V. A. & Portera-Cailliau, C. Altered neuronal and circuit 637 
excitability in fragile X syndrome. Neuron 87, 699-715 (2015). 638 

2 Pfeiffer, B. E. & Huber, K. M. Fragile X mental retardation protein induces synapse loss 639 
through acute postsynaptic translational regulation. The Journal of neuroscience 27, 3120-3130 640 
(2007). 641 

3 Irwin, S. A., Galvez, R. & Greenough, W. T. Dendritic Spine Structural Anomalies in 642 
Fragile-X Mental Retardation Syndrome. Cerebral Cortex 10, 1038-1044, 643 
doi:10.1093/cercor/10.10.1038 (2000). 644 

4 Brager, D. H. & Johnston, D. Channelopathies and dendritic dysfunction in fragile X 645 
syndrome. Brain research bulletin 103, 11-17 (2014). 646 

5 Comery, T. A., Harris, J. B., Willems, P. J., Oostra, B. A., Irwin, S. A., Weiler, I. J. & 647 
Greenough, W. T. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning 648 
deficits. Proceedings of the National Academy of Sciences 94, 5401-5404 (1997). 649 

6 Wijetunge, L. S., Angibaud, J., Frick, A., Kind, P. C. & Nägerl, U. V. Stimulated Emission 650 
Depletion (STED) Microscopy Reveals Nanoscale Defects in the Developmental Trajectory of 651 
Dendritic Spine Morphogenesis in a Mouse Model of Fragile X Syndrome. The Journal of 652 
Neuroscience 34, 6405-6412, doi:10.1523/jneurosci.5302-13.2014 (2014). 653 

7 Wang, Gordon X., Smith, Stephen J. & Mourrain, P. Fmr1 KO and Fenobam Treatment 654 
Differentially Impact Distinct Synapse Populations of Mouse Neocortex. Neuron 84, 1273-1286 655 
(2014). 656 

8 Dolan, B. M., Duron, S. G., Campbell, D. A., Vollrath, B., Rao, B. S., Ko, H.-Y., Lin, G. 657 
G., Govindarajan, A., Choi, S.-Y. & Tonegawa, S. Rescue of fragile X syndrome phenotypes in 658 
Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proceedings of the National 659 
Academy of Sciences 110, 5671-5676 (2013). 660 

9 Henderson, C., Wijetunge, L., Kinoshita, M. N., Shumway, M., Hammond, R. S., Postma, 661 
F. R., Brynczka, C., Rush, R., Thomas, A. & Paylor, R. Reversal of disease-related pathologies 662 
in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. 663 
Science translational medicine 4, 152ra128-152ra128 (2012). 664 

10 Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental 665 
retardation. Trends in neurosciences 27, 370-377 (2004). 666 

11 Pfeiffer, B. E. & Huber, K. M. The state of synapses in fragile X syndrome. The 667 
Neuroscientist 15, 549-567 (2009). 668 



23 
 

12 Schubert, D., Kötter, R. & Staiger, J. F. Mapping functional connectivity in barrel-related 669 
columns reveals layer-and cell type-specific microcircuits. Brain Structure and Function 212, 670 
107-119 (2007). 671 

13 Fox, K. A critical period for experience-dependent synaptic plasticity in rat barrel cortex. 672 
Journal of Neuroscience 12, 1826-1838 (1992). 673 

14 Petersen, C. C. The functional organization of the barrel cortex. Neuron 56, 339-355 674 
(2007). 675 

15 Bureau, I., Shepherd, G. M. G. & Svoboda, K. Circuit and Plasticity Defects in the 676 
Developing Somatosensory Cortex of Fmr1 Knock-Out Mice. The Journal of Neuroscience 28, 677 
5178-5188, doi:10.1523/jneurosci.1076-08.2008 (2008). 678 

16 Gibson, J. R., Bartley, A. F., Hays, S. A. & Huber, K. M. Imbalance of Neocortical 679 
Excitation and Inhibition and Altered UP States Reflect Network Hyperexcitability in the Mouse 680 
Model of Fragile X Syndrome. Journal of Neurophysiology 100, 2615-2626, 681 
doi:10.1152/jn.90752.2008 (2008). 682 

17 Zhang, Y., Bonnan, A., Bony, G., Ferezou, I., Pietropaolo, S., Ginger, M., Sans, N., 683 
Rossier, J., Oostra, B., LeMasson, G. & Frick, A. Dendritic channelopathies contribute to 684 
neocortical and sensory hyperexcitability in Fmr1-/y mice. Nat Neurosci 17, 1701-1709, 685 
doi:10.1038/nn.3864 (2014). 686 

18 Harlow, E. G., Till, S. M., Russell, T. A., Wijetunge, L. S., Kind, P. & Contractor, A. 687 
Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron 65, 688 
385-398 (2010). 689 

19 Magee, J. C. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. 690 
Nature neuroscience 2, 508-514 (1999). 691 

20 Branco, T. & Häusser, M. Synaptic integration gradients in single cortical pyramidal cell 692 
dendrites. Neuron 69, 885-892 (2011). 693 

21 Lavzin, M., Rapoport, S., Polsky, A., Garion, L. & Schiller, J. Nonlinear dendritic 694 
processing determines angular tuning of barrel cortex neurons in vivo. Nature 490, 397 (2012). 695 

22 Brager, D. H., Akhavan, A. R. & Johnston, D. Impaired dendritic expression and 696 
plasticity of h-channels in the fmr1−/y mouse model of fragile X syndrome. Cell reports 1, 225-697 
233 (2012). 698 

23 White, E. L. & Rock, M. P. Three-dimensional aspects and synaptic relationships of a 699 
Golgi-impregnated spiny stellate cell reconstructed from serial thin sections. Journal of 700 
neurocytology 9, 615-636 (1980). 701 



24 
 

24 Ashby, M. C. & Isaac, J. T. Maturation of a recurrent excitatory neocortical circuit by 702 
experience-dependent unsilencing of newly formed dendritic spines. Neuron 70, 510-521 703 
(2011). 704 

25 Nikonenko, I., Boda, B., Steen, S., Knott, G., Welker, E. & Muller, D. PSD-95 promotes 705 
synaptogenesis and multiinnervated spine formation through nitric oxide signaling. The Journal 706 
of cell biology 183, 1115-1127, doi:10.1083/jcb.200805132 (2008). 707 

26 Till, S. M., Wijetunge, L. S., Seidel, V. G., Harlow, E., Wright, A. K., Bagni, C., 708 
Contractor, A., Gillingwater, T. H. & Kind, P. C. Altered maturation of the primary 709 
somatosensory cortex in a mouse model of fragile X syndrome. Human molecular genetics, 710 
dds030 (2012). 711 

27 Magee, J. C. & Johnston, D. Synaptic activation of voltage-gated channels in the 712 
dendrites of hippocampal pyramidal neurons. Science 268, 301 (1995). 713 

28 Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Experimental 714 
Neurology 1, 491-527 (1959). 715 

29 Kalmbach, B. E., Johnston, D. & Brager, D. H. Cell-Type Specific Channelopathies in the 716 
Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome. eneuro 2, ENEURO.0114-717 
0115.2015, doi:10.1523/eneuro.0114-15.2015 (2015). 718 

30 Nolan, M. F., Malleret, G., Lee, K. H., Gibbs, E., Dudman, J. T., Santoro, B., Yin, D., 719 
Thompson, R. F., Siegelbaum, S. A. & Kandel, E. R. The hyperpolarization-activated HCN1 720 
channel is important for motor learning and neuronal integration by cerebellar Purkinje cells. 721 
Cell 115, 551-564 (2003). 722 

31 Wainger, B. J., DeGennaro, M., Santoro, B., Siegelbaum, S. A. & Tibbs, G. R. Molecular 723 
mechanism of cAMP modulation of HCN pacemaker channels. Nature 411, 805 (2001). 724 

32 Lachiewicz, A. M., Spiridigliozzi, G. A., Gullion, C. M., Ransford, S. N. & Rao, K. 725 
Aberrant behaviors of young boys with fragile X syndrome. American Journal on Mental 726 
Retardation (1994). 727 

33 Miller, L., McIntosh, D., McGrath, J., Shyu, V., Lampe, M., Taylor, A., Tassone, F., 728 
Neitzel, K., Stackhouse, T. & Hagerman, R. Electrodermal responses to sensory stimuli in 729 
individuals with fragile X syndrome. Am J Med Genet 83, 268-279 (1999). 730 

34 Deng, P.-Y., Sojka, D. & Klyachko, V. A. Abnormal presynaptic short-term plasticity and 731 
information processing in a mouse model of fragile X syndrome. Journal of Neuroscience 31, 732 
10971-10982 (2011). 733 

35 Gonçalves, J. T., Anstey, J. E., Golshani, P. & Portera-Cailliau, C. Circuit level defects in 734 
the developing neocortex of Fragile X mice. Nature neuroscience 16, 903 (2013). 735 



25 
 

36 Harris, K. M., Jensen, F. E. & Tsao, B. Three-dimensional structure of dendritic spines 736 
and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the 737 
maturation of synaptic physiology and long-term potentiation [published erratum appears in J 738 
Neurosci 1992 Aug; 12 (8): following table of contents]. Journal of Neuroscience 12, 2685-2705 739 
(1992). 740 

37 Darnell, J. C., Van Driesche, S. J., Zhang, C., Hung, K. Y. S., Mele, A., Fraser, C. E., 741 
Stone, E. F., Chen, C., Fak, J. J. & Chi, S. W. FMRP stalls ribosomal translocation on mRNAs 742 
linked to synaptic function and autism. Cell 146, 247-261 (2011). 743 

38 Nikonenko, I., Jourdain, P., Alberi, S., Toni, N. & Muller, D. Activity-induced changes of 744 
spine morphology. Hippocampus 12, 585-591, doi:doi:10.1002/hipo.10095 (2002). 745 

39 Nikonenko, I., Jourdain, P. & Muller, D. Presynaptic remodeling contributes to activity-746 
dependent synaptogenesis. Journal of Neuroscience 23, 8498-8505 (2003). 747 

40 Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of 748 
multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421, 749 
doi:10.1038/46574 (1999). 750 

41 Crocker-Buque, A., Brown, S. M., Kind, P. C., Isaac, J. T. & Daw, M. I. Experience-751 
dependent, layer-specific development of divergent thalamocortical connectivity. Cerebral cortex 752 
25, 2255-2266 (2014). 753 

42 Losonczy, A. & Magee, J. C. Integrative Properties of Radial Oblique Dendrites in 754 
Hippocampal CA1 Pyramidal Neurons. Neuron 50, 291-307, doi:10.1016/neuron.2006.03.016 755 
(2006). 756 

43 Jia, H., Varga, Z., Sakmann, B. & Konnerth, A. Linear integration of spine Ca2+ signals 757 
in layer 4 cortical neurons in vivo. Proceedings of the National Academy of Sciences 111, 9277-758 
9282 (2014). 759 

44 Berry‐Kravis, E. & Ciurlionis, R. Overexpression of fragile X gene (FMR‐1) transcripts 760 
increases cAMP production in neural cells. Journal of neuroscience research 51, 41-48 (1998). 761 

45 Berry-Kravis, E., Hicar, M. & Ciurlionis, R. Reduced cyclic AMP production in fragile X 762 
syndrome: cytogenetic and molecular correlations. Pediatric research 38, 638 (1995). 763 

46 Kelley, D. J., Davidson, R. J., Elliott, J. L., Lahvis, G. P., Yin, J. C. & Bhattacharyya, A. 764 
The cyclic AMP cascade is altered in the fragile X nervous system. PLoS One 2, e931 (2007). 765 

47 Choi, C. H., Schoenfeld, B. P., Bell, A. J., Hinchey, J., Rosenfelt, C., Gertner, M. J., 766 
Campbell, S. R., Emerson, D., Hinchey, P. & Kollaros, M. Multiple drug treatments that increase 767 
cAMP signaling restore long-term memory and aberrant signaling in fragile X syndrome models. 768 
Frontiers in behavioral neuroscience 10, 136 (2016). 769 



26 
 

48 Kelley, D. J., Bhattacharyya, A., Lahvis, G. P., Yin, J. C., Malter, J. & Davidson, R. J. 770 
The cyclic AMP phenotype of fragile X and autism. Neuroscience & Biobehavioral Reviews 32, 771 
1533-1543 (2008). 772 

49 Branco, T., Clark, B. A. & Häusser, M. Dendritic discrimination of temporal input 773 
sequences in cortical neurons. Science 329, 1671-1675 (2010). 774 

50 Palmer, L. M., Shai, A. S., Reeve, J. E., Anderson, H. L., Paulsen, O. & Larkum, M. E. 775 
NMDA spikes enhance action potential generation during sensory input. Nature neuroscience 776 
17, 383 (2014). 777 

51 Maravall, M., Stern, E. A. & Svoboda, K. Development of intrinsic properties and 778 
excitability of layer 2/3 pyramidal neurons during a critical period for sensory maps in rat barrel 779 
cortex. Journal of neurophysiology 92, 144-156 (2004). 780 

52 Agmon, A. & Connors, B. Thalamocortical responses of mouse somatosensory (barrel) 781 
cortexin vitro. Neuroscience 41, 365-379 (1991). 782 

53 Booker, S. A., Song, J. & Vida, I. Whole-cell patch-clamp recordings from 783 
morphologically-and neurochemically-identified hippocampal interneurons. Journal of visualized 784 
experiments: JoVE (2014). 785 

54 Guzman, S. J., Schlögl, A. & Schmidt-Hieber, C. Stimfit: quantifying electrophysiological 786 
data with Python. Frontiers in neuroinformatics 8 (2014). 787 

55 Clements, J. & Bekkers, J. Detection of spontaneous synaptic events with an optimally 788 
scaled template. Biophysical journal 73, 220-229 (1997). 789 

56 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 790 
Preibisch, S., Rueden, C., Saalfeld, S. & Schmid, B. Fiji: an open-source platform for biological-791 
image analysis. Nature methods 9, 676-682 (2012). 792 

57 Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M., 793 
Tomancak, P., Hartenstein, V. & Douglas, R. J. TrakEM2 software for neural circuit 794 
reconstruction. PloS one 7, e38011 (2012). 795 

796 



27 
 

Acknowledgements:  797 

The authors wish to thank: Drs. Alison Dunn and Rory Duncan of the Edinburgh Super-Resolution 798 

Imaging Consortium (ESRIC) for expert advice and technical support; Kathryn Whyte and Tracey 799 

Davey of the EM Research Service, Newcastle University, for technical assistance with electron 800 

microscopy. Funders: Simons Foundation Autism Research Initiative (529085), The Patrick Wild 801 

Centre, Medical Research Council UK (MR/P006213/1), The Shirley Foundation and the RS 802 

Macdonald Charitable Trust.  803 

 804 

Author Contributions: 805 

SAB – designed and performed experiments, analysed/interpreted data and wrote the manuscript; 806 

APFD - designed and interpreted, performed experiments, analysed data and wrote the 807 

manuscript; ORD – analysed/interpreted data and wrote the manuscript; JTRI - designed 808 

experiments and wrote the manuscript; GEH - analysed/interpreted data, obtained funding and 809 

wrote the manuscript; DJAW – designed experiments, analysed/interpreted data, obtained 810 

funding and wrote the manuscript; PCK – designed experiments, analysed/interpreted data, 811 

obtained funding and wrote the manuscript 812 

 813 

Competing Interests: 814 

The authors declare no competing interests.  815 

 816 

Figure Legends: 817 

Figure 1: L4 SC dendritic spines have larger uEPSCs with more silent synapses in Fmr1-/y mice. 818 

A 2-photon image of a L4 SC (left) with selected spines and AMPAR uEPSCs from WT and Fmr1-819 

/y mice. Scale bars: 20 µm (left), 5 µm (right). B Single spine uEPSCs from WT (black) and Fmr1-820 

/y (red) mice shown as a histogram, with spine average shown (inset). Note that spines with no 821 

AMPA response, silent spines have not been included. C Animal average uEPSC amplitudes, 822 

excluding silent spines. Number of animals tested shown in parenthesis. D Animal average of 823 

uEPSP amplitudes. E  AMPAR (upper) and NMDAR (lower) uEPSCs, illustrating silent spines. 824 

Scale: 5 µm. F Incidence of silent spines in WT and Fmr1-/y mice. G AMPAR and NMDAR uEPSCs 825 
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for all spines, with NMDA/AMPA ratio (WT: 0.76 ± 0.03; Fmr1-/y; 1.05 ± 0.04; d.f.: 1, 331; F = 37.4; 826 

p <0.0001; F-test). H Average NMDA/AMPA ratio plotted for all spines. Statistics shown: * - 827 

p<0.05, ** - p<0.01, from LMM (B, D, H), unpaired t-test (C, F) and sum-of-least-squares F-test 828 

(G). Plots of individual spine data for panel 1C (inset) and 1H can be found in Supplementary 829 

Figure 4. All data is shown as mean ± SEM and source data for all plots are provided as a Source 830 

Data file. 831 

 832 

Figure 2: Typical EPSC amplitude at unitary connections between L4 SCs. A Schematic paired 833 

recordings between synaptically coupled L4 SCs. B Representative presynaptic action potentials 834 

(top) produced unitary EPSCs in the second L4 SC (lower), from WT (black) and Fmr1-/y (red) 835 

mice. C Synaptic connectivity is reduced between L4 SCs in the Fmr1-/y mouse (d.f.: 162; p = 836 

0.015; Fisher’s exact test; 110 pairs from 13 mice for WT mice and 54 pairs from 7 mice in Fmr1-837 

/y mice were tested. D Failure rate was not different between genotypes when a connection was 838 

present. E Unitary EPSC amplitudes from L4 SC synapses were not different between genotypes. 839 

Statistics shown: ns – p>0.05, * - p<0.05 from Fisher’s exact test (C) and LMM (D, E). All data is 840 

shown as mean ± SEM and source data for all plots are provided as a Source Data file. 841 

 842 

Figure 3: Dendritic spines show no difference in nanoscale morphology, or structure-function 843 

relationship. A Dendrites from WT (left) and Fmr1-/y (right) mice under 2-photon microscopy (top), 844 

then post-hoc STED imaging (bottom). Scale bar: 5 µm. B Average spine head width in WT (black) 845 

and Fmr1-/y (red) mice (WT: 0.43 ± 0.05; Fmr1-/y; 0.45 ± 0.04; d.f.: 8; t = 0.29; p = 0.78, T-test). 846 

Number of mice is indicated. C Comparison of spine head-width and uEPSC amplitude 847 

(comparing slope: d.f.: 1, 100; F = 0.02; p = 0.89). WT spines showed a positive correlation (d.f. 848 

70, F=4.27, p = 0.042, F-test). D Average spine neck length (WT: 1.52 ± 0.22; Fmr1-/y; 1.31 ± 849 

0.20; d.f.: 8; t = 0.66; p = 0.53, T-test). E Comparison of spine neck-width and uEPSC amplitude 850 

(Slope: WT: 2.1 ± 0.8; Fmr1-/y; 0.8 ± 1.4; d.f.: 1, 101; F = 0.84; p = 0.36; F-test). F Spine density 851 

on L4 SCs (WT: 6.8 ± 0.7 spines/10 µm; Fmr1-/y: 6.1 ± 0.80 spines /10 µm; d.f.: 13; t = 0.60; p = 852 

0.56; T-test). G Distribution of non-uncaged spine head-widths, as an average of all mice (bold) 853 

and individual mice (dashed). H Average head-width of non-uncaged spines (WT: 0.48 ± 0.05 854 

µm; Fmr1-/y: 0.48 ± 0.04 µm; d.f.: 13; U = 20.0; p = 0.59; Mann-Whitney U-test). I Distribution of 855 

spine neck-length of non-uncaged spines. J Average of spine neck-length in non-uncaged spines 856 

(WT: 1.36 ± 0.12 µm; Fmr1-/y: 1.27 ± 0.14 µm; d.f.: 13; U = 20.0; p = 0.55; Mann-Whitney U-test). 857 

Statistics shown: ns – p > 0.05 from unpaired t-test (B, D, F, H, J) and sum-of-least-squares F-858 
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test (C, E). All data is shown as mean ± SEM and source data for all plots are provided as a 859 

Source Data file. 860 

 861 

Figure 4: L4 spines in Fmr1-/y mice form multiple synaptic contacts. A Serial electron micrographs 862 

in L4 from WT and Fmr1-/y mice, indicating spines (asterisk) contacted by multiple presynaptic 863 

boutons (b) each with a PSD (arrows); scale bar: 500 nm. B Reconstructed dendrites from WT 864 

(grey) and Fmr1-/y (red) mice, with PSDs (blue) and MIS indicated (arrows). C Incidence of MIS 865 

in WT and Fmr1-/y mice. Statistics shown: ** - p<0.01 from unpaired t-test. All data is shown as 866 

mean ± SEM and source data for all plots are provided as a Source Data file. 867 

 868 

Figure 5: mEPSCs in Fmr1-/y L4 SCs show enrichment of NMDAR synapses. A mEPSCs recorded 869 

from L4 SCs for AMPAR at -70 mV (top), NMDAR at +40 mV with CNQX (10 µM, middle), and 870 

following application of the NMDAR antagonist D-AP5 (50 µM, bottom) in the same cell; from WT 871 

(left) and Fmr1-/y (right) mice. B Quantification of AMPAR mEPSC amplitude (WT: 13.1 ± 0.8 pA; 872 

Fmr1-/y; 12.7 ± 1.3 pA) and frequency (WT: 3.9 ± 0.5 Hz; Fmr1-/y; 4.9 ± 0.6 Hz) in WT (black) and 873 

Fmr1-/y (red) mice. Number of mice indicated in parenthesis. C NMDAR mEPSC amplitude (WT: 874 

16.9 ± 2.6 pA; Fmr1-/y; 14.4 ± 1.6 pA) and frequency (WT: 1.7 ± 0.17 Hz; Fmr1-/y; 2.6 ± 0.3) 875 

measured in WT and Fmr1-/y mice. Statistics shown: ns – p>0.05, * - p<0.05 from unpaired t-test. 876 

All data is shown as mean ± SEM and source data for all plots are provided as a Source Data file. 877 

 878 

Figure 6: Altered intrinsic physiology of L4 SCs in Fmr1-/y mice. Voltage responses to hyper- and 879 

depolarizing current steps (-125 to +125 pA, 25 pA steps, 500 ms duration) led to AP discharge 880 

in WT (A) and Fmr1-/y (B) mice. C The current-voltage response to hyperpolarizing currents with 881 

linear fit (dashed lines) in WT (black) and Fmr1-/y (red) mice. C (inset) RI measured from all L4 882 

SCs tested. D Current-frequency plot showing AP discharge. D (inset) Average rheobase current 883 

measured in all cells. E subthreshold membrane chirps (0.2 -20 Hz, 50 pA, 20 s duration) in L4 884 

SCs from WT (black) and Fmr1-/y mice. Right, frequency-impedance plot for both genotypes 885 

± SEM, shown on a logarithmic frequency scale. F resonant frequency of L4 SCs from both 886 

genotypes. Statistics shown: * - p < 0.05, ** - p < 0.01, *** - p ± <0.001, from LMM (C and D insets, 887 

F) and 2-way ANOVA (C and D, main). Summary plots of all cells recorded for 6C (inset) and 888 

6D(inset) can be found in Supplementary Figure 5. All data is shown as mean ± SEM and source 889 

data for all plots are provided as a Source Data file. 890 

 891 
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Figure 7: Ih is reduced in L4 SCs from Fmr1-/y mice, resulting in hyperexcitability. A hyperpolarizing 892 

steps in L4 SCs (0 to -125 pA, 25 pA steps, 500 ms duration) with voltage “sag” and rebound 893 

potential indicated, as measured in WT (black, left) and Fmr1-/y mice (red, right). B quantification 894 

of voltage sag expressed as % of maximum voltage for WT and Fmr1-/y L4 SCs C plot of rebound 895 

potential, as a function of steady state voltage for WT and Fmr1-/yS L4 SCs, fitted with linear 896 

regression and with fit values displayed. D quantification of the rebound slope of individual L4 897 

SCs for both genotypes. E RI measured before and after bath application of the Ih blocker ZD-898 

7,288 (ZD; 20 µM) in WT and Fmr1-/y L4 SCs. F change in RI change following ZD application (as 899 

100% of control levels). G (left) hyper-to depolarising current steps (-125 to +125 pA, 25 pA 900 

steps, 500 ms duration) in WT L4 SCs before and after ZD application. G (right) current-frequency 901 

plot of AP discharge before (solid lines) and after (dashed lines) ZD application. H the same 902 

analysis as in G, but in Fmr1-/y L4 SCs. I, subthreshold membrane chirps (0.2-20 Hz, 50 pA, 20 s 903 

duration) and current-impedance plot for WT L4 SCs before (black) and after (grey) ZD 904 

application. J, The same data as in F, but in Fmr1-/y mice. K, Impedance measured at peak 905 

resonant frequency in WT and Fmr1-/y L4 SCs before and after ZD (+ZD) application. Statistics 906 

shown: ns – p >0.05 * - p < 0.05, ** - p < 0.01, *** - p < 0.001, from LMM (B, D, E, F, K). Summary 907 

plots of all data shown in Figure 7B and 7D can be found in Supplementary Figure 7. All data is 908 

shown as mean ± SEM and source data for all plots are provided as a Source Data file. 909 

 910 

Figure 8: Altered Ih voltage-sensitivity in Fmr1-/y L4 SCs, due to reduced cyclic-AMP. A subtracted 911 

Ih traces recorded during a -50 mV step from -50 mV holding potential for WT (black) and Fmr1-/y 912 

(red) L4 SCs, and following ZD application (grey, light red, respectively). B Ih measured over the 913 

range of -50 to -120 mV for both WT and Fmr1-/y L4 SCs fitted with a sigmoidal curve (dashed 914 

lines). V1/2 max is indicated. Inset, Ih was blocked to a similar degree by ZD in both genotypes when 915 

tested on steps to -100 mV. C Ih recorded before (top) and after (bottom) application of forskolin. 916 

D quantification of Ih responses over the range of -50 to -100 mV, fitted with a sigmoidal curve. 917 

All data is shown as mean ± SEM and source data for all plots are provided as a Source Data file. 918 

 919 

Figure 9: Enhanced dendritic integration of L4 SCs in Fmr1-/y mice. A schema of near-920 

simultaneous glutamate uncaging (Rubi-Glu) at multiple spines (blue dots/numbers). B Near-921 

simultaneous glutamate uncaging produced subthreshold (inset, right) and suprathreshold 922 

uEPSPs (inset, left) along dendrites. C The number of spines required to evoke an AP, from all 923 

spines (left; WT: 8.8 ± 0.7; Fmr1-/y; 6.6 ± 0.6) and excluding “silent spines” (right; WT: 8.7 ± 0.7; 924 
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Fmr1-/y; 5.6 ± 0.7). D Summation of near-simultaneous subthreshold uEPSPs normalized to the 925 

first EPSP in WT (black) and Fmr1-/y (red) L4 SCs (Slope: WT: 1.1 ± 0.13; Fmr1-/y; 1.9 ± 0.2; d.f.: 926 

1, 170; F = 8.98; p = 0.003; F-test). E Summating uEPSPs plotted against the expected linear-927 

sum. Unity is indicated (grey). F Electrical stimulation of TCA at low frequency 10 Hz is shown. G 928 

Average spike probability in response to 5 Hz and 10 Hz stimulation. Statistics shown: * - p<0.05, 929 

** - p<0.01. All data is shown as mean ± SEM and source data for all plots are provided as a 930 

Source Data file. 931 

 932 

 933 


