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This work determines the degree to which a standard ΛCDM analysis based on type Ia super-
novae can identify deviations from a cosmological constant in the form of a redshift-dependent dark
energy equation of state w(z). We introduce and apply a novel random curve generator to simulate
instances of w(z) from constraint families with increasing distinction from a cosmological constant.
After producing a series of mock catalogs of binned type Ia supernovae corresponding to each w(z)
curve, we perform a standard ΛCDM analysis to estimate the corresponding posterior densities of
the absolute magnitude of type Ia supernovae, the present-day matter density, and the equation of
state parameter. Using the Kullback-Leibler divergence between posterior densities as a difference
measure, we demonstrate that a standard type Ia supernova cosmology analysis has limited sensi-
tivity to extensive redshift dependencies of the dark energy equation of state. In addition, we report
that larger redshift-dependent departures from a cosmological constant do not necessarily manifest
easier-detectable incompatibilities with the ΛCDM model. Our results suggest that physics beyond
the standard model may simply be hidden in plain sight.

I. INTRODUCTION

The standard model of cosmology, in which the Uni-
verse is composed primarily of cold dark matter (CDM)
and a cosmological constant (Λ), is mainly supported
by three observational pillars: Big Bang nucleosynthesis
(BBN) [1], the cosmic microwave background radiation
(CMB) [2–7], and the discovery of late-time accelerating
cosmic expansion [8–10].
BBN occurred within the first 20 minutes after the Big

Bang and is responsible for the production of the lightest
nuclides, providing sensitive constraints on the ΛCDM
model (e.g., [11–13]). Similarly, the estimated CMB tem-
perature evolution with redshift is corroborated by rota-
tional excitation of molecules and the Sunyaev-Zel’dovich
effect [14, 15]. The discovery of accelerated cosmic ex-
pansion relies on the observational evidence that type Ia
supernovae (SN Ia) appear fainter than it would be ex-
pected in a decelerating universe [8, 9].
The condition for late-time acceleration requires the

equation of state parameter of dark energy to be w <
−1/3, where w ≡ p/ρ is the ratio of its pressure p and en-
ergy density ρ. The postulate of a cosmological constant
corresponds to w = −1 and has been consistently sup-
ported by observational evidence (see, e.g., [16–22] and
references therein). This constant value is commonly in-
terpreted as a form of vacuum energy in the context of
the equation of state of dark energy, the nature of which

∗ bmoews@roe.ac.uk

has garnered the interest of cosmologists for the last two
decades [8, 23, 24]. The general notion of a cosmolog-
ical constant predates the discovery of the accelerating
expansion of the Universe (e.g., [25–27]). The concept
of dark energy, however, is much broader and has long
served as a generic placeholder for the physical cause of
an accelerating expansion, which is not necessarily re-
stricted to a constant w (see, e.g., [23] for a review).
Typical attempts to probe deviations from the ΛCDM

model assume modifications at the background level,
which can be described as a relativistic fluid with an
effective time-dependent equation of state. The form
of the variable equation of state depends on the the-
ory involved, subject to underlying kinetic and potential
terms, which can result in considerable variations of w
as a function of redshift z. This also leads to proposals
like the Chevallier-Polarski-Linder (CPL) parametriza-
tion [28, 29]. Examples of other non-constant models of
dark energy include quintessence [30] and, more gener-
ally, scalar-tensor theories [31], with many of them falling
under the umbrella of wCDM models [32].
Theories relying on non-constant parametrizations of

w have been tested on real datasets, with no evidence
of statistically significant deviations from ΛCDM being
reported [33–36]. The same inability to rule out compet-
ing theories of dark energy is reported when using SN
Ia data under a specialized hypothesis test for ranges of
w, though future survey data could provide stronger con-
straints [37]. This competition between a constant and
a variable, often redshift-dependent, equation of state is
a matter of continuing debate [38]. A recent example
of efforts in testing the CPL parametrization is carried

http://arxiv.org/abs/1812.09786v2
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out using the Pan-STARRS1 Medium Deep Survey SN Ia
data in combination with CMB measurements [39, 40].
Apart from common parametrizations of w(z) [41, 42],

non-parametric approaches make use of linear or cubic
spline interpolation as well as Gaussian processes (GPs)
[43–46]. The latter replace the need for placing a lim-
ited number of nodes for an interpolation with the choice
of a suitable covariance function K(z, z′) [47, 48]. Re-
lated research also makes use of non-parametric Bayesian
methods based on correlated priors [49].
Regardless of the preferred representation for the equa-

tion of state, the standard analysis consists of including
the chosen w(z) model in the supernova likelihood and
evaluating the results with the ΛCDM model as the null
hypothesis. In this scenario, the goal is to determine
which type of behavior is allowed by the data in the con-
text of a given dark energy model, with the prevailing
conclusion that currently allowed behaviors are indistin-
guishable from the ΛCDM model [50].
In light of these results, we aim to address the contra-

positive question: How robust is a standard SN Ia anal-
ysis pipeline to deviations from ΛCDM in the data? We
thus investigate whether the traditional ΛCDM analysis
framework is, in this context, a meaningful process to be-
gin with. By creating arbitrary realizations of w(z), we
stress-test the viability of currently wide-spread methods
to measure w via SN Ia data for the assessment of dark
energy models. To accomplish this goal, we explore cur-
rent capabilities to discriminate between different mod-
els beyond a cosmological constant by running a standard
cosmological inference pipeline on random fluctuations of
the dark energy parameter w that adhere to physically
motivated constraints.
This work is organized as follows: The SN Ia mock

samples generated for subsequent experiments are de-
scribed in Section II, along with our procedure for gen-
erating data perturbations and the theoretical considera-
tions that have to be taken into account when constrain-
ing w(z). The analysis is performed according to the pro-
cedure outlined in Section III, which provides an overview
of the cosmological inference pipeline, the choice of pri-
ors, and the measure of posterior differences. We present
and discuss the results of both the primary investiga-
tion and additional experiments for relaxed constraints
in Section IV and provide our conclusions in Section V.

II. DATA

In order to test the limits of a standard SN Ia cosmo-
logical pipeline, we generate a series of mock catalogs,
each one corresponding to a universe with a different un-
derlying behavior for the dark energy equation of state

1 https://panstarrs.stsci.edu/

FIG. 1. Schematic flowchart of the generation for Pan-

theon-based SN Ia simulations. Dotted rectangles denote
calculated values, whereas rounded rectangles and circles in-
dicate known values and random variables, respectively. Dot-
ted lines mark operations performed at a given point during
the process.

parameter. The individual w(z) curves are obtained us-
ing a smooth random curve generator described in Sec-
tion II A, coupled with physically motivated constraints
explained in Section II B. The generated curves are sub-
sequently fed into into a SN Ia simulation pipeline, based
on the statistical properties and redshift distribution of
the Pantheon SN Ia sample [51]. Details on our sim-
ulation, the process for which is shown in Figure 1, are
given in Section II C.

A. Generating perturbations of ΛCDM

The construction of mock type SN Ia datasets that can
mimic universes with varying dark energy equations of
state requires the ability to create w(z) realizations un-
der arbitrarily flexible sets of constraints, for example to
define vertical intervals and regulate the maximum num-
ber of gradient sign changes. To this end, we introduce
a general-purpose smooth random curve generator that
satisfies the need for extensive constraints, together with
an easy-to-handle implementation for the wider research
community. While we use this generator to create real-
izations of w(z), our method is applicable to a wide array
of problems in which generic curves are needed. In this
context, curve realizations can also be used for function
perturbations of arbitrary measurement detail, treating
the value at each measurement point as a multiplier for
the respective value in a function that is to be smoothly
perturbed.
Both node-dependent interpolation approaches and

https://panstarrs.stsci.edu/
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GPs present some significant drawbacks. Linear splines
lead to sharp changes in the generated functions, while
cubic splines are prone to introducing spurious features.
Similarly, GPs require setting a covariance function and,
depending on the kernel, may lack smoothness [52]. In
addition, the aforementioned methods hamper the abil-
ity to easily subject the generated curves to customized
sets of constraints.
To overcome such limitations, we introduce and em-

ploy Smurves, a random smooth curve generator that
allows for highly customizable and physically motivated
constraints to be placed on the curve-generating process.
The source code of the curve generator, as well as a tuto-
rial and examples, can be found in a public code reposi-
tory2. Based on the concept of changes in gravitational
direction and magnitude along projectile paths, the gen-
erator employs Newtonian projectile motion, adapted to
allow for negative values, as the basis for generating
curves.
Given a set of user-specified constraints, Smurves gen-

erates smooth curves through uniform-random sampling
of the number of changes in gravitational direction and
the locations of such changes, while adhering to the spec-
ified constraints. The path is segmented at the sampled
change points, and uniform-random samples of the gravi-
tational acceleration are drawn within the bounds of pos-
sible curve paths, while respecting the set of interval con-
straints. The method used for curve segment calculations
is further summarized, including a pseudocode represen-
tation, in Appendix A.
While we primarily make use of the ability to set inter-

vals and the number of maximum gradient sign changes
for this paper, Smurves features a variety of additional
options that make it applicable to a wider array of prob-
lems. Examples of other capabilities include the use of
logarithmic scales and the capacity for perfect conver-
gence in a specified point along the generated curves’
paths.
The next section describes the use of Smurves to cre-

ate 50 w(z) curves per constraint family, which imposes
boundaries in both dimensions, z and w, on each curve
sampled at 500 equally-spaced redshift bins on a linear
scale. For brevity, we call each such constraint family
generated with Smurves a “SmurF”.

B. Constraints on w(z)

We explore families of w(z) curves that evolve within
the redshift range covered by the binned Pantheon

data, 0.0140 < z < 1.6123, and that are constrained
to regions of allowed constant-w models, with a broadest
envelope of −5/3 < w < −1/3.
The upper bound of w = −1/3 is obtained by requiring

an accelerated expansion of the Universe at the present

2 https://github.com/moews/smurves

FIG. 2. Smooth random w(z) curves generated with Smurves

to create SN Ia mock observations. The figure shows curves
from four different constraint families (“SmurFs”), with 50
curves per family, while adhering to a maximum of one gra-
dient sign change for a given curve. The varying parameters
are the upper and lower boundaries of w(z) for each family.

time driven by dark energy. For each component i of the
Universe, this limit corresponds to

∑

i (ρi + 3pi) < 0,
defining the strong energy condition, with equation of
state wi ≡ pi/ρi, pressure pi, and energy density ρi of
energy component i [53]. The limit of w < −1/3 corre-
sponds to a cosmological constant that dominates over
other constituents. The lower bound on w results from
the requirement that a so-called Big Rip scenario cannot
have occurred within the age of the Universe of roughly
one Hubble time H−1

0 . The previous term implies that
phantom energy, with w < −1, becomes infinite in finite
time and overcomes all other forms of energy, ripping
apart everything, from cosmic structure to atoms, with
the Universe ending in a “Big Rip” [54]. We also note
that phantom dark energy violates the null energy con-
dition [55].
While the lowest redshift for the Pantheon data is

z = 0.0140, we set another constraint to let all curves
start at z = 0 so that w(0) = −1. This is to agree
with near-z cosmological probes bearing small scatter at
the lowest redshift bin. The resulting set of constrained
w(z) curves, shown in Figure 2, exhibits behaviors that
can be found, among others, in effective fluid descriptions
of f(R) models [56], scaling, or interacting, dark matter
[28], and bimetric theories of gravity [57].
In practice, this approach means that we evolve the

Friedmann equation while including both matter and
dark energy as energy components. For a flat Universe,
this implies

H (z) = H0

[

Ωm(1 + z)3 +ΩΛ(1 + z)3(1+w)
]1/2

, (1)

where Ωm and ΩΛ represent the dark matter and dark

https://github.com/moews/smurves
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energy density parameters, respectively. For a flat Uni-
verse, we note that ΩΛ = 1 − Ωm. The current age
t > H−1

0 of the Universe sets a lower limit on w for
a given Ωm. The more negative a phantom component
(w < −1) is, the faster we reach a Big Rip scenario. A
lower boundary of w & −2 corresponds to Ωm = 0.6,
while, for example, Ωm = 0.8 leads to the requirement
w & −2.2, and Ωm = 0.01 yields w & −5/3. Therefore,
we constrain our broadest envelope of w(z) curves to a
lower limit of w = −5/3, conservatively corresponding to
a very low matter density and yielding symmetric inter-
vals for the curve limits.
For the three remaining SmurFs, we halve the pre-

ceding symmetric interval around w = −1 for each new
family, shrinking the allowed envelopes each time to let
curves generated from the corresponding families stay
closer to the value of the ΛCDM model. As a result,
we generate four curve families with increasing maximum
and average deviations from the ΛCDM model to inves-
tigate the degree of compliance for different degrees of
compliance with w(z) = −1.
We put a final constraint on the curve generator, speci-

fying a maximum number of one for gradient sign changes
in the created curves to keep our w(z) curves in line
with shapes found in research discussed in Section I,
but explore an increased maximum number of gradient
sign changes, as well as the effect of an omission of the
w(z) = 0 constraint, later in Section IVB.

C. SN Ia data simulation

Observations sensitive to the background expansion
such as SN Ia data can be employed to measure the lu-
minosity distance,

dL (z) = (1 + z) dH

∫ z

0

dz′

E (z′)
, (2)

where the Hubble distance is dH = c/H0 and the Hub-
ble parameter is E(z) = H(z)/H0, with H(z) given by
Equation 1. This is related to the peak B-band magni-
tude,

mBi = 5 log10 dL(zi) +M, (3)

of a given supernova i at redshift zi, with absolute mag-
nitude M . We generate SN Ia peak B-band magnitude
catalogs by inserting each w(z) curve seen in Figure 2
into Equation 1 and following the process shown in Fig-
ure 1.
Our mock data are constructed to mimic the statisti-

cal properties and redshift distribution of the Pantheon
SN Ia sample3, which consists of a total of 1048 SN Ia
at redshifts 0.03 < z < 2.3, representing the largest com-
bined sample of SN Ia observations to date [51]. We use

3 https://archive.stsci.edu/prepds/ps1cosmo/index.html

FIG. 3. Peak B-band magnitudes mB as a function of red-
shift z for different dark energy equation of state (w(z)) real-
izations. The figure shows the diagrams for the ΛCDM model
(dashed line), as well as 50 random w(z) curves for each of the
four constraint families, which represent increasing deviations
from ΛCDM. Black points depict the Pantheon dataset and
respective uncertainties, and the insets highlight w(z) mod-
els regarding ΛCDM as mostly falling within the data uncer-
tainty, even at redshifts as high as z & 1.5.

the publicly available catalog, which is summarized by
40 redshift bins from z1 = 0.0140 to z40 = 1.6123. We
note that differences in w between the binned and un-
binned versions are smaller than (1/16)σ for statistical
measurements [51], which makes this an adequate and
easy-to-handle data representation for a large number of
analysis pipeline runs.
We propagate the curves through a simulation pipeline

using CosmoSIS, as described in Section IIIA. The sim-
ulation pipeline also takes into account the full covari-
ance matrix, which includes effects due to photometric
error, the uncertainty in the mass step correction, uncer-
tainty from peculiar velocity and redshift measurement,
distance bias correction, and uncertainty from stochastic
lensing and intrinsic scatter. Peak B-band magnitudes
for w(z) curves are shown in Figure 3 to demonstrate
the similarity of results even at high redshifts.

III. METHODS

We run a full analysis pipeline that assumes a constant-
w dark energy model, hereafter called Ψwconst

, to infer
the posterior probability distribution of w, Ωm, and M
as described in Section III A. In Section III B, we list
and justify our choice of priors for parameters. Finally,
in Section III C, we introduce the metric by which we
compare simulation-based posteriors and those from real
SN Ia Pantheon data.

https://archive.stsci.edu/prepds/ps1cosmo/index.html
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TABLE I. Priors for the estimation of cosmological and
nuisance parameters. U(·) denotes a uniform distribution,
whereas we use “fixed” to indicate a Dirac delta function with
δ(x) =∞ for an x from the column of initial values.

Parameter Prior Initial value
Ωm U(0.01, 0.6) 0.307
M U(-20.0, -18.0) -19.255
w U(-2.0, -0.3333) -1.026
Ωk fixed 0
Ωb fixed 0.04
h0 fixed 0.7324

A. Pipeline with CosmoSIS

CosmoSIS is a cosmological parameter estimation code
[58], which models cosmological likelihoods and calcula-
tions as a sequence of independent modules that read and
write their inputs and outputs to a central data storage
block. The package has been used extensively for param-
eter estimation by the Dark Energy Survey (DES) (e.g.,
[59–63]), among others [64–67].
We utilize two CosmoSIS pipelines; the first simulates

data using the w(z) realizations described above, and the
second analyzes the simulated data using the emcee sam-
pler [68, 69] under a standard cosmological model. The
process of emcee is described in detail in Appendix B.
We connect these two pipelines in a script to iter-

ate the process over the curves from each SmurF using
four standard library modules: consistency, which com-
putes the complete set of cosmological parameters, camb
[70], which, in our case, calculates cosmological back-
ground functions, and pantheon, which computes the
Pantheon likelihood. A custom module is used to read
in tabulated w(z) functions and cast them to the form
used in camb.
For Gaussian likelihoods, CosmoSIS automatically gen-

erates simulated outputs incorporating both the signal
based on the used model and noise, as described in Ap-
pendix C. Employing the reported uncertainties on mB

and the full covariance matrix, we use this process to
simulate peak B-band magnitudes at the same redshift
values as reported for the real data in the binned Pan-

theon sample. The distributions of these mock peak
B-band magnitudes are provided in Figure 4.

B. Choice of priors

We vary our cosmology via the present-day matter den-
sity Ωm and the dark energy equation of state w. We as-
sume a flat Universe with Ωk = 0 and, therefore, a dark
energy density of ΩΛ = 1 − Ωm. We keep the present-
day Hubble parameter fixed to h0 = 0.7324 [71], and the
cosmic baryon density to Ωb = 0.04 [72]. An additional
nuisance parameter is the absolute magnitude of SN Ia
M , which is degenerate with the Hubble parameter.

Our set of estimated parameters from the emcee sam-
pler is {Ωm, w,M}. We choose uniform priors for all
parameters, with bounds given in Table I. The range for
the absolute magnitude M encompasses previous con-
straints given, for example, by the SDSS-II/SNLS3 Joint
Light-Curve Analysis (JLA) [73]. The central starting
value of M = −19.255 is chosen from a preliminary
maximum likelihood run with Pantheon data. The
prior over Ωm covers allowed parameter ranges as esti-
mated by present-day SN Ia samples like JLA and Pan-

theon. The starting point for the dark matter parame-
ter is Ωm = 0.307, which corresponds to the Pantheon

wCDM best-fit value. Analogously, the central value for
w is set to w = −1.026 [51].
The prior range on w coincides with the allowed val-

ues for the families of w(z) curves considering the prior
upper bound of Ωm = 0.6 (see Section II B for a detailed
description of the allowed w-interval). For our param-
eter estimation, we loosen the symmetric lower-bound
requirement, with w = −2 as our lower limit to cover the
allowed upper boundary of Ωm from SN Ia at 3 σ.

C. Comparison criteria

Conventional error contours, used ubiquitously in cos-
mology, are estimated from samples from posterior prob-
ability distributions p(θ|D,Ψ) of parameters of interest,
in our case θ = {Ωm, w,M}, conditioned on the cosmo-
logical model Ψ and data D = {di}N , where i runs over
the number N of observations. For Pantheon, the data
is presented as DPantheon = {zi,mBi, σmB,i}40 for bins i.
We consider each individual w(z) curve separately,

but group them by constraint family Sk, as depicted
in Figure 1, for interpretability (see Appendix D for
a detailed justification of this procedure). For j ∈
{1, 2, . . . , 50}, each of 50 simulated data sets Dj is gener-
ated with the curve wj(z), and our experimental design
yields samples from the posteriors pj ≡ p(θ|Dj ,Ψwconst

).
Each posterior corresponds to the probability of parame-
ters from a cosmological model Ψwconst

conditioned on
the data generated from wj(z). We also apply the
same pipeline to 50 realizations of the data under the
ΛCDM model, producing pΛj

≡ p(θ|DΛCDMj
,Ψwconst

),
and to the real Pantheon data, producing pPantheon ≡
p(θ|DPantheon,Ψwconst

).
To compare the samples from each mock universe to

their ΛCDM counterparts, we adopt a measure suited to
quantifying the difference between probability distribu-
tions. The KullbackLeibler divergence (DKL) [74],

DKL =

∫ ∞

−∞
p(x) ln

[

p(x)

p̂(x)

]

dx, (4)

is the directional difference between a reference proba-
bility distribution p(x) and a proposed approximating
probability distribution p̂(x). The DKL has been applied
within astronomy only to a limited extent, but is gaining
popularity [46, 75–79].
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FIG. 4. Visualization of peak B-band magnitude (mB) residuals between our simulated data and ΛCDM, as well as between
observed Pantheon data and the ΛCDM model. In both cases, ΛCDM corresponds to Ωm = 0.307 and M = −19.255.
The violin plots for each of the 40 redshift (z) bins show a rotated kernel density plot of the distributions of values for each
of 50 different realizations for one SmurF per panel. Black dots indicate binned Pantheon data, with vertical black lines
representing the error bars of one standard deviation. The comparison is plotted as the difference between the respective peak
B-band magnitudes and expected ΛCDM values, mB −mBΛCDM, to show both the deviation from theoretical values and the
distributions of simulated SN Ia data around observed values.

Unlike symmetric measures of the distance between
two probability distributions, such as the familiar root-
mean-square-error, the DKL is defined as the directional
loss of information due to using an approximation in
place of the truth; we must designate one distribution
as a reference from which the proposal distribution di-
verges. A generic example of a pair of reference and
proposal distributions can be defined by posterior sam-
ples derived from a large set of observations, as opposed
to posterior samples derived from a small subset thereof.
There is, therefore, an implicit assumption that the for-
mer is closer to the truth than the latter, which may be
an approximation when the rest of the observations are
unavailable.
In our case, the samples from pPantheon always serve as

the reference distribution, and the samples from pj and
pΛj

always act as the proposal distribution.

IV. RESULTS AND DISCUSSION

In the previous sections, we describe both the data and
our methodology. In Section IVA, we present the results
of primary experiments, together with a discussion of the
underlying causes and implications for SN Ia investiga-

tions. In addition, we relax the different constraints for
two of the constraints families in Section IVB to explore
the impact such changes have on the resulting DKL dis-
tributions. In the first of these two additional experi-
ments, we generate w(z) curves with an increased maxi-
mum number of gradient sign shifts, whereas the second
experiment eliminates the requirement that w(z) = −1.

A. Primary experiments

For each SmurF, as described in Section IIA, we gen-
erate 50 w(z) curves that are fed into the CosmoSIS sim-
ulation and analysis pipeline described in Section III A.
This results in four sets of 50 posterior distributions for
parameters {Ωm, w,M}, or pSk,j , where k ∈ {1, 2, 3, 4}
identifies the SmurF and j ∈ {1, 2, . . . , 50} denotes its
realizations (see Section III C for details on notation). In
addition, 50 datasets from a ΛCDM model are generated
to illustrate the impact allowed by current statistics and
systematic uncertainties. We feed these simulations, as
well as the original binned Pantheon dataset, into the
same analysis pipeline. Posteriors derived from all simu-
lated data are then compared to the Pantheon results
using the Kullback-Leibler divergence DKL, described in
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FIG. 5. Histograms of the Kullback-Leibler divergence
(DKL) for different sets of constraints. The shown histograms
depict the distribution of DKL values for the ΛCDM case and
each SmurF used to generate simulated SN Ia peak B-band
magnitudes. DKL values are calculated for the posterior dis-
tributions of parameters obtained through a standard ΛCDM
analysis pipeline that considers only constant w models.

Section III C.
Figure 5 shows histograms of DKL values for each

SmurF along with those from ΛCDM simulations. In ac-
cordance with our expectations, the distributions of DKL

values for constraint families with increasingly wider w-
intervals, from SmurF 1 through 4, show a systematic
shift towards higher means, larger variances, and multi-
modality. These differences are, however, small enough
that the bulk of DKL values for each SmurF coincides
with the DKL range covered by the ΛCDM case, present-
ing a serious obstacle for the detection of deviations from
a cosmological constant.
This effect is better visualized by a representative w(z)

function for each SmurF and the respective posteriors,
shown in each column of Figure 6. The top row shows
w(z) curve associated with the median DKL value for
each SmurF, as well as the constant w = −1 line. In do-
ing so, we enable the comparison of single representative
curves, which we also visualize to ensure that deviations
from w(z) = −1 in representatives follow the same pro-
gression toward larger deviations as the increasing devi-
ations distinguishing different SmurFs.
Each curve approximately covers the allowed w inter-

vals of its respective constraint family, thus confirming
the applicability of a median-DKL approach for choos-
ing a representative SmurF instance. The bottom three
rows show two-dimensional posterior distributions, for
parameters {Ωm, w,M}, for each SmurF and the ΛCDM

case (colored contours) superimposed on the posteriors
from Pantheon data (black contours). Similarly, poste-
rior distributions from the ΛCDM model, together with
SmurFs 1, 3, and 4, go from agreement to disagreement
with Pantheon. Posteriors from SmurF 2, on the other
hand, show an unexpected visual match with both real
Pantheon data results and the ΛCDM case, despite its
associated w(z) exhibiting larger deviations from w = −1
than the one associated with SmurF 1. Notably, the rep-
resentative curve from SmurF 2 features larger deviations
from the ΛCDM case than the representative curve from
SmurF 1 in both low-z and high-z regimens, meaning
that larger deviations from the λCDM case do not neces-
sarily result in posteriors considerably different from the
ones produces by w(z) = −1.
This apparent discrepancy between notable inconsis-

tencies in w(z) and compliant posterior estimates derives
from the fact that, while w(z) can change widely, the
observable signature of w(z) relies on the peak B-band
magnitude mB. The dependence of mB on the integral
of the Hubble parameter leads to a statistical degeneracy
that makes such posteriors indistinguishable from ΛCDM
within the current magnitude precision level and probed
redshift range. Coupled with the large DKL overlap be-
tween SmurF instances and ΛCDM results seen in Fig-
ure 5, this directly extends to a considerable chance of
mistaking an equation of state varying significantly with
redshift for one in reasonable agreement with a cosmo-
logical constant.
A more detailed view of all posteriors over w is shown

in the ridgeline plots of Figure 7, in which the means,
as well as the bulk of the probability, fall within the
95% credible intervals of the Pantheon results under
a constant-w hypothesis. SmurF 2, in particular, shows
more constrained posteriors, which offers an explanation
for the agreement of the median-DKL representative’s
posterior with the ΛCDM case. It does, however, also
feature four obvious outliers reaching far beyond the left
boundary of the credible interval, which demonstrates
the variability in the agreement of w-posteriors within
the same constraint family.
Naturally, all of the the aforementioned results are

bounded by the Pantheon-like quality of our simula-
tions. Current surveys such as DES continue to con-
tribute to the number of SN Ia observations [59]. Though
the DES SN Ia samples used in combination with addi-
tional external samples amount to less than a third of
Pantheon’s sample size, DES results indicate smaller
intrinsic scatter in the Hubble diagram, taking one step
further in the attainment of higher-quality SN Ia samples
[80]. These new and future datasets will certainly in-
crease our ability to discriminate between different mod-
els for the dark energy equation of state parameter.
It is, however, important to highlight the non-intuitive

and unavoidable behavior derived from the nature of dis-
tance measurements as an integral over the Hubble pa-
rameter. Given a dataset with sufficiently low measure-
ment and systematic uncertainties, especially at high red-
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FIG. 6. First row: Representative redshift-dependent dark energy equation of state (w(z)) curves associated with the median
DKL per constraint family (full lines) and the ΛCDM case (dashed line). Second row: Posteriors for w and dark matter density
Ωm per constraint family. The four plots depict the posterior distributions for the above-mentioned curves (colored contours),
as well as the posteriors for the Pantheon analysis case (black contours). Third and fourth row: With M as the absolute
magnitude, the plots show two-dimensional posteriors for M ×Ωm and M × w, respectively.

shifts, discrimination between phenomenologically close
models is possible, but we cannot rely on the assumption
that substantial redshift-dependent changes in w(z) will
necessarily result in detectable biases under a constant-
w analysis. This is especially the case for SN Ia-only
analyses [50, 81–83].
Caution should be exercised in using other cosmologi-

cal observables to break the degeneracy via constraining
additional parameters. This strategy is wide-spread in
the literature, to the point that recent research questions
the use of SN Ia data without such additional observ-
ables [84]. It is, however, important to keep in mind that
supernovae are the primary dynamical observable that
probe the line of sight directly, and consequently impose
boundaries in the behavior of w. The use of additional

probes such as weak lensing can, with insufficient infor-
mation on the baryonic physics involved, introduce new
biases, for example in the CPL parametrization [85].
In summary, we recognize the need to combine com-

plementary observables, for example baryon acoustic os-
cillations and CMB data, while making use of careful
statistical analyses capable of probing more subtle be-
haviors of the dynamical evolution of dark energy. Al-
though paramount for a more general discussion of this
topic, the addition of extra observables exceeds the scope
of this paper.



9

FIG. 7. Ridgeline plots for the dark energy equation of state
parameter w. Each row depicts the posterior densities of w for
all 50 curves, for each of the four constraint families as well as
the simulations for the ΛCDM case. The transparent bands
covering the middle section of each column show the 95%
credible interval for the Pantheon sample, analyzed under a
constant-w model.

B. Relaxed constraints on w(z)

In a bid to push our analysis a bit further, we relax the
constraints put on the curve generator for SmurFs 2 and
4 for illustrative purposes. For SmurF 2, we increase the
maximum number of gradient sign changes from one to
10, allowing for more complicated functions to be real-
ized. In contrast, for SmurF 4, we omit the requirement
that w(0) = −1 to allow curves to start at arbitrary
values within the allowed w(z) interval. The respective
curves used in these additional experiments are depicted
in Figure 8.
To assess the impact of these further constraint re-

laxations, their DKL distributions are shown in Figure 9,
along with those from SmurF 2, SmurF 4, and the ΛCDM
case. The DKL distribution of SmurF 2.1 still holds the
same overall shape of SmurF 2 and occupies a range of
DKL values between those covered by SmurF 2 and 4.
This demonstrates that the use of more complicated func-
tions, for example the larger maximum number of gradi-
ent sign changes in SmurF 2.1, has a lesser impact than
simpler functions allowed to vary in a larger interval, as
is the case for SmurF 4.1, when constrained to the same
w(z) intervals and initial conditions. The complexity of
w(z) curves does, as a result, seem to have less of an ef-
fect on distinguishability than the intervals in which they

FIG. 8. Smooth random dark energy equation of state (w(z))
curves generated with Smurves to create mock SN Ia obser-
vations for additional experiments. The figure shows curves
from two different constraint families, SmurF 2.1 and SmurF
4.1, with 50 curve realizations per family.

live. This is, again, a consequence of the dependence of
mB on the integral over the Hubble parameter, meaning
that faster variations in w(z) tend to be smoothed out ob-
servationally. Residual additional variations, which are
still present, lead to the slightly higher spread in the cor-
responding DKL distribution.
When we omit the w(0) = −1 constraint, which re-

stricts generated w(z) curves to exhibit stark variations
from the ΛCDM case at very low redshifts, we find our-
selves confronted with a very different result. Relative to
SmurF 4, SmurF 4.1 exhibits larger DKL values with a
considerably wider spread. We also note that the distri-
bution of DKL values is much flatter than for distribu-
tions constrained to w(0) = −1, without a peak at low
DKL values. This wider spread and flattened distribution
can be attributed to introducing an offset in our observ-
able mB, since mB averages over w(z) via the Hubble
parameter. Curves like those in SmurF 4.1 can, for ex-
ample, always lie above or below -1, with an additional
offset of varying magnitude depending on its w(0) value,
leading to a posterior very different from the ΛCDM case.
Intuitively, choosing random w(0) anchoring points leads
to a roughly flat distribution ofDKL values until reaching
a maximal possible deviation from ΛCDM that depends
on our allowed w(0) prior range.

V. CONCLUSION

Searching for new physics beyond the standard ΛCDM
model inherently requires the capability to discriminate
between competing models for the dark energy equation
of state. This work scrutinizes the pitfalls of standard
cosmological analysis pipelines in their ability to detect
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FIG. 9. Histograms of the Kullback-Leibler divergence
(DKL) for different constraint families. The histograms show
the distributions of DKL values, with a total of 50 redshift-
dependent dark energy of state curves w(z) per family. In
doing so, this figure facilitates the comparison of two previ-
ous constraint families, SmurF 2 and SmurF 4, with further
relaxed constraint families, namely SmurF 2.1 and SmurF 4.1,
as well as with the ΛCDM case.

signals of ΛCDM deviations.
For this task, we introduce a novel smooth random

curve generator, Smurves, which uses random sampling
and modified Newtonian projectile motion as the means
for its generative process. This method is highly cus-
tomizable and facilitates the use of physically motivated
constraints into the curve-generating process. While
applied to a specific cosmological case in this paper,
Smurves represents a general multi-purpose methodology
for constrained curve generation and function perturba-
tion. We also provide a user-friendly implementation of
the code for the sake of reproducible science.
We employ Smurves to generate mock SN Ia observa-

tions representing four constraint families, or SmurFs,
each one representing increasing degrees of deviation
from the ΛCDM model. Making use of 50 random w(z)
curves per SmurF, we run a Bayesian cosmological in-
ference pipeline for each curve to subsequently produce
200 joint posteriors of Ωm, w, and M . We then com-
pare these posteriors to those from an analysis of the
Pantheon sample derived under the assumption of a
constant-w model.
We show that SN Ia cosmology observables under ex-

tensive redshift dependencies of the dark energy equa-
tion of state are virtually indistinguishable from those
of ΛCDM models using current state-of-the-art analy-
sis pipelines. Notably, w(z) realizations that exhibit a

stronger deviation from w = −1 can lead to posterior
samples of Ωm, w, and M exhibiting a slightly better
agreement with ΛCDM than realizations with lesser lev-
els of deviation. This result highlights a fundamental
and generally unstated caveat underpinning the current
methodology used to estimate w from SN Ia observations:
If ΛCDM is assumed as the null hypothesis in a test for
compatibility with observational SN Ia data, the inability
to rule out the standard model could, in a given case, be
based on such similarities in posteriors with potentially
large underlying deviations due to statistical degenera-
cies.
In addition, we test the effect of both an increased

number of gradient sign changes, leading to more com-
plex curves, and of larger deviations from w(z) = −1 with
the omission of an anchor point of w(0) = −1 for gen-
erated curves. While the complexity of curves has little
impact on the compliance with the standard model, we
find that this omission of an anchor constraint at z = 0
reduces ΛCDM compliance considerably. We recommend
further research on the topic, specifically in terms of an
investigation focused on different curve characteristics to
reduce the set of viable candidate hypotheses. In doing
so, further insights into the specific features of redshift-
dependent dark energy equations of state can be gained
by identifying regions of w(z) parametrizations that favor
certain cosmologies.
The upcoming arrival of larger and higher-quality

data sets, especially at high redshifts, will certainly im-
prove our capability to distinguish between dark energy
models. There are, however, intrinsic characteristics of
distance-based observables that can render the identifi-
cation of strong deviations unattainable. The applica-
tion of redshift-dependent analyses, parametric or non-
parametric, alongside the constant-w scenario and the
careful use of additional cosmological observables, are
crucial steps in providing a realistic picture of our current
knowledge regarding properties of dark energy. Due to
these caveats, and given the significant loss in precision
when redshift-dependence is taken into account, physics
beyond the standard model may be hidden in plain sight.
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and S. López, Astron. Astrophys. 526, L7 (2011).

[15] G. Luzzi, R. T. Génova-Santos, C. J. A. P.
Martins, M. De Petris, and L. Lamagna,
J. Cosmol. Astropart. Phys. 9, 011 (2015).

[16] A. G. Riess, L.-G. Strolger, S. Casertano, H. C. Ferguson,
B. Mobasher, B. Gold, P. J. Challis, A. V. Filippenko,
et al., Astrophys. J. 659, 98 (2007).

[17] W. M. Wood-Vasey, G. Miknaitis, C. W. Stubbs, S. Jha,
A. G. Riess, P. M. Garnavich, R. P. Kirshner, C. Aguil-
era, et al., Astrophys. J. 666, 694 (2007).

[18] R. Amanullah, C. Lidman, D. Rubin, G. Aldering,
P. Astier, K. Barbary, M. S. Burns, A. Conley, et al.,
Astrophys. J. 716, 712 (2010).

[19] E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett,
B. Gold, G. Hinshaw, N. Jarosik, D. Larson, et al.,
Astrophys. J. Suppl. Ser. 192, 18 (2011).

[20] M. Sullivan, J. Guy, A. Conley, N. Regnault,
P. Astier, C. Balland, S. Basa, R. G. Carlberg, et al.,
Astrophys. J. 737, 102 (2011).

[21] N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Aman-
ullah, K. Barbary, L. F. Barrientos, J. Botyanszki, et al.,
Astrophys. J. 746, 85 (2012).

4 https://cosmostatistics-initiative.org

[22] L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blan-
ton, A. S. Bolton, J. Brinkmann, J. R. Brownstein, et al.,
Mon. Not. R. Astron. Soc. 427, 3435 (2012).

[23] J. A. Frieman, M. S. Turner, and D. Huterer,
Annu. Rev. Astron. Astrophys. 46, 385 (2008).

[24] C. O’Raifeartaigh, M. O’Keeffe, W. Nahm, and S. Mit-
ton, Eur. Phys. J. H 43, 73 (2018).

[25] A. Einstein, Sitzungsberichte der Königlich Preußischen
Akademie der Wissenschaften (Berlin) , 142 (1917).

[26] A. Friedman, Z. Astrophys. 10, 377 (1922), [Gen. Rel.
Grav. 31, 1991(1999)].
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Appendix A: Constrained curve generation

The segmented path calculation of Smurves follows, in
its broadest terms, the classical Newtonian calculation of
a projectile path: Given a velocity, an acceleration mag-
nitude as a force acting on the projectile, and a launch
angle, a flight path can be easily computed as vertical
axis values along a set of measurement points on the hor-
izontal axis. At the end of the partial path computation,
the function returns the path measurements, the impact
angle, and the final velocity of the projectile. Depending
on the number of sampled change points, and on whether
parts of the full path are not yet calculated, a new force
acting in the opposite direction of the previous one is
sampled, and previously returned values are re-used as
inputs to the same function. This lets the projectile con-
tinue its flight with the same characteristics, but with
changed gravitational magnitude and direction, to en-
sure a smooth curve evolution that easily lends itself to
subsequent splining.
The corresponding method for curve segment calcula-

tions is specified, as pseudocode, in Algorithm 1 to allow
for an easier replication and easier understanding both
of our approach and the accompanying open-source code
implementation for smooth random curve generation.
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Algorithm 1: Partial trajectory calculation

Data: v := velocity
α := step size
β := direction
s := partial steps
p0 := start point
f := vertical force
θ := launch angle

Result: Path p, impact angle θimp, velocity v

Set the initial horizontal displacement to zero
∆x←− 0
Calculate the horizontal and vertical velocities
vx ←− v cos(θ)
vy ←− v sin(θ)
Initialize start velocity and path measurements
v0 ←− v

p←− p0
Loop over the given x-axis measurement points
for i← 1 to length(s) do

Horizontal distance, displacement and time
d←− s[i]
∆x←− ∆x+ α

t←− ∆x

vx

Calculate vertical velocity and displacement
vy ←− v0 sin(θ)− ft

∆y ←− −
(

v0 sin(θ)t−
1
2
ft2

)

Total velocity and directional displacement
v ←−

√

v2x + v2y
D ←− β∆x

Append the projectile location at that point
p←− append(p, (d, p0 +D))

end

Calculate the impact angle for the partial path
θimp ←− arctan(−

vy

vx
)

return p, θimp, v

Appendix B: Parameter estimation with emcee

For our parameter estimation, we employ emcee,
a popular pure-Python implementation of the affine-
invariant MCMC ensemble sampler. This approach ex-
tends the classic Metropolis-Hastings algorithm with a
parallel “stretch move”.
A number K of walkers explore the parameter space,

with their respective steps drawn from a proposal dis-
tribution that depends on other walkers’ positions. A
walker at position Y is drawn by chance to propose a
new position X ′ for the walker that is to be updated and
currently at position X , meaning that

X → X ′ = Y + Z[X − Y ]. (B1)

Here, Z acts as a random variable with S := [0.5, 2] and

Z ∼ g(z) ∝ 1S(z) ·
√
z
−1

, with the indicator function
1S(z) taking a value of one for all z ∈ S and a value of
zero for all z /∈ S. Alternatively, this can be written as

g(z) ∝
{

1√
z

if z ∈
[

1
2 , 2

]

0 otherwise
. (B2)

The “parallel stretch” mentioned above splits the K
walkers into two equal-sized subsets and updates all walk-
ers of one subset using the other, followed by the corre-
sponding opposite procedure, which allows for the paral-
lelization of this computationally expensive update step.
An affine-invariant MCMC algorithm satisfies Xa(t) =

AXb(t) + b for different starting points Xa and Xb, and
two probability densities π and πA,b, for any affine trans-
formationAx+b. The independence of the aspect ratio in
highly anisotropic distributions offers a speed advantage
in highly skewed distributions.

Appendix C: CosmoSIS noise addition and bug fix

CosmoSIS generates simulations of peak B-band mag-
nitudes as mB(zi) double arrays based on binned Pan-

theon SN Ia data. From the Pantheon noise covari-
ance C ≡ 〈nnT 〉, we can generate this simulation using
its (unique) Cholesky decomposition C = LLT and a
random vector r, where each element is a random nor-
mal value with ri ∼ N(0, 1). We can then form n = L · r
as our noise simulation, as the noise covariance is then

〈nnT 〉 = 〈LrrTLT 〉 = 〈LLT 〉 = C. (C1)

As a consequence, the total simulated values mBsim
ob-

tained through CosmoSIS are

mBsim
= mBtruth

(zi) + L · r, (C2)

for true values mBtruth
. Initial experiments to compare

the original Pantheon data with SN Ia data generated
using flat w(z) curves as a null test uncovered a bug
in CosmoSIS. After this was reported and subsequently
fixed, the flat-curve simulations of SN Ia peak B-band
magnitudes returned to expected values of mB.

Appendix D: Interpretation of posterior samples

Given the way in which posteriors from w(z) curve
realizations from the same constraint family are used in
this paper, one might ask why posterior samples obtained
from instances of the same SmurF are not simply com-
bined to arrive at a posterior for the constraint family.
Considering error contours as being comprised of samples
from p(θ|D,Ψ), as introduced in Section III C, neglects
the role of the initial conditions C0 that have been im-
plicitly marginalized out as

p(θ|D,Ψ) =

∫

p(C0, θ|D,Ψ)dC0. (D1)

Since we generally cannot constrain the initial conditions
as such, an obvious question to ask is why they matter.
When combining constraints on cosmological parame-

ters from different probes D and D′, we are really asking
for p(θ|D,D′,Ψ) when we have p(θ|D,Ψ) and p(θ|D′,Ψ).
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To make use of the independence of the datasets, we
would expand this in terms of Bayes’ Rule as

p(θ|D,D′,Ψ) =

∫

p(C0, θ|D,D′,Ψ)dC0 (D2)

=

∫

p(D,D′|C0, θ,Ψ)
p(C0, θ|Ψ)

p(D,D′|Ψ)
dC0.(D3)

If D and D′ are our standard independent probes, every
term in Equation D2 is well-defined. This means that
the integral is separable and we can recover the intuitive
way to combine the posteriors.
The situation investigated in this paper, however, is

different. In our case, D and D′ correspond to different
SmurF instances j and j′. These two datasets are inher-

ently contradictory; they could never be observed in the
same instantiation of the universe, even under the same
physical model and values of the cosmological parameters
θ. In other words, p(D,D′|C0) = 0 for any pair of mock-
Pantheon data we consider. What distinguishes one
SmurF from another is rolled into the initial conditions
C0, leading to well-defined p(θ|D,Ψ) and p(θ|D′,Ψ), but
to an internally inconsistent p(θ|D,D′,Ψ). Thus, it
would be inappropriate to combine samples of the cos-
mological parameters obtained through a Markov chain
Monte Carlo (MCMC) method from any collection of
SmurF instances with different w(z) curves, divided by
constraint family or not.


