

Edinburgh Research Explorer

ExtOS: Data-centric Extensible OS

Citation for published version:
Barbalace, A, Picorel, J & Bhatotia, P 2019, ExtOS: Data-centric Extensible OS. in Proceedings of the 10th
ACM SIGOPS Asia-Pacific Workshop on Systems. Association for Computing Machinery (ACM), New York,
NY, USA, pp. 31-39, 10th ACM SIGOPS Asia-Pacific Workshop on Systems 2019, Hangzhou, China,
19/08/19. https://doi.org/10.1145/3343737.3343742

Digital Object Identifier (DOI):
10.1145/3343737.3343742

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/237426708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3343737.3343742
https://doi.org/10.1145/3343737.3343742
https://www.research.ed.ac.uk/portal/en/publications/extos-datacentric-extensible-os(fa8e5d76-3ffe-4c19-bdc0-572c36c810e5).html

ExtOS: Data-centric Extensible OS

Antonio Barbalace∗
Stevens Institute of Technology
antonio.barbalace@stevens.edu

Javier Picorel
Huawei Technologies

javier.picorel@huawei.com

Pramod Bhatotia†
The University of Edinburgh
pramod.bhatotia@ed.ac.uk

ABSTRACT
Today’s computer architectures are fundamentally different
than a decade ago: IO devices and interfaces can sustain
much higher data rates than the compute capacity of a single
threaded CPU. To meet the computational requirements of
modern applications, the operating system (OS) requires lean
and optimized software running on CPUs for applications to
fully exploit the IO resources. Despite the changes in hard-
ware, today’s traditional system software unfortunately uses
the same assumptions of a decade ago—the IO is slow, and the
CPU is fast.

This paper makes a case for the data-centric extensible OS,
whichenables full exploitationofemerginghigh-performance
IO hardware. Based on the idea of minimizing data move-
ments in software, a top-to-bottom lean and optimized archi-
tecture is proposed, which allows applications to customize
the OS kernel’s IO subsystems with application-provided
code. This enables sharing and high-performance IO among
applications—initial microbenchmarks on a Linux prototype
where we used eBPF to specialize the Linux kernel show per-
formance improvements of up to 1.8× for database primitives
and 4.8× for UNIX utility tools.
ACMReference Format:
Antonio Barbalace, Javier Picorel, and PramodBhatotia. 2019. ExtOS:
Data-centric Extensible OS. In 10th ACM SIGOPS Asia-Pacific Work-
shop on Systems (APSys ’19), August 19–20, 2019, Hangzhou, China.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3343737.
3343742
1 INTRODUCTION
Computer architectures faced a fundamental shift in the last
decade due to the introduction of blazing fast IO devices,
∗Part of this work was performed at Huawei German Research Center.
†Part of this work was performed at Huawei Dresden Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’19, August 19–20, 2019, Hangzhou, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6893-3/19/08. . . $15.00
https://doi.org/10.1145/3343737.3343742

buses, and interconnects, and the stagnation of the single
thread speed of central processing units (CPUs) [68]. With
today’s technology it is difficult, if not impossible, for a single
thread CPU to keep up with the data generated by a net-
work interface card (NIC), up to 200Gb/s [48], or by a modern
solid-state storage device (SSD), up to 7GB/s in read [60], and
microsecond access latencies [8, 33].

With low-latency high bandwidth IO any unnecessary soft-
ware operation executed by the CPUmay slow down appli-
cation’s IO processing. Therefore, a top to bottom lean and
optimized software is necessary to fully exploit new IO hard-
ware. However, despite these hardware changes, the main
software interface with the hardware, the system software,
that isOS, runtime, and compiler, unfortunately uses the same
design and interfaces of a decade ago.

As a consequence, in order to (partially) benefit from faster
IO devices, programmers circumvent the OS—that is, mov-
ing device drivers and eventual OS services from kernel to
user-space, e.g., kernel bypass [53, 65], DPDK/SPDK [36, 56].
Circumventing the OS works well to build appliances, i.e., a
computer, or part of it, specialized for a single application.
However, in such user-space-based IO approaches, the IO
data used by an application cannot be easily and efficiently
shared with potential other applications running on the same
computer [37, 68]. Thus, all data-center, scientific, office, and
mobile applications that rely on classic OSes and systems
software interfaces, aswell as on sharing devices, cannot fully
benefit from the new IO hardware.

This paper attempts to re-design system software towholly
exploit new low-latency and high-bandwidth IO devices. The
proposed design is inspired by near data processing (NDP) [5],
and operator pushdown in databases [24, 32, 66]. The work
extends such principles to generic software suggesting that
data should be moved to upper software layers only if it will be
used to do any computation; if the computation is trivial, or the
data is going to be used as-is, it shouldn’t be moved to upper
software layers —eventual computations should be run in place.
In virtue of that, the key idea beyond the proposed design

is to enable applications to extend the OS’s file IO operations
(e.g., read and write, send and receive) with application defined
functions, such that frequent simple applications’ operations on
IO data, e.g., discarding or copying data, happenwithin theOS
with minimal application involvement. Differently from cir-
cumventing solutions, data from IO devices can still be easily

https://doi.org/10.1145/3343737.3343742
https://doi.org/10.1145/3343737.3343742
https://doi.org/10.1145/3343737.3343742

APSys ’19, August 19–20, 2019, Hangzhou, China Antonio Barbalace, Javier Picorel, and Pramod Bhatotia

and efficiently shared among all applications running on the
OS. This idea is embraced in the data-centric extensible OS (Ex-
tOS) that comprises of a new OS kernel, as well as supporting
compiler and runtime libraries, which let applications to push
down parts of their executable code into the kernel and run
them as part of the kernel IO subsystem itself. This enables
a set of performance improvements by reducing user/kernel
data copies and context switches, merging of the IO opera-
tions, and transparently map the push down code to the avail-
able processors, possibly including accelerators and emerging
near data processing (NDP) devices [4, 5, 31, 49, 58, 70].

Extending the OS kernel at runtime with application code,
which is untrusted because provided by a 3rd party, may im-
pact the security of the entire system. Thus, ExtOS identifies
methods for executing application’s code in the kernel with-
out impacting its stability and security. Note that this utterly
different from OS extensibility by trusted code—kernel mod-
ules (Linux) or extensions (Darwin), which is commonwithin
classic OSes to selectively load at runtime for example device
drivers, which are provided with the kernel.
The data-centric extensible OS aims to be practical and

usable, not just a research prototype. Hence, ExtOS targets
UNIX-like OSes. A Linux-based prototype that capitalizes on
the Linux’s BPF/eBPF machinery [26, 30, 39] has been imple-
mented for an initial validation. Preliminary evaluation shows
promising results—up to 1.8× performance improvements in
database primitives and 4.8× speedups of UNIX utility tools.
An important challenge is toensure safetypropertiesof theun-
trusted application code in the kernel. Specifically, we aim to
ensurememory safety [51] and termination [19] properties to
enable application-specific specializationof thekernel.Weare
investigating runtime verification approaches to prove these
safety properties of the untrusted application code in ExtOS.

2 BACKGROUNDANDMOTIVATION
The gap in OS research. Classic OS kernels, such as Linux

andBSDarebasedon themonolithicOSdesign (“classicmono-
lithic” in Figure 1). Despite many OS designs were proposed
by the academic and industry research [2, 6, 7, 9, 13, 25, 34,
43, 44, 57, 61, 63, 64], the monolithic design is still the OS de-
sign of choice because it is a point of compromise between
performance, security, sharing, genericity, andmanageability.
Additionally, it has been proven to be flexible enough to be
re-purposed in other OS designs, design space in Figure 1.

Latency critical applications in order tomitigate overheads
due to context switches and costly paths in kernel-space (for
genericity), introduced the “bypass kernel approach” where
a device driver is implemented in the application itself [68].
This model has been extended to the “libOS approach” imple-
mented by DPDK/SPDK [36, 56], which moves entire kernel
subsystems within the application. Note that this approach
is inspired by libOS/exokernels [25] and has been improved

withinmonolithicOSesbyDune [11] and IX[12],whilewithin
microkernels byArrakis [52]. The right side of Figure 1 shows
the extreme scenario when continuing in this direction, i.e.,
a single application integrating all the OS components that
are strictly required for its execution.
Instead, the left side of Figure 1 targets solutions that im-

prove performance and enable sharing of the hardware (and
software) resourcesamongdifferentapplications. In this space,
the most notable contribution is the BPF/eBPF work [46],
which implements the “filtering and policy approach”. Be-
tween that and the extreme scenario the research space is
empty, ifnot for thepioneeringwork inVINO[63]andCosy[57],
which have been proposed and implemented decades ago on
radically different computer architectures, thus on different
core assumptions, and their source code is not available. Fi-
nally, the extreme scenario is represented by a single address
space OS [35] that offers a generic kernel to multiple applica-
tions without memory protection for isolation, but compiler
methods.
The data-centric extensible OS aims at filling the gap in OS

research by exploring the “Extensible Monolithic Kernel” design,
via revisiting the pioneering work in the area on modern hard-
ware with low-latency high-throughput IO, and adapting the
fundamental principles of OS extension via application code
among all IO resources, securely.

Why now? Today’s IO devices are dramatically different
from decades ago [8, 68],when the concept of extensible OS
was originally introduced. Specifically, as discussed in the
introduction, IO has higher bandwidths and lower latencies
than before, and those are going to grow further based on the
recent projections in networking [3], the debut of newmedia
technologies in storage [33], the novel buses and intercon-
nect [16, 18, 27], etc.

At the same time CPU speeds are stagnating, and although
parallelism and heterogeneity enhance CPU compute rates,
many software cannot be easily parallelized, may suffer from
synchronization bottlenecks, or exhibit ample overheads if
moved to accelerators—thus, demanding efficient single CPU
execution, only achievable with lean software. Experiments
demonstrated that on the hardware introduced in Section 6
reading a file from the page cache achieves a peak throughput
of 13.13GB/s in kernel, and 3.93GB/s in user-space. Using a
RAIDstoragedevice,1.85GB/s in kernel and1.61GB/s inuser-
space—the difference increases for faster IO devices. These
motivate the timely rethinkingofOSwepropose [8, 17, 54, 68].

Why the proposed solution? Asmentioned in the introduc-
tion, approaches like kernel bypass and DPDK/SPDK work
well when the goal is to implement an appliance on a single
machine or virtualized hardware. Hence, these approaches
are not suitable when applications need to share the same IO
resources [21, 57], which maybe the case when using dev-ops

ExtOS: Data-centric Extensible OS APSys ’19, August 19–20, 2019, Hangzhou, China

… …

OS

App

OS

App

Classic
Monolithic
Kernel

libOS
Approach

Extensible
Monolithic
Kernel

VxWorks/
Singularity

(Baremetal)
uniKernel/
Custom

App

OS

Bypass
Kernel
Approach

OS

App

Fast packet
Filtering
(BPF/eBPF)

Fast IO
Processing/
X Window

DPDK/
SPDK

OS

App

Single address
Space OS

App

OS

ExtOS

Filtering
and Policy
Approach

MirageOS/
OSv

Applica�on

OS Services

Device Driver

Core OS Kernel

Figure 1: Monolithic kernel OS design space.

tools, bio-chemistry frameworks (e.g., freebyes, SAM, bam-
tools LAMMPS), LAMP/LEMP, etc. Beside that, shared IO has
been shown superior to isolated IO [41], this is because un-
coordinated accesses to the same storage media, or other IO
devices, may cause interference, e.g., long seeks in HDD, or
write amplificationonSSDs.Moreover, virtualizationdoesnot
have zero overheads [23] nor is supported by every IO device.

On the other hand, we acknowledge that kernel bypass and
DPDK/SPDK are just user-space programs, therefore easy to
deploy, debug, etc. Therefore, our futureworkwill investigate
tools to easemanageability of the code to be pusheddown into
the kernel. We envision such tools to be similar to what devel-
opers use when programming accelerators [50] to simplify
adoption. Moreover, circumventing the kernel methods, and
ExtOS, require modifying applications’ source-code, hence
tools to ameliorate programmability are sought.

Finally, sincekernelbypassandDPDK/SPDKareuser-space
programs, they are oblivious of other programs running in the
system and to the hardware topology. Therefore, they cannot
capitalize on suchknowledge to further improveperformance,
while this is possible when operating in the OS kernel—what
we are proposing.

3 RELATEDWORK
Extensibility in operating systems. Although today there

is no commercial, nor open-source, fully extensible mono-
lithic OS, extensible OS research was blooming in the 90’s
[13, 25, 42, 43, 63]. Microkernels [2, 10, 43, 62, 64] are exten-
sible OSes by design, untrusted code that customizes the OS
is separated by the microkernel via hardware memory pro-
tection. SPIN [13] is a research microkernel that enables OS
extension by pushing down code into the microkernel, the
code have to be written in a safe language, Modula-3. Exoker-
nels [25] move all OS functionalities into the application that
is compiled and run with its tailored OS (cf. libOS). Addition-
ally, exokernelsmay be extended by “downloading” untrusted
application code (network filtering, see below) into the ker-
nel itself. To the best of authors’ knowledge, VINO [63] is the
only attempt to build a truly extensiblemonolithic OS. VINO is
based on NetBSD, and like SPIN it provides different forms of
application’s definedOS extensions. Extensions arewritten in
C/C++ and compiled with SFI for isolation outside the kernel.

Despite no fully extensible monolithic OS is available to-
day, both Linux’s and BSD’s network stacks operations can
be customized with application provided code, filtering func-
tions [26, 46]. For security, the part of the application that is
pushed down to the kernel must be developed in a reduced
assembly language, BPF/eBFP [26]. Finally, these filtering
functions affect all applications running on a system, hence
only the sysadmin has full privileges to push down applica-
tion code. This is fundamentally different from this work that
aims to provide to any application the possibility to push
down code in the OS kernel, without influencing other ap-
plications. Additionally, we identified BPF/eBPF to be too
restrictive in functionalities and not security-hardened [28],
hence we are looking at the possibility to extend it. It is worth
noting that in the latest years BPF/eBPF subsystem in Linux
has been successfully adopted in other subsystems than net-
working [15, 30, 39] However, none of these focused on any
other IO subsystem than network. Only very recent work
on File System in User Space [1] uses BPF/eBPF to exend the
storage subsystem, but not in the kernel itself.

Finally,workonOKE[14] aims to enableunprivilegedusers
to extend the OS kernel via kernel modules, securely. ExtOS
pursues a similar goal but leaves kernel modules to privileged
users.
OSmechanisms to mitigate data movement. Larry McVoy

proposed the splice() system call [47], which copies the
content of a pipe to a file without application involvement to
mitigate OS-application data movements. The splice family
of functions is now part of the Linux kernel. This work ex-
tends these syscalls to let the user attach application’s defined
operations to them.

For storage IO, the mmap() system call, which exploits the
page cache as its core, provides the most performant form of
zero-copy. However, our evaluation shows that code pushing
down is consistently faster, especially on a kernel patched
withKPTI (cf. Section6).Anotheroption for zero-copy storage
IO in UNIX systems is to entirely skip the OS page cache. This
can be achieved by using the O_DIRECT flag when opening
a file, which is another way to circumvent the OS and has
been previously criticized [38]. Our evaluations show that
O_DIRECThas a variable latency based on the requested buffer
size, the latency is at minimum double than the page cache

APSys ’19, August 19–20, 2019, Hangzhou, China Antonio Barbalace, Javier Picorel, and Pramod Bhatotia

read for small buffers, and it slowly improves with larger
buffer sizes, but it is never faster than code push down.
Cosy [57] is an experimental OS that merges the ideas of

mitigating IOdatamovementsbetweenkernel anduser spaces
and extending the OS kernel with application defined code.
However, Cosy was built targeting storage operations only,
and the source code is not available. Themain difference with
the proposed work is that Cosy doesn’t provide a stream and
filter interface and allows execution of system calls in the
kernel itself (today completely disabled in Linux).
PipesFS [21] and Streamline [22] also aim to reduce the

amount of copies between kernel and user spaces, as well as
thenumberof context switch.Differently fromthiswork, their
focus is on network IOmostly. Moreover, PipesFS proposes
a new file systemwhile we aim to reuse most of the current
Linux’s interface—with minimum OS API changes, which
will ease adoption. Similarly to PipesFS, our work extends
to heterogeneous hardware components, but it additionally
proposes to handle replication and load balancing.

4 DESIGN PRINCIPLES
The data-centric extensible OS targets UNIX-like monolithic
OSes for which files are the main abstraction, giving access
to IO device data—such as storage file system and network
socket, but also applications’ generated data such as UNIX
pipes. The pushed down executable application’s code ex-
tends the OS functionality for just about any IO subsystem.
This enables the customization of OS’s file access operations
per application or system-wide.

The fundamental design principle beyond the ExtOS is per-
formance, and reduced energy consumption is a side effect.
However, since executing untrusted application’s code in the
OS kernel is a security concern, security is another design
principle. Additionally, ease of programmability and manage-
ability are also of fundamental importance, but we will fully
address them in future work.

Improved performance is achieved by pushing down appli-
cation’s code into the kernel, which 1) avoids data copies to
higher software layers, including user-space, of unused data;
2) avoids datamovements to higher software layers, including
user-space, of buffered data that is only accessed once (such
as UNIX’s cp, grep, etc.); 3) reduces context switches (increas-
ingly expensive due to bugs in CPUs [29]); 4) enables single
application optimizations based on the kernel’s knowledge
of the hardware; 5) enables cross application optimizations
based on the kernel’s knowledge of all applications running
on the platform. Note that pushing down application’s code
provides knowledge of the application’s behavior to the OS
kernel, removing the semantic gap between the two, leading
to better resource scheduling.
Safety and security are achieved by enforcing the code to

be pushed down to be compiled within a restricted assembly

language that is verified for formal properties as proposed
by [59, 69], and come with a form of attestation. The code
is then just in time compiled with SFI to execute in kernel.
We are also investigating runtime verification approaches to
prove safety properties, such asmemory safety [40] and termi-
nation [19], of the untrusted application code in ExtOS. More-
over, such codes can 1) be hooked only to predefined kernel
functions; 2) invoke only a subset of kernel functions/variable
based on their privilege levels. Obviously, this requires com-
piler tools to be supplied to the developer, as well as applica-
tion rewriting. For further isolation, we plan to leverage ideas
from the nested kernel approach within a monolithic OS to
run the application-specific code [20].

5 ARCHITECTURE
AND IMPLEMENTATION

In this section we sketch the ExtOS architecture along with a
prototype implementation. To achieve widespread adoption
of the proposed OS design in practical deployments, we base
our architecture and initial implementation on Linux and its
BPF/eBPF infrastructure for network filtering. This has the
additional advantage that toolchains, based on gcc or LLVM,
alreadyexist tocompile subsetofC language,Lua, Java, andGo
into the eBPF ISA [55]. Our system implements mechanisms
to attachapplication’s provided code tokernel’s operations on
IO, including files, sockets, pipes, to execute application’s pro-
vided code in the kernel, and to merge subsequent operations
on IO. It is worth noting that although BPF/eBPF has been
chosen for the prototype, such ISA is too limited to express
all control flows we envision to implement with ExtOS—still,
we believe BPF/eBPF is the best starting point.

Extensible operations on IO paths. Learning from Linux’s
BSD network filtering we added function hooks at all layers
of the Linux IO subsystems, including network stack, block
storage, page cache, character devices, and VFS. For each of
these, hooks have been inserted to register application’s de-
fined functions on the most common IO related syscalls (such
as open(), close(), read(), write()) callgraph’s functions;
including the splice family of functions.
Despite Linux’s BSD network filtering infrastructure al-

ready introduces methods and mechanisms to push down,
remove, register and deregister an application’s defined func-
tion in kernel at runtime (cf., bpf() syscall) an extended API
to associate such functions with file descriptors at the gran-
ularity of processes is missing. Therefore, we extended the
standard Linux’s IO API to carry over additional parameters
to specifywhat function, or group of functions, to be executed
on a IO operation, and additional per-call parameters. This
enables to invoke BPF/eBPF filtering per syscall, on a specific
file descriptor, thus narrowing the scope of BPF/eBPF to the
application level—that means that other applications may
operate on the same file with completely diverse functions.

ExtOS: Data-centric Extensible OS APSys ’19, August 19–20, 2019, Hangzhou, China

Finally, all about original versus “filtered” file content access
will be addressed in future work. Note that in networking, the
packets are eventually discarded when filtered, while storage
introduces ephemeral files that may require further handling.

Application’s code loading and execution. Linux’s BPF/eBPF
subsystem includes a static checker as well as a just in time
compiler (JIT) [26]. When a BPF/eBPF is pushed in the kernel
it is statically checked for isolation properties first, and then
just in time compiled for safe execution. Properties include:
what function can be called, if there are loops, if the code
terminates, and if branches are within code boundaries. How-
ever, recent work [28, 69] and CVE reports [45, 67] shown
that such static checking may not be sufficient. Indeed formal
verification solves the problem [69], still it put the burden on
the programmer and involve longer execution times. There-
fore, we are extendeding Linux’s eBPF JIT to use Software
Fault Isolation (SFI), by exploiting hardware SFI support (e.g.,
Intel MPX [51]) when available.

Application’s code should be written within a “stream and
filter” programming paradigm that resembles data-flow pro-
gramming, and extendsBSDnetworkfiltering. The code takes
as input one ormore blocks of data that in the case of network-
ing is a packet, while in the case of storage a block is a disk
block (but it can also be a line of text, or anyother user-defined
data entry/record). Similarly, the output consists of a return
value andoneormoreoutput streams; but output streamsmay
not have fixed block size. Because datamay spanmultiple disk
blocks, each filter can carry over state data amongmultiple
calls—that can be used to store a partial entry, line, record, etc.

In the data-centric extensible OS application’s defined code
may also access and invoke a stable subset of kernel’s func-
tions and global variables. Application’s defined code is con-
nected to kernel’s functions at JIT time; therefore the code has
to be re-JITted anytime privileges change; if the code doesn’t
have privileges to be connected to a function (or the function
doesn’t exist) the code is JITted anyway but the function al-
ways return an error code. Variables are checked at runtime
and don’t require re-JITting.

Merging IOs and application-defined codes. A single appli-
cation may use multiple IO streams, and data flowing out
from one streammay be eventually transformed and piped
into another stream. The simplest example is the UNIX cp,
which reads a file andwrites out its content to another file. It is
convenient for suchexample tocompose the readandwriteop-
erations into one operation, e.g., Linux’s sendfile(), which
executes inkernel space, thusavoidingkernel/userdatacopies
and context-switches, and gaining in performance. However,
UNIX cp implementations do not transform the data in input
before writing it to the output, rendering the usage of Linux’s
provided splice functions limited to such trivial applications.
For this reason, ExtOS enables the attachment of application’s

defined IO operations to those syscalls. Also, it supports in-
kernel runtime composition of IO operations, and associated
“filtering” functions.

Many application are built as orchestrated sequences (or
graphs) of simple tools that communicates via pipes, sock-
ets or files, such as dev-ops tools, bio-chemistry frameworks,
LAMP/LEMP, etc. Each simple tool can be rewritten to push
down application’s code in kernel. However, it is interesting
to observe that when the output of an application is the result
of a “filtering” function as well as the input of the subsequent
application, these two can be composed into a single function
for performance. Thus, ExtOS also supports in-kernel compo-
sition of IO operations amongmultiple applications—without
applications’ source-code modifications.

6 INITIAL RESULTS
A prototype of the data-centric extensible OS has been built
based on Linux 4.15.9 in order to assess its benefits. The proto-
type has been evaluated on aHuaweimulti-socket serverwith
four Intel Xeon CPU E7-4820 v2 at 2GHz for a total of 64 cores
and 512GB of DDR3 RAM, a RAID storage LSI MegaRAID
SAS 2208 with 2.7TB, one Intel SSD 750 400GB, and one Intel
Optane SSD DC P4800X 375 GB. Drives are formatted with
the ext4 file system.

Push down. Previous work already demonstrated that on
modern hardware higher performance can be achieved push-
ing down code in the network stack [26, 49]. BPF/eBPF and
DPDK show that reducing kernel/user transitions and data
copies largely reduce network latencies. Thus, in the follow-
ing we show that similar results hold with storage IO, and
how results differ changing IO device latency and bandwidth
on three storage devices.
A rudimentary extensible OS has been built around the

Linux kernel by modifying the read() system call to execute
a "filtering" function registered via thehelp of a kernelmodule.
A first set of experiments have been performed with the goal
of evaluate the potential speedups when pushing down basic
database operations, specifically filtering and aggregation.
One microbenchmark per operation have been built. The fil-
tering microbenchmark selects what amount of data from a
file will be used by the application, hence when the filtering
function run in kernel space only the selected data is moved
to the application, while the other is discarded. The results
of the evaluation for a file of 32GB are presented in Figure 2
varying the selectivity, and the buffering size (different lines).

Experimentshavebeenrepeated fordifferentfile sizes, from
256MB to 100GB and trends are similar. The results show
that higher the buffer size higher the speedup that can be
achieved by pushing down, up to 80% improvement. Despite
the page cache results provide a hard limit on the achievable
speedups some experiments reveal that storage results can

APSys ’19, August 19–20, 2019, Hangzhou, China Antonio Barbalace, Javier Picorel, and Pramod Bhatotia

1
1.2
1.4
1.6
1.8

2

0 0.2 0.4 0.6 0.8 1

sp
ee

du
p

1
1.2
1.4
1.6
1.8

2

0 0.2 0.4 0.6 0.8 1

sp
ee

du
p32G file in storage (RAID) 32G file in pagecache (RAID)

16k
64k

256k

1M
4M

16M
64M

4k

Figure 2: Filteringmicrobenchmark results for file on RAID storage and in page cache, varying selectivity (x-axis).

achieve higher speedups. The aggregation test, in which the
push down code computes statistics on the data to be aggre-
gated, such as min, max, and average, shows up to an order
of magnitude speedups. We compared code push down with
mmap(), and for the same set of experiments code push down
is always faster, up to 49%, based on selectivity. This is due to
fault-management overhead. Moreover, we compared with
O_DIRECT, which is much worse than normal read for small
buffer sizes (2 to 3 times), but it provides similar results to code
push down for 4MB to 16MB buffer sizes, and deteriorates
again for bigger sizes. This is due to the fact that is not always
possible to copy data from storage to RAM, but it must be dis-
tilled frommetadata or re-composed. For read/write, mmap(),
and O_DIRECT KPTI reduce the performance up to ∼30%.
UNIX tools. A second set of experiments have been per-

formedonareal-worldapplication toensuremicrobenchmark
resultshold.TheUNIXgrephasbeenmodified tocomplywith
a stream and filter programming model. UNIX grepworks in
two stages: first it buffers a line of text, and then it searches
for a text pattern. We modified UNIX grep to search for a
text pattern while buffering. The new grep search code can
be compiled as an independent unit and pushed down into
the kernel. The grep application still issues read, but only
matching lines are copied to user-space.

The original and the newUNIX greps have been compared
when searching a string in two files of 25GBwith amatch rate
of 48% and 0.00002%, respectively. Pushing downpart ofUNIX
grep in the Linux kernel has advantages. The low-selectivity
case shows up to 2.52× speedup in the case of the page cache,
while lower-latency high-bandwidth devices gave a higher
speedup (up to 2.15×with the Optane). The high-selectivity
case gives even better speedups (up to 4.83×) because input
and output overlaps (see below).

Merging IO operations. A performance breakdown of UNIX
grep shows that when the selectivity is high, it spends a lot
of time in IO for printf(). The original version prints one

RAID RAID SSD SSD Optane Optane
FIX SYS FIX SYS FIX SYS

storage 3% 36% 2% 34% 1% 30%
page cache 7% 40% 7% 40% 7% 40%

Table 1: UNIX cp speedups using sendfile()withfixed
and variable buffer sizes (FIX, SYS).

line at the time, while the modified one a huge block of lines,
hence the speedups. However, even greater speedups may
be achieved by enabling the push down operation to “print
itself”, by “merging” IO operations in the kernel—in this case,
the disk read() with the disk write() operations on stan-
dard output. To evaluate the gains in merging IO operations
in kernel, an additional set of experiments have been runwith
UNIX cp. Such application copies one file to another, without
any modifications, by reading the data from kernel to user
space, and writing it back to kernel. The read and write calls
have been substituted with Linux’s sendfile() syscall that
actually does the copy in kernel space without user space in-
volvement (no kernel modifications have been made). Table 1
shows the execution speedups when using sendfile with a
fixed buffer size of 4kB (FIX) and a variable one (SYS).Merging
IO operations in kernel space provides up to 40% speedups
when running on page cache, with variable buffer sizes.

7 CONCLUSION
Thedata-centric extensibleOSenables applicationswith strict
low-latency IO requirements sharing the same IO resource
between them—without one monopolizing it, and with other
non IO-bounded applications, securely. Thus, democratiz-
ing the usage of emerging high-speed IO devices beyond the
enterprise server market.

We shown that extensibility of UNIX-like monolithic OSes
with application’s defined code beyond the network stack is
feasible in Linux, and can be achieved with modest rewriting
by capitalizing on BPF/eBPF. The same “stream and filter”
compute model can in fact be applied to any IO device, specif-
ically to storage devices. However, BPF/eBPF is too limited,
hencewe sketchour plan to extend it.Additionally,wedemon-
strated that data filtering within the OS storage subsystem
is largely beneficial, especially for modern storage hardware
that is faster, reporting up to 4.8× faster execution of UNIX
grep. Finally, merging IO operations and application’s code
in kernel also improve performance, up to 40%.

ACKNOWLEDGMENTS
The authors thankAnthony Iliopoulos for the very initial pro-
totype that lead to this work, and the anonymous reviewers
for their insightful comments.

ExtOS: Data-centric Extensible OS APSys ’19, August 19–20, 2019, Hangzhou, China

REFERENCES
[1] Extension framework for file systems in user-space. In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), Renton, WA, 2019.
USENIX Association.

[2] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for unix development. pages 93–112, 1986.

[3] Ethernet Alliance. Ethernet’s terabit future seen in new ethernet
alliance roadmap, 2018. ttps://ethernetalliance.org/wp-content/
uploads/2018/03/EA_Roadmap18_FINAL_12Mar18.pdf.

[4] Antonio Barbalace, Martin Decky, and Javier Picorel. Smart software
caches. InThe 8thWorkshop on Systems forMulti-core andHeterogeneous
Architectures, 2018.

[5] Antonio Barbalace, Anthony Iliopoulos, Holm Rauchfuss, and Goetz
Brasche. It’s time to think about an operating system for near data
processing architectures. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, HotOS ’17, pages 56–61, New York, NY,
USA, 2017. ACM.

[6] Antonio Barbalace, Rob Lyerly, Christopher Jelesnianski, Anthony
Carno, Ho-ren Chuang, and Binoy Ravindran. Breaking the boundaries
in heterogeneous-isa datacenters. In Proceedings of the 22th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, 2017.

[7] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jeles-
nianski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and
Binoy Ravindran. Popcorn: Bridging the programmability gap in
heterogeneous-isa platforms. In Proceedings of the Tenth European
Conference on Computer Systems, EuroSys ’15, pages 29:1–29:16, New
York, NY, USA, 2015. ACM.

[8] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy
Ranganathan. Attack of the killer microseconds. Commun. ACM,
60(4):48–54, March 2017.

[9] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,
and Akhilesh Singhania. The multikernel: A new os architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, 2009.

[10] Andrew Baumann, Dongyoon Lee, Pedro Fonseca, Lisa Glendenning,
Jacob R. Lorch, Barry Bond, Reuben Olinsky, and Galen C. Hunt.
Composing os extensions safely and efficiently with bascule. In
Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 239–252, New York, NY, USA, 2013. ACM.

[11] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David
Mazieres, and Christos Kozyrakis. Dune: Safe User-level Access to
Privileged CPU Features. page 14.

[12] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion. The ix operating
system: Combining low latency, high throughput, and efficiency in
a protected dataplane. ACM Trans. Comput. Syst., 34(4):11:1–11:39,
December 2016.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility safety and
performance in the spin operating system. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, SOSP ’95,
pages 267–283, New York, NY, USA, 1995. ACM.

[14] H. Bos andB. Samwel. Safe kernel programming in the oke. In 2002 IEEE
Open Architectures and Network Programming Proceedings. OPENARCH
2002 (Cat. No.02EX571), pages 141–152, June 2002.

[15] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal.
Dynamic instrumentation of production systems. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ATEC
’04, pages 2–2, Berkeley, CA, USA, 2004. USENIX Association.

[16] CCIX Consortium. Cache Coherent Interconnect for Accelerators
(CCIX), 2017. http://www.ccixconsortium.com/.

[17] Shenghsun Cho, Amoghavarsha Suresh, Tapti Palit, Michael Ferdman,
and Nima Honarmand. Taming the killer microsecond. In 51st Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO), 2018.

[18] OpenCAPI Consortium. Welcome to OpenCAPI consortium, 2017.
http://opencapi.org/.

[19] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination
proofs for systems code. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06, pages 415–426, New York, NY, USA, 2006. ACM.

[20] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell,
and Vikram Adve. Nested kernel: An operating system architecture
for intra-kernel privilege separation. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 191–206, New
York, NY, USA, 2015. ACM.

[21] Willem de Bruijn and Herbert Bos. Pipesfs: Fast linux i/o in the unix
tradition. SIGOPS Oper. Syst. Rev., 42(5):55–63, July 2008.

[22] Willem de Bruijn, Herbert Bos, and Henri Bal. Application-tailored i/o
with streamline. ACM Trans. Comput. Syst., 29(2):6:1–6:33, May 2011.

[23] Ulrich Drepper. The cost of virtualization. AcmQueue, 6(1):28–35, 2008.

[24] Weimin Du, Ravi Krishnamurthy, and Ming-Chien Shan. Query
optimization in a heterogeneous dbms. In Proceedings of the 18th Inter-
national Conference on Very Large Data Bases, VLDB ’92, pages 277–291,
San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[25] Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. Exokernel:
An Operating System Architecture for Application-Level Resource
Management. page 16.

[26] Matt Fleming. A thorough introduction to eBPF, 2017.
https://lwn.net/Articles/740157/.

[27] Gen-Z Consortium. Gen-Z A New Approach to Data Access, 2017.
http://genzconsortium.org/.

[28] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.
Simple and precise static analysis of untrusted linux kernel extensions.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, pages 1069–1084,
New York, NY, USA, 2019. ACM.

[29] Brendan Gregg. Kpti/kaiser meltdown initial performance re-
gressions, 2018. http://www.brendangregg.com/blog/2018-02-09/
kpti-kaiser-meltdown-performance.html.

[30] Brendan Gregg. Linux Extended BPF (eBPF) Tracing Tools, 2018.
http://www.brendangregg.com/ebpf.html.

[31] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,

ttps://ethernetalliance.org/wp-content/uploads/2018/03/EA_Roadmap18_FINAL_12Mar18.pdf
ttps://ethernetalliance.org/wp-content/uploads/2018/03/EA_Roadmap18_FINAL_12Mar18.pdf
http://www.ccixconsortium.com/
http://opencapi.org/
https://lwn.net/Articles/740157/
http://genzconsortium.org/
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/ebpf.html

APSys ’19, August 19–20, 2019, Hangzhou, China Antonio Barbalace, Javier Picorel, and Pramod Bhatotia

Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. Biscuit: A frame-
work for near-data processing of big data workloads. In Proceedings
of the 43rd International Symposium on Computer Architecture, ISCA
’16, pages 153–165, Piscataway, NJ, USA, 2016. IEEE Press.

[32] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang.
Optimizing queries across diverse data sources. In In Proc. of VLDB,
pages 276–285, 1997.

[33] F. T. Hady, A. Foong, B. Veal, and D. Williams. Platform storage
performance with 3d xpoint technology. Proceedings of the IEEE,
105(9):1822–1833, Sept 2017.

[34] Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Härtig.
Semperos: A distributed capability system. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), Renton, WA, 2019. USENIX
Association.

[35] Galen C. Hunt and James R. Larus. Singularity: Rethinking the software
stack. SIGOPS Oper. Syst. Rev., 41(2):37–49, April 2007.

[36] Intel. Storage Performance Development Kit (SPDK), 2018.
http://www.spdk.org.

[37] Intel. BlobFS (Blobstore Filesystem), 2019. https://spdk.io/doc/blobfs.
html.

[38] Jonathan Corbet. Page-based direct i/o, 2009. https:
//lwn.net/Articles/348719/, Online, accessed 01/05/2019.

[39] The Linux Kernel. Seccomp BPF (SECure COMPuting with filters),
2018. https://www.kernel.org/doc/html/v4.13/userspace-api/seccomp_
filter.html.

[40] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach,
Pramod Bhatotia, Pascal Felber, and Christof Fetzer. Sgxbounds:
Memory safety for shielded execution. In Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys ’17, pages 205–221,
New York, NY, USA, 2017. ACM.

[41] C. A. Lai, Q. Wang, J. Kimball, J. Li, J. Park, and C. Pu. Io performance
interference among consolidated n-tier applications: Sharing is better
than isolation for disks. In 2014 IEEE 7th International Conference on
Cloud Computing, pages 24–31, June 2014.

[42] W. S. Liao, See-Mong Tan, and R. H. Campbell. Fine-grained, dynamic
user customization of operating systems. In Proceedings of the Fifth
International Workshop on Object-Orientation in Operation Systems,
pages 62–66, Oct 1996.

[43] J. Liedtke. Onmicro-kernel construction. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, SOSP ’95, pages
237–250, New York, NY, USA, 1995. ACM.

[44] Felix Xiaozhu Lin, ZhenWang, and Lin Zhong. K2: a mobile operating
system for heterogeneous coherence domains. ACM SIGARCH
Computer Architecture News, 42(1):285–300, 2014.

[45] LWN. Linux >=4.9: eBPF memory corruption bugs, 2017.
https://lwn.net/Articles/742169/.

[46] Steven McCanne and Van Jacobson. The bsd packet filter: A new
architecture for user-level packet capture. In Proceedings of the USENIX
Winter 1993 Conference Proceedings on USENIXWinter 1993 Conference
Proceedings, USENIX’93, pages 2–2, Berkeley, CA, USA, 1993. USENIX
Association.

[47] Larry McVoy. The splice i/o model, 1998.

[48] Mellanox. ConnectX-6 200Gb/s Ethernet Adapter IC, 2018.
http://www.mellanox.com/related-docs/prod_silicon/PB_
ConnectX-6_EN_IC.pdf.

[49] Netronome. About agilio smartnics, 2019. https://www.netronome.
com/products/smartnic/overview/, Online, accessed 01/05/2019.

[50] NVIDIA. Nsight Eclipse Edition, 2018. https://developer.nvidia.com/
nsight-eclipse-edition.

[51] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Intel MPX Explained: A Cross-layer Analysis of
the Intel MPX System Stack. Proceedings of the ACM onMeasurement
and Analysis of Computing Systems, 2018.

[52] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis:
The operating system is the control plane. ACM Trans. Comput. Syst.,
33(4):11:1–11:30, November 2015.

[53] Ian Pratt and Keir Fraser. Arsenic: A user-accessible gigabit ethernet
interface. In IN PROCEEDINGS OF IEEE INFOCOM, pages 67–76, 2001.

[54] Mia Primorac, Edouard Bugnion, and Katerina Argyraki. How to
measure the killer microsecond. SIGCOMM Comput. Commun. Rev.,
47(5):61–66, October 2017.

[55] IO Visor Project. Bcc bpf compiler collection, 2018. https:
//www.iovisor.org/technology/bcc.

[56] The Linux Foundation Projects. Data Plane Development Kit (DPDK),
2018. http://www.dpdk.org.

[57] Amit Purohit, Charles P Wright, Joseph Spadavecchia, Erez Zadok,
et al. Cosy: Develop in user-land, run in kernel-mode. In HotOS, pages
109–114, 2003.

[58] Andrew Putnam. Large-scale reconfigurable computing in a microsoft
datacenter. In Hot Chips 26 Symposium (HCS), 2014 IEEE, pages 1–38.
IEEE, 2014.

[59] Matthew J Renzelmann, Asim Kadav, and Michael M Swift. Symdrive:
Testing drivers without devices. InOsdi, volume 1, page 6, 2012.

[60] Samsung. Samsung pm1725a nvme ssd, 2018. https:
//www.samsung.com/semiconductor/global.semi.static/Samsung_
PM1725a_NVMe_SSD-0.pdf.

[61] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith.
Dealing with disaster: Surviving misbehaved kernel extensions. In
Proceedings of the Second USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’96, pages 213–227, New York, NY,
USA, 1996. ACM.

[62] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos: A
disseminated, distributed {OS} for hardware resource disaggregation.
In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), pages 69–87, 2018.

[63] Christopher Small and Margo Seltzer. A comparison of os extension
technologies. In Proceedings of the 1996 Annual Conference on USENIX
Annual Technical Conference, ATEC ’96, pages 4–4, Berkeley, CA, USA,
1996. USENIX Association.

[64] Andrew S Tanenbaum. A unix clone with source code for operating
systems courses. SIGOPS Oper. Syst. Rev., 21(1):20–29, January 1987.

[65] Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and
Edward D. Lazowska. Implementing network protocols at user level.
IEEE/ACM Trans. Netw., 1(5):554–565, October 1993.

http://www.spdk.org
https://spdk.io/doc/blobfs.html
https://spdk.io/doc/blobfs.html
https://lwn.net/Articles/348719/
https://lwn.net/Articles/348719/
https://www.kernel.org/doc/html/v4.13/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.13/userspace-api/seccomp_filter.html
https://lwn.net/Articles/742169/
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://www.iovisor.org/technology/bcc
https://www.iovisor.org/technology/bcc
http://www.dpdk.org
https://www.samsung.com/semiconductor/global.semi.static/Samsung_PM1725a_NVMe_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_PM1725a_NVMe_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_PM1725a_NVMe_SSD-0.pdf

ExtOS: Data-centric Extensible OS APSys ’19, August 19–20, 2019, Hangzhou, China

[66] Shivakumar Venkataraman and Tian Zhang. Heterogeneous database
queryoptimization indb2universal datajoiner. InProceedings of the 24rd
International Conference on Very Large Data Bases, VLDB ’98, pages 685–
689, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[67] Common Vulnerabilities and Exposures. CVE-2017-16995, 2017.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995.

[68] Daniel Waddington and Jim Harris. Software challenges for the chang-
ing storage landscape. Commun. ACM, 61(11):136–145, October 2018.

[69] XiWang, David Lazar, Nickolai Zeldovich, AdamChlipala, and Zachary
Tatlock. Jitk: A trustworthy in-kernel interpreter infrastructure. In
OSDI, pages 33–47, 2014.

[70] N. Zilberman, Y. Audzevich, G. A. Covington, andA.W.Moore. Netfpga
sume: Toward 100 gbps as research commodity. IEEEMicro, 34(5):32–41,
Sept 2014.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 Design Principles
	5 Architecture and Implementation
	6 Initial Results
	7 Conclusion
	References

