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Abstract: Cachexia is a multifactorial wasting syndrome associated with high morbidity and mortality
in patients with cancer. Diagnosis can be difficult and, in the clinical situation, usually relies upon
reported weight loss. The ‘omics’ technologies allow us the opportunity to study the end points
of many biological processes. Among these, blood-based metabolomics is a promising method to
investigate the pathophysiology of human cancer cachexia and identify candidate biomarkers. In this
study, we performed liquid chromatography mass spectrometry (LC/MS)-based metabolomics to
investigate the metabolic profile of cancer-associated weight loss. Non-selected patients undergoing
surgery with curative intent for upper gastrointestinal cancer were recruited. Fasting plasma
samples were taken at induction of anaesthesia. LC/MS analysis showed that 6 metabolites were
highly discriminative of weight loss. Specifically, a combination profile of LysoPC 18.2, L-Proline,
Hexadecanoic acid, Octadecanoic acid, Phenylalanine and LysoPC 16:1 showed close correlation for
eight weight-losing samples (≥5% weight loss) and nine weight-stable samples (<5%weight loss)
between predicted and actual weight change (r = 0.976, p = 0.0014). Overall, 40 metabolites were
associated with ≥5% weight loss. This study provides biological validation of the consensus definition
of cancer cachexia (Fearon et al.) and provides feasible candidate markers for further investigation in
early diagnosis and the assessment of therapeutic intervention.

Keywords: cachexia; cancer; metabolomics; high resolution mass spectrometry

1. Introduction

Cancer cachexia has been defined as “a multifactorial syndrome characterized by an ongoing loss
of skeletal muscle mass that cannot be fully reversed by conventional nutritional support and leads
to progressive functional impairment” [1]. The agreed consensus diagnostic criterion for cachexia is
either weight loss >5% over 6 months or weight loss >2% in individuals already showing signs of
depletion (BMI < 20 kg/m2 or skeletal muscle index consistent with sarcopenia) [1]. Cancer cachexia
is characterized by loss of adipose tissue, skeletal muscle, and appetite, and impacts negatively the
quality of life of patients with cancer, response to treatment and survival [2]. Therefore, managing
cachexia should be considered a central component of cancer patient treatment.
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As cachexia develops progressively through various stages, from pre-cachexia to cachexia to
refractory cachexia, the identification of biomarkers that relate to stage and diagnosis would be
particularly important to prevent or delay deterioration [1]. Potential markers of cachexia may also
have value through future studies as outcome measures of therapeutic intervention. Imaging methods
such as CT and MRI are currently considered precise measures of body composition but have several
limitations, including cost, availability, and exposure to radiation (in the case of CT) [3].

Recent progress in high-throughput analytical technologies and bioinformatics now permits
simultaneous analysis of hundreds of compounds constituting the metabolome [4]. Metabolomic
analyses give complex fingerprints that appear to be characteristic of a given metabolic phenotype or
diet. Several previous studies have attempted to quantify urinary and plasma metabolites associated
with cachexia. They have identified metabolites that are possibly discriminative of cachexia, indicating
that there may be scope for clinical application of metabolomic biomarkers of cachexia [5–9].

We have previously analysed urinary proteomics as a measure of degradation products in the
circulating fraction, allowing us to discriminate between weight-losing and weight stable cancer
patients [10]. Building upon the theory that metabolites produced from tissue breakdown are likely to
be found in plasma, we investigated whether we could use liquid chromatography mass spectrometry
(LC/MS)-metabolomics to detect plasma metabolites associated with weight loss in upper GI cancer
patients. In particular, we aimed to identify a metabolic signature that relates directly to patient weight
loss. Plasma was selected as the biofluid of choice as it has been shown previously that several end
products of muscle catabolism (e.g., creatinine and methylhistidine) can be easily measured within [11].

2. Results

Plasma samples were analysed from upper GI cancer patients (n = 18) taken from a cross-sectional
cohort of upper GI cancer patients who were recruited to two previously-published studies of muscle
transcriptomics (n = 65 pre-surgical rectus abdominis biopsies, and n = 12 pre- and post-surgical
resection muscle biopsies) [12,13]. In these previous studies, quantitative significance analysis of
microarrays produced an 83-gene signature that was able to identify patients with >5% weight loss,
while this molecular profile was unrelated to markers of systemic inflammation. Comparison with
healthy control muscle revealed that despite differences in the muscle transcriptome at baseline
(941 genes regulated), the muscle of patients at post-surgical resection follow-up was similar to control
muscle (two genes regulated). Baseline, pre-surgical plasma samples were available for 18 of these
patients. Therefore, for the present study, there were nine patients who had experienced ≥5% weight
loss in the previous 6 months (≥5% WL group), and nine patients with <5% weight loss (weight stable
group: WS). Cancer cachexia had been primarily defined as ≥5% weight loss in order to identify
patients who would have experienced dynamic wasting and thus be more likely to have identifiable
markers and metabolic signatures. If the patients were analysed as two separate groups according
to these weight loss criteria, the mean percentage weight loss in the ≥5% WL group was 14.39%
compared with 2.13% in the WS group (p = 0.001). There were more males in the WS group. There was
no significant difference in age, body mass index (BMI), Skeletal Muscle Index (SMI), Subcutaneous
Adipose Tissue Index (SATI) or Visceral Adipose Tissue Index (VATI) between the groups. However,
patients in the ≥5% WL group did demonstrate higher CRP levels compared with WS patients. These
body composition and systemic inflammatory phenomena are all associated with worsened outcomes
in cancer patients [14–16], confirming the ≥5% WL patients as a high-risk group. Two patients in
the WS group had >2% weight loss and low SMI [according to Martin criteria [17] on the CT scan.
Patients had a mixture of upper gastrointestinal cancers—predominantly those of the oesophagus and
pancreas (Table 1). On the overall metabolomic analysis, a total of 40 metabolites were significantly
associated with ≥5% weight loss according to univariate analysis using a T test. The metabolites with
the highest fold change were L-phenylalanine and various species of LysoPE, LysoPA and LysoPC.
These metabolites, as well as free fatty acid levels (FFAs), were all elevated in the ≥5% WL group.
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Table 1. Patient details.

Demographics Group 1
Weight Stable (n = 9)

Group 2
≥5% Weight Loss (n = 9) p Values

Male: Female 8:1 5:4 N/A
Age (years) 61 (4.65) 66 (10.53) 0.167

% Weight loss 2.13 (1.35) 14.39 (6.56) 0.001 *
SMI 47.17 (6.26) 45.82 (7.72) 0.536
SATI 46.25 (20.38) 58.43 (33.86) 0.379
VATI 57.57 (55.28) 42.10 (33.48) 0.506

BMI (kg2/m2) 24.93 (4.42) 26.29 (4.64) 0.534
CRP (mg/L) 17.88 (27.06) 32.56 (50.44) 0.453

Cancer type
Pancreatic – 1 Pancreatic – 6

N/AOesophageal – 6 Oesophageal – 2
Gastric - 2 Duodenal - 1

Disease stage

1 (n = 1) 1 (n = 1)
2 (n = 0) 2 (n = 5)
3 (n = 6) 3 (n = 1)
4 (n = 1) 4 (n = 2)

Unknown (n = 1) -
Pre-operative chemotherapy 4 2 N/A

All data are mean (standard deviation). SMI—Skeletal muscle index, SATI—subcutaneous adipose tissue index,
VATI—Visceral adipose tissue index, BMI—Body mass index, CRP = C Reactive protein. * Denotes statistically
significant result.

Figure S1 shows the principal components analysis (PCA-X) of all 18 samples. Three quality
control (QC) samples were also included in the run and indicated that the instrument stability was
good for the duration of the run. PCA-X, an unsupervised model in SIMCA-P, produces a natural
scatter of the samples based on their characteristic metabolomics footprints. In general, there was no
separation of samples according to the cachexia threshold defined as ≥ 5% weight loss (Figure S1).

Supervised models enable identification of metabolites that have the most significant contribution
to a given clustering pattern. In SIMCA, supervised analysis can be carried out using orthogonal partial
least squares discriminant analysis (OPLS-DA) or orthogonal partial least squares (OPLS) models.
An OPLSDA model was not very successful in classifying the samples without the need to omit several.
However, an OPLS model based on six metabolites (Table 2) was successfully produced for all but one
of the patients who had ≥5% weight loss. This individual patient sample was omitted from the OPLS
model since it clustered with the WS samples. The model plotted predicted against actual weight loss,
and had a CVANOVA of 0.0014. The correlation line had an r value of 0.976 when fitted through the
samples (Figure 1). Therefore, these six metabolites provide a useful metabolomic signature for further
longitudinal testing.

Table 3 shows the metabolites that were found to be significantly different between the two weight
loss categories. The ratio represents the intensity of the metabolites relative to the WS patient group.

Table 2. The six metabolites used to produce the OPLS model shown in Figure 1

m/z Rt Min. Metabolite VIP Value

520.339 4.4 Lyso-PC 18:2 1.82
116.071 13.0 L-Proline 1.43
255.233 4.3 Hexadecanoic acid 0.54
281.249 3.8 Octadecenoic acid 0.42
166.086 10.0 Phenylalanine 0.36
480.344 4.4 Lyso-PC 16:1 0.20

M/Z—Mass to charge ratio, Rt—Retention time, VIP—Variable importance in projection.
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(CVANOVA = 0.0014) based on six variables listed in Table 2. Green circles (group 1) = WS, blue circles 
(group 2) = ≥5% WL. 

Table 3. Significant metabolites that differ between ≥ 5% WL and WS groups (n = 9 and 9 
respectively). 
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N 281.249 3.8 Octadecenoic acid 0.023 1.22 
N 293.249 4.2 Nonadecadienoic acid 0.019 1.24 
N 303.233 4.1 Eicosatetraenoic acid 0.022 1.37 
N 305.249 4.2 Eicosatrienoic acid 0.054 1.50 
N 327.233 4.2 Docosahexaenoic acid 0.025 0.81 
N 329.249 4.1 Docosapentaenoic acid 0.009 1.46 
N 331.264 3.9 Docosatetraenoic acid 0.014 1.68 

P/N 380.255 5.1 Sphingenine phosphate 0.033 1.28 
Lipids 

N 214.048 4.3 Glycerophosphoethanolamine 0.006 1.78 
N 381.205 4.6 LPA 14:0 0.010 1.73 
N 393.241 4.4 LPA 16:0 ether 0.048 1.37 
N 433.236 4.4 LPA 18:2 0.001 1.67 
N 435.252 4.5 LPA18:1 0.006 1.40 
N 437.267 4.2 LPA 18:0 0.028 1.23 

P/N 454.292 4.6 LPE 16:0 0.040 1.44 
N 457.235 4.3 LPA 20:4 0.001 1.62 
N 464.278 4.4 LPC 14:1 0.007 1.36 
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P/N 476.278 4.4 LPE 18:2 0.013 1.98 
P/N 478.292 4.4 LPE 18:1 0.013 2.02 

Figure 1. Orthogonal partial least squares (OPLS) model. OPLS model showing close correlation
for eight ≥5% WL samples and nine WS samples between predicted and actual weight change
(CVANOVA = 0.0014) based on six variables listed in Table 2. Green circles (group 1) = WS, blue circles
(group 2) = ≥5% WL.

Table 3. Significant metabolites that differ between ≥ 5% WL and WS groups (n = 9 and 9 respectively).

Polarity m/z Rt(min) Metabolite p Value Ratio WL/WS

Amino acids
P 116.071 13.0 L-Proline 0.015 1.36
P 166.086 10.0 L-Phenylalanine 0.619 0.87

Fatty acids
N 214.048 4.3 sn-glycero-3-Phosphoethanolamine 0.006 1.78
N 255.233 4.3 Hexadecanoic acid 0.049 1.21
N 277.217 3.9 Octadecatrienoic acid 0.010 1.60
N 279.233 4.2 Linoleate 0.002 1.36
N 281.249 3.8 Octadecenoic acid 0.023 1.22
N 293.249 4.2 Nonadecadienoic acid 0.019 1.24
N 303.233 4.1 Eicosatetraenoic acid 0.022 1.37
N 305.249 4.2 Eicosatrienoic acid 0.054 1.50
N 327.233 4.2 Docosahexaenoic acid 0.025 0.81
N 329.249 4.1 Docosapentaenoic acid 0.009 1.46
N 331.264 3.9 Docosatetraenoic acid 0.014 1.68

P/N 380.255 5.1 Sphingenine phosphate 0.033 1.28

Lipids
N 214.048 4.3 Glycerophosphoethanolamine 0.006 1.78
N 381.205 4.6 LPA 14:0 0.010 1.73
N 393.241 4.4 LPA 16:0 ether 0.048 1.37
N 433.236 4.4 LPA 18:2 0.001 1.67
N 435.252 4.5 LPA18:1 0.006 1.40
N 437.267 4.2 LPA 18:0 0.028 1.23

P/N 454.292 4.6 LPE 16:0 0.040 1.44
N 457.235 4.3 LPA 20:4 0.001 1.62
N 464.278 4.4 LPC 14:1 0.007 1.36
P 468.308 4.6 LPC 14:0 0.026 1.58

P/N 476.278 4.4 LPE 18:2 0.013 1.98
P/N 478.292 4.4 LPE 18:1 0.013 2.02
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Table 3. Cont.

Polarity m/z Rt(min) Metabolite p Value Ratio WL/WS

P/N 480.308 4.4 LPE 18:0 0.012 2.07
P/N 480.344 4.4 LPC16:1 0.089 1.32
N 485.267 4.3 LPA 22:4 0.007 1.96

P/N 496.339 4.4 LPC 16:0 0.040 1.34
N 498.262 4.3 LPE 20:5 0.053 2.13

P/N 500.278 4.4 LPE 20:4 0.002 2.36
N 504.31 4.4 LPE 20:2 0.002 1.65
N 514.294 4.3 LPC 18:4 0.005 2.28

P/N 520.339 4.4 LPC 18:2 0.001 1.75
P/N 524.278 4.3 LPE 22:6 0.032 1.45
N 526.294 4.3 LPE 22:5 0.004 2.51
N 528.31 4.3 LPE22:4 0.004 2.01

P/N 544.338 4.3 LPC 20:4 0.014 1.81
P/N 546.354 4.3 LPC 20:3 0.026 1.91

P 570.356 4.2 LPC 22:5 0.009 1.89
P 731.605 4.2 SMd18:0/18:1 0.052 1.29

M/Z = Mass to charge ratio, WS= Weight stable, WL = Weight losing, PE = phosphatidyl ethanolamine, PC =
phosphatidyl choline, PA = phosphatidic acid, L = lyso, P = Detection in positive ion mode, N = Detection in
negative ion mode.

Figure 2 is a heat map showing the relative abundance of the lyso- lipids in these plasma samples.
Lyso-PC18:2 was almost as abundant as Lyso-PC 16:0 and was elevated by 1.75 fold. Beyond these
two lyso-lipids, the metabolite abundance was much lower but there were many more minor lipids
showing similar or greater fold changes in the ≥5% WL group compared with WS.
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3. Discussion

In this study, we performed LC-MS based metabolomics analysis to reveal the metabolic profile
of weight loss in cancer. We were able to demonstrate distinct profiles associated with the presence
or absence of ≥5% WL. Most of the metabolites identified within these profiles fell within the lipid
pathways. The clearest finding was that several long chain fatty acids and lysolipids were elevated
in the plasma of the patients with higher weight loss. Lysolipids are very abundant in plasma [18]
and Lyso-PC 16:0 was the most abundant compound by response in this set of samples; an increase of
1.34 fold between ≥5% WL and WS patients represents a major shift in metabolic output.

The OPLS model shown in Figure 1 indicates a strong association between weight loss and six
metabolites. Two of the metabolite markers were lysolipids, two were amino acids, and two were fatty
acids. There is a risk of overfitting data when the numbers of samples are small. However, in the
present study, there was a clear indication that a small number of markers may be used to model the
degree of weight loss with accuracy. One patient with ≥5% WL was removed from the analysis as this
sample clustered with the WS group, but for this small cohort alone, our six identified metabolites,
as a diagnostic test for cachexia (≥5% WL), would be 95% accurate. Validation of these markers will
require larger studies, ideally with sequential assessment. Therefore, the current study demonstrates
an association between lipolytic activity in the plasma of cancer patients with weight loss. The changes
in the amino acids found add credence to the importance of muscle wasting in cancer cachexia and
indeed, most current research into cancer cachexia focuses on this area. However, the importance of
lipid metabolism is re-emerging as an area of priority [19].

Previously, cachexia in patients with cancer of the oesophagus and pancreas has been linked with
high levels of plasma glycerol and free fatty acids [20,21]. Weight-losing cancer patients have been
shown to have increased turnover of both glycerol and fatty acids compared with cancer patients
without weight loss [22]. Some, however, have suggested that observed increases in lipolysis and
triglyceride-fatty acid cycling in cachectic patients with oesophageal cancer are due to alterations in
nutritional status rather than disease presence [23]. Cachectic ovarian cancer patients have been shown
to have increased levels of free fatty acids, monoacylglycerides and diglycerides in their serum and
ascitic fluid [24]. Whilst it is difficult to determine where fatty acid and lipid metabolites originate,
both lysolipids and fatty acids are markers of lipolysis [25,26]. Free fatty acids may also provide energy
for the tumour, with the glycerol molecules released during the breakdown of triacylglycerides being
used for gluconeogenesis by the liver [27,28]

Previous attempts to profile metabolites associated with cachexia have yielded varying results
and differences in important metabolites produced in each study. Metabolomics research in cachexia
began in 2008 in the C26 mouse model [5]. This was the first study to demonstrate a distinct
metabolomics-based profile associated with the onset of muscle wasting and identify increased levels
of very low and low density lipoprotein associated with aberrant glycosylation of β-Dystroglycan
(β-DG, a marker of muscle wasting in this mouse model) [29]. Human metabolomics studies in
cancer cachexia have investigated urine and plasma from weight-losing patients. These studies also
found large numbers of glycerophospholipids and metabolites associated with amino acid metabolism
and were able to identify occult sarcopenia in patients with cancer [6,30]. Recent studies have
attempted to separate pre-cachectic, cachectic and weight stable cancer patients and healthy controls
using serum metabolomics, and enabled identification of fifteen highly discriminative metabolites [8].
The present study was able to discriminate using weight-losing from weight-stable patients using only
six metabolites. The only study to find a markedly different metabolic pattern to the present study
analysed patients using three analytical platforms, namely gas chromatography mass spectrometry,
capillary electrophoresis mass spectrometry, and LC/MS. The authors found a significant reduction in
amino acids and glycerophospholipids associated with cachexia, a difference that has not previously
been described in this condition, plus a high increase in cortisol levels [9]. All bar one of these studies [6]
used 5% weight loss as a cut off to stratify patients, in a similar fashion to the present study. Future
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studies should investigate the relationship between metabolomics and dynamic assessments of tissue
loss over time, e.g., using serial CT body composition analysis.

Blood-based metabolomics is a promising method for cachexia research. However, as seen
previously, results are often difficult to replicate due to the heterogeneity of the populations and study
sizes. All the patients included in the present study were suitable for potentially curable surgical
resection of their cancer and therefore had localized/non-metastatic disease and similar measures
of muscle volume, indicating that the identified metabolites might be early markers of fat wasting
preceding muscle loss. This hypothesis is supported by the fact that two of the patients in the WS
group were “cachectic” according to the consensus definition, by virtue of having ≥2%WL and low
SMI on CT, and yet, they did not group with the identified panel of six metabolites. This finding may
be explained by a lack of dynamic wasting, and that CT-identified sarcopenia may be the pre-cancer
patient norm, rather than a consequence of disease.

One obvious limitation of this study is the small number of samples used, involving differences in
sex ratios and cancer types between the groups. This was an exploratory study involving patients
without refractory cachexia and was not designed to identify sex- or tumour-specific differences. This
study was limited to patients with UGI cancers and therefore, may not be applicable to all cancer
types. Previous serum metabolomic studies in pancreatic and oesophageal cancer have confirmed
that dysregulation of lipid metabolism is a key component of these conditions, although the exact
tissue site of these processes is unknown [31,32]. In the present study, differences in tumour type
between patient groups are unlikely to explain the identified six-metabolite signature, due to the close
correlation with patient weight loss. We were able to demonstrate distinct metabolic profiles consistent
with the consensus cachexia definition of ≥5% weight loss. These findings support our previous
muscle transcriptomic studies, and they give further biological validation to the 2011 Fearon consensus
definition of cancer cachexia [1] as a valid patient inclusion criterion in clinical trials. Furthermore, these
results provide a 6-metabolite profile for further investigation as a marker of cachexia in longitudinal
studies, with the opportunity to explore early diagnosis and response to therapeutic intervention.

4. Materials and Methods

4.1. Participants

Patients were all over 18 years of age and were recruited from the regional upper gastrointestinal
(GI) multi-disciplinary team meeting. Written informed consent was obtained from all subjects and
ethical approval received from Lothian Research Ethics Committee (UK, ethic code: 06/S1103/75)
Participating patients had a diagnosis of upper GI cancer (oesophageal, gastric, pancreatic or duodenal)
and were undergoing surgery with the intent of curative resection of the primary tumour. All patients
had normal kidney function. Clinical details, degree of weight loss from self-reported pre-illness stable
weight, and body mass index (BMI) were recorded.

4.2. CT Body Composition Analysis

Skeletal muscle cross-sectional area (CSA) was measured from routine staging CT scans performed
prior to any surgical intervention. A transverse CT image from the third lumbar vertebrae (L3)
was assessed for each scan date and tissue volumes estimated using semi-automated software.
Cross-sectional area for muscle, subcutaneous and visceral adipose tissue was normalized for stature
(cm2/m2) to calculate the skeletal muscle, subcutaneous and visceral adipose indices (SMI, SATI and
VATI respectively).

4.3. Sample Collection and Storage

Fasting venous blood samples were taken at induction of anaesthesia approximately four to six
weeks after the cessation of any neoadjuvant chemotherapy. Samples were allowed to clot at room
temperature. Serum was separated by centrifugation at 1300 RPM for 12 min at a temperature of
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20 degrees Celsius. C-reactive protein (CRP) was measured in Clinical Chemistry, Royal Infirmary,
Edinburgh (fully accredited by Clinical Pathology Accreditation Ltd., UK) using standard automated
methods. A CRP ≥5 mg/L was considered consistent with the presence of systemic inflammation.
Samples were stored locally at −80 ◦C until transported to the metabolomic facility (Strathclyde
Institute of Pharmacy and Biomedical sciences) in cool bags at −30 ◦C.

4.4. Chemicals and Solvents

HPLC grade Acetonitrile (ACN) was purchased from Fisher Scientific (Loughborough, UK) and
HPLC grade water was produced by a Direct-Q3 UltrapureWater System (Millipore, Watford, UK).
AnalaR-grade formic acid (98%) was obtained from BDH-Merck (Poole, UK). Authentic stock standard
metabolites (Sigma-Aldrich, Poole, UK) were prepared as previously described and diluted four times
with ACN before LC-MS analysis. Ammonium acetate was purchased from Sigma-Aldrich (Poole, UK).

4.5. Sample Preparation

Exactly 200 µL of the sample was mixed with 800 µL ACN containing 10 µg/mL of 2 13C glycine
(Sigma-Aldrich) as an internal standard to ensure retention time stability, then centrifuged for 10 min
before transferring into a vial with an insert. In order to prepare the QC sample, 0.05 mL of plasma
was taken from each of the samples and mixed in order to make a pooled sample. The pooled sample
was prepared by pipetting 50 µL from each of the 18 samples and then mixing them together before
diluting 0.2 mL of the pooled sample with 0.8 mL ACN containing 5 µg/mL of 2 13C glycine internal
standard and centrifuging. Additionally, the prepared mixtures of authentic standard metabolites
containing 10 µg/mL of 2 13C glycine as internal standard were run.

4.6. LC-MS Conditions

Liquid chromatographic separation was carried out on an Accela HPLC system interfaced to
an Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) using both a
ZIC-pHILIC column (150 × 4.6 mm, 5 µm, HiChrom, Reading, UK). The column was eluted with a
mobile phase consisting of 20 mM ammonium carbonate in HPLC-grade water (solvent A) and ACN
(solvent B), at a flow rate of 0.3 mL/min. The elution gradient was an A:B ratio of 20:80 at 0 min, 80:20
at 30 min, 92:8 at 35 min and finally, 20:80 at 45 min. The nitrogen sheath and auxiliary gas flow rates
were maintained at 50 and 17 arbitrary units. The electrospray ionisation (ESI) interface was operated
in both positive and negative modes. The spray voltage was 4.5 kV for positive mode and 4.0 kV for
negative mode, while the ion transfer capillary temperature was 275 ◦C. Full scan data were obtained
in the mass-to-charge ratio (m/z) range of 75 to 1200 for both ionisation modes on the LC-MS system
fully calibrated according to the manufacturer’s guidelines. The resulting data were acquired using
the XCalibur 2.1.0 software package (Thermo Fisher Scientific).

4.7. Data Extraction and Analysis

Patients were grouped into two and analysed based on percentage weight loss (> or <5%). Data
extraction for each of the samples was carried out by MZMatch software. The extracted ions, with
their corresponding m/z values and retention times, were pasted into an Excel macro of the most
common metabolites prepared in-house to facilitate identification. The lists of the metabolites obtained
from these searches were then carefully evaluated manually by considering the quality of their peaks
and their retention time match with the standard metabolite mixtures run in the same sequence.
All metabolites were within 3 ppm of their exact masses. The list of metabolites was refined by
removing all metabolites with RSD > 20% in the pooled samples, leaving a list of 318 metabolites.
Statistical analyses were performed using both univariate with Microsoft Excel and multivariate
approaches using SIMCA-P software version 14.1 (Umetrics, Umea, Sweden). The 318 metabolites
were modelled to give a PCA plot and then supervised analysis based on OPLS was carried out by
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refining the list of metabolites by eliminating the less important variables to give a model with the
lowest possible number of variables.

5. Conclusions

These results show that metabolomic profiles in plasma from cancer patients are different between
patients with ≥ or <5% weight loss. Most of the metabolites identified within these profiles fell within
the lipid pathways. Differences highlighted in the breakdown of lipids provide an understanding
of the mechanisms involved in the pathogenesis of cachexia. A six-metabolite signature correlated
strongly with degree of patient weight loss. A better understanding of the importance of adipose
wasting and the potential sharing of datasets between studies may identify novel biomarker strategies
and therapeutic approaches for cancer cachexia.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/10/1594/s1,
Figure S1: PCA-X analysis.
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