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Abstract—Convolutional neural networks (CNNs) are used
in many applications, from industrial robotics to biometric
identification on mobile devices. But they can be too resource-
hungry for mobile and embedded devices with tightly con-
strained memory and energy budgets. We propose an ahead-
of-time primitive selection for CNNs, based on integer linear
programming (ILP). Under a tight memory budget, our ILP
solver selects the optimal primitive for each layer such that
the entire network is optimized for execution time subject to
a memory budget, or vice versa. Our method yields significant
speedup and memory reduction compared to existing methods.

Keywords-neural network optimization; computing opera-
tors; primitive selection; optimal convolutional layer

I. INTRODUCTION

CNNs have become a dominant technique for computer
vision tasks due to their outstanding performance in image
classification, image segmentation, objects detection, image
style transfer, and others [1]. Emerging computer vision
based applications will need to run on small devices to be
portable and interactive. On these limited compute resources,
large neural network models will need to be specially
optimized to meet the constraints of each device [3].

Instead of designing and training custom neural networks
for each device, the alternative is to drastically improve
the computational and memory efficiency of these large
models to exploit target hardware characteristics. While
time efficiency optimizations have been explored before [2],
similar emphasis should be placed on memory requirements.

In this work we address the problem of optimizing the
execution of CNNs under tight memory budgets. Many
different implementations exist for computing convolutional
layers, some sacrificing memory for performance (im2col),
while others applying radical transformations to benefit from
cheaper operations (winograd [4]). Further, the execution
time of an algorithm depends partly upon the layout of data
in memory. For example, a common data layout for inputs
is CHW (channels, height, width), but some algorithms
are faster on a HWC data layout. Using a library of 57
convolution primitives with different algorithms and data
layouts, we investigate this time-memory tradeoff.

Given a memory budget for the CNN, the best available
primitive, operating on the best data layout, is selected for
each layer such that these achieve the fastest inference time
while having a memory footprint within the memory budget.
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Figure 1: Execution time and memory footprint of
GoogleNet on an ARM A15 processor for the same primitive
choice across the entire network (circles), the selection of
primitives for optimal memory (opt mem) and for optimal
time performance (opt perf ).

II. MOTIVATION

Current deep neural network models are mostly designed
for high performance server-side computations where mem-
ory constraints are not critical. Adopting these models on
smaller devices is challenging [5]. Figure 1 shows the run-
time memory requirement and execution time of GoogleNet
(fitting the whole model into memory), implementing the
convolutional layer with different primitive choices. One
option is to implement the network with a single primitive
choice across all convolutional layers (as commonly done
by most deep learning frameworks): direct convolution (di-
rect), image to row (im2row), image to column (im2col)
and winograd – presented with circles in Figure 1; and
the alternative is to select primitives at each convolutional
layer to optimize for memory footprint (opt mem) and
for inference time performance (opt perf ). One choice of
primitives across the whole network may result in very
poor performance (direct convolution running one inference
of GoogleNet in 400sec) or may not be able to run the
network at all, if physical memory on device is less than
300MB. In contrast, optimizing primitive selection and data
layouts for each layer enables more control, not just better
execution time (opt perf) and minimal run-time memory
footprint (opt mem), but also additional points in between to
adjust this trade-off based on specific device or application
conditions.

III. ILP MODEL

This optimization strategy is suitable for devices with
enough physical memory to accommodate the entire network



into main memory, optimizing for performance across the
whole network. A memory budget can be introduced if
sharing the system memory with other tasks, or performance
critical conditions to determine the optimal point under these
constraints with the ILP optimiser.

Equation 1 indicates the formulation of the ILP solver
used in this work. This optimizes for inference time under
constrained imposed by the available MemoryBudget. Vary-
ing these constrains has immediate impact on the solution
determined by the optimizer.

minimize

T ime =

m∑
i=1

~Li • ~Ti+

m−1∑
i=1

m∑
j=2

~Li × Trans (i, j)× ~Lj
T

s.t.
m∑
i=1

~Li • ~Mi ≤MemoryBudget

n∑
j=1

~Lij = 1, ∀i ∈ [1,m]

(1)

In equation 1, ~Li represents the one-hot condition variable
vector for layer i, ~Ti is the profiled execution time vector
for all candidate primitives, ~Mi contains the corresponding
memory footprint for each primitive and Trans (i, j) is the
time required by data layout transformations.

IV. EVALUATION

To evaluate our approach, we implemented the ILP model
and used it to select primitive routines for convolutional
layers on a low power embedded processor. We measure
the execution times and memory requirements for each
convolutional layer using each of the 57 convolution prim-
itive routines (same as in [2]) on the Arm processor ar-
chitecture Cortex-15. These measurements are used by our
ILP model to select the optimal primitive for each layer.
Its selection depends on the execution time, entire neural
network memory budget, and on the need to insert data
layout transformation routines between different layers if
consecutive layer primitives use incompatible data layouts.

As seen in Figure 1, optimal points exist not only for
combination of primitives to achieve the fastest execution
time (also explored by Anderson et al. [2]) without memory
constraints, but also for best performance with minimal
memory footprint. More than these, our ILP solver can
produce the optimal primitive selection for a given memory
budget. The bars in Figure 2 show the execution time of
running AlexNet implemented with the optimal selection
of primitives for a given memory budget. For reference,
statically allocated primitives (same primitive choice across
the network) are also marked to indicate the limitation of
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Figure 2: Bars indicate the performance of optimal primitive
selection on varying memory budget for the execution of
AlexNet on the Cortex-A15 processor. Additional reference
points present the performance of a single primitive selection
and of PBQP [2] selection.

uniform primitive selection, and also the optimal primitive
selection for performance (PBQP), disregarding memory
footprint.

V. CONCLUSION

This work addresses a growing challenge, how to make
the large deep neural network models available to use on
mobile and embedded devices which have limited com-
putational resources. We show that by using an Integer
Linear Programming based solver model, hybrid selection of
convolutional layer implementations can optimize for both
inference latency and memory footprint.

This opens the opportunity for many innovative edge
applications to use the higher accuracy of large deep neural
network models, which have been unpractical on these small
devices until now.
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