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Abstract

Background

The role of urate in cardiovascular diseases (CVDs) has been extensively investigated in

observational studies; however, the extent of any causal effect remains unclear, making it

difficult to evaluate its clinical relevance.

Methods and findings

A phenome-wide association study (PheWAS) together with a Bayesian analysis of tree-

structured phenotypic model (TreeWAS) was performed to examine disease outcomes

related to genetically determined serum urate levels in 339,256 unrelated White British indi-

viduals (54% female) in the UK Biobank who were aged 40–69 years (mean age, 56.87; SD,

7.99) when recruited from 2006 to 2010. Mendelian randomization (MR) analyses were per-

formed to replicate significant findings using various genome-wide association study

(GWAS) consortia data. Sensitivity analyses were conducted to examine possible pleiotropic

effects on metabolic traits of the genetic variants used as instruments for urate. PheWAS

analysis, examining the association with 1,431 disease outcomes, identified 13 distinct phe-

codes representing 4 disease groups (inflammatory polyarthropathies, hypertensive disease,

circulatory disease, and metabolic disorders) and 9 disease outcomes (gout, gouty arthropa-

thy, pyogenic arthritis, essential hypertension, coronary atherosclerosis, ischemic heart dis-

ease, chronic ischemic heart disease, myocardial infarction, and hypercholesterolemia) that
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were associated with genetically determined serum urate levels after multiple testing correc-

tion (p < 3.35 × 10−4). TreeWAS analysis, examining 10,750 ICD-10 diagnostic terms, identi-

fied more sub-phenotypes of cardiovascular and cerebrovascular diseases (e.g., angina

pectoris, heart failure, cerebral infarction). MR analysis successfully replicated the associa-

tion with gout, hypertension, heart diseases, and blood lipid levels but indicated the existence

of genetic pleiotropy. Sensitivity analyses support an inference that pleiotropic effects of

genetic variants on urate and metabolic traits contribute to the observational associations

with CVDs. The main limitations of this study relate to possible bias from pleiotropic effects of

the considered genetic variants and possible misclassification of cases for mild disease that

did not require hospitalization.

Conclusion

In this study, high serum urate levels were found to be associated with increased risk of dif-

ferent types of cardiac events. The finding of genetic pleiotropy indicates the existence of

common upstream pathological elements influencing both urate and metabolic traits, and

this may suggest new opportunities and challenges for developing drugs targeting a com-

mon mediator that would be beneficial for both the treatment of gout and the prevention of

cardiovascular comorbidities.

Author summary

Why was this study done?

• Serum urate level has been extensively studied in epidemiological studies in relation to

various diseases, but the extent of any causal effect is still unclear, making it difficult to

evaluate the clinical importance of urate.

• Mendelian randomization (MR) uses naturally occurring genetic variants as instru-

ments to infer the causal role of a risk factor in a disease or outcome of interest. Previous

MR studies were typically hypothesis driven, and few studies have comprehensively

investigated how serum urate level might influence overall health.

What did the researchers do and find?

• We implemented a phenome-wide association study (PheWAS) followed by a Bayesian

analysis of tree-structured phenotypic model (TreeWAS) and MR analyses to explore

the association between urate and a broad range of disease outcomes in the UK

Biobank.

• We identified gout, hypertension, hypercholesterolemia, and a multitude of cardiovas-

cular and cerebrovascular diseases (e.g., coronary atherosclerosis, myocardial infarction,

angina pectoris, ischemic heart disease, heart failure, and cerebral infarction) that were

associated with serum urate levels.

• MR analysis using various GWAS consortia data successfully replicated these associa-

tions but indicated the existence of genetic pleiotropy. Sensitivity analyses examining

A phenome-wide mendelian randomization study on serum urate levels
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the pleiotropic effects of urate genetic risk loci on a set of metabolic traits support an

inference that genetic pleiotropy contributes to observational association between urate

and different types of cardiac events.

What do these findings mean?

• There was little evidence of causality; instead, the pleiotropy of genetic variants on urate

and metabolic traits is indicated for the observed associations with cardiovascular/meta-

bolic diseases.

• The linked biological pathways between urate and metabolic traits indicated that the fre-

quent coexistence of gout with hypertension, cardiovascular diseases (CVDs), and

hyperlipidemia is a range of interrelated disease outcomes due to linked pathogenic

components, rather than isolated events.

• These findings support the European League against Rheumatism (EULAR) recommen-

dation of systematic screening and assessment of cardiovascular/metabolic comorbidi-

ties in gout patients.

• These findings may suggest new opportunities and challenges for developing drugs tar-

geting a more distal mediator that would be beneficial for both the treatment of gout

and the prevention of cardiovascular/metabolic comorbidities.

Introduction

The role of urate has been explored in a large number of observational studies in relation to a

multitude of health outcomes [1]. Apart from gout, compelling evidence exists for the associa-

tions between high serum urate level and an increased risk of non–crystal deposition disor-

ders, including hypertension, cardiovascular diseases (CVDs), and metabolic syndrome [2,3].

Although considerable research efforts have been made in trying to understand the pathologi-

cal role of urate in such disorders, its causal role has not been clearly established. Therefore, it

has been argued that either these associations are confounded by other risk factors, such as

obesity, or they represent reverse causality [4].

As is typical in complex traits, genetic determinants are implicated in the regulation of

serum urate levels. Genetic studies among twins and families have reported a substantial heri-

table component of serum urate level with an estimated heritability of 40%–60% [5,6]. The

genetic determinants of serum urate level have been explored in several genome-wide associa-

tion studies (GWASs) [7–10] and the wealth of resultant data allows for the identification and

application of genetic variants as instruments to help separate causal from noncausal associa-

tions, given that genotypes are generally independent of environmental exposures and the

transmission of genetic information is usually unidirectional. Investigating the associations

between genetic variants related to serum urate and disease outcomes might help provide

causal evidence in support of the hypotheses that link urate to multiple clinical disorders. Pre-

vious mendelian randomization (MR) studies using the genetic variants as instruments of

serum urate levels reported inconsistent findings [11–14]. While some supported a causal

effect on health outcomes beyond gout (e.g., diabetic macrovascular disease, CVD mortality,

A phenome-wide mendelian randomization study on serum urate levels
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and sudden cardiac death), the majority reported no causal relationships [1]. Specifically, most

of the negative results of previous MR studies are perhaps due to the selection of genes selec-

tively involved in renal handling of urate, while a substantial portion of cardiovascular risk is

probably due to pleiotropic genes controlling for xanthine oxidase activity and urate

production.

Our recently published MR–phenome-wide association study (PheWAS) analysis on the

interim release data of UK Biobank (n = 120,091) provided an overview of the disease out-

comes that were associated with the urate genetic risk loci [15]. Our study demonstrated that

serum urate level shared the same genetic risk loci with multiple disease outcomes, particularly

those related to cardiovascular/metabolic diseases and autoimmune disorders [15]. These find-

ings provide a rationale for further investigating whether these cross-phenotype associations

are causal. Although we have applied multiple methodologies to distinguish the PheWAS asso-

ciations that were causal from those due to pleiotropy or genetic linkage, the use of the interim

release data of UK Biobank set power limitations to our investigation and did not allow us to

investigate less prevalent phenotypes. The release of the full UK Biobank GWAS genotype

dataset provides a unique opportunity to further explore the previous MR-PheWAS findings,

repeat analysis with the larger available cohort, and include phenotypes that were not investi-

gated in the previous study due to an insufficient number of cases.

In this study, we performed an updated phenome-wide mendelian randomization study

(PWMR) by using data from the full UK Biobank cohort. A weighted polygenic risk score

(GRS) incorporating effect estimates of multiple genetic risk loci taken from the most recent

and largest GWAS of serum urate was employed as a proxy of serum urate level [8]. The frame-

work of phenome was defined by using both the PheCODE schema (also used in the previous

MR-PheWAS) [15] and a novel Bayesian analysis framework, termed TreeWAS (tree-struc-

tured phenotypic model) [16]. Any replication of previous findings and/or novel findings was

further explored in this study.

Methods

This study is reported as per the STROBE guideline (S1 STROBE Checklist). UK Biobank has

ethics approval from the North West Multi-Centre Research Ethics Committee (11/NW/

0382). Appropriate informed consent was obtained from participants and ethical approval was

covered by the UK Biobank, from which data for this work were obtained (under approved

data request application ID 10775). Any additional ethical approval was adjudged unnecessary

for the present study. Although there is no formal or documented protocol for this study, the

main analyses of PheWAS, TreeWAS, and the replication study were prespecified; the sensitiv-

ity analysis for the GRS of genetic polymorphisms involved in renal handling of urate was sup-

plemented according to the reviewer’s comments to better interpret the findings.

UK Biobank

UK Biobank is a large-scale, population-based prospective cohort study, which recruited over

500,000 participants aged between 40 and 69 years in 2006–2010 and combined extensive mea-

surement of baseline data and genotype data with linked national medical records (e.g., inpa-

tient hospital episode records, cancer registry, and death registry) for longitudinal follow-up.

This study was constrained to a subset of unrelated White British individuals with high-quality

genotype data in order to minimize the influence of diverse population structure within UK

Biobank. Details about genotype data and phenotype data and the procedures of quality con-

trol are described in S1 Text.

A phenome-wide mendelian randomization study on serum urate levels
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Weighted genetic risk score

To generate a genetic proxy for serum urate, genetic variants associated with urate were

searched across the GWAS catalogue and literature. Thirty-one genetic variants associated

with urate among European populations were identified from previous GWASs [7,8] and were

selected as components of the genetic proxy for serum urate level. The overall proportion of

variance (adjusted R2) of urate explained by the 31 genetic variants was around 7% [8]. The

SNP effect on urate (effect size and standard error [SE]) was taken from the largest meta-analy-

sis of GWASs performed by the Global Urate Genetics Consortium (GUGC) [8]. A weighted

GRS was constructed by incorporating effect estimates of the 31 urate variants for UK Biobank

participants. Specifically, the GRS was created by adding up the number of urate-increasing

alleles for each SNP weighted for the SNP effect size on serum urate level (regression beta coef-

ficients) and then adding this weighted score for all 31 SNPs.

Phenome framework

We analyzed three phenotypic datasets (i.e., inpatient hospital records, cancer registry data,

and death registry data) available in the UK Biobank database. As we were interested in disease

phenotypes, the ontology of the phenome was defined based on the ICD codes in the electronic

medical records. We pooled the hospital episode data, cancer registry data, and death registry

data together and included both the primary and secondary ICD codes. Individual ICD codes

could not be directly used to define the phenome, as they represent specific sub-phenotypes of

a similar set of diseases, instead of independent phenotypes. To account for the correlations

between ICD codes, we applied two strategies: (i) the PheCODE schema that has been recently

updated and successfully adopted in our previous MR-PheWAS [15]; and (ii) a novel Bayesian

analysis of a TreeWAS that was developed by researchers from the Wellcome Trust Centre for

Human Genetics [16].

PheCODE schema. The PheCODE system was developed to combine one or more related

ICD codes into distinct disease groups [17]. To develop a phenotyping method applicable to

the ICD-10 coding system in UK Biobank, we created a map to match ICD-9/10 codes to phe-

codes [15]. The latest version of the PheCODE system includes 1,866 hierarchical phenotype

codes that could be directly matched to the ICD-9/10 codes and provides a scheme to automat-

ically exclude patients that have similar or potentially overlapping disease states from the cor-

responding control group (e.g., excluding type 1 diabetes from being in the control group

when analyzing the phenotype of type 2 diabetes). The PheCODE map is made publicly acces-

sible via the link https://phewascatalog.org/phecodes_icd10.

TreeWAS. A novel Bayesian analysis on a TreeWAS has recently been developed to inter-

rogate the increasingly specific sub-phenotypes defined by the ICD-10 coding system. It has

been suggested that this model has higher statistical power for detecting genotype-phenotype

associations [16]. In principle, this phenotyping method models the genetic coefficients across

all phenotypes as a set of random variables. To model the correlations of the hierarchical tree-

like structure of ICD-10 codes (termed as TreeWAS), a Markov process is applied to allow the

genetic coefficients to evolve down the tree trunk and branches. The tree structure is deter-

mined based on the classification hierarchy of the ICD-10 coding system, in which each node

in the tree represents a clinical term in the classification. More details about the tree-structured

phenotyping process are described elsewhere [16].

Statistical analysis

To take advantage of both phenotyping models, we explored the association between the

weighted GRS of urate and the phenome framework defined by both the PheCODE schema

A phenome-wide mendelian randomization study on serum urate levels
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(described as PheWAS analysis) and the tree-structured phenotypic model (described as Tree-

WAS analysis). The correlation with weighted GRS was examined for a number of potential

confounding factors including sex, age, body mass index (BMI), assessment center, and the

first 5 genetic principal components (PCs). In the PheWAS analysis, associations between

weighted GRS and phecodes (with no fewer than 20 cases) were examined by logistic regres-

sion. Given that phenotypes investigated are not totally independent in the PheCODE system,

because multiple levels of phenotypic granularity were used for the definition of the case-con-

trol groups, we applied the false discovery rate (FDR) method (corresponding to the FDR of

q< 0.05) to account for multiple comparisons instead of the more stringent Bonferroni cor-

rection [18]. In the TreeWAS analysis, associations between the weighted GRS and the phe-

nome variables were tested by the Bayesian network analysis at both terminal and internal

nodes of the tree structure. The marginal posterior probability (PP) for each node in the tree

(where its genetic coefficient was nonzero) and the corresponding maximum a posteriori

(MAP) effect estimate with 95% credible interval were determined by using the MAP estima-

tor. Any association with any node of the tree at the PP� 0.95 was reported for further investi-

gation. Details about the TreeWAS analysis have been described previously [16]. All the

statistical analyses were implemented by R 3.3.2.

Replication in MR-base database

To validate findings, PheWAS associations were further examined in the MR-base database

for replication in different populations [19,20]. We used this platform to make causal inference

by performing two-sample MR analysis using available GWAS consortia data. We applied the

simplest inverse variance weighted mendelian randomization (MR IVW) approach as crude

analysis; if there was horizontal pleiotropy that violated the assumptions of the MR IVW, we

applied a mixture-of-experts machine learning framework of mendelian randomization

(MR-MoE) to predict the performance of three main classes of MR analytical approaches

(mean-based, median-based, and mode-based methods) in the context of different models of

pleiotropy and then selected the most likely unbiased causal estimate for each specific circum-

stance [20]. Full details of these MR approaches, including their different assumptions, are

provided in S1 Text and S1 Table. The schematic presentation of the overall study design is

shown in Fig 1.

Sensitivity analyses

We created a separate GRS of seven genetic polymorphisms, which are involved in renal han-

dling of urate (six urate transporter-coding genes: SLC22A12, SLC2A9, ABCG2, SLC22A11,

SLC17A1, SLC16A9, and one urate transporter-related scaffolding gene, PDZK1), as a sensitiv-

ity analysis. We then performed additional sensitivity analyses to further explore any pleiotro-

pic associations. To identify genetic variants showing pleiotropy, we examined their

association with a set of metabolic traits (i.e., BMI, waist-to-hip ratio [WHR], total cholesterol

[TC], low-density lipoprotein cholesterol [LDL-c], high-density lipoprotein cholesterol [HDL-

c], fasting glucose, 2-hour glucose, glycoproteins, systolic blood pressure [SBP], and diastolic

blood pressure [DBP]) through publicly available resources from various GWAS consortia (a

summary of these GWASs is provided in S1 Text). An association was declared as pleiotropic

when these GWAS summary data reported any association between the serum urate risk loci

and these metabolic traits at p< 1.61 × 10−3 (the threshold was determined based on the Bon-

ferroni correction with a significance level of α = 0.05 divided by the number of 31 serum

urate risk loci analyzed in this study). These 31 urate genetic risk loci were then divided into

five categories, accordingly: (i) urate-specific loci, including 14 SNPs with no pleiotropic effect

A phenome-wide mendelian randomization study on serum urate levels
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on the examined metabolic traits (S2 Table); (ii) urate-obesity pleiotropic loci, including 10

SNPs with pleiotropic effects on BMI or WHR (S3 Table); (iii) urate-BP pleiotropic loci, includ-

ing 10 SNPs with pleiotropic effects on blood pressures (BPs) (i.e., DBP and SBP) (S4 Table);

(iv) urate-lipid pleiotropic loci, including 6 SNPs with pleiotropic effects on lipids (i.e., TC,

LDL-c, and HDL-c) (S5 Table); and (v) urate-glucose pleiotropic loci, including 3 SNPs with

pleiotropic effects on blood glucose (fasting glucose, 2-hour glucose, glycoproteins) (S6 Table).

A set of GRSs were created accordingly to recalculate the effect estimates in PheWAS analysis.

Results

We included 339,256 unrelated White British individuals from the full UK Biobank cohort,

consisting of 157,146 men and 182,110 women. The mean age of the study population was

Fig 1. Schematic representation of the study design. BP, blood pressure; CARDIoGRAMplusC4D, Coronary ARtery

DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D)

Genetics consortium; FDR, false discovery rate; GLGC, Global Lipids Genetic Consortium; GRS, polygenic risk score;

GUGC, Global Urate Genetic Consortium; GWAS, genome-wide association study; ICBP, International Consortium

for Blood Pressure; ISGC, Ischaemic stroke Genetic Consortium; MR IVW, inverse variance weighted mendelian

randomization; MR-MoE, a mixture-of-experts machine learning framework of mendelian randomization; PheWAS,

phenome-wide association study; PP, posterior probability; TreeWAS, tree-structured phenotypic model.

https://doi.org/10.1371/journal.pmed.1002937.g001
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56.87 (SD: 7.99) and the mean BMI was 27.40 (SD: 4.76) kg/m2 at the time of recruitment.

Other sociodemographic characteristics of the study population are summarized in S7 Table.

The mean value of weighted GRS among the study population was 0.44 (SD: 0.31), which is

equivalent to 0.44 mg/dL of serum urate level. The correlations between the weighted GRS and

potential confounding factors (i.e., age, sex, BMI, assessment center, and the PCs) are provided

in S7 Table. Of these, two variables (i.e., assessment center and the PCs) were statistically sig-

nificantly correlated with the weighted GRS and therefore were adjusted as covariates.

PheWAS and TreeWAS associations

Within the study population, we identified 10,750 unique ICD-10 codes and 3,113 ICD-9

codes in total. After mapping the diagnostic ICD-10/9 codes in UK Biobank to phecodes, the

phenome defined by PheCODE schema consisted of 1,853 distinct phecodes among the study

population. After filtering out the phecodes with less than 20 cases, PheWAS analysis was per-

formed for 1,431 phecodes (median number of cases: 345 [range, 20–107,298]) that could be

classified into 17 broadly related disease categories (Table 1). Associations with the weighted

GRS of urate were examined for 1,431 case-control groups, leading to an adjusted significance

threshold of p< 3.35 × 10−4 (corresponding to the FDR of q< 0.05) to account for multiple

testing. The derived summary PheWAS data are provided in S1 Data. Of these, 13 phecodes

were identified to be associated with genetically determined high serum urate level at

p< 3.35 × 10−4 (Table 2). These phecodes represent 4 disease groups: inflammatory polyar-

thropathies (p = 4.97 × 10−19), hypertensive disease (p = 6.02 × 10−7), circulatory disease

(p = 3.29 × 10−4), and metabolic disorders (p = 3.33 × 10−4); and 9 disease outcomes: gout

(p = 4.27 × 10−123), gouty arthropathy (p = 1.39 × 10−5), pyogenic arthritis (p = 2.87 × 10−4),

essential hypertension (p = 6.26 × 10−7), coronary atherosclerosis (p = 1.17 × 10−5), ischemic

heart disease (p = 1.73 × 10−5), chronic ischaemic heart disease (p = 1.52 × 10−5), myocardial

infarction (p = 5.23 × 10−5), and hypercholesterolemia (p = 3.34 × 10−4).

In the Bayesian analysis framework, containing 10,750 diagnostic terms, a total of 27 par-

ent/child nodes of ICD-10 terms were identified with PP� 0.95. They were clustered mainly

in five branches of the hierarchical tree structure (Fig 2 and S8 Table): (i) block M10: gout

(PP = 1.00) and its sub-phenotypes M10.0 (idiopathic gout) and M10.9 (gout, unspecified); (ii)

block I10-I15: hypertensive disease (PP > 0.99) and its sub-phenotype I10 (essential hyperten-

sion); (iii) block I20-I25: ischemic heart diseases (PP > 0.99), and its sub-phenotypes: I20

(angina pectoris), I21 (acute myocardial infarction), I25 (chronic ischemic heart disease), I25.1

(atherosclerotic heart disease), and I25.2 (old myocardial infarction); (iv) block I30-I52: other

forms of heart disease (PP > 0.99), and its sub-phenotypes I50 (heart failure) and I50.1 (left

ventricular failure); and (v) block I60-I69: cerebrovascular diseases (PP > 0.99), and its sub-

phenotype I10 (cerebral infarction).

Findings from PheWAS and TreeWAS were generally consistent in their associations with

gout, hypertensive disease, and heart diseases, while a number of additional sub-phenotypes

were identified by TreeWAS. Association with the disease group of inflammatory polyarthro-

pathies was statistically significant in PheWAS (OR = 1.27, 95% CI: 1.21–1.34,

p = 4.97 × 10−19) but had a moderate PP in TreeWAS (OR = 1.07, 95% CI: 1.06–1.08,

PP = 0.76). We examined the specific diseases included in this disease group (M05-M06: rheu-

matoid arthritis [RA], M07: psoriatic and enteropathic arthropathies, M08-09: juvenile arthri-

tis, M10: gout, and M11-14: arthropathies and other arthritis), and only gout had a significant

association in PheWAS analysis. Association with cerebrovascular diseases had a high PP in

TreeWAS (OR = 1.07, 95% CI: 1.06–1.08, PP> 0.99) but did not reach the significance thresh-

old of PheWAS (OR = 1.08, 95% CI: 0.99–1.16, p = 0.070), although their estimates were of the
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same direction. We recalculated the PheWAS estimates by adding up self-reported stroke

cases to increase statistical power, but the corresponding estimates were still not statistically

significant (OR = 1.05, 95% CI: 0.99–1.13, p = 0.130).

Replication in MR-base database

To validate the findings, we performed two-sample MR analyses on associated diseases (i.e.,

gout, RA, coronary heart disease [CHD], myocardial infarction, ischemic stroke) or on their

corresponding intermediate traits or surrogate outcomes (i.e., SBP, DBP, TC, LDL-c, HDL-c)

(Table 3). Results from MR IVW suggested that a genetically determined high serum urate

Table 1. The number of phenotypes and cases in each disease category.

Disease categories Number of phenotypes Number of cases

Minimum Mean Maximum

Circulatory diseases 140 434 3,581 107,298

Congenital anomalies 45 102 230 1,480

Dermatological diseases 74 283 2,544 89,976

Diseases in sense organs 104 253 1,228 31,845

Digestive diseases 143 551 3,123 62,862

Neoplasms 129 493 2,558 84,098

Infectious diseases 48 190 958 8,600

Endocrine and metabolic diseases 103 154 1,590 35,954

Hematopoietic diseases 40 228 1,200 10,095

Neurological diseases 69 224 1,180 32,194

Respiratory diseases 71 674 2,448 49,782

Mental disorders 64 260 1,493 23,226

Genitourinary diseases 140 655 2,536 82,964

Pregnancy complications 28 237 914 7,518

Musculoskeletal diseases 109 347 2,847 59,852

Clinical symptoms 27 711 3,741 33,553

Injuries and poisonings 97 388 1,079 13,303

https://doi.org/10.1371/journal.pmed.1002937.t001

Table 2. Disease outcomes associated with the weighted GRS of urate in PheWAS analysis.

Phecode Disease outcomes n_cases n_controls beta SE OR (95% CI) p-value

274.1 Gout 2,532 335,108 1.682 0.071 5.37 (4.67–6.18) 4.27 × 10−123

714 Inflammatory polyarthropathies 15,408 320,862 0.244 0.027 1.27 (1.21–1.34) 4.97 × 10−19

401 Hypertension 63,694 274,477 0.076 0.015 1.07 (1.05–1.11) 6.02 × 10−7

401.1 Essential hypertension 63,442 274,477 0.077 0.015 1.08 (1.05–1.11) 6.26 × 10−7

411.4 Coronary atherosclerosis 25,795 311,554 0.096 0.022 1.10 (1.05–1.14) 1.17 × 10−5

274.11 Gouty arthropathy 88 335,108 1.631 0.375 5.10 (2.45–10.66) 1.39 × 10−5

411.8 Chronic ischemic heart disease 25,567 311,554 0.095 0.022 1.09 (1.05–1.14) 1.52 × 10−5

411 Ischemic heart disease 25,617 311,554 0.094 0.022 1.09 (1.05–1.14) 1.73 × 10−5

411.2 Myocardial infarction 9,829 311,554 0.138 0.034 1.14 (1.07–1.22) 5.23 × 10−5

711.1 Pyogenic arthritis 270 277,590 0.742 0.205 2.10 (1.41–3.13) 2.87 × 10−4

459.9 Circulatory disease 107,298 230,622 0.046 0.013 1.04 (1.02–1.07) 3.29 × 10−4

277 Metabolic disorders 35,954 302,209 0.067 0.019 1.07 (1.03–1.11) 3.33 × 10−4

272.11 Hypercholesterolemia 27,040 308,948 0.077 0.021 1.08 (1.04–1.12) 3.34 × 10−4

Abbreviations: GRS, polygenic risk score; PheWAS, phenome-wide association study

https://doi.org/10.1371/journal.pmed.1002937.t002
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level was associated with increased risk of gout (OR = 4.53, 95% CI: 3.64–5.64; peffect =

9.66 × 10−42), DBP (OR = 1.04, 95% CI: 1.02–1.08; peffect = 0.044), SBP (OR = 1.03, 95% CI:

1.00–1.06; peffect = 0.050), CHD (OR = 1.10, 95% CI: 1.02–1.19; peffect = 0.014), myocardial

infarction (OR = 1.11, 95% CI: 1.02–1.20; peffect = 0.017), and decreased level of HDL-c

(OR = 0.93, 95% CI: 0.88–0.98; peffect = 0.007) but had no effect on ischemic stroke (OR = 1.03,

95% CI: 0.93–1.14; peffect = 0.582). A test for directional horizontal pleiotropy indicated the

existence of pleiotropy on the causal estimates of DBP (ppleiotropy = 0.014), SBP (ppleiotropy =

0.003), CHD (ppleiotropy = 0.008), myocardial infarction (ppleiotropy = 0.008), and HDL-c (ppleio-

tropy = 0.016), indicating the MR IVW estimates are likely biased. Using the MR-MoE analysis

to select the most appropriate MR approach to deal with different models of pleiotropy, we

derived a statistically significant causal estimate only for gout (OR = 4.50, 95% CI: 3.62–5.59,

peffect = 3.35 × 10−77) (Table 3). Causal estimates from each of the MR analytical approaches are

provided in S9–S17 Tables.

Fig 2. A hierarchical structure of disease outcomes associated with urate in TreeWAS analysis. TreeWAS, tree-

structured phenotypic model.

https://doi.org/10.1371/journal.pmed.1002937.g002
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Table 3. Replication of MR effect estimates in MR-base database.

Outcome beta SE OR (95% CI) peffect ppleiotropy� n_cases n_total Data source

Replication of significant PheWAS associations

Gout

PheWAS 1.682 0.071 5.37 (4.67−6.18) 4.27 × 10−123 - - 2,532 337,640 UKBB

MR IVW 1.511 0.112 4.53 (3.64−5.64) 9.66 × 10−42 0.485 2,115 67,259 GUGC

MR-MoE 1.504 0.081 4.50 (3.62−5.59) 3.35 × 10−77 - -

Hypertension

PheWAS 0.076 0.015 1.07 (1.05−1.11) 6.02 × 10−7 - - 63,694 338,171 UKBB

DBP
MR IVW 0.042 0.020 1.04 (1.02−1.08) 0.044 0.014 - - 69,395 ICBP

MR-MoE 0.034 0.019 1.03 (0.99−1.07) 0.084 - - - -

SBP
MR IVW 0.031 0.015 1.03 (1.00−1.06) 0.050 0.003 - - 69 395 ICBP

MR-MoE 0.008 0.007 1.01 (0.99−1.02) 0.266 - - - -

CHD

PheWAS 0.094 0.022 1.09 (1.05−1.14) 1.73 × 10−5 - - 25,617 337,171 UKBB

MR IVW 0.098 0.038 1.10 (1.02−1.19) 0.014 0.008 60,801 123,504 CARDIoGRAMplusC4D

MR-MoE 0.047 0.028 1.05 (0.99−1.10) 0.086 - -

Myocardial infarction

PheWAS 0.138 0.034 1.14 (1.07−1.22) 5.23 × 10−5 - - 9,829 321,383 UKBB

MR IVW 0.105 0.041 1.11 (1.02−1.20) 0.017 0.008 43,676 128,199 CARDIoGRAMplusC4D

MR-MoE 0.058 0.030 1.06 (0.99−1.12) 0.055 - -

Hypercholesterolemia

PheWAS 0.077 0.021 1.08 (1.04−1.12) 3.34 × 10−4 - - 27,040 335,988 UKBB

TC
MR IVW 0.028 0.036 1.03 (0.96−1.10) 0.440 0.602 - - 173,082 GLGC

MR-MoE 0.005 0.026 1.00 (0.95−1.06) 0.848 - -

HDL-c
MR IVW -0.075 0.026 0.93 (0.88−0.98) 0.007 0.016 - - 187,167 GLGC

MR-MoE -0.030 0.015 0.97 (0.94−1.01) 0.058 - -

LDL-c
MR IVW 0.011 0.023 1.05 (0.95−1.16) 0.627 0.175 - - 187,365 GLGC

MR-MoE 0.011 0.023 1.05 (0.95−1.16) 0.627 - -

Replication of additional TreeWAS associations

Ischemic stroke

PheWAS 0.071 0.040 1.08 (0.99−1.16) 0.070 - - 9,528 338,172 UKBB

MR IVW 0.029 0.052 1.03 (0.93−1.14) 0.586 0.290 10,307 19,326 ISGC

MR-MoE 0.029 0.052 1.03 (0.93−1.14) 0.586 - -

�Test for directional horizontal pleiotropy.

Abbreviations: CARDIoGRAMplusC4D, Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease

(C4D) Genetics consortium; CHD, coronary heart disease; DBP, diastolic blood pressure; GLGC, Global Lipids Genetics Consortium; GUGC, Global Urate Genetics

Consortium; HDL-c, high-density lipoprotein cholesterol; ICBP, International Consortium of Blood Pressure; ISGC, Ischaemic stroke Genetic Consortium; LDL-c, low-

density lipoprotein cholesterol; MR, mendelian randomization; MR IVW, inverse variance weighted mendelian randomization; MR-MoE, a mixture-of-experts machine

learning framework of mendelian randomization; PheWAS, phenome-wide association study; SBP, systolic blood pressure; TC, total cholesterol; TreeWAS, tree-

structured phenotypic model; UKBB, UK Biobank

https://doi.org/10.1371/journal.pmed.1002937.t003
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Sensitivity analyses

PheWAS analysis using the GRS of 7 SNPs involved in renal handling of urate showed signifi-

cant associations with gout (p = 3.04 × 10−91) and related diseases (e.g., inflammatory polyar-

thropathies, gouty arthropathy) after FDR correction. A GRS of the remaining 24 SNPs

(excluding genetic polymorphisms involved in renal handling of urate) showed significant

associations with gout, hypertension, hypercholesterolemia, and CVDs (e.g., coronary athero-

sclerosis, ischemic heart diseases, and myocardial infarction) (S18 Table). Given that most of

the related outcomes were CVDs, we performed further sensitivity analyses to examine the

potential of any pleiotropy effect of urate risk variants on metabolic traits. We recalculated the

PheWAS estimates by using a number of GRSs created based on their association with a set of

metabolic traits (Fig 3 and S19 Table), and the specific metabolic traits investigated were fur-

ther determined by the availability of summary GWAS data. The GRS of urate-specific loci

was only associated with gout and its upper disease group of inflammatory polyarthropathies,

but not with any cardiovascular/metabolic diseases. In contrast, the GRSs of pleiotropic loci

on obesity, BP, lipids, and glucose showed significant association with both gout and the

CVDs. Specifically, the GRS of pleiotropic loci on lipids was significantly associated with all

CVDs, including hypertensive diseases (i.e., essential hypertension), heart diseases (i.e., ische-

mic heart diseases), and metabolic disorders (i.e., hypercholesterolemia). Additionally, the

GRS of pleiotropic loci on glucose was significantly associated with diabetes (i.e., type 2 diabe-

tes). When removing any group of pleiotropic loci from the creation of GRS, their associations

with hypertensive diseases, heart diseases, and metabolic disorders were not statistically signifi-

cant (S20 Table). The effects of pleiotropic loci (mapped with genes) on serum urate level

against their effects on four representative disease outcomes were plotted in S1 Fig, in which

the two urate transporter genes (SLC2A9 and ABCG2) are recognised as the leading loci driv-

ing the association with gout, the GCKR gene is the leading locus driving the association with

hypercholesterolemia, and the PTPN11/ATXN2 gene is the leading locus driving the associa-

tion with hypertension and ischemic heart diseases.

Discussion

The present study demonstrated that genetically determined high serum urate level was consis-

tently associated with increased risk of several disease groups, including inflammatory polyar-

thropathies (e.g., gout and gouty arthropathy), hypertensive diseases (e.g., essential

hypertension), heart diseases (e.g., coronary atherosclerosis, myocardial infarction, angina

pectoris, ischemic heart disease, and heart failure), and metabolic disorders (e.g., hypercholes-

terolemia). This study, using data from the full UK Biobank cohort (n = 339,256), verified the

associations discovered in the previous MR-PheWAS study based on the interim release of UK

Biobank genetic data (n = 120,091) [15] and identified a number of new sub-phenotypes of dis-

eases (e.g., gouty arthropathy, angina pectoris, and heart failure). Some disease outcomes (e.g.,

disorders of iron metabolism, celiac disease) reported in the previous study were not identified

in the present study, as these associations were derived from the genetic linkage disequilibrium

between two single variants and therefore were diluted by the use of a weighted GRS of multi-

ple genetic instruments. Association between urate and the risk of gout, hypertension, CHD,

myocardial infarction, and a decreased level of HDL-c was successfully replicated in different

European populations by analyzing various GWAS consortia data documented in the MR-

base database [19], but a causal relationship was only supported for gout. Overall, findings

from the current study support the observational associations between high serum urate level

and increased risk of hypertensive diseases, heart diseases, and metabolic disorders and also
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indicated that these associations were more likely due to genetic pleiotropy instead of

causality.

A recent umbrella review summarized the published MR studies and examined the causal

relationship of serum urate level with a wide range of health outcomes, including gout, cardio-

vascular, metabolic, and neurocognitive disorders, and for the majority of investigated traits,

causality was not verified [1]. There were nine disease outcomes (e.g., diabetic macrovascular

disease, arterial stiffness [internal diameter of carotid artery], adverse renal events, Parkinson

disease, lifetime anxiety disorders, memory performance, CVD mortality, sudden cardiac

Fig 3. Network plot of the sensitivity analyses of PheWAS using different sets of weighted GRS. The red circles

represent the disease outcomes associated with the weighted GRS of the 31 urate genetic rick loci; the blue circles represent

disease outcomes associated with the weighted GRS of urate-specific risk loci; the green circles represent diseases outcomes

associated with urate-obesity pleiotropic loci; the orange circles represent disease outcomes associated with urate-lipid

pleiotropic loci; and the pink circles represent disease outcomes associated with urate-lipid pleiotropic loci. E70-E90,

metabolic disorders; GRS, genetic risk score; I10-I15, hypertensive diseases; I20-I25, ischemic heart diseases; M05-M14,

inflammatory polyarthropathies; PheWAS, phenome-wide association study.

https://doi.org/10.1371/journal.pmed.1002937.g003
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death, and gout) reported to have a nominally statistically significant causal relationship with

urate, but most of them presented with discordant results between MR studies or suffered

from methodological limitations (e.g., inadequate study power, invalid genetic instruments),

and only that for gout was verified based on convincing evidence.

Specifically, our finding that genetically predicted serum urate level is causally associated

with increased risk of gout is not surprising, as it is well known that the causal factor of gout is

represented by the monosodium urate crystals (MSUs), which leads to acute local inflamma-

tion in joints. Moreover, this study also detected an association between urate and the disease

group of inflammatory polyarthropathies. To investigate if there were any other types of

inflammatory polyarthropathies (beyond gout) associated with urate, we examined the associa-

tion of urate with all specific diseases included in this group, but none of them were statistically

significant. When excluding gout from this disease group, the association was not statistically

significant any longer, indicating the observed association was actually driven by gout.

Numerous epidemiological studies have reported that elevated serum urate level is related

to increased risk of hypertension, and their relationship has been consistent, showing a dose-

response relationship of similar magnitude [21]. Findings from our current study support this

association, but the magnitude of estimated effect size (OR = 1.07, 95% CI: 1.05–1.11) is

smaller than that of traditional epidemiological studies [22]. In our PheWAS, TreeWAS, and

MR IVW analysis, we consistently showed a moderate association between urate and different

types of heart disease, including coronary atherosclerosis, angina pectoris, ischemic heart dis-

eases, acute/old myocardial infarction, and heart failure; however, the MR-MoE analysis did

not support the causal inference after accounting for the presence of pleiotropy.

Large epidemiological studies have established an association between high serum urate

level and the increased risk of metabolic disorders [23]. The NHANES III survey study sug-

gested that a high serum urate level was associated with increased levels of serum LDL-c, tri-

glycerides, TC, and apolipoprotein-B and a decreased level of HDL-c [24]. Our study further

strengthened this epidemiological evidence and highlighted an association between urate and

hypercholesterolemia. Our MR IVW analysis replicated the corresponding association with its

surrogate outcome (i.e., HDL-c) but suggested the presence of pleiotropy instead of causality.

Additionally, epidemiological studies have also indicated that high serum urate level is associ-

ated with increased risk of diabetes [25]. However, this association was not detected in the

main PheWAS or TreeWAS analysis, while sensitivity analysis using the GRS of urate-glucose

pleiotropic loci (i.e., GCKR, IGF1R, and SLC16A9) identified significant association with type

2 diabetes.

To explore how genetic pleiotropy influences the association with cardiovascular/metabolic

diseases, we analysed all 31 urate loci across a set of metabolic traits and identified 14 SNPs

(urate-specific loci) that were exclusively associated with urate and 17 SNPs (pleiotropic loci)

that were associated with metabolic traits. When examining the urate-specific loci, their GRSs

were only associated with gout and its upper disease group of inflammatory polyarthropathies,

but not with any cardiovascular or metabolic diseases. In contrast, when categorizing the pleio-

tropic loci into different groups (e.g., GRS of urate-obesity loci, GRS of urate-BP loci, GRS of

urate-lipid loci, and GRS of urate-glucose loci), the GRSs of pleiotropic loci showed consistent

associations with both gout and the cardiovascular/metabolic diseases. When removing any

group of pleiotropic loci from the creation of GRS (e.g., GRS of urate without pleiotropic loci

on BP, or GRS of urate without pleiotropic loci on lipids), their association with heart diseases

and metabolic disorders was not statistically significant. Based on these findings, our study

suggests that the association between urate and CVDs is probably due to the pleiotropic effects

of genetic variants on urate and metabolic traits.
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Examining the associations between individual urate genetic risk loci and the related disease

outcomes highlighted two loci, GCKR and PTPN11/ATXN2, which drive their association with

hypercholesterolemia, hypertension, and ischemic heart disease. Pathway network analysis of

the leading pleotropic genes provides some clues on how genetic pleiotropy contributes to the

association between urate and cardiovascular/metabolic disease. Genetic variation in GCKR is

shown to be associated with concentrations of urate, triglyceride, and glucose [26]. The most

plausible explanation for this observation is that GCKR affects both serum urate and triglycer-

ide and glucose levels by a common unconfirmed mediator, which is proposed to be glucose-

6-phosphate [27]. The GCKR controls the hepatic production of glucose-6-phosphate, which is

catabolized for triglyceride synthesis via glycolysis, pyruvate, and acetyl coenzyme A, while glu-

cose-6-phosphate is also a precursor of purine (uric acid) metabolism [27]. Additionally, gene

functional annotation of PTPN11/ATXN2 highlights another subnetwork around hemostasis

pathways, including platelet activation, aggregation, and sensitization (activated by LDL-c)

[28], and these may be relevant to the observed association with hypertension and heart dis-

eases; but how this gene influences serum urate level has not yet been clearly demonstrated.

The detection of a multitude of cross-phenotype associations in this study adds to our

understanding of the extent of shared genetic/biological components between urate and meta-

bolic traits. Further characterizing the associations between urate and disease outcomes as

causal or pleiotropic contributes to our knowledge of how the role of urate should be inter-

preted and used in clinical practice in the management of related disease conditions. Given

that the observational associations between urate and cardiometabolic diseases are more likely

due to pleiotropy rather than causality, our study supports the notion that urate could be a pre-

dictor but probably not a direct target for the development of compounds that could reduce

cardiovascular/metabolic disease risk. The linked biological pathways between urate and meta-

bolic traits indicated that the frequent coexistence of gout with hypertension, CVDs, and

hyperlipidemia is a range of interrelated disease outcomes due to linked pathogenic compo-

nents, rather than isolated events. This supports the European League against Rheumatism

(EULAR) recommendation of systematic screening and assessment of cardiovascular/meta-

bolic comorbidities in gout patients [29]. The classification of high serum urate levels due to

renal handling dysfunction or high urate production would improve the identification of gout

patients with higher risk of metabolic and CVD, and promote a more selective and effective

use of urate-lowering drugs. The finding of genetic pleiotropy indicates the existence of com-

mon upstream pathological elements influencing both urate and metabolic traits, and this may

suggest new opportunities and challenges for developing drugs targeting a common mediator

that would be beneficial for both the treatment of gout and the prevention of cardiovascular/

metabolic comorbidities. This study has focused on the detection of cross-phenotype associa-

tions and highlighted the importance of pleiotropy in the links of these complex diseases. We

have made efforts to try to understand the cross-phenotype association in the context of a plei-

otropy model, but functionally characterizing the underlying biological mechanisms remains a

challenge in this field and is worthy of further investigation.

The strengths of this study include its potential to examine a broad spectrum of disease out-

comes related to urate and to reflect the shared biological relevance among associated pheno-

types, given that previous MR studies were typically hypothesis driven and few studies have

comprehensively investigated how serum urate level might influence overall health. Compared

with the previous MR-PheWAS [15], the present study extends the prior findings by combin-

ing genetic risk loci of urate into a weighted GRS, exploring genetic pleiotropy on a set of met-

abolic traits systematically, investigating more disease outcomes, assessing their associations

with>3-fold more cases, examining consistency of findings across two different phenotyping

models to reduce the probability of false positive/negative findings due to factors related to the
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model, and replicating the findings by performing two-sample MR in different populations.

Our study demonstrated the performance of two phenotyping models by accounting for the

differences in the specificity and granularity of different phenome definitions and by charac-

terizing the phenotypic correlations among different levels of ICD hierarchy. TreeWAS is

shown to increase statistical power and can detect new associations missed by conventional

PheWAS [16]. One of the major accomplishments of this study together with the previous

MR-PheWAS has been the establishment of a framework or workflow for PheWAS [15]. We

believe this study would be an excellent starting point for researchers who plan to use the UK

Biobank resource to comprehensively interrogate the clinical significance of biomarkers. The

updated version of PheCODE schema used in this study is made available for researchers who

are interested in performing PheWAS in UK Biobank.

This study also has limitations. The causal inference in our study is limited by the common

difficulty of pleiotropy caused by the use of multiple genetic instruments. Although we have

performed sensitivity analyses by grouping the pleiotropic loci based on metabolic traits and

exploring their association separately, there is still a probability of undetected pleiotropy or the

possibility that the relatively weak causal effects of urate on diseases were concealed by the

strong pleotropic effects of the genetic variants on metabolic traits. Moreover, as most cases

were identified from the inpatient hospital records, this may have impaired the coverage of

case ascertainment, especially for the diseases that do not usually cause events for hospitaliza-

tion. The incorporation of self-reported data would improve this limitation, but it is also likely

to mistakenly include patients who do not have a true diagnosis and introduce information

bias. As UK Biobank is currently performing disease adjudication and processing linkages to

general practice records and outpatient data, a widely covered and accurately defined criteria

of case ascertainment for PheWAS study would be possible in the future.

Conclusions

Overall, when taking together the findings from PheWAS/TreeWAS, MR replication, and sen-

sitivity analyses, we conclude a robust association between urate and a group of diseases

including gout, hypertensive diseases, heart diseases, and metabolic disorders of lipids, but the

causal role of urate is only supported in gout. Our study indicates that the association between

urate and CVDs is probably due to the pleiotropic effects of genetic variants on urate and met-

abolic traits. These findings support that urate could be a good predictor for the cardiovascu-

lar/metabolic disease risk. Further investigation on therapies targeting the shared biological

pathways between urate and metabolic traits would be beneficial for the treatment of gout and

the primary prevention of cardiovascular/metabolic comorbidities.
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