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SUMMARY

The DNA hypomethylation that occurs when embry-
onic stem cells (ESCs) are directed to the ground
state of naive pluripotency by culturing in two small
molecule inhibitors (2i) results in redistribution of
polycomb (H3K27me3) away from its target loci.
Here, we demonstrate that 3D genome organization
is also altered in 2i, with chromatin decompaction
at polycomb target loci and a loss of long-range
polycomb interactions. By preventing DNA hypome-
thylation during the transition to the ground state, we
are able to restore to ESC in 2i the H3K27me3 distri-
bution, as well as polycomb-mediated 3D genome
organization that is characteristic of primed ESCs
grown in serum. However, these cells retain the func-
tional characteristics of 2i ground-state ESCs. Our
findings demonstrate the central role of DNA methyl-
ation in shaping major aspects of 3D genome organi-
zation but caution against assuming causal roles for
the epigenome and 3D genome in gene regulation
and function in ESCs.

INTRODUCTION

The extent to which epigenetic modifications and three-

dimensional (3D) chromatin structure are linked and contribute

to cell state and cell function is unresolved. Two key and inter-

related epigenetic modifiers in the mammalian genome are

DNA methylation and polycomb. Polycomb complexes are

implicated in the maintenance of repression of key develop-

mental genes (Blackledge et al., 2015). Whereas polycomb

repressive complex PRC2 deposits H3K27me3, the canonical

PRC1 complex promotes compact local chromatin structures
1974 Cell Reports 29, 1974–1985, November 12, 2019 ª 2019 The A
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and longer-range chromatin interactions (Boettiger et al.,

2016; Eskeland et al., 2010; Joshi et al., 2015; Kundu et al.,

2017; Schoenfelder et al., 2015; Williamson et al., 2012). Chro-

matin compaction and developmental gene repression are

independent of the E3 ligase catalytic activity of Ring1B in

canonical PRC1 (Cohen et al., 2018; Eskeland et al., 2010;

Illingworth et al., 2015; Kundu et al., 2017; Williamson et al.,

2014).

In mammalian cells, the polycomb system is primarily targeted

to the unmethylated CpG islands (CGIs) of non- or weakly ex-

pressed genes (Blackledge et al., 2015; Li et al., 2017; Riising

et al., 2014). Consistent with this, loss of DNA methylation—

by exposing new CpG sites—leads to a redistribution of

H3K27me3, to satellite and dispersed repeat sequences, while

titrating it away from its normal CGI targets (Brinkman et al.,

2012; Jermann et al., 2014; Reddington et al., 2013, 2014).

This is consistent with a model in which PRC2 can associate

transiently and weakly with a large fraction of the genome

(Schuettengruber et al., 2017).

One notable instance in which this occurs is in mouse embry-

onic stem cells (mESCs) cultured with two small molecule inhib-

itors of MEK1 and glycogen synthase kinase 3 (GSK3); 2i condi-

tions (Marks et al., 2012). mESCs cultured conventionally in the

presence of fetal calf serum and LIF (leukemia inhibitory factor)

are functionally heterogeneous, with a fraction of cells resem-

bling a state of ‘‘naive pluripotency’’ with unbiased develop-

mental potential and high expression of pluripotency genes.

Other cells in the culture more closely resemble a ‘‘primed’’

state, in which they begin expressing early lineage markers

and downregulate pluripotency genes (Canham et al., 2010;

Hackett and Surani, 2014; Hayashi et al., 2008; Wongtawan

et al., 2011). These two states are metastable, with cells in the

population fluctuating between the two. By contrast, culturing

mESCs serum free, in the presence of 2i blocks differentiation

signals and promotes the pluripotency network, resulting in ho-

mogeneous expression of pluripotency factors and reduced
uthors.
commons.org/licenses/by/4.0/).
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expression of early lineage-specific genes (Morgani et al., 2013;

Wray et al., 2011; Ying and Smith, 2017).

The epigenetic properties of 2i-cultured mESCs closely

resemble those of cells in the pre-implantation inner cell mass

(ICM) of the mouse embryo. This includes global DNA hypome-

thylation (Ficz et al., 2013; Leitch et al., 2013; Marks et al.,

2012; Wray et al., 2011). Expression levels of the de novo meth-

yltransferases Dnmt3a, Dnmt3b, and the non-catalytic cofactor

Dnmt3l are reduced under 2i conditions. Uhrf1 (a Dnmt1 co-fac-

tor) is also downregulated at the protein level (Ficz et al., 2013;

Grabole et al., 2013; Graf et al., 2017; Habibi et al., 2013; Leitch

et al., 2013; von Meyenn et al., 2016; Yamaji et al., 2013). How-

ever, coupling these DNA methylation differences to gene

expression changes using triple-knockout (TKO) cells that lack

all the active Dnmts reveals that only a small (but significant) pro-

portion of gene expression changes under 2i can be directly

attributed to DNA methylation loss (Leitch et al., 2013).

Importantly, although global levels of H3K27me3 are not altered

in 2i-cultured cells, there is a marked reduction (up to 75%) of

H3K27me3 at polycomb targets, including at the Hox clusters

(Marks et al., 2012). This is accompanied by reduced occupancy

of Suz12 and Ezh2 (PRC2) and Ring1B (PRC1) (Marks et al.,

2012; Joshi et al., 2015). The consequencesof such a dramatically

altered epigenome on 3D genome organization have not been

explored. Given the epigenetic alterations that occur in 2i, and

the role of polycomb in shaping the 3D genome, we sought to

investigatewhether2i culturingconditions impacton3Dchromatin

organization in mESCs. Using fluorescence in situ hybridization

(FISH) and Hi-C, we show that both local chromatin compaction

at polycomb-target Hox loci and long-range polycomb interac-

tions are profoundly altered in 2i, and we demonstrate that this is

directly attributable to the loss of DNA methylation. By restoring

the epigenetic landscape (DNA methylation and H3K27me3 tar-

geting) of cells in 2i, we show that 3D genome organization can

be reset to resemble that of mESCs grown in serum. Strikingly,

this has a limited impact on gene expression.

RESULTS

Chromatin Decompaction of Polycomb Target Loci in
Naive ESCs
mESCs cultured in a chemically defined medium in the presence

of LIF and two inhibitors (2i) of the Erk and Gsk-3 signaling path-

ways achieve a homogeneous ground state of pluripotency,

thought to closely resemble that of the ICM (Ying and Smith,

2017; Ying et al., 2008). In doing so, 2i mESCs acquire a distinct

epigenomic landscape, including global DNA hypomethylation

and an altered genomic distribution of H3K27me3 (Ficz et al.,

2013; Habibi et al., 2013; Leitch et al., 2013; Marks et al., 2012)

This includes a loss of H3K27me3 enrichment at classic poly-

comb targets such as Hox loci (Figure 1A).

Since polycomb is a powerful mediator of higher-order chro-

matin structure (Boettiger et al., 2016; Eskeland et al., 2010; Fran-

cis et al., 2004; Joshi et al., 2015; Kundu et al., 2017; Schoenfelder

et al., 2015; Williamson et al., 2012), it is possible that the redistri-

bution of H3K27me3/polycomb across the genome results in an

alteration to 3D chromatin organization in ESCs grown in 2i culture

conditions, but this has not been investigated.
ThemurineHoxD locus is a large canonical polycomb target in

mESCs, demarked by a domain of H3K27me3, PRC2, and PRC1

deposition across the 100-kb cluster (Illingworth et al., 2012).

Under serum/LIF culture conditions the HoxD locus is main-

tained in a compact chromatin conformation in mESCs, and

this is dependent on the presence of PRC1 (Eskeland et al.,

2010; Williamson et al., 2014). To investigate higher-order chro-

matin compaction at HoxD in mESCs grown under serum and 2i

conditions, we used 3D FISH to measure the separation of hy-

bridization signals from probe pairs at opposite ends of the

HoxD locus (Hoxd3 and Hoxd13) under the different conditions.

We compared thesemeasurements to those from control probes

at a nearby genomic region (30 of Lnp) that is not coated by

H3K27me3 but that is highly DNA methylated in serum-grown

ESCs (Figure 1A).

Under 2i/LIF culture conditions, theHoxD locus significantly de-

compacts relative to cells cultured in serum/LIF; median inter-

probe distances increase from �300 to �400 nm, p = < 0.0001

(Figures 1B, 1C, and S1A; Tables S1 and S2). This decompaction

occurs to the sameextent when either PRC1 (Ring1B�/�) or PRC2
(Eed�/�) is absent in mESCs grown under serum conditions (Fig-

ures 1B, 1C, and S1A). No further decompaction is observed

when PRC1 or PRC2 mutant mESCs are grown under 2i condi-

tions, showing that decompaction of a polycomb target in 2i can

beprimarily accounted for by the titration ofH3K37me3/polycomb

away from these genomic regions. We confirmed these data for

two other Hox clusters: HoxB (Figures S1B, S1D, and S1F) and

HoxC (Figures S1C, S1E, and S1G).

As a control, we examined a locus not marked by H3K27me3,

and highly DNA methylated, in serum-grown ESCs, that is

adjacent to HoxD (Figure 1A). Inter-probe distances at this con-

trol locus were not significantly different between wild-type (WT)

or polycomb mutant mESCs, or between mESCs grown in the

different culture conditions (Figures 1C and S1A), even though

this region is subject to DNA hypomethylation in 2i (Figure 1A).

This suggests that the chromatin decompaction we detect in 2i

conditions at polycomb target loci is not a result of a general/

global alteration in the 3D chromatin organization of naive

2i/LIF cells, and that global loss of DNA methylation across

genomic regions may have no direct effect on chromatin

compaction, as assayed at a cytological level.

HoxD Chromatin Compaction in the Blastocyst Is
Comparable to That in 2i mESCs
Next, we investigated whether the chromatin decompaction

observed in 2i-cultured mESCs is also present in the cells of

the mouse blastocyst, which are hypomethylated during normal

development (Messerschmidt et al., 2014). To compare chro-

matin states between in vitro mESCs and their in vivo counter-

parts, we measured distances between HoxD probes in embry-

onic day (E) 3.5 mouse blastocysts using 3D FISH (Figure 2A).

These data indicate that the HoxD locus in the pre-implanta-

tion blastocyst is decompact relative to that in conventionally

cultured serum/LIF mESCs, and closely resembles the compac-

tion state of the locus under 2i/LIF conditions (Figures 2B and 2C;

Tables S1 and S2). There is a large amount of variability between

and within blastocysts, which is likely because these blastocysts

will contain distinct cell lineages (trophectoderm, ICM, and
Cell Reports 29, 1974–1985, November 12, 2019 1975
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Figure 1. Loss of Chromatin Compaction at

Polycomb Target Loci in 2i

(A) UCSC genome browser tracks (mm9 assem-

bly) showing the location (Mb) on chromosome 2

of FISH probes used to measure compaction

across the HoxD locus, and at a control locus.

Probe coordinates are given in Table S3. Below

are shown the H3K27me3 ChiP-seq (Marks et al.,

2012) and DNA methylation bisulphite (Habibi

et al., 2013) profiles for this region of the genome in

mESCs grown in serum or 2i.

(B) Representative images of FISH signals (red and

green) from probes (indicated in A) detecting the

HoxD locus in the nuclei of WT, Ring1B�/�, and
Eed�/� mESCs. DNA is counterstained with DAPI

(blue). Scale bars represent 10 mm.

(C) Violin plots showing the distribution of inter-

probe distances (mm) for HoxD and control (Ctrl)

loci in WT, Ring1B�/�, and Eed�/� cells grown in

serum or 2i. The vertical line and spot within each

plot indicate the interquartile range and median,

respectively.

***p < 0.001; h.s., highly significant (p < 0.0001).

Full details of statistical analysis are in Tables S1

and S2.
primitive endoderm), all of which are hypomethylated (Rossant

et al., 1986). In contrast, inter-probe distances at the control lo-

cus were much more similar between blastocysts and cultured

cells (Figure 2B), suggesting the decompaction at HoxD in the

blastocyst cannot be explained by the in vivo population having

a generally more open chromatin structure.
1976 Cell Reports 29, 1974–1985, November 12, 2019
Altered Local Interactions at
Polycomb Loci between Serum and
2i-Cultured mESCs
Polycomb is responsible for forming self-

interacting topologically associated do-

mains (TADs) at Hox loci as detected

by chromosome conformation capture

methods (Kundu et al., 2017; Noorder-

meer et al., 2011; Williamson et al.,

2014). To assess whether changes in 3D

chromatin organization occur in 2i cells

at regions other than Hox loci, we em-

ployed in situ Hi-C (Lieberman-Aiden

et al., 2009; Rao et al., 2014) to assay

genome-wide chromatin interactions

from E14 mESCs grown in serum/LIF

and in 2i/LIF, generating two indepen-

dent Hi-C datasets for each condition.

Cluster analysis of local insulation

profiles showed separation of the two

culture conditions, but the differences

were small (Figure S2A). Similar analysis

of the eigenvector tracks revealed a

larger effect of culture conditions on

compartmentalization (Figure S2B).

Inspectionof theHi-Ccontact frequency

heatmaps showed apparent depletion of
Hi-C contact frequencies at all fourHox loci (A,B,C, andD) in cells

grown in 2i corresponding to the regions where H3K27me3 and

RING1B occupancies are depleted in 2i (Figures 3A and S3A). Z

score analysis confirms the significant depletion of Hi-C contacts

at HoxA, -B, and -C while at HoxD the loss of interactions in 2i is

not statistically significant (Figure S2C).



0.2

0.4

0.6

0.8

1.0

h.s

A

B

In
te

rp
ro

be
 d

is
ta

nc
e 

(μ
m

)

HoxD Ctrl

mESC se
rum

mESC 2i

Blas
toc

ys
t

mESC 2i

Blas
toc

ys
t

C

In
te

rp
ro

be
 d

is
ta

nc
e 

(μ
m

)

HoxD Ctrl

mESC se
rum

mESC 2i

Blas
toc

ys
t 1

mESC se
rum

Blas
toc

ys
t 213121110987654321

Blastocysts
mESC 2i

mESC se
rum

h.s

0.2

0.4

0.6

0.8

1.0

Figure 2. HoxD Chromatin Compaction in

the Pre-implantation Blastocyst

(A) Representative image of a DAPI-stained (blue)

whole E3.5 blastocyst following FISH with probe

pairs (red and green) detecting the HoxD locus.

Inset shows enlargement of one nucleus. Scale

bars represent 10 mm.

(B) Violin plots showing the distribution of inter-

probe distances (mm) for HoxD and control (Ctrl)

loci in E14 mESCs grown in serum or 2i, and in

E3.5 blastocysts. Data are presented as in Fig-

ure 1C. h.s. = p < 0.0001. Full details of statistical

analysis are in Tables S1 and S2.

(C) As in (B), but for data from 13 individual

blastocysts.
Rescaled pileups of Hi-C data confirmed the enriched contact

frequency genomewide for all sites where RING1B occupancy in

serum-cultured ESCs occurs over >10 kb (Figure 3B) and that

these contacts are greatly depleted in cells grown in 2i culture

conditions. Plotting the average number of observed/expected

Hi-C contacts in sliding 25-kb windows, split into quantiles by
po

Sk

so

ac

th

oc
Cell Reports
the H3K27me3 chromatin immunopre-

cipitation sequencing (ChIP-seq) read

density in serum (Marks et al., 2012),

also showed (Figure 3C) that a high level

of polycomb occupancy correlates with

high local contact frequency in Hi-C in

serum conditions, and that local Hi-C

interactions are globally depleted in

mESCs that were grown in 2i specifically

at the genomic regions most enriched in

H3K27me3 in serum conditions.

The same was observed when Hi-C

contacts were assessed against RING1B

occupancy (Illingworth et al., 2015) (Fig-

ure S3B). In contrast, local Hi-C

interactions globally are similar between

2i- and serum-grown cells, as assessed

by correlation of their insulation scores

(Figure S3C), consistent with the preser-

vation of CTCF occupancy reported

between serum and 2i-grown mECS

(Atlasi et al., 2019).

Loss of Polycomb-Mediated Long-
Range Interactions in 2i-Cultured
mESCs
Polycomb has also been implicated in

more long-range interactions using 4C,

5C, and promoter-capture Hi-C (Bonev

et al., 2017; Denholtz et al., 2013; Joshi

et al., 2015; Kundu et al., 2017; Schoen-

felder et al., 2015; Vieux-Rochas et al.,

2015). Visual inspection of our Hi-C data

within defined genomic windows in

serum/LIF mESCs confirms that there

are strong contacts between separate
lycomb (H3K27me3) marked loci—for example between the

ida1 and Bmi1 loci separated by 650 kb on mouse chromo-

me 2 (Figure 4A), and between the En2, Shh, and Mnx1 loci

ross 1.3 Mb on chromosome 5 (Figure 4B). Consistent with

e redistribution of H3K27me3 and the loss of PRC1 and PRC2

cupancy at these loci under 2i conditions, these long-range
29, 1974–1985, November 12, 2019 1977
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Figure 3. Loss of Local Chromatin Interactions in 2i

(A) Hi-C heatmaps (normalized contact frequencies at 10-kb resolution) for cells grown in serum (left) and 2i media (middle) for the HoxC and HoxD clusters. The

right-hand heatmaps show the difference between contact frequencies in 2i versus serum. Boundaries of the Hox clusters are marked with dashed lines. Below

the gene annotations, ChIP-seq profiles for H3K27me3 (Marks et al., 2012) and Ring1B (Joshi et al., 2015) are shown. Genome coordinates are from mm9

assembly of the mouse genome

(B) Local rescaled pileups (Flyamer et al., 2019) of all long (> 10 kb) regions of RING1B binding (n = 181) in serum and 2i Hi-C data. Black bar shows the location of

the averaged RING1B binding sites.

(C) Mean ± 95% confidence interval (CI) number of normalized local Hi-C interactions (left-hand y axis) in 25-kb windows across quantiles of H3K27me3

occupancy in serum. Data for serum and 2i media are shown as purple or blue dots, respectively. Grey bars show the number of windows in each category (right y

axis with log scale).
contacts are depleted or lost from cells in the ground state (Fig-

ures 4A and 4B). To analyze such interactions genome wide, we

used pileup averaging of intra-chromosomal interactions be-

tween all CGIs either bound by PRC1 (RING1B), or not (Figures

4C and S4A). This showed reduced interactions under 2i condi-

tions at CGIs specifically bound by RING1B, suggesting that

the interactions disrupted under 2i are related to polycomb and

not to general features of CGI promoters. Reduced interactions
1978 Cell Reports 29, 1974–1985, November 12, 2019
at polycomb sites were also confirmed by analysis of loops anno-

tated in published Hi-C data from mESCs (Bonev et al., 2017).

RING1B-associated loops across the genome display a clear

depletion of interactions in 2i cells compared to those grown in

serum (Figures 4D and S4B). In contrast, interactions between

CTCF sites were not diminished and even seem enhanced in 2i.

We also performed the same analysis on published Hi-C data

from ICM/E3.5 embryos (Du et al., 2017; Ke et al., 2017; Zhang
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Bmi1

Figure 4. Loss of Long-Range Chromatin Interactions between Polycomb Loci in 2i

(A and B) Hi-C heatmaps (normalized contact frequencies at 10-kb resolution) for cells grown in serum (left) and 2i media (middle) showing distal interactions

between polycomb targets, Bmi1 and Skida1 (A), or En2, Shh, and Mnx1 (B). Interactions in data from serum-cultured cells are highlighted with dashed circles.

The right-hand heatmaps show the differences between contact frequencies in 2i versus serum. Below the gene annotations, ChIP-seq profiles for H3K27me3

(Marks et al., 2012), Ring1B, and Suz12 (Joshi et al., 2015) are shown. Genome coordinates are from mm9 assembly of the mouse genome.

(C) Averaged interactions (‘‘pileups’’) between CpG islands (CGIs) either occupied, or not, by RING1B in Hi-C data from serum- and 2i-cultured cells. Value of the

center pixel is shown in the top left corner of each heatmap.

(D) Pileups at loops called in mESC Hi-C data (Bonev et al., 2017), using our serum and 2i Hi-C data, and compared to published Hi-C data from ICM (Du et al.,

2017; Zhang et al., 2018), E3.5 embryos (Ke et al., 2017), and from the epiblast (Epi) and visceral endoderm (VE) of the E6.5 embryo and the ectoderm (Ect) at E7.5

(Zhang et al., 2018). Shown are all loops (All), those associated with CTCF peaks but not RING1B peaks (CTCF), and those associated with RING1B peaks

(RING1B), but not CTCF peaks. Association is determined by the highest enriched pixel in the loop beingwithin 5 kb of a ChIP-seq peak on both ends, while lack of

a peak on at least one of the sides is treated as no association. Value of the center pixel is shown in the top-left corner of each heatmap.
et al., 2018).While we cannot be sure of the polycombdistribution

across the genomeat this stage of embryogenesis in vivo, consis-

tent with a DNA hypomethylated state, we observe high levels of

enrichment for CTCF-associated loops in these datasets, but no

enrichment at sites corresponding to RING1B-associated loops

(Figure 4D). However, enrichment of RING1B-associated loops

appears very prominently later in embryogenesis at E6.5 in cells

of both the epiblast and visceral endoderm, when DNA methyl-

ation is very high (Figure 4D) (Zhang et al., 2018).
Preservation of DNA Methylation in 2i Prevents HoxD

Decompaction
The 3D chromatin re-organization at polycomb targets we

observe under 2i conditions could be a consequence of DNA hy-

pomethylation-mediated polycomb redistribution or a reflection

of the altered developmental potential of mESCs cultured in 2i

relative to their serum counterparts. To distinguish between

these two possibilities, we sought to uncouple the epigenetic

transitions from the developmental changes in 2i cells.
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DNA hypomethylation in 2i is thought to be the consequence

of repression of Dnmt3a, Dnmt3b, and Dnmt3l by PRDM14

(Ficz et al., 2013; Yamaji et al., 2013). Therefore, we established

a mESC line in which a high level of DNA methylation is main-

tained under 2i conditions. This was achieved utilizing a DKO

(Dnmt3a�/�, Dnmt3b�/�) mESC cell line (3B3) in which DNA

methylation is subsequentlymaintainedwith a Dnmt3B-express-

ing transgene under the control of the CAG promoter (Jackson

et al., 2004). In addition, we expressed the de novomethyltrans-

ferase co-factor Dnmt3L from a CAG promoter to create the

mESC line 3B3L. Unlike the endogenous gene loci, the Dnmt3b

and Dnmt3l transgenes in 3B3L cells are not repressed by

PRDM14. High-performance liquid chromatography (HPLC)

confirmed that high CpG DNA methylation levels are retained

in 3B3L cells cultured in 2i (Figure 5A). We note that Uhrf1 tran-

script levels in 2i were similar for both WT and 3B3L mESCs

more consistent with the Prdm14 repression model of hypome-

thylation in 2i, rather than a model involving downregulation of

Uhrf1 (von Meyenn et al., 2016).

Consistent with the model where DNA methylation focuses

polycomb targeting, ChIP-sequencing revealed that the mainte-

nance of serum-level DNAmethylation levels under 2i conditions

in 3B3L cells also resulted in the observedH3K27me3 deposition

being largely retained at polycomb target loci (Figures 5B and

5C). The H3K27me3 profiles at CGI that we observed in our

rescued 3B3L cells parallel those observed when de novo

Dnmt activities were reintroduced in Dnmt3a�/�, Dnmt3b�/� hy-

pomethylated mESCs (King et al., 2016).

Consistent with the role of polycomb in mediating chromatin

compaction, FISH revealed that the HoxD locus is retained in a

compact chromatin conformation when 3B3L cells are grown

in 2i, contrasting with the decompaction seen at this locus

when WT ESCs are grown in these culture conditions (Fig-

ure 5D). Inter-probe distances measured across HoxD were

not significantly different between 3B3L cells grown in serum

or 2i (Figures 5E and S5A). This result was also confirmed

utilizing a cell line in which Dnmt3a and Dnmt3l transgenes

were exogenously expressed from a constitutive promoter

(Figure S5B).

Similarly, in contrast to the loss of long-range clustering be-

tween distant polycomb sites such as En2, Shh, and Mnx1

seen in WT ESCs in 2i (Figure 4B), inter-probe distances were

not increased when 3B3L cells were cultured in 2i (Figure 5F)

and the clustering of all three loci together was maintained (Fig-

ure 5G). This is consistent with the maintenance of H3K27me3

at these regions in 3B3L cells cultured under 2i conditions

(Figure S5C).

The Phenotype of 2i ESCs Is Driven by Culture
Conditions, Not the Epigenome or 3D Chromatin
Organization
Using 3B3L cells, we are able to grow mESCs in 2i culture con-

ditions and largely maintain the epigenome and 3D genome or-

ganization of ESCs grown in serum. To determine whether the

phenotype of these cells is determined by the epigenome and

3D genome organization or by the 2i condition and its impact

on signaling, we first analyzed features characteristic of the 2i

naive ground state of pluripotency.
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3B3L cells still appear to exhibit hallmarks of the 2i ground

state including upregulation of Prdm14 (Figure 6A) and charac-

teristic spheroid colony morphology. There was also uniform

staining for ESRRB in 3B3L cells growing in 2i, contrasting

the heterogeneous staining seen in serum-grown cells (Fig-

ure 6B). Serum and 2i mESCs have distinct transcriptional

profiles (Marks et al., 2012). To determine whether the tran-

scriptional profile of 3B3L cells in 2i more closely resembles

that of mESCs with a similar epigenome and 3D organization

(serum ESCs), or that of mESCs grown under similar signaling

blockade (2i), we compared RNA sequencing (RNA-seq) data

obtained from 3B3L and WT mESCs in 2i conditions. Prin-

cipal-component analysis showed that the 3B3L/2i transcrip-

tome clusters with that of WT (J1) cells in the same condition,

rather than with that of 3B3L cells grown in serum (Figure 6C).

These results imply that the serum-like epigenome and 3D

genome organization of 3B3L cells growing in 2i conditions

has little or no effect on the naive pluripotency transcriptional

state of these cells.

DISCUSSION

The observed patterns of DNA/histone modification profiled

across the genome, and spatial genome organization assayed

by imaging or chromosome conformation capture assays, often

correlate with patterns of gene regulation. However, experi-

ments that determine whether there is a causal relationship be-

tween the epigenome, 3D genome, and gene regulation are often

lacking.

DNA Methylation Impacts on 3D Genome Organization
via Polycomb
As previously established by us and others (Brinkman et al.,

2012; Jermann et al., 2014; Marks et al., 2012; Reddington

et al., 2013, 2014), DNA methylation has a profound effect on

the distribution of polycomb (H3K27 tri-methylation) across the

mammalian genome, including in ESCs. This is likely to be as a

result of both the specific targeting of PRC2 and PRC1 to CGIs

(Farcas et al., 2012; Riising et al., 2014) and the generalized affin-

ity of polycomb complexes for chromatin (Blackledge et al.,

2015).

Here, we have shown, both by imaging at a few specific exem-

plar loci and genome wide using Hi-C, that the altered epige-

nome of 2i ESCs influences the 3D organization of the genome;

specifically, a loss of both local chromatin compaction at poly-

comb target loci (Figures 1 and 3) and long-range polycomb-

mediated chromatin contacts (Figure 4). We also show that the

loss of chromatin compaction at polycomb target loci, such as

Hox loci, in naive pluripotency reflects their chromatin conforma-

tion in vivo in hypomethylated preimplantation blastocysts

(Figure 2).

In contrast to polycomb target loci, chromatin compaction at a

control non-polycomb target locus was not significantly different

between mESCs grown in the serum versus 2i (Figure 1). This

suggests that chromatin decompaction is not a result of a

global alteration in the 3D chromatin organization of naive 2i

cells. It also demonstrates that the significant loss of DNA

methylation across a genomic region has no detectable effect
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Figure 5. Maintenance of the Epigenetic and 3D Landscape in 2i

(A) DNA methylation measured by mass spectrometry showing global levels of methylated cytosine in WT and 3B3L cells under serum/LIF and 2i/LIF conditions

(as well as negative control TKOs, which lack all the active DNMTs; Tsumura et al., 2006). Values represent the percentage of methylated cytosine normalized to

total guanine. The mean of two technical replicates is shown, with error bars representing the standard deviation of the mean.

(B) UCSC genome browser screen shot at the HoxD locus showing H3K27me3 ChIP-seq in WT and 3B3L cells under serum/LIF and 2i/LIF conditions. Data for

wild-type (WT) cells are fromMarks et al. (2012). Data are binned into 200-bpwindows and normalized by total read count with reads frommatching input samples

subtracted.

(C) Boxplots representing average H3K27me3 signal on promoters (+/� 1 kb from transcription start site [TSS]) for all promoters in WT or 3B3L cells under serum

or 2i conditions.

(D) Representative images of nuclei after FISH with probes for HoxD from WT and 3B3L cells grown in serum or 2i. Scale bars represent 10 mm.

(E) Violin plots showing distribution of inter-probe distances at theHoxD and a control (Ctrl) locus for WT J1 and 3B3L cells cultured in serum/LIF and 2i/LIF. h.s. =

p < 0.0001. Biological replicate for 3B3L cells, and data for 3A3L cells are in Figure S5.

(F) Same as in (E), but for probes to En2, Shh, and Mnx1; * p<0.05, ** p<0.01, *** p<0.001 and h.s. p<0.0001.

(G) Scatterplots showing individual measurements for data in (F), with two distances shown along the axes and one (En2-Mnx1) color coded.
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Figure 6. Analysis of the Functional State of 3B3L mESCs in 2i

(A) Regularized log (rlog) transformed expression value for Prdm14 in WT and 3B3L cells cultured in serum or 2i. Error bars show mean and bootstrapped 95%

confidence intervals for each cell type and treatment group. Data are from three biological replicates

(B) ESRRB staining in 3B3L cells under 2i or serum conditions. Nuclei are counterstained with DAPI. Exposure times for the TxRed channel (ESRRB) were

matched between conditions. Scale bars represent 100 mm.

(C) Principal-component analysis (PCA) of the transcriptome (RNA-seq) of wild-type (WT) J1 and 3B3L mESCs cultured in serum or 2i. Data are from three

biological replicates.
on chromatin compaction, as assayed at a cytological level. This

is consistent with the finding that chromatin compaction, as

assayed by nuclease sensitivity and sucrose gradient sedimen-

tation, in mammalian cells is also not affected by the loss of

DNA methylation (Gilbert et al., 2007).

The Epigenome and 3D Genome Do Not Affect the Naive
Pluripotency Functional State
By manipulating the epigenome (DNA methylation and

H3K27me3 distribution) of mESCs grown in 2i conditions, we

have been able to demonstrate that changes in 3D genome orga-

nization that occur as ESCs transition between primed and naive

pluripotency are a downstream consequence of the shifting epi-

genome. Constitutive expression of de novo DNA methyltrans-

ferases during the conversion to 2i conditions largely prevents

the changes to DNA methylation and polycomb targeting nor-

mally seen for WT mESCs in these culture conditions (Figure 5).

This is then reflected in 3D genome organization; in 3B3LmESCs

cultured in 2i, Hox loci retain their local chromatin compaction

and long-range clustering of polycomb sites is preserved

(Figure 5).

However, this ‘‘serum-like’’ epigenome and 3D genome or-

ganization that we have imposed on ESCs growing in 2i does
1982 Cell Reports 29, 1974–1985, November 12, 2019
not detectably affect the transcriptional state of the ESCs.

They maintain their high and homogeneous expression of plu-

ripotency markers and the transcriptome of these cells resem-

bles that of the ground state (2i), not that of primed (serum)

ESCs (Figure 6). This is consistent with the observation that

the decrease of H3K27me3 at gene promoters is not generally

associated with transcription activation of these loci under 2i

conditions (Galonska et al., 2015; Marks et al., 2012; van Mierlo

et al., 2019). We presume that the transcriptional network

driven by the defined 2i signaling environment predominates

over any instructive information in the epigenome or 3D

genome.

Our data demonstrate that 3D genome organization is an

emergent property of the epigenome and that the conse-

quences of perturbing one part of the epigenome (DNA

methylation) cannot be considered in isolation. Rather, the

impact of one epigenetic system on other epigenetic systems

(e.g., polycomb) and the related changes in 3D genome orga-

nization must be considered together. Our findings also

caution against over-interpreting the functional significance

of the epigenome and 3D genome organization—at least

in ESCs. It will now be interesting to establish how DNA

methylation and polycomb become increasingly functionally



important for gene regulation as development progresses

(Greenberg et al., 2017).
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ESRRB (Human ERRb, clone H6705) Perscus proteomics, mouse, PP-H6705; RRID: AB_2100412

RING1B (Rnf2) MBL D139-3; RRID: AB_592650

H3K27me3 Millipore 07-449; RRID: AB_310624

Donkey anti-mouse Alexafluor 555 Thermo Fisher A31570; RRID: AB_2536180

Bacterial and Virus Strains

Fosmid FISH probes BACPAC resource See Table S3

Chemicals, Peptides, and Recombinant Proteins

DMEM, high glucose, pyruvate GIBCO 41966029

Glasgow’s MEM GIBCO 21710025

DMEM/F-12 GIBCO 11320033

Neurobasal Medium GIBCO 21103049

N-2 Supplement (100X) GIBCO 17502001

B-27 Supplement (50X), serum free GIBCO 17504044

Bovine Albumin Fraction V (7.5% solution) GIBCO 15260037

Fetal calf serum (Myoclone) Thermo Fisher 10081-073

Stemolecule PD0325901 Stemgent 040006

Stemolecule CHIR99021 Stemgent 040004

1-Thioglycerol Sigma M6145

ESGRO� Recombinant Mouse LIF Protein Millipore ESG1106

Biotin-16-dUTP Roche 11093070910

Digoxigenin-11-dUTP Roche 11573152910

Green 500 dUTP Enzo Life Sciences ENZ-42845

ChromaTide Alexa Fluor 594-5-dUTP Invitrogen, ThermoFisher C11400

Mouse Cot-1 DNA Invitrogen, ThermoFisher 18440-016

Protein G Dynabeads Invitrogen, ThermoFisher 10003D

HPLC grade water Chromasolv, Sigma 7732-18-5

T7 DNA Polymerase Thermo Scientific EP0081

Agencourt AMPure XP beads Beckman Coulter 10136224

Ion Xpress Barcode adaptors Thermo Fisher 4471250

Formaldehyde CALBIOCHEM 344198

IGEPAL CA-630 Sigma I8896

Halt Protease Inhibitor Cocktail Thermo Scientific 78430

NEBuffer 3 New England Biolabs B7003S

Triton X-100 Sigma 93443

DpnII with buffer New England Biolabs R0543M

dNTPs Life Technologies 0297018

Biotin-14-dATP Invitrogen 19524016

DNA Polymerase I Klenow Fragment New England Biolabs M0210L

T4 DNA Ligase Buffer New England Biolabs B0202S

T4 DNA Ligase New England Biolabs M0202M

Dynabeads MyOne Streptavidin T1 Life Technologies 65602

T4 Polynucleotide Kinase New England Biolabs M0201L
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

T4 DNA Polymerase New England Biolabs M0203L

NEBuffer 2 New England Biolabs B7002S

DNA polymerase I Klenow (3‘/5‘ exo-)

fragment

New England Biolabs M0212L

Quick Ligation Kit New England Biolabs M2200L

Q5� High-Fidelity DNA Polymerase New England Biolabs M0491L

Critical Commercial Assays

TURBO DNA-free Kit Ambion AM1907

TruSeq Stranded mRNA Library Kit Illumina 20020594

RNeasy kit QIAGEN 74106

MinElute PCR Purification Kit QIAGEN 28004

Qubit dsDNA HS Assay Kit Invitrogen Q32854

Qubit RNA HS Assay Kit Invitrogen Q32852

Ion XpressPlus fragment library kit Thermo Fisher 4471269

Amicon Filter Units 30K 500 ml Millipore UFC5030BK

Deposited Data

Hi-C E14 mESCs grown in serum and

2i media

https://www.ncbi.nlm.nih.gov/geo GSE124342

RNA-Seq https://www.ncbi.nlm.nih.gov/geo GSE121171

H3K27me3 ChIP-seq in serum and

2i media

https://www.ncbi.nlm.nih.gov/geo GSE72555

Ring1B ChIP-seq https://www.ncbi.nlm.nih.gov/geo GSE69978

Experimental Models: Cell Lines

E14 mESCs Fiona Kilanowski, IGMM N/A

WT J1 (clone 36) mESCs Wutz and Jaenisch, 2000 N/A

Ring1B�/� mESCs Leeb and Wutz, 2007 N/A

Eed�/� mESCs Schoeftner et al., 2006 N/A

3B3L cells Okano et al., 1999; Jackson et al., 2004;

and this paper

N/A

Experimental Models: Organisms/Strains

C57BL/6 mice Charles River N/A

Software and Algorithms

Volocity� 3D Image Analysis Software PerkinElmer Inc www.quorumtechnologies.com

Torrent TMP Github https://github.com/iontorrent/TMAP

Distiller Github https://github.com/mirnylab/distiller-nf

Pairtools Github https://github.com/mirnylab/pairtools

Cooler Github https://github.com/mirnylab/cooler

Cooltools Github https://github.com/mirnylab/cooltools

Coolpup.py Github https://github.com/Phlya/coolpuppy

Sailfish Github https://github.com/kingsfordgroup/sailfish

Other

Hypercarb HPLC Column Thermo Scientific 35003-031030

DNA LoBind tubes Eppendorf 0030108051
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Meehan (Richard.Meehan@igmm.ed.ac.uk).
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MATERIALS AVAILABILITY

All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
C57BL/6 mice were maintained in accordance with institutional guidelines and national regulations. Animal experiments were per-

formed under the authority of UK Home Office project license PPL60/4424 following ethical review by the University of Edinburgh

Animal Welfare and Ethical Review Body.

Cell Lines
Male mouse embryonic stem cell lines used in this study are: E14, WT (clone 36), Ring1B�/�, Eed�/� (Eskeland et al., 2010) and WT

J1. 3B3L/3A3L cells are DKO (Dnmt3a-/-, 3b�/�) mESC lines where DNA methylation is maintained with a Dnmt3b/ or Dnmt3a ex-

pressing transgene under the control of the CAG promoter (3B3/3A3) (Jackson et al., 2004; Okano et al., 1999) and which were trans-

fected with pCAGGS-Dnmt3l-Flag-IRES-Blasticidin-polyA, and selected by blasticidin (5 mg/ml) to obtain cell lines with stable

expression of Dnmt3l.

mESCs were maintained at 37�C with 5% CO2 and passaged every 2-3 days. Serum cells were maintained in either DMEM (in the

case of J1-derived lines) or GMEM (in the case of E14-derived lines) (both GIBCO) supplemented with 15% fetal calf serum, 0.1 mM

nonessential amino acids (SIGMA), 1 mM sodium Pyruvate (Sigma) 1% Penicillin/Streptomycin, 2 mM L-glutamine, 0.1 mM b-mer-

captoethanol (Thermo Fisher), and ESGRO LIF (Millipore) at 1000 U/mL. Cells were either grown on 0.2% gelatin (Sigma) (E14 cells,

3B3L cells) or on mitomyin C-inactivated SNLP feeder cells in the case of serum culture J1/clone36-derived cells. 2i culture condi-

tions include 50% DMEM/F12 (GIBCO), 50% Neurobasal media (GIBCO), 0.5% N2 supplement, 1% B27 & RA (GIBCO), 7.5% BSA

(GIBCO), 1%Penicilllin/Streptomycin, 2mML-glutamine, 0.15mMmonothioglycerol (Sigma), 1000 U/ml ESGROLIF (Millipore), 1 mM

PD0325901 (MEK inhibitor, Stemgent) and 3 mM CHIR99021 (GSK3 inhibitor, Stemgent). mESCs were passaged every 2-3 days

using trypsin/EDTA (Sigma). 2i conversions were carried out for 14 days. To deplete feeder-dependent mESCs of their feeders for

analysis/2i-conversion, the culture was plated 3x for 20 mins, in which time the feeders stick to the tissue culture dish and mESCs

do not.

METHODS DETAILS

FISH
OnemillionmESCswere platedonto gelatinized slides for 4 h.Cellswere fixed in 4%paraformaldehyde (pFA) for 10min, permeabilized

in 0.5%TritonX-100 for 10min, air-dried and storedat�80�C.Slideswere incubatedwith 100ug/ml RNaseA in 2 xSSC for 1 h,washed

in 2 x SSCanddehydrated through an alcohol series. Slideswere then denatured in 70% formamide/2xSSCat 80�C for 30min. Fosmid

clones (Table S3) were prepared and labeled with digoxigenin-11-dUTP or with biotin-16-dUTP as previously described (Morey et al.,

2007). Approximately 160 ng of biotin- and digoxigenin-labelled fosmid probes were used per slide, with 16-24 mg of Cot1 DNA

(Invitrogen) and 10 mg of salmon sperm DNA. For 4-colour FISH, a similar quantity of the additional fosmid was labelled with either

red-dUTP (ChromaTide Alexa FluorTM 594-5-dUTP,Invitrogen) or 5(6)-Carboxyrhodamine Green (Green 500) dUTP (Enzo).

Approximately 150 ng of labeled fosmid probes were used per slide, together with 8 mg of mouse Cot1 DNA (Invitrogen) and 5 mg

sonicated salmon sperm DNA. Probes were denatured at 80�C for 5 min, preannealed for 15 min at 37�C and hybridized to the de-

natured slides overnight (o/n). The following day, the slides were washed in 2x SSC followed by 0.1x SSC and stained in DAPI prior to

imaging.

For FISH on blastocysts, an adaptation of previously described protocols was used (Flyamer et al., 2017; Probst et al., 2007).

Briefly, 20 female C57BL/6 mice were superovulated and mated with C57BL/6 males, and blastocysts isolated at E3.5 by flushing

the uterine horns with FHMmedia. Blastocysts with visible blastocoels were fixed in 4%pFA and their zona pellucidae removed using

Acidic Tyrode’s. The blastocysts were permeabilized in 0.2% Triton X-100 in PBS. Fixed samples were embedded in fibrin clots to

attach the blastocysts to slides. Post-fixation was carried out in 2% pFA/ PBS for 30 min. Finally, the slide was rinsed 3x in PBS and

stored in PBS at 4�C. FISH was carried out using directly labeled probes described above, with somemodifications. The slides were

denatured for 45 min.

Image Capture
Images were captured using a Hamamatsu Orca AG CCD camera (Hamamatsu Photonics (UK) Ltd, Welwyn Garden City, UK) and a

Zeiss Axioplan II epifluorescence microscope with Plan-neofluar objectives, a 100WHg source (Carl Zeiss, Welwyn Garden City, UK)

and Chroma #83000 triple band pass filter set (Chroma Technology Corp., Rockingham, VT) with the excitation filters installed in a

motorized filter wheel (Prior Scientific Instruments, Cambridge, UK). A piezoelectrically driven objective mount (PIFOCmodel P-721,

Physik Instrumente GmbH & Co, Karlsruhe) was used to control movement in the z dimension (with 0.2 mm step).
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Immunocytochemistry
mESCs grown on glass coverslips coated with gelatin were fixed with 4% PFA for 20 mins, blocked in 10% donkey serum (Sigma) in

0.1% Triton X-100 for 1 h and incubated o/n with primary antibody detecting ESRRB (Perseus Proteomics, PP-H6705-00) at a 1:500

dilution at 4�C. The following day, samples were incubated with Donkey anti mouse Alexafluor 555 (Cat: A-31570, Thermo Fisher) at

room temperature for 1 h. Nuclei were counterstained with DAPI. Imaging was carried out using a Zeiss Axioscope 2 microscope.

H3K27me3 ChIP-Seq
Chromatin prepared from formaldehyde fixed 3B3-3l cells cultured in serum or 2i was fragmented (Covaris sonicator) to a mean frag-

ment size of 200bp. Approximately 5x106 cell equivalents were used for each immunoprecipitation. ChIP was performed using anti-

body toward H3K27Me3 (Millipore) and Protein G Dynabeads (Thermo Fisher) were used to obtain antibody bound chromatin.

Following immunoprecipitation, beads were washed once in X-ChIP wash buffer (150mM NaCl; 10mM Tris pH8; 2mM EDTA; 1%

NP40; 0.1% sodium deoxycholate w/v), and once in LiCl wash buffer (100mM Tris pH7.5; 500mM LiCl; 1% NP40; 1% sodium de-

oxycholate) for 10 min at 4�C each wash. DNA was then reverse crosslinked and eluted from the beads by incubation in elution

buffer (1% SDS, 0.1M NaHCO3) followed by treatment with RNase and proteinase K before purification using a QIAGEN minelute

kit (QIAGEN) as per manufacturer’s instructions and eluting the DNA in 11 mL EB buffer from the kit. Finally, DNAwas quantified using

a Qubit HS DNA quantification kit (Thermo Fisher) and 1ng DNA was then used to prepare sequencing libraries for Ion Torrent

sequencing using the Ion XpressPlus Fragment Library Kit (Thermo Fisher). The DNA was end repaired, purified, and ligated to

Ion-compatible barcoded adapters (Ion Xpress Barcode Adapters 1–96: (Thermo Fisher) followed by nick-repair to complete the link-

age between adapters and DNA inserts. The adaptor-ligated library was then amplified (10 cycles) and size-selected using two

rounds of AMPure XP bead (Beckman Coulter) capture to size-select fragments approximately 100–250bp in length. Samples

were pooled at a 1:1 ratio and sequenced on an Ion Proton P1 microwell chip (Thermo Fisher).

Mapping and data normalization were carried out as described previously (Thomson et al., 2015). In short, reads were mapped to

the reference genome using the Torrent TMAP software. The data were then binned into 200bp windows across the genome and

normalized by total read count. Raw sequencing datasets from published WT E14 mESCs in both serum and 2i were processed

in a similar manner (Marks et al., 2012): NCBI GSE23943.

RNA-Seq
RNA was extracted from snap frozen mESC pellets, 3 biological replicates per cell line, using an RNeasy kit (QIAGEN). RNA was

quantified by nanodrop and DNAwas removed by treatment with Turbo DNA-free reagents (AM1907, Ambion) according to theman-

ufacturer’s protocol. Total RNA samples were quantified using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific Inc, Q32866) and

the Qubit RNA HS assay kit (Q33855). RNA integrity was assessed using the Agilent 2100 Bioanalyser System (Agilent Technologies

Inc, GS2938B) and Agilent RNA 6000 Nano kit (5067-1511).

Sequencing libraries were prepared from 500 ng of each total-RNA sample using the TruSeq Stranded mRNA Library Kit (Illumina

Inc, 20020594) according to the provided protocol. Poly-A mRNAs were purified using poly-T oligo attached magnetic beads, and

fragmented using divalent cations under elevated temperature and primed with random hexamers. Primed RNA fragments were

reverse transcribed into first strand cDNA using reverse transcriptase and random primers. RNA templates were removed and a

replacement strand synthesized incorporating dUTP in place of dTTP to generate ds cDNA. The incorporation of dUTP in second

strand synthesis quenches the second strand during amplification as the polymerase used in the assay is not incorporated past

this nucleotide. AMPure XP beads (Beckman Coulter, A63881) were then used to separate the ds cDNA from the second strand re-

actionmix, providing blunt-ended cDNA. A single ‘A’ nucleotide was added to the 30 ends of the blunt fragments to prevent them from

ligating to one another during the subsequent adaptor ligation reaction, and a corresponding single ‘T’ nucleotide on the 30 end of the

adaptor provided a complementary overhang for ligating the adaptor to the fragment. Multiple indexing adapters were then ligated to

the ends of the ds cDNA to prepare them for hybridization onto a flow cell, before 12 cycles of PCR were used to selectively enrich

those DNA fragments that had adaptor molecules on both ends and amplify the amount of DNA in the library suitable for sequencing.

After amplification libraries were purified using AMPure XP beads.

Libraries were quantified by fluorometry using the Qubit dsDNA HS assay and assessed for quality and fragment size using the

Agilent Bioanalyser with the DNA HS Kit (5067-4626). Sequencing was performed using the NextSeq 500/550 High-Output v2

(150 cycle) Kit (FC-404-2002) on the NextSeq 550 platform (Illumina Inc, SY-415-1002). Twenty four libraries were combined in

two equimolar pools of 12 based on the library quantification results and each pool was run across a single High-Output Flow

Cell. Sequencing was performed at the Wellcome Trust Clinical Research Facility (WTCRF; Edinburgh).

DNA Methylation by Mass Spectrometry
DNA was extracted from frozen cell pellets by standard phenol:chloroform extraction and ethanol purification. To carry out DNA hy-

drolysis, 2.5 mg DNA in 50 mL final volume was made up to 44ml in mass spectrometry grade water (Chromasolv, Sigma) and incu-

bated at 95�C for 10 mins. 5ml T7 DNA polymerase reaction buffer and 1ml 10U/ml T7 DNA polymerase (Thermo Fisher) were added

and the samples incubated o/n at 37�C. The reaction was heat inactivated at 75�C for 10 mins. The sample was then centrifuged at

12,000g at r.t. for 45 mins.
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Hydrolyzed DNAwas extracted in 5:3:2 methanol:acetonitrile:sample, and centrifuged at 12,000g for 5 mins, the upper 90 mL were

taken and the organic solvent removed using a vacuum centrifuge. Analytes were resuspended in 30 mL mass spectrometry grade

water and 10 mL injected onto a 30x 1mmHyperCarb column (VWR). A gradient of 0%–90%Bwas run over 4 mins, where B is aceto-

nitrile and A is 20 mM ammonium carbonate. Mass spectra were acquired in negative mode on a Thermo Q Exactive, scanning from

300 to 350m/z at resolution 70k. AGC target was set to 1x 106 andmaximum ion time 100ms. Data were analyzed using AssayR (Wills

et al., 2017).

In Situ Hi-C
Hi-C was performed largely as described (Rao et al., 2014) with minor modifications. Briefly, 2-5x106 mESCs were crosslinked in 1%

formaldehyde for 10 mins, snap-frozen and stored at �80�C. After permeabilization in lysis buffer (0.2% Igepal, 10 mM Tris-HCl pH

8.0, 10 mM NaCl, 1x Halt Protease inhibitor cocktail) nuclei were isolated in 0.3% SDS in NEBuffer 3 at 62�C for 10 min. SDS was

quenched with 1%Triton X-100 at 37�C for 1 h, then the nuclei were pelleted and resuspended in 250 ml DpnII buffer with 600 UDpnII.

After digestion o/n, 200 more units were added for 2 h. Then the ends were filled-in using Klenow, d(G/C/T)TPs and biotin-14-dATP

for 1.5 h at 37�C. After ligation at room temperature for 4 h the nuclei were spun down, resuspended in 200 ml mQ and digested with

proteinase K for 30 min at 55�C in presence of 1% SDS. Cross-links were reversed at 65�C o/n after addition of NaCl to a final con-

centration of 1.85 M. After ethanol precipitation and a 70%–80% ethanol wash, DNA was resuspended in 500 ml of sonication buffer

(50mMTris pH 8.0, 0.1%SDS, 10mMEDTA), incubated on ice for 15min and then sheared using a probe sonicator to fragment sizes

of 200-700 bp. DNA was then concentrated on Amicon filter units, bound to MyOne T1 Streptavidin beads and used for Illumina

library preparation. Small aliquots were taken before and after DpnII treatment, and before sonication to confirm efficient DNA diges-

tion and ligation by running them on 1% agarose gel. Samples were first test-sequenced on NextSeq 550 (WTCRF, Edinburgh) to

check library quality, and then selected libraries were sequenced at greater depth on HiSeq 4000 (BGI-Hongkong) (Table S4).

QUANTIFICATION AND STATISTICAL ANALYSIS

FISH Image Analysis
Volocity software (PerkinElmer) was used to capture, process, and analyze the images. Images were deconvolved using the Resto-

ration module, using the constrained iterative algorithm. Image analysis was carried out using the Quantitation module. For analysis

of data from ESCs, each dataset consisted of 70-155 measurements. For analysis of Hox probes in blastocysts, 686 alleles from 14

embryos were analyzed. Control inter-probe distances were measured from 100 alleles from 2 blastocysts. The statistical analysis of

inter-probe distance distributions was determined using a Mann-Whitney U Test. Mean inter-probe distances for all FISH data are

shown in Table S1 and p values are listed in Table S2.

Hi-C Data Analysis
Reads were processed using distiller (https://github.com/mirnylab/distiller-nf) on the high-performance computing cluster of the Uni-

versity of Edinburgh (Eddie). Mapping was performed to the mm9 genome build (Table S4). Hi-C pairs with exactly matching coor-

dinates were removed as PCR or optical duplicates (pcr_dups_max_mismatch_bp: 0). Pairs with mapq < 30 were not used. The

output statistics information and Cooler files (https://github.com/mirnylab/cooler) were used in downstream analyses (Abdennur

and Mirny, 2019). 1000 bp resolution Cooler files were used to create multi-resolution files for visualization in HiGlass. We only

used balanced matrices for our analyses.

We performed pileup analysis using coolpup.py (Flyamer et al., 2019). Briefly, we took all regions of interest in the Hi-C maps, e.g.,

all cis interactions between CGIs bound or not bound by RING1B (Illingworth et al., 2015), and averaged a 205 kb3 205 kb window

centered on them at 5 kb resolution. For each averaged window, we also created matrix of expected values, based on average

balanced value at each diagonal of the matrix for the same chromosomes. We then summed up all expected matrices and divided

observed values by them. Values of enrichment in top left corners of pileups are the enrichment of interactions in the center pixel of

the matrix, after all described normalization procedures.

Since our own Hi-C data were not deep enough to call loops with high quality, we chose instead to take advantage of very deeply

sequenced published data frommESCs (Bonev et al., 2017).We used cooltools call-dots reimplementation of the HiCCUPS algorithm

(Rao et al., 2014) from dekkerlab/shrink-donut-dotfinder (commit 377106e). This was applied with default settings (except for lower

FDR threshold of 0.1) to reanalyzed mapq R 30 filtered mESC Hi-C data at 5 kb, 10 kb and 25 kb resolution to find areas of local

enrichment of interactions between loci up to 20 Mb away. Calls from different resolutions were combined using a custom script

following the HiCCUPS merging procedure. Annotated dots were then filtered by intersecting with published CTCF peaks (Bonev

et al., 2017), and/or RING1B peaks (Illingworth et al., 2015) using bedtools pairtobed after widening the peaks using bedtools slop.

For local interaction density analysis, we used 5 kb resolution data and 25 kb windows. For each window we determined average

observed/expected number of interactions (excluding the first two diagonals, so we averaged 6 pixels per window). If at least 20% of

the pixels in the window were missing (NaN), we did not consider it (i.e., > 1 pixel, however since missing values come from masking

whole genomic bins during balancing, effectively having one masked bin removed the window from analysis). Then these data were

combined with the read coverage in the same windows from ChIP-seq experiments (H3K27me3 from Marks et al., 2012, RING1B

from Joshi et al., 2015). Binning of the windows into groups was performed based in quantiles of ChIP-seq values and mean
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(±95% confidence interval obtained by bootstrapping) was plotted using seaborn python package, together with the total number of

windows considered in the analysis after all filtering.

For insulation score analysis, we applied cooltools diamond-insulation to data at 25 kb resolution with window size of 100 kb. For

eigenvector analysis, we applied cooltools call-compartments to data at 200 kb resolution with GC content as the reference track.We

then discarded any invalid bins, and performed clustering using seaborn package with default parameters, and pairwise Pearson

correlation analysis (for insulation) between individual samples to assess the similarity between the samples.

RNA-Seq Analysis
mRNA abundance was quantified using Sailfish (version: 0.9.2,-l ISR) against mm10 transcript models as defined by RefSeq. The R

package tximport was used to import and summarize transcript-level estimates for gene-level analysis. The regularized log transfor-

mation (rlog, R Package DESeq2) was applied to minimizes differences between samples for rows with small counts, and which nor-

malizes with respect to library size. To visualize sample-to-sample distances a principal component analysis (PCA) was performed

using the rlog values.

DATA AND CODE AVAILABILITY

The genomic datasets generated during this study are available at the NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.

gov/geo).

The accession numbers for H3K27me3 ChIP-seq data for 3B3L cells in serum and 2i are: GSE 72555 (GSM2700276 and

GSM2700277).

The accession number for Hi-C data is GSE124342. RNA-Seq data can be accessed using series accession number GSE121171.

The code used to perform pile-up analysis of Hi-C data is available at: https://github.com/Phlya/coolpuppy (Flyamer et al., 2019).
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