

Edinburgh Research Explorer

Neural State Machine for Character-Scene Interactions

Citation for published version:
Starke, S, Zhang, H, Komura, T & Saito, J 2019, 'Neural State Machine for Character-Scene Interactions',
ACM Transactions on Graphics, vol. 38, no. 6, 178. https://doi.org/10.1145/3355089.3356505

Digital Object Identifier (DOI):
10.1145/3355089.3356505

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Graphics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/237426514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3355089.3356505
https://www.research.ed.ac.uk/portal/en/publications/neural-state-machine-for-characterscene-interactions(5595e05d-a022-4d46-a696-b60bad57c9fd).html

Neural State Machine for Character-Scene Interactions

SEBASTIAN STARKE†, University of Edinburgh, United Kingdom
HE ZHANG†, University of Edinburgh
TAKU KOMURA, University of Edinburgh
JUN SAITO, Adobe Research, USA

Fig. 1. A selection of results using our method to generate scene interaction behaviors.

We propose Neural State Machine, a novel data-driven framework to guide
characters to achieve goal-driven actions with precise scene interactions.
Even a seemingly simple task such as sitting on a chair is notoriously hard
to model with supervised learning. This difficulty is because such a task
involves complex planning with periodic and non-periodic motions reacting
to the scene geometry to precisely position and orient the character. Our
proposed deep auto-regressive framework enables modeling of multi-modal
scene interaction behaviors purely from data. Given high-level instructions
such as the goal location and the action to be launched there, our system
computes a series of movements and transitions to reach the goal in the
desired state. To allow characters to adapt to a wide range of geometry such
as different shapes of furniture and obstacles, we incorporate an efficient
data augmentation scheme to randomly switch the 3D geometry while main-
taining the context of the original motion. To increase the precision to reach
the goal during runtime, we introduce a control scheme that combines ego-
centric inference and goal-centric inference. We demonstrate the versatility
of our model with various scene interaction tasks such as sitting on a chair,
avoiding obstacles, opening and entering through a door, and picking and
carrying objects generated in real-time just from a single model.

CCS Concepts: • Computing methodologies→Motion capture; Neural
networks.

† Sebastian Starke and He Zhang are joint first authors.
Authors’ addresses: Sebastian Starke† , University of Edinburgh, 10 Crichton Street,
Edinburgh, EH8 9AB, United Kingdom, sebastian.starke@ed.ac.uk; He Zhang† , he.
zhang@ed.ac.uk, University of Edinburgh; TakuKomura, tkomura@ed.ac.uk, University
of Edinburgh; Jun Saito, jsaito@adobe.com, Adobe Research, 801 N 34th St, Seattle, WA,
98103, USA.

Additional Key Words and Phrases: neural networks, locomotion, human
motion, character animation, character control, deep learning

ACM Reference Format:
Sebastian Starke†, He Zhang†, Taku Komura, and Jun Saito. 2019. Neural
State Machine for Character-Scene Interactions. ACM Trans. Graph. 38, 6, Ar-
ticle 178 (November 2019), 14 pages. https://doi.org/10.1145/3355089.3356505

1 INTRODUCTION
A character’s relation to its environment largely defines the fidelity
of its motion. Let us take a task of sitting on a chair as an example.
The character must accurately find a path going around obstacles
such as a table or the target chair itself. The character must also plan
to precisely position and orient itself from the target chair. Other
everyday tasks such as opening doors and carrying objects involve
very different motions but share the common challenge of precise
control based on the scene understanding.

High-quality motion generation using deep supervised learning
has shown success in the limited domain around locomotion [Holden
et al. 2017, 2016]. Extending it to support various everyday tasks
involving scene interactions remains as an unsolved problem be-
cause the model needs to launch a series of complex actions and
transitions to reach the goal with high-level scene understanding,
while accurately adapting to the wide variation of 3D geometries.

In this paper, we propose Neural State Machine to model a wide
range of periodic and aperiodic movements, including locomotion,
sitting, standing, lifting and collision avoidance. Our neural archi-
tecture internally acquires a state machine for character control by
learning different motions and transitions from various tasks. By
designing a control signal with the phase of motion encoded into
high-level action labels and goal locations, our neural network learns
to generate precise production-quality animations from high-level
commands to achieve various complex behaviors, such as walking
towards a chair and sitting, opening a door before moving out from a
room and carrying boxes from or under a desk. Instead of enforcing

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356505

178:2 • Starke, Zhang et al.

a fixed phase function to factorize the network weights [Holden
et al. 2017], which only suits cyclic movements such as locomotion,
our system learns such a factorization from the motion capture data
in an end-to-end fashion.

To further increase the precision of goal-drivenmovements, where
existing systems suffer from error accumulation during inference,
we propose a bi-directional scheme where inference from the ego-
centric point of view as well as from the goal-centric point of view
synthesizes the motion. The results are blended and fed back into
the network to produce smooth movements where the character is
guided to the goal with high precision.

To overcome issueswith heightmap-based representations as used
previously, we introduce volume representations for understanding
the environment so our system can learn movements adapting to
objects with concavity, such as passing through a hole in a wall or
sliding onto a chair sideways to avoid a desk. To further generalize
the scene adaptation, we augment the training data by randomly
switching the geometry in each frame, while maintaining the con-
text of the motion and interaction. Our data augmentation scheme
allows the system to learn the interactions with a wide variation of
geometry efficiently without increasing the data size.
We demonstrate examples such as a character moving around

in a room with obstacles, interacting with furniture and moving
objects at different locations. The system runs in real-time and can
be applied for character control in computer games, virtual reality,
and augmented reality.
The contribution of our system can be summarized as follows:

• a control signal and an autoregressive architecture design
enabling automatic transitions of vastly different high-level
action states to reach the given goal state, while maintaining
motion quality in real-time,

• a bi-directional control framework that mixes inference from
an egocentric point of view and that from a goal-centric point
of view for improving the precision of goal-driven tasks,

• a volumetric representation for guiding the characters to
interact with objects and environments with concavities,

• an efficient data augmentation scheme to learn the interaction
with a wide range of geometry while preserving the context
and without increasing the data size and

• a comprehensive analysis of our method and comparison with
state-of-the-art approaches.

The rest of the paper is summarized as follows. In Section 2, we
provide a brief survey of the related work. Next in Section 3, we
describe the architecture of our system, and then how we make use
of it for goal-driven motion synthesis in Section 4. In Section 5, we
describe how we prepare our training data. We show the experi-
mental results in Section 6 and evaluate the results in Section 7. We
discuss the limitations of our system in Section 8 and then conclude
the paper in Section 9.

2 RELATED WORK
We first review techniques that are developed to animate close inter-
actions between characters and the environment. We next review
machine learning techniques that can potentially be applied for the
problem of close character-environment interaction.

2.1 Animating Close Interactions
Interaction Synthesis fromMotion Capture Sequences. Various kine-

matics based techniques that make use of motion capture data are
proposed for animating close interactions between the body and the
environment. Lee et al. [2002] present results of animating charac-
ters doing jungle gym activities such as climbing up ladders, hanging
on monkey bars etc. under the Motion Graph framework. This setup
only allows the characters tomove in the same environment as when
the motion was captured, which limits the scalability of the method.
One approach that allows animating the characters in novel environ-
ments is to use the patch-based approach: Motion Patches [Lee et al.
2006] use building blocks where the character interacts with the
environment or with other characters as units and assemble them
to generate large scale scenes. Results such as characters playing on
the slide, sitting and working on desks and interacting with other
characters are presented. The use of patch-based approaches are
extended to close interaction of characters [Kim et al. 2012; Shum
et al. 2008] and synthesis of movies that follow some scenario [Won
et al. 2014]. Agrawal and van de Panne [2016] animate close inter-
actions with the environment by aligning the foot step patterns of
the motions in the database.

These approaches are template-based approaches: a selected mo-
tion clip is inserted into the scene and edited according to the sce-
nario. Template-based approaches are simple but do not produce
a continuous motion space that is needed for constructing a wider
variation of movements.

To cope with the problem with template-based approaches, tech-
niques to apply kernel-based approaches are explored for synthesiz-
ing novel character movements [Mukai and Kuriyama 2005; Rose
et al. 1998; Rose III et al. 2001; Wang et al. 2008]. As multiple motion
clips are interpolated to synthesize a novel motion, a wide varia-
tion of smooth and natural motion can be constructed by adjusting
the blending weights. The issue with kernel-based approaches is
in their scalability and the amount of preprocessing needed: when
the data size is very large, the nearest neighbour search can be time
consuming and become the bottleneck of the approach. Also large
amount of data must be preserved in the memory. Deep learning
architectures described in Section 2.2 try to overcome this issue.

Motion Synthesis by Exploration. Another approach to synthesiz-
ing novel interactions with objects and environments is through
exploration. Methods based on probabilistic roadmaps [Choi et al.
2003], rapidly exploring random trees [Choi et al. 2011], A* search [Sa-
fonova and Hodgins 2007] reinforcement learning [Lo et al. 2012;
Lo and Zwicker 2008] and Maximum A Posteriori (MAP) estima-
tion [Min and Chai 2012], local optimization [Mordatch et al. 2012]
and stochastic optimization. [Liu et al. 2010; Ye and Liu 2012; Zhao
et al. 2013] are applied for exploring novel movements for interac-
tions.
Choi et al. [2003] generate probabilistic road maps in the en-

vironment based on footstep patterns and use them to generate
characters that move in the environment. Motions to walk through
narrow areas with side stepping can be generated under their frame-
work. Similarly, Choi et al. [2011] apply online RRT expansion for
navigating characters through narrow environments - whether the
character can pass through a narrow environment or not is checked

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

Neural State Machine for Character-Scene Interactions • 178:3

by evaluating the collision of the body’s sweep surface and the
environment. Lo et al. [2012; 2008] apply reinforcement learning
for navigating characters to move through doors [Lo and Zwicker
2008] and plan the motion to reach a goal in environments with
obstacles [Lo et al. 2012]. These approaches mostly replay existing
motion capture data and there is no discovery of movements or
synthesis of unseen novel movements.
Safonova and Hodgins [2007] use a parametric motion graph

structure where the two motions can be interpolated to produce a
novel motion. The selection of the motions as well as the blending
weights are computed by A* search. Similarly, Min et al. [2012]
propose a Motion Graph++ structure where motions of the same
type are blended by functional PCA. They optimize the blending
weights by MAP estimation. Our work is similar to these approaches
in the sense that we also have annotations for each motion type and
the system automatically interpolates between them for reaching
the goal. By making use of a neural network as a representation,
our system can learn from a large amount of high dimensional data,
such as volumetric data of objects and environments and human
motion capture sequences, resulting in a wider range of movements.
Also, as we adopt a supervised learning scheme, the motion can
be synthesized without optimization steps, making the character
responsive and controllable in real-time.

Synthesis of novel movements can be done by local or stochastic
optimization. Mordatch et al. [2012] propose a local optimization
scheme that produces close interactions from scratch based on a
contact-invariant optimization. The method can synthesize novel
movements such as characters passing luggage from one to another
just from an objective function that specifies the placement transi-
tion. Ye et al. [2012] produce finger motions for manipulating objects
by randomly sampling the contact points of the fingers and the ob-
jects. Liu et al. [2010] successfully track the movements of motion
capture data in physically-based environments by sampling pos-
tures around the captured motion data. Zhao et al. [2013] generate
grasping movements by stochastic optimization. Local optimization
is fast but is unstable especially when the object to interact with is
convex. Sampling based approaches are more stable but are slow
for real-time character control. Our focus in this research is thus
learning from human motion capture data in a supervised fashion
for real-time character control.

2.2 Deep Learning Techniques for Synthesizing Close
Interactions

The usage of neural networks for synthesizing character movements
is rapidly increasing, due to their large scalability and their ability
to produce novel motion data. Such approaches can be divided into
supervised learning approaches and deep reinforcement learning
approaches. Finally, we discuss the controllability of the outputs
produced by the deep networks.

Motion Synthesis by Deep Supervised Learning. Methods to train
controllers from motion capture data based on LSTMs, temporal
convolution, Phase-Functioned Neural Networks and its variants
are explored in the machine learning, computer vision and computer
graphics community.

LSTMs are considered suitable for time-series models and are
applied for reproducing locomotion [Fragkiadaki et al. 2015], kung
fu motion [Li et al. 2017] and sports activities [Lee et al. 2018] as
well as for motion retargeting [Villegas et al. 2018] and interpolat-
ing keyframe postures [Harvey and Pal 2018]. LSTMs often suffer
from converging to average poses due to the ambiguity in the fu-
ture. This is more obvious especially for simple repeating problems
without control signals. Li et al. [2017] overcome this by applying
probabilistic teacher forcing. For problems such as character control,
there is less ambiguity in the future when providing control signals.
Lee et al. [2018] construct a four layer LSTM model for animating
characters to conduct locomotion and to play basketball and tennis.
One issue with recurrent neural network structures such as LSTMs
is in the difficulty of training them. Bai et al. [2018] present the
difficulty of training LSTMs for sequence modelling. We also find
an issue in training LSTMs in our experiments (see Section 7 for our
problem), which could be due to the large state space of the internal
memory.

Holden et al. [2017; 2016] instead use temporal convolutions [Holden
et al. 2016] and a specialized architecture called Phase-Functioned
Neural Networks [Holden et al. 2017] for producing sharp move-
ments. Zhang et al.[2018] propose a method based on the mixture
of experts [Jacobs et al. 1991] to construct a real-time character
controller for quadruped characters. The advantage of the concept
of mixture of experts is in its scalability: a wide range of charac-
ter movements can be constructed under the same framework as
experts specialized for different movements can be trained. We
further explore this direction for animating humanoid characters
conducting close interactions in this paper.

Motion Synthesis by Deep Reinforcement Learning. Deep Reinforce-
ment Learning (DRL) is widely applied for controlling characters in
a physically-based domain, for motions such as locomotion [Peng
et al. 2016], flapping [Won et al. 2017], avoiding obstacles [Heess
et al. 2017], acrobatic movements [Peng et al. 2018a,b] and dress-
ing [Clegg et al. 2018]. When applying DRL for controlling human
characters, movements generated by simple rewards based on the
velocity and balance often appear unnatural [Heess et al. 2017].
Peng et al. [2018a; 2017; 2018b]. cope with this problem by provid-
ing reference motion capture data [Peng et al. 2018a, 2017] or video
data [Peng et al. 2018b].

When applying these approaches for low energy, ordinary daily
life motion such as simply standing up from a chair and moving to
another chair, idling, defining the reward function could be an issue.
These types of motions are not governed by simple, single objective
and a reward that results in natural low energymovements is needed.
Yu et al. [2018] propose a reward that encourages symmetry to
produce natural locomotion. For physically-based character control,
further exploration of the reward is needed for the wide variety
of low energy movements in ordinary daily life that involve close
interactions and multiple contacts.

3 NEURAL STATE MACHINE
The Neural State Machine (Fig. 2) consists of a Motion Prediction
Network and a Gating Network. The Motion Prediction Network
is the main component responsible for the auto-regression of the

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

178:4 • Starke, Zhang et al.

Fig. 2. The architecture of our system composed of the gating network and the motion prediction network. The gating network takes as input a subset of
parameters of the current state and the goal action vector to output the expert blending coefficients which is then used to generate the motion prediction
network. The motion prediction network takes as input the posture, trajectory control variables and the goal parameters from the previous frame, and predicts
those variables for the current frame.

character-related information. The Gating Network decides the
blending coefficients of expert weights based on the given goal
and the phase of the motion to dynamically generate the Motion
Prediction Network. The intuition behind this design is to encode
different modes of motion in drastically different tasks separately in
multiple experts to avoid blurry motions and adapt to different tasks.
We further modulate the expert blending weights using a learned
cyclic function to ensure the state will move forward in time.

3.1 Motion Prediction Network
The Motion Prediction Network (see Fig. 2, right) is the main com-
ponent of our system where it computes the pose of the character in
the current frame, given the pose in the previous frame, the geome-
try of the surrounding environment, and the high-level instructions
including the goal location and the action state.
The Motion Prediction Network is composed of two modules

where the first module is the encoder module that receives the
components of the character state in the previous frame and encodes
them individually using simple three-layer networks. The second
module is the prediction module that receives the output of the
encoder module and predicts the state of the character in the cur-
rent frame. The prediction module is a three-layer network whose
weights are dynamically blended from a group of expert weights
with coefficients from the Gating Network.

Inputs:
The inputs of the Motion Prediction Network Xi at frame i consist
of four components, namely the Frame Input Fi , Goal Input Gi ,
Interaction Geometry Input Ii and Environment Geometry Input
Ei , such Xi = {Fi ,Gi , Ii ,Ei } (see Fig. 2, left). Each of these items
are described below.

• Frame Input Fi =
{
jpi−1, j

r
i−1, j

v
i−1, t

p
i−1, t

d
i−1, t

a
i−1

}
, is composed of

the following items:
– Character Pose in Frame i − 1: jpi−1 ∈ R3j , jri−1 ∈ R6j jvi−1 ∈ R3j

are joint positions, rotations and velocities relative to the root

coordinate in frame i − 1, and j denotes the 23 joints of the
character.

– Past/Future Root Trajectory: tpi−1 ∈ R2t , tdi−1 ∈ R2t are the root
coordinate positions and forward directions of the t (t = 13) sam-
pled trajectory points in the past/future in a 2 second window,
spanning from -1s to 1s relative to the root coordinate of the
frame i − 1. tai−1 ∈ R7t denotes continuous action labels chang-
ing from zero to one on each of the t trajectory points. This
purely auto-regressive vector can be understood as describing
the character state and is composed of seven types of motion,
representing idle, walk, run, sit, open, carry and climb.

• Goal Input Gi =
{
gpi−1, g

d
i−1, g

a
i−1

}
, is composed of the following

items:
– Goal Positions and Orientations: gpi−1 ∈ R3t , gdi−1 ∈ R2t are
the set of goal positions in the 3D world and directions in the
2D horizontal plane along t (t = 13) sampled trajectory points
relative to the root coordinate of frame i − 1. In a low-level
control mode where the user controls the locomotion, each goal
sample lives 1 second in the future relative to each trajectory
point, and thus spans a 2 second window over the future starting
from the current frame, which directs the updates of the root
trajectory (the goal points stay on the ground in this case). In a
high-level control mode for interaction tasks, the goal locations
are given by the origin of the objects to interact with. Each goal
point represents the target goal location with respect to frame
i − 6, ..., i + 6.

– Action at the Goal: gai−1 ∈ R6t denotes one-hot action labels to
be launched at each goal point. Note that the climb action is
excluded from the goal action as it is difficult to specify the climb
to happen at the right timing.

The Interaction Geometry Input Ii ∈ R512 and Environment
Geometry Encoder Input Ei ∈ R1408 are both volumetric repre-
sentations which surround the interaction object with the dimension
of 512 and the character with the dimension of 1408, respectively
(see Section 4.3).

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

Neural State Machine for Character-Scene Interactions • 178:5

Outputs:
The output of the Motion Prediction Network Yi ={

jpi , j
r
i , j

v
i , j̃

p
i , t

p
i , t

d
i , t

a
i , t̃

p
i , t̃

d
i , Ûg

p
i , Ûg

d
i , Ûg

a
i , ci , Ûpi

}
consists of the fol-

lowing components.
• Predicted Character Pose in Egocentric Coordinate Sys-
tem: jpi ∈ R3j , jri ∈ R6j and jvi ∈ R3j are the predicted joint
positions, rotations and velocities relative to the root coordinate
of the frame i .

• Predicted Character Joint Position in the Future Egocen-
tric Coordinate System: j̃pi ∈ R3j is the predicted joint po-
sitions in the predicted future egocentric coordinate system 1
second ahead, which is defined using tpi and tdi described below.

• Future Root Trajectories in Egocentric Coordinate Sys-
tem: tpi ∈ R2t

′

, tdi ∈ R2t
′

are the root coordinate positions,
forward directions of the future t ′ (t ′ = 6) trajectory points
relative to the root coordinate, and tai ∈ R7t

′

is the continuous
action labels, of frame i in a 1 second window.

• Future Root Trajectories in Goal-Centric Coordinate Sys-
tem: t̃pi ∈ R2t

′

, t̃di ∈ R2t
′

are the same features as above but are
defined relative to the goal-centric coordinate system.

• Goal Output Go =
{
Ûgpi , Ûg

d
i , Ûg

a
i

}
, Ûgpi ∈ R3t , Ûgdi ∈ R2t Ûgai ∈ R6t

are the updated goal parameters.
• Contact Labels: ci ∈ R5 is the key joint contact labels where
the key joints are feet, hands and hip.

• Update in Phase: Ûpi ∈ R is the 1-dimensional angular phase
update.

Auto-regression. The outputs are used to animate the character,
directly fed back into the inputs or blended with the user inputs to be
a control signal for the next iteration. The character pose is fed back
into the network as the frame input in the next iteration. The future
root trajectories in egocentric/goal coordinate system are used to
compute the future root trajectory as described in Section 4.2. The
contact labels can be used when applying IK as post-processing.
The phase is updated and passed to the Gating Network in the next
round as described in the next section. The Goal Output is blended
with the user control signal to be the Goal Input in the next iteration
(see Section 4.1).

Network Operation: The operation of Neural State Machine, denoted
here by Θ(·), is defined as:

Θ(X;α , β) =W2 ELU(W1 ELU(W0 H(X; β) + b0) + b1) + b2 (1)

where H(X; β) denotes the encoding operation with the Frame En-
coder F (·), Goal Encoder G(·), Interaction Geometry Encoder I(·)
and Environment Geometry Encoder E(·):

H(X; β) =
{
F (Fi ; βF),G(Gi ; βG),I(Ii ; βI), E(Ei ; βE)

}
(2)

where each of these encoders is a simple three-layer fully-connected
network, with the network parameters denoted as βF , βG , βI , βE

and the dimensions of the hidden/output units set to 512, 128, 256
and 512, respectively.

The parameters of the Motion Prediction Network α are defined
by α = {W0 ∈ Rh×n ,W1 ∈ Rh×h ,W2 ∈ Rm×h , b0 ∈ Rh , b1 ∈

Rh , b2 ∈ Rm }, where the dimension of the hidden layer h is set

as 512, n is the input dimension and m is the output dimension.
Furthermore, the weights α are computed by blending K expert
weights γ = {α1, ...,αK }, each of which is in a form of neural
network weight configuration:

α =
K∑
i=1

ωiαi , (3)

where K is a hyperparameter that can be adjusted according to the
complexity and size of the training data, and ω = {ω1, ...,ωK } are
the blending coefficients computed by gating network described
next. As we have a wide variation of motion, we set K = 8 or K = 10
in our experiments, which can cover a wide range of motion types.
The activation function used in Neural State Machine is the ex-

ponential rectified linear function [Clevert et al. 2015] defined by

ELU(x) = max(x , 0) + exp(min(x , 0)) − 1. (4)

3.2 Gating Network
The Gating Network (see Fig. 2, left) is a three layer fully connected
neural network which outputs ω representing the blending coeffi-
cients of the experts.

Input Features of the Gating Network: We design the input features
of the gating network such that the expert weights are selected and
interpolated according to both the action labels and phase values.
At each frame i , the input of the Gating Network X̂i is computed
by composing two vectors as follows:

X̂i = Pi ⊗ X′
i , (5)

where ⊗ is the Kronecker product operation. The first vector is the
2D phase vector Pi :

Pi = {sin(pi), cos(pi)} ∈ R2, (6)

where the pi is a labeled phase scalar in the range of 0 ⩽ pi ⩽ 2π .
The second vector X′

i is derived from a subset of the inputs from
the Motion Prediction Network including the current action tai−1,
goal position gpi−1, goal orientation gdi−1 and goal action gai−1 along
the whole trajectory. Further, we found that calculating the distance
scalar δ to the goal position gpi−1 and the angular scalar θ to the
goal orientation gdi−1 and multiplying them with the goal action
vector respectively gives the best performance when synthesizing
motions for multiple tasks, especially for the foot step planning
during approaching of the goals:

X′
i =

{
tai−1, g

a
i−1,δ · gai−1,θ · gai−1

}
∈ Rn

′

. (7)

The key motivation for this input vector design is to let the neural
network learn distinct cyclic/non-cyclic phase functions suitable
for different actions and goals, instead of using a single, fixed cyclic
function as in PFNN [Holden et al. 2017]. This results in an action-
specific dynamic blending of expert weights, allowing a single model
to encode vastly different motions and still be able to generate sharp
motions.

Note that representing the phase as a 2D vector is required since
our model directly learns from the phase, which requires a contin-
uous differentiable space that would not be given by feeding a 1D
phase scalar progressing from zero to one. This is different from

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

178:6 • Starke, Zhang et al.

the original setup used in the PFNN [Holden et al. 2017], where the
phase is an external control variable that is first given to a prede-
fined cyclic function before interpolating the network weights. The
usage of Kronecker product increases the influence of the phase
earlier in the network.

Network Operation: The operation of the Gating Network can
then be written as:

ω = Ω(X̂; µ) = σ (W′
2 ELU(W′

1 ELU(W′
0 X̂ + b′0) + b′1) + b′2), (8)

where ω is the blending coefficients of the expert weights (see
Eq. (3)) to compute the network parameters of the Motion Predic-
tion Network; µ = {W′

0 ∈ Rh
′×n′

,W′
1 ∈ Rh

′×h′

,W′
2 ∈ RK×h′

, b′0 ∈

Rh
′

, b′1 ∈ Rh
′

, b′2 ∈ RK } where h′ is the number of hidden layer
units which is set to 128, n′ is the input dimension and σ (·) is a
softmax operator that normalizes the inputs such that they sum up
to 1.

3.3 Network Training
The input and the output of the full dataset are organized in the
format of X = [X1X2...], X̂ = [X̂1X̂2...] and Y = [Y1Y2...] which
are later normalized by the mean and the standard deviation. The
network is trained in an end-to-end fashion with the mean squared
error cost function:

Cost(X,Y;γ , β, µ) = ∥Y − Θ(H(X; β),Ω(X̂; µ);γ)∥22 . (9)

The model is implemented in Tensorflow. We use AdamWR opti-
mizer with the warm restart technique. The learning rate is initial-
ized with the value of 1.0 · 10−4 which will later decrease controlled
by the weight decay rate with the initial value of 2.5 · 10−3.

4 GOAL-DRIVEN MOTION SYNTHESIS
With the Neural State Machine as the core machinery, we achieve
the smooth transitions in high-level states with a goal-driven con-
trol while realizing precise scene interactions with a bi-directional
character control scheme and volumetric sensors.

4.1 Goal-Driven Character Control
Our system has two modes of control: the high-level goal-driven
mode and the low-level locomotion mode. In the goal-driven mode,
the user selects the target object (chair, door or object) by the mouse
and can select the desired action to perform with the object via
keyboard buttons. The character automatically moves toward the
object and launches the required series of actions (sit, open or carry)
at the right timing. In the locomotion mode, the user interactively
controls the character by the keyboard or the gamepad, and the
character walks/runs in the direction instructed by the user.

Our system can seamlessly switch between the low-level locomo-
tion mode and the high-level goal-driven mode through Goal Inputs
Gi : in the locomotion mode, the Goal Outputs GO are blended with
the trajectory produced by the user control signal in a 1s time win-
dow and fed back into the network as the Goal Inputs Gi , as done
in [Holden et al. 2017]. In the goal-driven mode, the Gi is set to the
object/environment of the user’s selection. Gi can be changed at
any time and valid transitions can be naturally produced based on
pose of the character and the foot stepping pattern.

Fig. 3. Neural State Machine with goal-driven control enables smooth
transitions between high-level states. Given a single goal action, the network
automatically predicts the necessary intermediate states to reach the goal
state smoothly.

We show a usage of the high-level controller for a sitting down
task in Fig. 3. The character needs to start from an idle state, tran-
sition from idle to walk until getting close to the chair, and then
finally transition from walk to sit. Synthesizing such series of move-
ments only by the low-level locomotion control requires meticulous
user input. In contrast, when using the high-level controller, the
user only needs to indicate “sitting on the chair” as the desired goal
action (sitting in case of Fig. 3). This is then fed into the Gating
Network, which activates the required expert weights for producing
the motion in the next frame. The Motion Prediction Network then
produces the action label every frame; in the case of Fig. 3, first the
transition from idle to the walk, and then increasingly the action
value for sitting down once the character is close enough to the
object.

4.2 Bi-Directional Control Scheme
The idea of the bi-directional controller is to infer the motion from
both the egocentric and goal point of view, match both predictions
during runtime, and feedback such inference into the Neural State
Machine to increase the precision of the character to reach the
goal during the tasks (Fig. 4). When using only an egocentric con-
troller that is often used for real-time character controllers, there is a
difficulty in reaching the goal location and conducting the task. Intu-
itively, as the egocentric perspective relies on a root update to bring
the character closer to the target, there is an error accumulation
over multiple frames that alone can not guarantee termination at the
goal location. Instead, predicting such information in the goal-space
gives more accurate values for where the character would actually
need to be, and back-transforming those into root-space during
runtime enables avoidance of such error accumulation. Especially
when the variation of the training data is not very large, we find the
system is more likely to not reach the goal with high precision from
random locations when not using such a bi-directional inference
scheme.

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

Neural State Machine for Character-Scene Interactions • 178:7

Fig. 4. A bi-directional trajectory prediction improves the accuracy in reaching the desired goal location. The future trajectory is predicted both relative to the
character root (red trajectory) as well as to the coordinate frame of the goal (green curve), and interpolated before being given as the input for the next frame.

In more detail, the bi-directional controller is part of the Neural
State Machine and computes the future trajectory in the goal-centric
coordinate system (see Outputs of Section 3.1):{

tpi , t
d
i , t̃

p
i , t̃

d
i

}
= Θ̂(Xi),

where {tpi , t
d
i } and {t̃pi , t̃

d
i } are the future root trajectories in ego-

centric/goal coordinate system, and Θ̂(·) is a sub-function that de-
notes the bi-directional controller part of the Neural State Machine.
{t̃pi , t̃

d
i } are then converted back to the egocentric coordinate system

by multiplying the goal-to-egocentric transformation matrix and
blending it with the corresponding egocentric outputs according
to a blending parameter λ : (1 − λ){tpi , t

d
i } + λRi {t̃

p
i , t̃

d
i }, where

Ri is the goal-to-egocentric transformation matrix. The blending
parameter λ = wi

d2
i is computed in such a way that it has larger

effect when the target is closer and vanishing effect when further
away, wherewi is a linearly increasing weight between 0 and 1 from
the current to last trajectory sample, and d2i is the squared distance
of each trajectory sample i to its goal. The computed trajectory is
fed back into the Neural State Machine in the next iteration as the
future trajectory part of {tpi , t

d
i }.

We also adjust the character joint velocities in a bi-directional
manner so that it helps reaching the goal – especially for satisfying
the contacts with the objects. Here, the velocity in the next frame is
revised as (1 − λ)jvi + λ(R

′
i j̃
p
i − jpi), where the blending parameter λ

is chosen by the delta time ∆t between two consecutive frames, and
R′
i is the transformation from the predicted egocentric coordinate

system at frame i+t ′ to that of i . Intuitively, this adjusts the velocities
to the direction of where the character posture would need to be in
the future, and smoothly drives the character towards the accurate
pose as presented in Section 7.

4.3 Volumetric Sensors
We use two voluemtric sensors to evaluate the status of the body
with respect to the object: the Environment Sensor (see Fig. 5, bot-
tom) and the Interaction Sensor (see Fig. 5, right-top)

Environment Sensor. To recognize the surrounding geometry of
the character and let it affect the motion in the next frame, we use a
volumetric sensor that we call the Environment Sensor that has a
cylindrical shape. The collision between objects/environment and
a cylindrical volume of radius R and height H is evaluated while
the character is moving (the orange spheres in Fig. 5) and fed into

the Environment Geometry Input Ei . Within the volume, spheres
of radius r << R are sampled and their intersections with the
objects/environment are tested. The spheres are sampled in a polar
fashion at the resolution of (⌈ R2r ⌉, ⌈

πR
r ⌉, ⌈Hr ⌉), along the radius, arc

and height direction.
Within each sphere cell, we compute a floating value that roughly

corresponds to the occupancy by the external objects/environment;
for this purpose, we prepare a coarse collider object composed of
cuboids (see Fig. 5, top-middle). The sensor value is computed by:

s =

1 if sphere center inside the collider
0 if sphere not intersecting collider
1 − d

r otherwise

where d is the closest distance between the collider and the sphere
center, and r is the radius of the sphere. This setup provides contin-
uous inputs into the volumetric sensor and thus results in smooth
movements. The collider object is computed automatically from a
high resolution voxel model that is generated from the object mesh.
The adjacent voxels are merged to form cuboids, and the cuboids

Fig. 5. Geometry Processing Pipeline: Given the mesh, we first approximate
its collision geometry via voxelization, which is then used by the environ-
ment and interaction sensors to extract the surrounding scene information.

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

178:8 • Starke, Zhang et al.

are iteratively merged until the merger does not form a cuboid any
more. The sensor values are fed into the Environment Geometry
Encoder Input Ei . The usage of the Environment Sensor induces the
character to launch motion to interact with/avoid the object when
it appears in the vicinity.

Interaction Sensor. We prepare another volumetric sensor that we
call the Interaction Sensor to provide further details of the object
geometry from the goal point of view (see Fig. 5, top-right). As the
Environment Sensor can be too coarse, and the character can be
moving, the fine details of the object, such as the arm rests of the
chair, can be missed. The Interaction Sensor is an 8 × 8 × 8 cubic
volume that covers the target object. Each element contains a 4D
vector. The first three elements are the relative vector of the body
root from the element center. The last element s ′ is computed by

s ′ =

1 if voxel center inside the collider
0 if voxel not intersecting collider
1 − d ′

r ′ otherwise

where d ′ is the shortest distance between the center and the collider,
and r ′ is the diagonal length of the voxel. These inputs are fed into
the Interaction Geometry Input Ii . The usage of the Interaction
Sensor improves the precision of the interaction as we show in
our evaluation (see Section 7). For animating the character to carry
or place the box, we dynamically adjust the position values of the
Interaction Sensor according to the Goal Input Gi ; their values are
computed based on the future goal position and orientation at t = 6,
which is 1 second ahead of the current time frame.

5 DATA PREPARATION
In this section, we describe the data preparation, especially the
motion capture, the data labelling, the 3D object/environment fitting
and its data augmentation procedure.

5.1 Motion Capture and Labelling
We build prop environments to capture a dataset of a person ap-
proaching and sitting on a chair, avoiding obstacles while walk-
ing, opening and passing through a door, picking up, carrying and
putting down a box. We also build some more complex situations
with a concave environment like sitting on a chair that is partially
under the desk, so that the character needs to stretch their legs or
put their hands on the desk to complete the sitting motion. A total
of 94 minutes of motion capture data is captured by an XSens inertia

Label Seconds %
Idle 1603 26.7
Walk 2600 43.3
Run 354 5.9
Sit 1333 22.2
Open 126 2.1
Carry 462 7.7
Climb 114 1.9

Table 1. Action distribution of motion capture.

motion capture system and exported. The size of the data is later
doubled by mirroring.

Each frame of data is then annotated with one of the action labels,
"idle", "walk", "run", "sit", "open", "climb" or "carry", or a combination
of two ("carry+idle", "carry+walk"), which describes the motion type
at the current frame. The distribution of the action labels for the
un-mirrored dataset is summarized in Table 1. Apart from the action
label at the current frame, we also label a goal action for each frame,
which is actually the action labels in the future frames. By training
the system using the goal labels as the part of Goal Inputs Gi , the
user can interactively control the character by specifying the goal
action during runtime.

Finally, we label a phase scalar for each of the frames in the dataset.
For locomotion, the phase is defined as 0, π and 2π according to
when the left/right/left foot lands on the ground, and the phases
in between are computed by interpolation. For the acyclic motions
like sitting, the phase is defined as 0 and 2π for the frame where the
transition starts and ends, and the middle part is again computed
by interpolation.

5.2 Object/Environment Fitting and Data Augmentation
In this section, we describe the object/environment fitting process
and how we do data augmention, so that the system can adapt the
character motion to a wide range of objects and environments with-
out increasing the training data size. For achieving this goal, the
space of motion with respect to the shapes needs to be well cov-
ered. Naively, this would require capturing all the subtle and larger
variations of motion and shape modifications in such environments,
leading to an enormous effort not only for motion capture and set-
ting up objects in the real world, but also for data labeling, fitting
and training. Having this in mind, we design a motion augmentation
framework that allows us to enrich the dataset with minimum data
size explosion by editing both the motion and geometry while pre-
serving the context. After fitting a template object into the motion
capture data, at each frame, we randomly sample new objects from
the pool of objects/environments obtained from ShapeNet [Chang
et al. 2015] and adapt the pose following the idea of relationship
descriptors [Al-Asqhar et al. 2013] such that the context is preserved.
The scheme is composed of the following five steps (also see

Fig. 6):

Step 1: Object/Environment Fitting: We fit a template object
into one of the motion captures using a frame where the body is
static with respect to the object. This only requires specifying the
location and orientation of the object at one frame, where the body
is static with respect to the object.

Step 2: Locating the Contact Points and Redefining the Key
Joint Trajectories: Contact points are embedded on the object /
environment surface when the key joints are within a threshold
distance of the surface. Also, the position of the key joints are
redefined as the end points of the relative vectors originating from
the contact points.

Step 3: Switching/Transforming theObject/Environment: When
the objects are switched or transformed, either through translation,

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

Neural State Machine for Character-Scene Interactions • 178:9

Fig. 6. The five steps of data augmentation for adapting to different shapes (top). Step 3-5 are applied per frame to prepare training data where the character
can adapt to different shapes without increasing the data size (bottom).

rotation or scaling, the position of the contact points are reset. When
the object is transformed, the contact points simply follow the trans-
formation that was applied. When the object is switched, we initially
project the template contact points to the nearest surface. When this
fails, we manually specify the new location on the object surface.
This semi-automatic process is possible as we use a rather small set
of training data (20 chairs, 2 desks, 3 boxes, 2 windows). Note that
we only use a single position for the new contact point per key joint
while there could be multiple in the template object.

Step 4: Updating the Key Joint Trajectories: The key joint po-
sitions are recomputed using the updated contact points and the
relative vectors for frames where the key joints were within the
threshold in Step 2. Otherwise, they are blended between the origi-
nal motion and the adapted positions with a 1 second time window.

Step 5: Full-Body Pose Computation: Finally, the full character
pose is recomputed by full-body IK based on the CCD framework.
Starting from the motion capture pose, the root translation and
orientation is first computed such that the error of the end effectors
is minimized, and then going down the hierarchy to minimize the
error of each joint’s end effectors. Although this does not guarantee
temporal continuity, we find it stable and it produces smooth move-
ments. The computed pose together with the new object is used as
training data for the neural network.

When preparing the training set for the system, for every frame
of the training data we randomly switch/transform the object or en-
vironment by applying step 3-5 (see Fig. 6, bottom). Such a random
sampling allows us to prepare enough variation to cover the wide
shape/pose space. We find this approach much more efficient com-
pared to preparing the entire motion set for all types of objects and
using them as the training data, where the training time increases
in the order of (motion number × object number) when doing full
training with all objects.

6 EXPERIMENTS
In this section, we describe the results of animating different charac-
ter movements with interaction with objects and the environment
in daily life, using the Neural State Machine.

Data Pre-processing and Training. The data is preprocessed to be
in the form of input X and output Y for the Neural State Machine.
The size of the training data is 16GB. The full training process
described in Section 5 takes 70 epochs where the learning rate is
reset at epoch 11 and 31. The batch size is set to 32 and during
training the batches are randomly sampled. The full training of 70
epochs takes around 20 hours on an NVIDIA GeForce GTX 1080Ti
GPU. After the training, the network size is around 250MB.

Animated Results. Figure 8 shows results ofmultiple tasks achieved
by one trained model of Neural State Machine. We have success-
fully trained it to sit, avoid obstacles, open doors, and carry objects
along with standard locomotion. The readers are referred to the
supplementary video for the details.

The sitting task has been trained with various types of chairs. The
system is able to generate the appropriate motion based on the chair

Fig. 7. Visualization of the learned phase cycle for each task. Black dots
on the yellow circle represent expert neural networks which are blended to
generate the motion prediction network. The trajectory inside the circle is
determined by the activation of the experts. The distinct trajectory for each
task indicates how well they are separated in the motion space to avoid
undesired blending.

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

178:10 • Starke, Zhang et al.

Fig. 8. Results of Neural State Machine generating motion for various tasks.
First and second rows: various sitting tasks adapting to size and to obstacles
like a desk. Third row: collision avoidance tasks including concave objects.
Fourth row: opening door. Fifth row: carrying objects.

geometry. The system has also learned to properly slide in sideways
to sit on a chair to avoid a desk in front of it. This demonstrates how
the volumetric geometry input is able to encode the concavity of the
colliding objects. The avoidance task has been successfully trained
to go through a concave geometry like a wall with a hole. Again,
this shows the strength of the volumetric geometry input encoding
the concave geometry. This would not have been possible with a
naive scene encoding with height maps. The open door and carry
object tasks demonstrate successful motion planning to precisely
reach the scene objects at the right orientation. This is due to the
effectiveness of the goal-guided controller.

Figure 7 visualizes how different tasks are encoded by our learning
framework. The system cycles through different experts for each
action, and the distinct shapes of the phase trajectory for each task
indicate how well different tasks become separated in the model.

Testing with Novel Objects. We show the results of applying our
approach for sitting on novel chairs in Fig. 9. The data augmentation
allows our system to let the character sit on chairs that have not
be seen before. Despite the wide variety of geometry and sizes, the
character can sit on them and bring the arms to the arm rest if the
chair has them.

Technique Idle to
Walk

Idle to
Run

Walk to
Sit

Run to
Sit

MLP 1.75 1.35 5.05 5.13
PFNN 1.50 0.87 4.95 5.32
MANN 1.83 0.92 4.85 5.30
LSTM 2.16 2.24 5.62 -
Auto-LSTM 1.86 1.82 5.53 -
NSM (Ours) 1.49 0.81 4.92 5.10

Table 2. The average response time in seconds produced by different models.
The responsiveness from idle to walking/running is measured by the style
transition time to 4 different directions (forward/backward/left/right). The
responsiveness from walking/running to sitting is measured by the task
accomplishing time from 10 different positions/directions within 3 meters
from the chair.

7 EVALUATION
In this section, we first compare the results computed by the Neu-
ral State Machine with other alternative time series models. We
next present the results of an ablation study that justifies the de-
sign/components of our system. The readers are referred to the
supplementary video for the visual comparison.

7.1 Comparison with Other Time-Series Models
We compare our method against several alternative methods in
terms of responsiveness, precision and foot-sliding artifacts.

The responsiveness (see Table 2) is measured by the time required
to transition to the target action label. The precision (see Table 3)
is measured by the rotational error (RE) and positional error (PE)
when reaching the goal location, when the characters start from the
same starting position. The foot-sliding (see Figure 10) is measured
by accumulating the drift of feet in the horizontal plane when the
distance betwen the feet and the floor is lower than a certain thresh-
old (2.5 cm). The other architectures that we compared our approach

Fig. 9. Results of successfully sitting on novel chairs that are not used for
training.

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

Neural State Machine for Character-Scene Interactions • 178:11

Fig. 10. The average foot sliding produced by different models. Sliding in
the walking and running tasks is measured in different moving directions.
Sliding in the sitting task is measured during approaching and sitting tran-
sitions. Sliding in the carrying task is measured during approaching and
holding movements.

against include feed-forward neural network (MLP), PFNN, MANN
and LSTM. We set the complexity of the models similar to ours; use
the same set of input/output data for a fair comparison.

Overall, our system performs the best, although other models per-
form equally well for some criteria. We now compare our approach
with the individual alternatives. Note that when we evaluate the
Neural State Machine using the sitting action, we use a test chair
that is not included in the training data.

Comparison with LSTM. When we train an LSTM model that has
a similar structure with [Lee et al. 2018] (4 recurrent layers, encoder
and decoder structure), the system performs well except that there
are some issues with responding to user inputs. The character mostly
only starts to move towards the target object after walking for a few
steps. Also, the character cannot directly transition to states that
are not observed in the training data: e.g., transition from running
to sitting completely fails. For making a controller responsive to
user inputs, the system needs to learn the character should start
approaching the goal irrespective of the memory state. In fact, Lee
et al. [2018] produce a large amount of augmented data by editing a
short locomotion clip by Laplacian editing. In our scenario, where
the character needs to approach and precisely reach a goal, humans
use different stepping pattern according to the way they approach,

Sit Carry
Technique PE(cm) RE(deg) PE(cm) RE(deg)
MLP 14.05 4.11 6.27 3.46
PFNN 7.66 3.31 10.35 4.83
MANN 5.54 1.87 3.41 1.79
LSTM 6.14 2.05 6.11 3.02
Auto-LSTM 5.23 2.70 5.59 3.77
NSM (Ours) 2.93 0.92 3.05 1.02
Bi-Directional 4.27 1.58 3.41 1.73
Interaction Sensor 3.72 1.11 6.09 2.26
Environment Sensor 3.05 0.94 8.52 2.27

Table 3. Upper and middle parts: The average positional error (PE) and
rotational error (RE) produced by different models in the sitting and carrying
tasks. Lower part: The error produced by NSM when the corresponding
technique is removed. 10 different character positions/rotations are initial-
ized for each task, error is measured at the ending point of the sitting and
grasping transitions on the hip and hand joints correspondingly.

Fig. 11. Left: a character driven by the PFNN penetrating a chair and ex-
hibiting vibrating artifacts because it blends motions in drastically different
tasks. Right: Neural State Machine architecture precisely aligns the char-
acter to the chair without vibrating artifacts because it only blends the
motions from the relevant task. In the graphs below, we show the normal-
ized average joint angle updates for each motion, where can be observed
that such vibrating artifacts on the PFNN exist during all motion (also see
supplementary video).

so editing a single example is not a wise choice. Similarly, LSTM
fails to conduct a transition that is not observed in the training, such
as running to sitting.

We also adopt the training strategy of probabilistic teacher forcing
(Auto-LSTM) [Li et al. 2017] which uses model output from a prior
time step as an input with a certain probability. Although such a
training technique improves the responsiveness, the character still
fails to perform some transitions where less training data exists.

These results show that our approach performs better than LSTM
especially for responsiveness when the locomotion data set is not
heavily augmented.

Comparison with PFNN. PFNN has much more restrictions com-
pared to NSM for synthesizing character-scene interactions. With
highly multi-modal data from different interaction behaviors, the
PFNN results in unwanted blending of poses leading to imprecise
output with vibrating artifacts, as shown in Figure 11. Note that the
PFNN uses a single cyclic phase function where the control points
are interpolated by the phase. The phase values are defined based
on contacts. This works well for locomotion where the contacts
follow a consistent foot-fall pattern. However the contacts and the
phase labels are different between motions such as sitting, carrying
and locomotion. For example, for sitting, there is a stationary con-
tact between the back and the chair while locomotion has regular
footfall patterns. Possibly due to such inconsistency, the precision
(Table 3) for sitting and carrying of the PFNN is much worse than
our approach, and also resulting in vibration artifacts. This is in
contrast to NSM, where the phase function is learned from the ac-
tion labels and the phase label. The system learns to use different
combinations of control points during the phase cycle, as shown in
Fig. 7.
Because the PFNN is designed for locomotion and locomotion

takes up a large portion of our data, the responsiveness (Table 2)
and foot sliding artifacts (Figure 10) are similar to our approach.

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

178:12 • Starke, Zhang et al.

Fig. 12. The resulting performance in motion detail and foot sliding when
combining features with the phase by either using Kronecker product [K]
or concatenation [C] as input to the gating network.

Comparison with MANN. The Gating Network of the MANN au-
tomatically computes the weighting of the expert weights and thus
does not require providing the phase variable. The responsiveness
(Table 2) of the MANN is equally good or sometimes even better
than our approach. Also, the precision (Table 3) of the MANN is
much better than the PFNN although not as good as ours. On the
contrary, the MANN produces more foot sliding artifacts (Figure 10)
compared to the PFNN and our approach, especially when randomly
changing directions and switching between different locomotion
types. In such moments, the network tends to produce low joint
angle updates which causes the whole motion to appear rather stiff.
In return, the motion can appears very unresponsive although the
root motion responds to the control signals, which leads to the main
source of foot sliding artifacts. Those problems could be due to the
difficulty of segmenting the motion types only by the foot velocities,
which is the feature that the MANN uses for gating.

7.2 Ablation Study
We show an ablation study examining the of precision of sitting
to demonstrate the effect of the 2D phase representation with Kro-
necker product, bi-directional controller, interaction volume input
and environment volume input. The results are shown in Table 3,
bottom. It can be observed that without this functionality, the preci-
sion degrades.

Kronecker Product. In Fig. 12, we measure the motion quality
when modulating the gating input features with the phase via the
Kronecker product instead of doing basic feature concatenation. The
motion detail is measured as the average joint angle update, and foot
sliding is measured by the ratio of horizontal foot movement when
close above ground, similar to Figure 10. Using the Kronecker prod-
uct achieves the best performance while including more features
via concatenation incrementally decreases quality. Note that when
concatenating features, the phase is still used as an input feature in
the hope that the network could learn from this representation, but
instead this feature seems to increasingly lose importance. This loss
in quality can be explained by the weak segmentation characteristic
of concatenated features, which often remain constant throughout
the motion – particularly for one-hot action labels. Whenmodulated
by the phase, the segmentation of motion through time remains
well-preserved with respect to the modulated features.

Fig. 13. Top: ablation study for bi-directional control. The left character
without trajectory and pose interpolation is misaligned on the chair. Bot-
tom: ablation study for Interaction Sensors. The left character has more
difficulty learning from the geometry and is penetrating into the chair with
an unnatural pose.

Bi-directional Controller. As can be observed in the top image of
Fig. 13, without the bi-directional controller, the character cannot
correctly align to the target object. The left character without bi-
directional control is off-centered and hands are not placed on the
armrests, which results in unnatural poses and object penetration.

Interaction Sensor. Without the Interaction Sensor, the character
cannot properly adapt to the target geometry as shown in the bottom
image of Fig. 13. The left character without the Interaction Sensor
penetrates through the chair in an obscure pose.

Environment Sensor. As the resolution of the Environment Sensor
is low, the influence in the error in Table 3 is limited. However,
without the Environment Sensor, the character does not interact well
with the objects. Also, as can be observed in Fig. 14, the character
ignores obstacles in the front of the character when approaching
the chair, and penetrates through it to reach to the goal.

8 LIMITATIONS AND FUTURE WORK
As we train the system with only a small data set of 3D geometry,
although it works reasonably well for chairs similar to those in
the data set, the system fails to adapt to geometry that is rather
different from that in the training set (see Fig. 15). To adapt to a
wider range of 3D shapes, in addition to increasing the training
size, we would need to use a more complex representation, such as
higher resolution volume data, or possibly other geometry encoders
such as PointNet++ [Qi et al. 2017] pretrained with a large geome-
try dataset such as ShapeNet. Such a representation can lead to a

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

Neural State Machine for Character-Scene Interactions • 178:13

Fig. 14. When the environment sensor is disabled, the character can easily
pass through the chair geometry while approaching the object to sit down.
Commonly, the produced trajectories can be observed to not maintain a
safety distance around the object, and it is likely to observe unrealistic
movements, such as hands or legs penetrating through the object.

generalized shape and scene understanding with more convincing
motion adaptation.
When switching the goal action, the input into the network can

change discontinuously, resulting in abrupt movements. This is
more obvious when suddenly activating objects to interact with.
Such artifacts can be mitigated by smoothly updating the inputs
over a time window. On the contrary, a longer time window can
result in slower response, which may not be desirable for real-time
applications. We find a window of 0.25-0.5 seconds can produce
smooth effects with less noticable latency.
Currently, the type of interactions by our character are limited

to sitting, holding and avoiding obstacles. It will be interesting to
look into a direction to capture the motion and the environment
information together, for example by mounting a RGBD camera
on the body of a subject wearing a mocap suit. Such a capture
scheme can enrich the data needed for our system without manual
intervention.
We found the phase encoded into the input vector produced

better motions because it avoids the state machine from getting
stuck. The downside of this is all motions require phase labelling.

Fig. 15. The arms fail to stay on the arm rests and the hip floats in the air
for a chair drastically different from the training set.

Automatic phase labelling works well for motions with clear cycles
but for general acyclic motions we need manual phase labelling with
heuristic rules applied across the dataset. A motion may also consist
of multiple cyclic movements with different periods, such as a person
swinging a sword while walking. Generalizing the detection of
multiple phases in motion is one future direction to ease the set-up
and improve results.

9 CONCLUSION
We propose a novel neural network framework to synthesize mo-
tions that involve close interactions with the environment. Our
system can handle a wide variety of motion types and allows the
users to guide the characters by only providing abstract goals. The
system can handle both cyclic and acyclic movements and can be ap-
plied for real-time applications such as computer games and virtual
reality systems.

REFERENCES
Shailen Agrawal and Michiel van de Panne. 2016. Task-based Locomotion. ACM Trans

on Graph 35, 4 (2016). https://doi.org/10.1145/2897824.2925893
Rami Ali Al-Asqhar, Taku Komura, andMyungGeol Choi. 2013. Relationship descriptors

for interactive motion adaptation. In Proc. SCA. 45–53. https://doi.org/10.1145/
2485895.2485905

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271 (2018). http://arxiv.org/abs/1803.01271

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. Shapenet:
An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015).
http://arxiv.org/abs/1512.03012

Myung Geol Choi, Manmyung Kim, Kyung Lyul Hyun, and Jehee Lee. 2011. Deformable
motion: Squeezing into cluttered environments. In Computer Graphics Forum, Vol. 30.
Wiley Online Library. https://doi.org/10.1111/j.1467-8659.2011.01889.x

Min Gyu Choi, Jehee Lee, and Sung Yong Shin. 2003. Planning biped locomotion using
motion capture data and probabilistic roadmaps. ACM Trans on Graph 22, 2 (2003).
https://doi.org/10.1145/636886.636889

Alexander Clegg, Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. 2018. Learning to
dress: synthesizing human dressing motion via deep reinforcement learning. ACM
Trans on Graph 37, 4 (2018). https://doi.org/10.1145/3272127.3275048

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). CoRR abs/1511.07289
(2015). arXiv:1511.07289 http://arxiv.org/abs/1511.07289

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recurrent
network models for human dynamics. In Proc. ICCV. 4346–4354. https://doi.org/10.
1109/ICCV.2015.494

Félix G. Harvey and Christopher J. Pal. 2018. Recurrent Transition Networks for
Character Locomotion. CoRR abs/1810.02363 (2018). arXiv:1810.02363 http://arxiv.
org/abs/1810.02363

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. 2017. Emergence of
locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017).
https://doi.org/10.1145/1833349.1778865

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Trans on Graph 36, 4 (2017), 42. https://doi.org/10.1145/
3072959.3073663

Daniel Holden, Jun Saito, and Taku Komura. 2016. A deep learning framework for
character motion synthesis and editing. ACM Trans on Graph 35, 4 (2016). https:
//doi.org/10.1145/2897824.2925975

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991.
Adaptive mixtures of local experts. Neural Computation 3, 1 (1991), 79–87. https:
//doi.org/10.1162/neco.1991.3.1.79

Manmyung Kim, Youngseok Hwang, Kyunglyul Hyun, and Jehee Lee. 2012. Tiling
motion patches. In Proc. SCA. 117–126. http://dl.acm.org/citation.cfm?id=2422356.
2422375

Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hodgins, and Nancy S Pollard.
2002. Interactive control of avatars animated with human motion data. ACM Trans
on Graph 21, 3 (2002). https://doi.org/10.1145/566654.566607

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation
by Learning Multi-objective Control. ACM Trans on Graph 37, 6 (2018). https:
//doi.org/10.1145/3272127.3275071

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

https://doi.org/10.1145/2897824.2925893
https://doi.org/10.1145/2485895.2485905
https://doi.org/10.1145/2485895.2485905
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1512.03012
https://doi.org/10.1111/j.1467-8659.2011.01889.x
https://doi.org/10.1145/636886.636889
https://doi.org/10.1145/3272127.3275048
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://doi.org/10.1109/ICCV.2015.494
https://doi.org/10.1109/ICCV.2015.494
http://arxiv.org/abs/1810.02363
http://arxiv.org/abs/1810.02363
http://arxiv.org/abs/1810.02363
https://doi.org/10.1145/1833349.1778865
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/2897824.2925975
https://doi.org/10.1145/2897824.2925975
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
http://dl.acm.org/citation.cfm?id=2422356.2422375
http://dl.acm.org/citation.cfm?id=2422356.2422375
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/3272127.3275071
https://doi.org/10.1145/3272127.3275071

178:14 • Starke, Zhang et al.

Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. 2006. Motion patches: building
blocks for virtual environments annotated with motion data. ACM Trans on Graph
25, 3 (2006). https://doi.org/10.1145/1141911.1141972

Zimo Li, Yi Zhou, Shuangjiu Xiao, Chong He, Zeng Huang, and Hao Li. 2017. Auto-
conditioned recurrent networks for extended complex human motion synthesis.
arXiv preprint arXiv:1707.05363 (2017). http://arxiv.org/abs/1707.05363

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010.
Sampling-based contact-rich motion control. ACM Trans on Graph 29, 4 (2010), 128.
https://doi.org/10.1145/1833349.1778865

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker. 2012. Learning motion controllers
with adaptive depth perception. In Proc. SCA. 145–154. http://dl.acm.org/citation.
cfm?id=2422356.2422378

Wan-Yen Lo and Matthias Zwicker. 2008. Real-time planning for parameterized human
motion. In Proc. SCA. 29–38. http://dl.acm.org/citation.cfm?id=1632592.1632598

Jianyuan Min and Jinxiang Chai. 2012. Motion Graphs++: A Compact Generative Model
for Semantic Motion Analysis and Synthesis. ACM Trans on Graph 31, 6 (2012),
153:1–153:12. https://doi.org/10.1145/2366145.2366172

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of complex
behaviors through contact-invariant optimization. ACM Trans on Graph 31, 4 (2012).
https://doi.org/10.1145/2185520.2185539

Tomohiko Mukai and Shigeru Kuriyama. 2005. Geostatistical motion interpolation.
ACM Trans on Graph 24, 3 (2005). http://doi.acm.org/10.1145/1073204.1073313

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018a. Deep-
Mimic: Example-guided Deep Reinforcement Learning of Physics-based Character
Skills. ACM Trans on Graph 37, 4 (2018). https://doi.org/10.1145/3197517.3201311

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-Adaptive Lo-
comotion Skills Using Deep Reinforcement Learning. ACM Trans on Graph 35, 4
(2016). https://doi.org/10.1145/2897824.2925881

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. 2017. Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Trans on Graph 36, 4 (2017). https://doi.org/10.1145/3072959.3073602

Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine.
2018b. SFV: reinforcement learning of physical skills from videos. ACM Trans on
Graph 37, 6 (2018). https://doi.org/10.1145/3272127.3275014

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in a Met-
ric Space. In Proc. NIPS. 5099–5108. http://papers.nips.cc/paper/
7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.
pdf

Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. 1998. Verbs and Adverbs:
Multidimensional Motion Interpolation. IEEE Computer Graphics and Applications
18, 5 (1998), 32–40. http://dx.doi.org/10.1109/38.708559

Charles F Rose III, Peter-Pike J Sloan, and Michael F Cohen. 2001. Artist-Directed
Inverse-Kinematics Using Radial Basis Function Interpolation. Computer Graphics
Forum 20, 3 (2001), 239–250. https://doi.org/10.1111/1467-8659.00516

Alla Safonova and Jessica K Hodgins. 2007. Construction and optimal search of inter-
polated motion graphs. ACM Trans on Graph 26, 3 (2007). https://doi.org/10.1145/
1276377.1276510

Hubert PH Shum, Taku Komura, Masashi Shiraishi, and Shuntaro Yamazaki. 2008.
Interaction patches for multi-character animation. ACM Trans on Graph 27, 5 (2008).
https://doi.org/10.1145/1457515.1409067

Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak Lee. 2018. Neural Kinematic
Networks for Unsupervised Motion Retargetting. Proceedings of CVPR 2018. https:
//doi.org/10.1109/CVPR.2018.00901

J.M. Wang, D.J. Fleet, and A. Hertzmann. 2008. Gaussian Process Dynamical Models
for Human Motion. IEEE PAMI 30, 2 (Feb 2008), 283–298. https://doi.org/10.1109/
TPAMI.2007.1167

Jungdam Won, Kyungho Lee, Carol O’Sullivan, Jessica K Hodgins, and Jehee Lee. 2014.
Generating and ranking diverse multi-character interactions. ACM Trans on Graph
33, 6 (2014). https://doi.org/10.1145/2661229.2661271

Jungdam Won, Jongho Park, Kwanyu Kim, and Jehee Lee. 2017. How to train your
dragon: example-guided control of flapping flight. ACM Trans on Graph 36, 6 (2017).
https://doi.org/10.1145/3130800.3130833

Yuting Ye and C Karen Liu. 2012. Synthesis of detailed handmanipulations using contact
sampling. ACM Trans on Graph 31, 4 (2012). https://doi.org/10.1145/2185520.2185537

Wenhao Yu, Greg Turk, and C Karen Liu. 2018. Learning symmetric and low-energy
locomotion. ACM Trans on Graph 37, 4 (2018). https://doi.org/10.1145/3197517.
3201397

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Trans on Graph 37, 4 (2018). https:
//doi.org/10.1145/3197517.3201366

Wenping Zhao, Jianjie Zhang, Jianyuan Min, and Jinxiang Chai. 2013. Robust realtime
physics-based motion control for human grasping. ACM Trans on Graph 32, 6 (2013).
https://doi.org/10.1145/2508363.2508412

ACM Trans. Graph., Vol. 38, No. 6, Article 178. Publication date: November 2019.

https://doi.org/10.1145/1141911.1141972
http://arxiv.org/abs/1707.05363
https://doi.org/10.1145/1833349.1778865
http://dl.acm.org/citation.cfm?id=2422356.2422378
http://dl.acm.org/citation.cfm?id=2422356.2422378
http://dl.acm.org/citation.cfm?id=1632592.1632598
https://doi.org/10.1145/2366145.2366172
https://doi.org/10.1145/2185520.2185539
http://doi.acm.org/10.1145/1073204.1073313
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/2897824.2925881
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3272127.3275014
http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf
http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf
http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf
http://dx.doi.org/10.1109/38.708559
https://doi.org/10.1111/1467-8659.00516
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/1457515.1409067
https://doi.org/10.1109/CVPR.2018.00901
https://doi.org/10.1109/CVPR.2018.00901
https://doi.org/10.1109/TPAMI.2007.1167
https://doi.org/10.1109/TPAMI.2007.1167
https://doi.org/10.1145/2661229.2661271
https://doi.org/10.1145/3130800.3130833
https://doi.org/10.1145/2185520.2185537
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201397
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/2508363.2508412

	Abstract
	1 Introduction
	2 Related Work
	2.1 Animating Close Interactions
	2.2 Deep Learning Techniques for Synthesizing Close Interactions

	3 Neural State Machine
	3.1 Motion Prediction Network
	3.2 Gating Network
	3.3 Network Training

	4 Goal-Driven Motion Synthesis
	4.1 Goal-Driven Character Control
	4.2 Bi-Directional Control Scheme
	4.3 Volumetric Sensors

	5 Data Preparation
	5.1 Motion Capture and Labelling
	5.2 Object/Environment Fitting and Data Augmentation

	6 Experiments
	7 Evaluation
	7.1 Comparison with Other Time-Series Models
	7.2 Ablation Study

	8 Limitations and Future Work
	9 Conclusion
	References

