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SUMMARY

Altered excitatory/inhibitory (E/I) balance is impli-
cated in neuropsychiatric and neurodevelopmental
disorders, but the underlying genetic etiology re-
mains poorly understood. Copy number variations
in CYFIP1 are associated with autism, schizophrenia,
and intellectual disability, but its role in regulating
synaptic inhibition or E/I balance remains unclear.
We show that CYFIP1, and the paralog CYFIP2, are
enriched at inhibitory postsynaptic sites. While
CYFIP1 or CYFIP2 upregulation increases excitatory
synapse number and the frequency of miniature
excitatory postsynaptic currents (mEPSCs), it
has the opposite effect at inhibitory synapses,
decreasing their size and the amplitude of miniature
inhibitory postsynaptic currents (mIPSCs). Contrary
to CYFIP1 upregulation, its loss in vivo, upon condi-
tional knockout in neocortical principal cells, in-
creases expression of postsynaptic GABAA receptor
b2/3-subunits and neuroligin 3, enhancing synaptic
inhibition. Thus, CYFIP1 dosage can bi-directionally
impact inhibitory synaptic structure and function,
potentially leading to altered E/I balance and circuit
dysfunction in CYFIP1-associated neurological dis-
orders.
INTRODUCTION

Schizophrenia (SCZ) and autism spectrum disorder (ASD) have a

strong genetic component with a growing number of rare variant

mutations and copy number variations (CNVs) (deletions and

duplications) in functionally overlapping synaptic and neurodeve-

lopmental gene sets linked to increased disease susceptibility

(Bourgeron, 2015; Fromer et al., 2014; Iossifov et al., 2014;

Marshall et al., 2017; De Rubeis et al., 2014). Identifying how

neuronal connectivity is altered by these genetic lesions is crucial

for understanding nervous system function and pathology. CNVs
Cell Re
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of the 15q11.2 region of the human genome are implicated in the

development of neurological and neuropsychiatric conditions.

15q11.2 CNV loss is associated with SCZ (Marshall et al., 2017;

Rees et al., 2014; Stefansson et al., 2008), while numerous reports

have identified 15q11.2 duplications and deletions in individuals

with ASD (Doornbos et al., 2009; Picinelli et al., 2016; Pinto

et al., 2014; van der Zwaag et al., 2010), epilepsy, and intellectual

disability (de Kovel et al., 2010; Nebel et al., 2016; Vanlerberghe

et al., 2015). 15q11.2 contains four genes (NIPA1,NIPA2, CYFIP1,

and TUBGCP5) with substantial evidence from rodent and human

models pointing toward CYFIP1 as the key disease-causing gene

(Bozdagi et al., 2012; Nebel et al., 2016; Oguro-Ando et al., 2015;

Pathania et al., 2014; De Rubeis et al., 2013; Yoon et al., 2014).

Polymorphisms and rare variants inCYFIP1 are also linked to sus-

ceptibility in ASD (Toma et al., 2014; Wang et al., 2015) and SCZ

(Tam et al., 2010; Yoon et al., 2014) with a direct deletion of

CYFIP1 identified in an autistic patient with a SHANK2 deletion

(Leblond et al., 2012). Moreover, an upregulation of CYFIP1

mRNA has been observed in ASD patients with a duplication in

15q11-13, highlighting the importance of investigating the effects

of genetic duplication as well as deletion (Nishimura et al., 2007;

Oguro-Ando et al., 2015). The CYFIP1 paralog, CYFIP2, has also

been linked to neurological disorders including SCZ, epilepsy,

eating disorders, Alzheimer’s disease, fragile X syndrome-like be-

haviors, and cocaine seeking (Föcking et al., 2015; Han et al.,

2015; Kirkpatrick et al., 2017; Kumar et al., 2013; Nakashima

et al., 2018; Tiwari et al., 2016).

CYFIP1 and CYFIP2 are key components of the WAVE regula-

tory complex (WRC) (a hetero-pentamer consisting ofWAVE, Abi,

Nap1, HSPC300, and CYFIP1 or CYFIP2) that plays a critical role

in regulating the dynamics of the actin cytoskeleton in cells by

activating ARP2/3-mediated F-actin branching (Chen et al.,

2010). Rare variants of Nap1 (NCKAP1) are also genetically linked

to ASD and intellectual disability (Anazi et al., 2017; Iossifov et al.,

2014; DeRubeis et al., 2014), providing further genetic support for

a critical role of WRC-dependent actin regulatory pathways in

neurodevelopmental disorders. Additionally, CYFIP1 is also a

repressor of cap-dependent translation by acting as a non-ca-

nonical eIF4E binding protein in its complex with the ASD-associ-

ated FMRPprotein (Napoli et al., 2008) and can alsomodulate the

mTOR pathway (Oguro-Ando et al., 2015).
ports 26, 2037–2051, February 19, 2019 ª 2019 The Authors. 2037
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Synaptic inhibition, mediated by GABAA receptors (GABAARs),

is vital for the efficient control of network excitability, excitation/

inhibition (E/I) balance, and for normal brain function. Inhibitory

synapses require the stabilization of postsynaptic GABAARs

opposed to GABA-releasing presynaptic terminals. Modulation

of inhibitory synaptic strength can be achieved by regulating the

size and number of inhibitory synapses (Bannai et al., 2009;

Muir et al., 2010; Twelvetrees et al., 2010) and the clustering of

GABAARs by an inhibitory postsynaptic complex containing the

gephyrin scaffold (Tyagarajan and Fritschy, 2014), in addition to

membrane proteins and adhesion molecules such as LHFPL4

and neuroligins (Davenport et al., 2017; Pettem et al., 2013; Pou-

lopoulos et al., 2009; Smith et al., 2014; Uezu et al., 2016; Yama-

saki et al., 2017).While CYFIP1 is enriched at excitatory synapses

where it can regulate F-actin dynamics (Pathania et al., 2014) and

the development and plasticity of dendritic spines (Abekhoukh

et al., 2017; Pathania et al., 2014; De Rubeis et al., 2013), the

role of CYFIP1 at inhibitory synapses and in regulating the E/I bal-

ance remains undetermined.

Here, we show that CYFIP1 and CYFIP2 are enriched at inhib-

itory synapses. CYFIP1 upregulation in dissociated neurons, to

model microduplication, alters the excitatory-to-inhibitory syn-

apse ratio, resulting in reduced miniature inhibitory postsynaptic

current (mIPSC) amplitude and increased miniature excitatory

postsynaptic current (mEPSC) frequency. Conversely, when

CYFIP1 is conditionally knocked out from excitatory neocortical

pyramidal cells, inhibitory synaptic components are upregulated

and mIPSC amplitude is significantly increased. Thus, altered

gene dosage of CYFIP1 disrupts inhibitory synaptic structure,

leading to altered neuronal inhibition. Our data support a role

for CYFIP1 in regulating synapse number and the E/I balance

and highlights a mechanism that may contribute to the neurolog-

ical deficits observed in 15q11.2 CNV-associated neuropsychi-

atric conditions.

RESULTS

CYFIP Proteins Are Enriched at Inhibitory Synapses
While CYFIP1/2 enrichment at excitatory synapses has been

previously shown (Pathania et al., 2014; De Rubeis et al.,

2013), nothing is known regarding their localization to inhibitory

synapses. Using immunofluorescence and confocal imaging,

we examined CYFIP1 and CYFIP2 subcellular distribution in

cultured neurons. CYFIP1GFP and CYFIP2GFP exhibited a non-

uniform distribution along dendrites appearing to be selectively

targeted to punctate clusters in dendritic shafts in addition to

the previously reported localization of CYFIP1/2 to spine heads

(Pathania et al., 2014) (Figures 1A and 1B). Labeling with inhibi-

tory presynaptic and postsynaptic markers VGAT and gephyrin,

respectively, revealed that clusters of CYFIP1GFP andCYFIP2GFP

in dendritic shafts could be found colocalized with gephyrin

opposed to VGAT-labeled inhibitory terminals (Figures 1A and

1B). This can also be seen in the line scan of the zoom images

where fluorescence intensity is plotted against distance. Indeed,

quantitative image analysis revealed a �40% enrichment of

CYFIP1GFP and CYFIP2GFP fluorescence at gephyrin clusters

compared to the total process. Endogenous CYFIP1 was also

found to be highly enriched at inhibitory synapses and colocal-
2038 Cell Reports 26, 2037–2051, February 19, 2019
ized with gephyrin clusters (Figure 1C). To further explore the

distribution of CYFIP1 within inhibitory postsynaptic sites, we

carried out stimulated emission depletion (STED) microscopy

to resolve this sub-synaptic compartment (Vicidomini et al.,

2011). Interestingly, STED imaging performed on neurons

labeled with antibodies to endogenous CYFIP1 and gephyrin re-

vealed the presence of small CYFIP1 nanoclusters forming

around gephyrin sub-synaptic domains (Figure 1D). To further

investigate the intimate association of CYFIP1 with the inhibitory

postsynaptic scaffold, we carried out a proximity ligation assay

(PLA) (López-Doménech et al., 2018; Norkett et al., 2016). PLA

detects interactions between endogenous proteins in fixed sam-

ples, giving a fluorescent readout after incubation with relevant

primary antibodies, ligation, and amplification steps. The signif-

icant 2.7-fold increase in PLA puncta on neurons labeled with

antibodies to endogenous CYFIP1 and gephyrin indicated an in-

tramolecular distance of <40 nm and demonstrates that CYFIP1

can complex with gephyrin in hippocampal neurons (Figures 1E

and 1F). These data indicate that CYFIP proteins can be found

enriched at inhibitory synapses where they can intimately asso-

ciate with the gephyrin scaffold.

Upregulating CYFIP1 or CYFIP2 Expression Disrupts
Inhibitory Synaptic Structure and Alters the Excitatory-
to-Inhibitory Synaptic Ratio
Increased CYFIP1 copy number is linked to neurodevelopmental

alterations including ASD, but the impact of increased CYFIP1 or

CYFIP2 expression on synaptic function remains poorly under-

stood. Given CYFIP1/2 enrichment at inhibitory synapses, we

investigated the impact of their upregulation on inhibitory syn-

apse number and area. Cultured neurons were transfected for

4 days with CYFIP1GFP or CYFIP2GFP before being fixed at day

in vitro 14 (DIV14) and labeled with an antibody against gephyrin

as a marker for inhibitory synapses. Quantification revealed that

gephyrin cluster number and total immunolabeled area was

significantly reduced in both CYFIP1- and CYFIP2-overexpress-

ing cells (Figures 2A and 2B). Consistent with this, the total num-

ber and area of surface GABAAR clusters, labeled with an

antibody raised to an extracellular epitope in the synaptically

enriched GABAAR-g2 subunit, were also significantly reduced

(Figures 2C and 2D).

Remarkably,whenneuronswere labeledwithanantibody to the

excitatorypostsynapticdensity (PSD)scaffoldproteinhomer to la-

bel excitatory synapses, the opposite effect was observed.

Notably, the total number and area of homer clusters along den-

drites were significantly increased in CYFIP1/2-overexpressing

cells (Figures 3A and 3B). To determine whether the CYFIP1 over-

expression-dependent increase in excitatory postsynapse num-

ber correlated with an increase in functional synapses, we

analyzed the number of innervated excitatory synapses along

the dendritic region, considered as the number of overlapping

VGLUT-labeled presynaptic and PSD95-labeled postsynaptic

puncta. Innervated synapses were significantly increased in cells

overexpressing CYFIP1 compared to control, and consistent

with this, the number of presynaptic VGLUT clusters were

also enhanced (Figures 3C–3E). Significantly more excitatory

synapses were found on both the dendritic shaft and spines in

CYFIP1-overexpressingcellscompared tocontrol,which resulted
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Figure 1. CYFIP1 and CYFIP2 Are Present at Inhibitory Synapses

(A and B) Confocal images show cultured hippocampal neurons transfected with CYFIP1GFP (A) or CYFIP2GFP (B) and immunolabelled for VGAT and gephyrin,

respectively. CYFIP1GFP and CYFIP2GFP clusters colocalized with the inhibitory synaptic markers (arrowheads) and are also present at dendritic spines (open

arrowheads). Graphs show line scans through clusters (top) and quantification of CYFIP1GFP and CYFIP2GFP fluorescence intensity at gephyrin puncta compared

to the total process (bottom) (CYFIP1: 42.4 ± 11.2% increase, p < 0.0001; CYFIP2: 39.8 ± 7.3% increase, p = 0.0002; n = 33–42 processes from 9 cells from 3

independent preparations; Wilcoxon signed rank test). Scale bar, 2 mm.

(C) Endogenous CYFIP1 colocalizes with gephyrin (filled arrowheads) and is also present in dendritic spines (open arrowheads) in hippocampal neurons

transfected with the cell fill actinGFP. Scale bar, 2 mm.

(D) STED images of endogenous CYFIP1 and gephyrin. Arrowheads show CYFIP1 nanoclusters at gephyrin puncta. Scale bar, 2 mm; zoom scale bar, 0.2 mm.

(E and F) Example images (E) and puncta quantification (F) of proximity ligation assay (PLA) on hippocampal neurons using antibodies to CYFIP1 and gephyrin

compared to single CYFIP1 antibody control conditions (control: 36.1 ± 4.7; CYFIP1 and gephyrin: 99.3 ± 26.1; n = 14 cells from 3 preparations; p = 0.0217;

Mann-Whitney). Scale bar, 20 mm.

*p < 0.05; ***p < 0.001. Bars indicate mean, and error bars indicate SEM.
in an increasedproportionof the total number of synapsespresent

on the shaft andadecreased ratioof synapseson the spine versus

the shaft (FiguresS1A–S1D). Interestingly, therewas no change in
spine density along dendrites, although spine morphology was

altered with significantly more long thin and mushroom spines in

cells overexpressing CYFIP proteins (Figures S1E–S1G).
Cell Reports 26, 2037–2051, February 19, 2019 2039
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Figure 2. The Effect of Increased CYFIP1 and CYFIP2 Gene Dosage on Inhibitory Synaptic Structure

(A) Representative confocal images of hippocampal neurons transfected with CYFIP1GFP, CYFIP2GFP, or GFP control for 4 days before labeling at DIV14 with

gephyrin antibodies. Scale bar, 2 mm.

(B) Gephyrin cluster analysis showing a significant decrease in gephyrin cluster number and area upon CYFIP1GFP or CYFIP2GFP overexpression (cluster number:

from 9.9 ± 0.6 to 6.3 ± 0.9 for CYFIP1 and 6.6 ± 0.6 for CYFIP2; cluster area: from 3.1 ± 0.2 mm2 to 2.1 ± 0.3 mm2 for CYFIP1 and 1.9 ± 0.2 mm2 for CYFIP2; n = 20

cells from 4 preparations; Kruskal-Wallis one-way ANOVA, Dunn’s post hoc multiple comparisons).

(C) Representative confocal images of hippocampal neurons transfected as in (A) and surface labeled with GABAAR-g2 subunit antibodies. Scale bar, 2 mm.

(D) Cluster analysis of GABAAR-g2 surface puncta showing a decrease in cluster number and area upon CYFIP1GFP or CYFIP2GFP overexpression (cluster

number: from 8.1 ± 0.9 to 5.4 ± 0.8 for CYFIP1 and 5.2 ± 0.7 for CYFIP2; cluster area: from 2.8 ± 0.6 mm2 to 1.1 ± 0.2 mm2 for CYFIP1 and 1.2 ± 0.2 mm2 for CYFIP2;

n = 25 cells from 4 preparations; Kruskal-Wallis one-way ANOVA, Dunn’s post hoc multiple comparisons).

*p < 0.05; **p < 0.01. Bars indicate mean, and error bars indicate SEM.
Finally, we examined the ratio of inhibitory and excitatory syn-

aptic clusters along dendrites in CYFIP1- or CYFIP2-overex-

pressing cells compared to control using antibodies against

the GABAAR-g2 subunit and homer, respectively. We observed

a striking shift in the balance of excitatory and inhibitory synaptic

puncta along dendrites upon CYFIP1/2 overexpression, which

led to a significant increase in the E/I ratio (Figure 3F). Taken

together, these results reveal that CYFIP protein overexpression

differentially alters excitatory and inhibitory synapse number,

disrupting the E/I synapse ratio.

Disrupted Inhibitory and Excitatory Synaptic Activity in
Neurons Overexpressing CYFIP1
We further addressedwhether increased CYFIP dosage can also

directly affect inhibitory and excitatory transmission in neurons,

focusing on CYFIP1 as the gene has been more robustly associ-

ated with neurodevelopmental disorders. Whole-cell recordings

were performed to measure inhibitory and excitatory transmis-

sion in neurons overexpressing CYFIP1 and co-expressing

GFP (Figures S2A–S2C) (Kim et al., 2011). Analysis of mIPSCs

from CYFIP1-overexpressing cells revealed a significant �25%

decrease in mIPSC amplitude but no change in frequency

compared to control neurons expressing GFP alone (Figures

4A–4C). The decreased mean mIPSC amplitude can be seen in

the representative traces and in the leftward shift of the cumula-

tive probability plot (Figures 4D and 4E). Overexpression of

CYFIP1 had no effect on mIPSC kinetics (Figures 4F and 4G).
2040 Cell Reports 26, 2037–2051, February 19, 2019
Conversely, when we analyzed mEPSCs, we observed no

change in mEPSC amplitude but saw a robust and significant in-

crease in mEPSC frequency (Figures 4H–4J). Again, this finding

can be observed in both the example traces and the shift toward

the right in the cumulative probability plot of mEPSC frequency

(Figures 4K and 4L). The kinetics of mEPSCs was unchanged

(Figures S2D and S2E). Finally, the mean total charge transfer

(a parameter that reflects both the amplitude and frequency

of miniature synaptic events) for mIPSCs was significantly

decreased in CYFIP1-overexpressing cells, while mEPSC

charge transfer showed a trend toward an increase (Figures

4M and 4N). These data demonstrate that CYFIP1 overexpres-

sion not only alters synapse numbers but also results in func-

tional deficits in synaptic transmission, resulting in an imbalance

of excitation and inhibition.

Decreased CYFIP1 Gene Dosage Alters Neuronal and
Dendritic Spine Morphology
CYFIP1canalso undergomicrodeletion, but due to the embryonic

lethality of constitutiveCYFIP1 knockout (KO), the impact of delet-

ing all CYFIP1 in the brain remains undetermined (Pathania et al.,

2014). To circumvent this and study cell-type-specific effects of

CYFIP1 deletion, we generated a conditional KO (cKO) mouse

line selectively lacking CYFIP1 in forebrain excitatory neurons us-

ing a Nex-Cre driver line (Goebbels et al., 2006; Skarnes et al.,

2011). This allowed us to determine the impact of deletingCYFIP1

from embryonic day 12 onward on neuronal development
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Figure 3. Increased Expression of CYFIP1 and CYFIP2 Alters the Ratio of Excitatory to Inhibitory Synapses

(A) Confocal images of hippocampal neurons transfected with CYFIP1GFP, CYFIP2GFP, or GFP control for 4 days before labeling at DIV14 with an antibody to the

excitatory postsynaptic protein homer. Scale bar, 2 mm.

(B) Cluster analysis shows a significant increase in homer cluster number and area upon CYFIP1GFP or CYFIP2GFP overexpression (cluster number: from 5.9 ± 1.2

to 12.1 ± 1.5 for CYFIP1 and 12.3 ± 1.1 for CYFIP2; cluster area: from 1.3 ± 0.3 mm2 to 3.1 ± 0.5 mm2 for CYFIP1 and 3.1 ± 0.3 mm2 for CYFIP2; n = 17 cells from 3

preparations; Kruskal-Wallis one-way ANOVA, Dunn’s post hoc multiple comparisons).

(C) CYFIP1GFP-overexpressing hippocampal neurons labeled with antibodies to VGLUT and PSD95. Scale bar, 2 mm.

(D and E) Cluster analysis revealed a significant increase in total number of excitatory synapses identified as VGLUT/PSD95-positive puncta (D) and VGLUT

cluster number (E) upon CYFIP1GFP overexpression (total synapses: from 7 ± 1.6 to 13.6 ± 2; VGLUT number: from 7.7 ± 1.8 to 14 ± 1.7; n = 15–16 cells from 3

preparations; p = 0.018 and 0.016; Student’s t test).

(F) The excitatory/inhibitory synaptic ratio quantified from transfected labeled with antibodies to homer and GABAAR-g2 as markers for excitatory and inhibitory

synapses respectively (E/I ratio: from 0.8 ± 0.2 to 2.3 ± 0.4 for CYFIP1 and 2.6 ± 0.5 for CYFIP2; n = 17 cells from 3 preparations; Kruskal-Wallis one-way ANOVA,

Dunn’s post hoc multiple comparisons).

*p < 0.05, **p < 0.01, ***p < 0.001. Bars indicate mean, and error bars indicate SEM. See also Figure S1.
specifically in excitatory cells of the forebrain (Figures 5A and

S3A). CYFIP1NEX cKO animals were viable until adulthood with

no obvious abnormalities. Western blotting of post-natal day 30

(P30) hippocampal brain lysates with a CYFIP1-specific antibody

revealed a robust reduction of CYFIP1 expression in CYFIP1NEX

cKO mice compared to control floxed animals (Figures 5B and

5C). Remaining CYFIP1 expression detected in western blots

presumably comes from CYFIP1 in other cell populations such

as interneurons and glia. Fluoro-Nissl labeling of thin brain sec-

tions revealed that CYFIP1NEX cKO mice did not show any gross

morphological abnormalities in neocortical and hippocampal

brain structure when compared to control (Figure 5D).

CYFIP1 haploinsufficiency in constitutive CYFIP1 heterozy-

gous KOmice led to decreased dendritic complexity and altered

dendritic spine maturation both in vitro and in vivo (Pathania

et al., 2014). Therefore, we initially assessed dendritic

morphology in hippocampal neurons from CYFIP1NEX cKO

mice. Golgi-stained CA1 neurons analyzed from P30 CYFIP1NEX

cKO brains showed significantly less dendritic complexity in the

basal compartment compared to neurons analyzed from litter-

mate control tissue. Consistent with this, total basal dendritic

length was reduced; however, branch point number was un-
changed (Figures 5E–5G). While spine density was unchanged

in CYFIP1NEX cKO neurons, there was a significant increase in

the spine length and length-to-width ratio consistent with the

spine phenotypes previously reported upon constitutive CYFIP1

heterozygous KO (Pathania et al., 2014) (Figures 5H–5L). Thus,

these data illustrate that the CYFIP1NEX cKO mice show similar

deficits in dendrite morphology and spine maturation to those

described for a CYFIP1 haploinsufficient model and support

these effects to be cell autonomous to the CA1 pyramidal cells.

Postsynaptic Loss of CYFIP1 Increases Inhibitory
Synapse Size and Strength
To further explore the impact ofCYFIP1deletion onsynaptic com-

ponents, we probed hippocampal lysates from P30 control and

CYFIP1NEX cKO brains with antibodies to key molecular compo-

nents of the inhibitory and excitatory PSDs. Interestingly, while

the levels of key excitatory postsynaptic proteins including homer

and PSD95 were unchanged, we observed a significant increase

in the levels of the inhibitory GABAAR-b2/3 subunits and the

ASD-associated neuroligin 3 adhesion molecule, which can be

found at both inhibitory and excitatory postsynapses (Figure 6A).

CYFIP1 loss of function may therefore have an opposite effect to
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Figure 4. Increased CYFIP1 Gene Dosage Disrupts Inhibitory and

Excitatory Synaptic Transmission

(A) Representative traces of miniature inhibitory postsynaptic currents

(mIPSCs) recorded from control GFP (Ctrl) and CYFIP1-overexpressing

cultured hippocampal neurons at DIV14–DIV16.

(B and C) Pooled data of mIPSCs showing neurons transfected with CYFIP1

have a reduction in (B) mean mIPSC amplitude but no change in (C)

mean mIPSC frequency (mIPSC amplitude: from 66.9 ± 3.8 to 50.7 ± 3.6 -pA,

p = 0.0062; frequency: from 3.8 ± 0.5 to 3.9 ± 0.7 Hz; p = 0.92, n.s.; all n = 10

cells from 3 preparations; Student’s t test).

(D and E) Cumulative frequency graphs of mIPSC (D) amplitude and (E)

frequency.

(F) Graph of mIPSC rise time kinetics (from 4 ± 0.3 to 4.6 ± 0.3 ms; n = 9 cells

from 3 preparations; p = 0.0623, n.s.; Mann-Whitney).

(G) Graph of mIPSC decay time kinetics (from 11.1 ± 1.4 to 10.2 ± 1.1 ms;

n = 10–11 cells from 3 preparations; p = 0.618, n.s.; Student’s t test).

(H) Representative traces of miniature excitatory postsynaptic currents

(mEPSCs) recorded from CYFIP1 or GFP control (Ctrl) transfected neurons.

(I and J) Pooled data of mEPSCs showing neurons transfected with CYFIP1

have no difference in (I) meanmEPSC amplitude but a significant increase in (J)
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that of upregulation, causing an increase in inhibitory synapse sta-

bility. To validate this, we carried out immunohistochemistry on

thin hippocampal sections taken from P30 control floxed and

CYFIP1NEX cKO brains. Sections were labeled with antibodies to

VGAT and gephyrin to report inhibitory presynaptic and postsyn-

aptic compartments and DAPI to indicate cell bodies. Quantifica-

tion in the stratumpyramidale layer of thehippocampus revealeda

significant increase in normalized gephyrin cluster area in cKO tis-

sue compared to control while VGAT cluster area was unchanged

(Figures 6B–6D). Thesedata highlight that loss ofCYFIP1 in vivo in

glutamatergic principal cells results in an increase in inhibitory

synapse size and the levels of inhibitory synaptic proteins.

Finally, we investigated whether the changes in inhibitory syn-

apses observed in CYFIP1NEX cKO mice translated into a func-

tional effect on synaptic transmission. We examined mIPSCs in

acute hippocampal slices from control and CYFIP1NEX cKO

P28–P34 mice, in which CA1 pyramidal cells could be identified

unambiguously. Recordings from these cells showed that

deletion of CYFIP1 resulted in a significant increase in mIPSC

amplitude consistent with a shift to the right in the cumulative fre-

quency plot of mIPSC amplitude (Figures 7A–7C). This was not

observed with acute short hairpin RNA (shRNA) knockdown of

CYFIP1 from cultured neurons (Figures S4A–S4D). No change

was observed in mIPSC frequency and mIPSC rise and decay

time between control and CYFIP1NEX cKO CA1 pyramidal

neurons (Figures 7A–7D). Importantly,CYFIP1deletion hadnoef-

fect on AMPA receptor (AMPAR)-mediated mEPSCs (Figures

7E–7H), confirming a selective effect on synaptic inhibition in

P28–P34 animals. Lastly, we measured the total charge transfer

mediatedbyboth inhibitory andexcitatorypostsynaptic currents.

This showed thatmIPSCcharge transferwas increasedby�70%

in CYFIP1-deleted cells compared to control, while mEPSC

charge transfer was unchanged (Figure 7I). The probability curve

ofmIPSC andmEPSC charge transfer fromCYFIP1NEX cKO neu-

rons normalized to control demonstrates the resultant imbalance

between inhibitory and excitatory transmission observed with

loss of CYFIP1 expression (Figure 7J). Altogether, this highlights

the necessity of CYFIP1 for correct synaptic inhibition, as its

absence during development dramatically impacts inhibitory

synapse integrity and the strength of inhibition.

DISCUSSION

Alterations in E/I balance are implicated in neuropsychiatric

disorders including ASD and SCZ (Foss-Feig et al., 2017), but

how this may be caused by genetic variation is poorly
mean mEPSC frequency compared with control (mEPSC amplitude: from

19.0 ± 1.7 to 17.0 ± 1.4 -pA; p = 0.367, n.s.; frequency: from 1.5 ± 0.1 to

2.9 ± 0.4 Hz, p = 0.0003; n = 14–20 cells from 3 preparations; Student’s t test).

(K and L) Cumulative frequency graphs of mEPSC (K) amplitude and (L)

frequency.

(M) Quantification of mIPSC total charge transfer (from 3.3 ± 0.4 to 2.1 ± 0.3

pC; n = 9 cells from 3 preparations; p = 0.0341; Student’s t test).

(N) Quantification of mEPSC total charge transfer (mEPSC charge transfer:

from 0.45 ± 0.1 to 0.7 ± 0.1 pC; n = 10–11 cells from 3 preparations; p = 0.1307,

n.s.; Mann-Whitney).

*p < 0.05, **p < 0.01, ***p < 0.001. Bars indicate mean, and error bars indicate

SEM. See also Figure S2.
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Figure 5. Loss of CYFIP1 Expression in Principal Cells of the Neocortex Alters Hippocampal Cell Morphology

(A) PCR genotyping of CYFIP1NEX conditional knockout (cKO) animals generated from the KO-first strategy. CYFIP1 floxed animals were crossed with mice

expressing cre recombinase under the Nex promoter. Animals were genotyped with wild-type (WT), mutant, cre recombinase (Cre), and deletion (Del) primers.

See also Figure S3.

(legend continued on next page)
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understood. Here, we report that the ASD- and SCZ-associated

protein CYFIP1 is localized to inhibitory synapses and regulates

the balance between neuronal excitation and inhibition. CYFIP1

overexpression increases the excitatory-to-inhibitory synaptic

ratio consistent with an increase in mEPSC frequency and

decrease in mIPSC amplitude. In contrast, CYFIP1 loss had

the opposite effect on neuronal inhibition, leading to increased

inhibitory postsynaptic clustering, enhanced expression of neu-

roligin 3 and GABAAR b-subunits, and an increase in mIPSC

amplitude in vivo. Our data provide strong support for altered in-

hibition and disruption in E/I balance being a pathological conse-

quence of CYFIP1 CNV and points toward disruption in inhibitory

synaptic structure and function as being part of the underlying

mechanism.

CYFIP1 was previously shown to be enriched at excitatory

synapses where it can regulate F-actin dynamics (Pathania

et al., 2014; De Rubeis et al., 2013), protein translation

(Napoli et al., 2008), and dendritic spine structural plasticity (Pa-

thania et al., 2014). Our data show that increased CYFIP1

dosage in hippocampal cultures increased VGLUT and homer-

positive cluster number and consequently total cluster area

and thus increased excitatory synapse number and mEPSC fre-

quency. Notably, a high proportion of these synapses appeared

on the dendritic shaft compared to spines. This is perhaps due to

the molecular and spatial confinement present within the spines

as we detect more long thin spines on CYFIP1-overexpressing

cells, an immature subtype of spines that has been repeatedly

identified in rodent models and patients with ASD (Phillips and

Pozzo-Miller, 2015) as well as a transgenic mouse overexpress-

ing Cyfip1 (Oguro-Ando et al., 2015). Importantly, our transfec-

tion approach results in CYFIP1 overexpression in a sparse

population of neurons, whose vast majority of presynaptic inputs

will be fromwild-type (WT) untransfected cells. Thus, themEPSC

frequency increase we observe likely reflects a postsynaptically

driven increase in excitatory synapse number, rather than any

presynaptic effect on excitability or release probability (Hsiao

et al., 2016).

In addition, we demonstrate that CYFIP1 and CYFIP2 are also

enriched at inhibitory synapses and that CYFIP1 interacts with

the inhibitory postsynaptic scaffold gephyrin, supporting its inti-

mate association with the inhibitory postsynaptic density. STED

imaging revealed CYFIP1 and gephyrin are in closely adjacent

clusters consistent with the sub-synaptic localization of other

inhibitory synaptic enriched proteins (Woo et al., 2013) and
(B and C) Western blot (B) and quantification (C) of floxed control (Ctrl) and CYFIP

0.05; n = 3 animals per condition; p = 0.0033, Student’s t test).

(D) Fluoro-Nissl staining of control floxed (Ctrl) and CYFIP1NEX cKO P30 mouse c

(E) Example reconstructions of CYFIP1NEX cKO and floxed littermate control (Ctr

(F) Sholl analysis of Golgi-stained neurons to measure dendritic complexity (B

Bonferroni’s multiple comparisons).

(G) Total dendritic length of Golgi-stained neurons (dendritic length: basal, from 1

1,609 ± 78 mm; p = 0.46, n.s.; n = 9–13 reconstructed cells from 3 animals per g

(H) Example dendrites and dendritic spines of CYFIP1NEX cKO (cKO) and floxed

(I–K) Dendritic spine analysis revealed no change in spine density (I) between geno

as a result of an increase in dendritic spine length (K) (spine density: from 1.2 ± 0.1

0.7, p = 0.0407; length: from 1.7 ± 0.1 mm to 1.9 ± 0.1 mm, p = 0.02; n = 45 dend

(L) Cumulative frequency graph of dendritic spine length.

*p < 0.05; **p < 0.01. Bars indicate mean, and error bars indicate SEM.
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thus is well-positioned to influence these proteins. In contrast

to the effects on excitatory synapses, increased CYFIP1 dosage

reduced inhibitory postsynaptic cluster area and decreased

amplitude of inhibitory transmission likely due to a loss of sur-

face g2-subunit-containing synaptic GABAAR clusters. Taken

together, upregulation of CYFIP1 expression impacts excitatory

and inhibitory synapses and would likely lead to altered E/I

balance.

Interestingly, CYFIP2 overexpression phenocopied both

inhibitory and excitatory alterations in synapse number and

size observed with increased CYFIP1 dosage. Although CYFIP2

CNVs have yet to be reported, altered CYFIP2 function has been

associated with neurological and neuropsychiatric disorders

through genetic associations and expression changes (Föcking

et al., 2015; Han et al., 2015; Nakashima et al., 2018). Our data

suggest that increased CYFIP2 dosage could lead to altered

synaptic inhibition, which may contribute to the pathology un-

derlying CYFIP2-associated neurological disorders.

In addition to studying CYFIP1 upregulation, we also deter-

mined the impact of CYFIP1 loss on neuronal development

and connectivity. Constitutive KO of CYFIP1 leads to early em-

bryonic lethality, thus far limiting CYFIP1 loss-of-function studies

to exploring the impact of CYFIP1 haploinsufficiency (Bozdagi

et al., 2012; Hsiao et al., 2016; Pathania et al., 2014; De Rubeis

et al., 2013). While these have been informative, it is clearly

also important to establish the impact of complete loss of

CYFIP1 in CNS neurons and the cell autonomy of CYFIP1

dysfunction in glutamatergic neurons, where most studies

have focused. To this end, we developed a CYFIP1NEX cKO

where CYFIP1 was deleted from principal cells of the hippocam-

pus and neocortex. Surprisingly, CYFIP1NEX cKO resulted in

relatively mild defects in dendritic branching and spine matura-

tion in P30 CA1 pyramidal cells, similar to those previously re-

ported upon CYFIP1 haploinsufficiency (Pathania et al., 2014),

perhaps due to compensation from CYFIP2 (Han et al., 2015;

Pathania et al., 2014). CYFIP1NEX cKO animals did not exhibit al-

terations in excitatory synaptic transmission at this age consis-

tent with reports of adult CYFIP1 haploinsufficient mice where

basal excitatory synaptic transmission was unaltered (Bozdagi

et al., 2012). Importantly, the cell selectivity of our model sup-

ports dendritic branching and spine alterations upon disrupted

CYFIP1 expression (Oguro-Ando et al., 2015; Pathania et al.,

2014; De Rubeis et al., 2013) to be primarily cell-autonomous

effects.
1NEX conditional KO (cKO) P30 hippocampal brain lysates (from 1 ± 0.1 to 0.5 ±

oronal brain sections. Scale bar, 500 mm; zoom, 250 mm.

l) Golgi-stained P30 CA1 neurons.

asal dendrites, �100 mm: p < 0.05; �120 mm: p < 0.01; two-way ANOVA,

,360 ± 65.9 to 1,099 ± 70.5 mm; p = 0.0178; apical, from 1,490 ± 153.5 mm to

enotype; Student’s t test).

littermate control (Ctrl) Golgi-stained P30 CA1 neurons. Scale bar, 5 mm.

types but an increase in spine length/width ratio (J) in CYFIP1NEX cKO neurons

to 1.2 ± 0.1 spines/mm; p = 0.32, n.s.; length/width ratio: from 8.9 ± 0.7 to 10.8 ±

ritic processes from 3 animals per genotype, Student’s t test).
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Figure 6. Decreased CYFIP1 Gene Dosage Alters Expression of Inhibitory Scaffold Molecules and Inhibitory Synaptic Structure In Vivo

(A) Western blot analysis displaying protein expression ratios of synaptic proteins from control (Ctrl) and CYFIP1NEX conditional KO (cKO) P30 hippocampal

brain lysates (neuroligin 2 [NLGN2]: 1.02 ± 0.09; neuroligin 3 [NLGN3]: 1.35 ± 0.1, p = 0.0286; Git1: 1.03 ± 0.05; b-pix: 0.97 ± 0.04; GABAAR b2/3: 1.41 ± 0.01,

p = 0.0017; gephyrin: 0.96 ± 0.07; homer: 1.05 ± 0.02; PSD95: 1.07 ± 0.03; n = 3 animals per condition; Student’s t test).

(B) Confocal images of adult control (Ctrl) and CYFIP1NEX cKO hippocampal brain sections immunolabelled with antibodies to VGAT and gephyrin, co-stained

with DAPI. Scale bar, 25 mm; zoom, 10 mm.

(C and D) Normalized total cluster area quantification of CYFIP1NEX cKO (cKO) tissue as a percentage of floxed control (Ctrl) showing no change in (C)

VGAT cluster area and an increase in (D) gephyrin cluster area (VGAT: from 100 ± 2.4% to 94 ± 5.2%; p = 0.336, n.s.; gephyrin: from 100 ± 6.9% to 119 ± 6.1%;

p = 0.0473; n = 18 hippocampal regions from 3 animals per genotype; Student’s t test) in CYFIP1 cKO tissue compared to control.

*p < 0.05; **p < 0.01. Bars indicate mean, and error bars indicate SEM.
Several lines of evidence reported here support enhanced

inhibitory postsynaptic function in CYFIP1NEX cKO animals. We

found increased expression levels of GABAAR-b2/3 subunits

and neuroligin 3 in the hippocampus. Furthermore, we observed
an increase in gephyrin clustering and mIPSC amplitude in hip-

pocampal CA1 neurons. Given that neurons providing inhibition

to CA1 pyramidal cells are not targeted by the Nex Cre-driven

CYFIP1 deletion, these effects reflect postsynaptic changes in
Cell Reports 26, 2037–2051, February 19, 2019 2045
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CA1 cell function. Furthermore, the unaltered excitatory trans-

mission in CYFIP1NEX cKO mice argues against an increased

excitatory drive of inhibitory interneurons. Intriguingly, acute

downregulation of CYFIP1 in culture did not recapitulate the

increased inhibitory synaptic size and strength we observed in

CYFIP1NEX cKO animals, suggesting long-term postsynaptic

CYFIP1 loss is required for the observed effects.

As the majority of synaptic GABAARs require the incorporation

of b2/3 subunits to form and be efficiently trafficked to the

plasma membrane, higher levels of these subunits likely reflect

increased numbers of synaptic GABAARs. These GABAARs are

stabilized at the postsynapse by adhesion molecules including

neuroligins, a family of synaptic adhesion molecules associated

with neurodevelopmental disorders (Bemben et al., 2015a; Ja-

main et al., 2003).While neuroligins 1 and 2 are localized to excit-

atory and inhibitory synapses, respectively (Song et al., 1999;

Varoqueaux et al., 2004), neuroligin 3 can be found at both types

of synapse and interacts with gephyrin and neuroligin 2 at inhib-

itory synapses (Budreck and Scheiffele, 2007). By stabilizing

GABAARs at synapses, upregulated neuroligin 3 may help drive

the increased levels of GABAAR-b2/3 subunits observed and

contribute to the increase in synaptic inhibition. Given its dual

synaptic localization, it is intriguing that neuroligin 3 upregulation

appears to only enhance synaptic inhibition in our model.

However, recent work has shown that overexpression of neuro-

ligin 3 leads to a selective increase in the strength of inhibition

over excitation (Chanda et al., 2017), and ASD-associated point

mutations in NLGN3 have been show to impact the E/I synaptic

ratio in neurons (Tabuchi et al., 2007; Zhang et al., 2017). Taken

together, these data point toward CYFIP1 having a role in synap-

tic development similarly to other ASD-associated synaptic and

actin regulatory molecules such as Shank3, neuroligins, and dre-

brin (Bemben et al., 2015b; Grabrucker et al., 2011; Shirao et al.,

2017).

How CYFIP1 expression levels bi-directionally regulate post-

synaptic excitation and inhibition while being enriched at both
Figure 7. Postsynaptic Loss of CYFIP1 In Vivo Increases Inhibitory Syn

(A) Representative recordings of miniature inhibitory postsynaptic currents (mIP

CYFIP1NEX cKO mice (right). Lower panels are representative sections of record

(B) Pooled data showing increase mIPSC mean amplitude in CYFIP1NEX cKO mic

change in frequency (from 3.3 ± 0.3 to 3.7 ± 0.3 Hz; n = 13–15 cells; p = 0.324, n.s

percentiles (box), and range of data within 1.53 interquartile range (IQR) of box

(C) Cumulative frequency graphs of mIPSC amplitude (left) and frequency (right)

(D) Graphs of mIPSC kinetics showing no change in rise and decay time (rise tim

9.2 ± 0.6 to 10.1 ± 0.4 ms; n = 13–15 cells; p = 0.247, n.s.; both Student’s t test)

(E) Representative recordings of miniature excitatory postsynaptic currents (mE

CYFIP1NEX cKO mice (right). Lower panels are representative sections of record

(F) Pooled data showing no change in mEPSC mean amplitude (from 19.2 ± 1.4 t

(Ctrl) and CYFIP1 cKOmice (cKO) (from 1.5 ± 0.2 to 1.3 ± 0.2 Hz; n = 18–20 cells; p

25th to 75th percentiles (box), and range of data within 1.53 IQR of box (whiske

(G) Cumulative frequency graphs of mEPSC amplitude (left) and frequency (right

(H) Graphs of mEPSC kinetics showing no change in rise and decay time (rise tim

6.7 ± 0.2 to 6.7 ± 0.2 ms; n = 22 cells; p = 0.8415, n.s.; both Student’s t test).

(I) Pooled data showing an increase in mIPSC mean charge transfer in CYFIP1NEX

n = 13–14 cells; p = 0.0067) but no change in mEPSC mean charge transfer (from

Box-and-whisker plots indicate median (line), 25th to 75th percentiles (box), and

(J) The probability curve of meanmEPSC andmIPSC charge transfer in CYFIP1NE

excitation and inhibition in CYFIP1NEX cKO animals.

*p < 0.05; **p < 0.01. Bar graph bars indicate mean, and error bars indicate SEM
synapses remains to be fully elucidated. CYFIP1 interacts with

a number of proteins present at both inhibitory and excitatory

synapses including Rac1, WAVE1, and FMRP that have

numerous synapse-specific functions involved in actin remodel-

ing and protein translation (Kobayashi et al., 1998; Napoli et al.,

2008; Uezu et al., 2016). For instance, the GIT1-Rac1 pathway

has been shown to regulate spine morphology and GABAAR sta-

bility and endocytosis at excitatory and inhibitory synapses,

respectively (Smith et al., 2014; Wang et al., 2017; Zhang et al.,

2005). PerturbedCYFIP1 expression could impact synapse-spe-

cific Rac1-dependant pathways via altered availability of Rac1-

GTP. Alternatively, CYFIP1 itself may have synapse-specific

interactions. CYFIP1 forms a binding surface with Abi that en-

ables binding between the WRC and proteins containing a

WIRS (WRC interacting receptor sequence) peptide motif

(Chen et al., 2014; Chia et al., 2014). Interestingly, neuroligin 3

(but not neuroligin 2) contains a WIRS motif. Disrupted coupling

of neuroligin 3 to the WRC upon CYFIP1 deletion might alter its

trafficking, by disrupting its surface downmodulation or intracel-

lular sorting (Anitei et al., 2010; Xu et al., 2016). Changes in sur-

face stability or turnover of neuroligin 3 might work hand in hand

with increased neuroligin 3 expression due to relief of FMRP-

dependent translational repression upon CYFIP1 loss (Darnell

et al., 2011; Napoli et al., 2008).

E/I balance shift can lead to deficits in network activity, disrup-

ted information processing, and altered behaviors (Blundell

et al., 2009; Gkogkas et al., 2013; Tora et al., 2017; Yizhar

et al., 2011). An increase in the ratio of excitatory to inhibitory

synapses as observed upon CYFIP1 upregulation is consistent

with altered E/I balance in ASD and in mouse models of

numerous neuropsychiatric disorders (Bateup et al., 2013;

Chao et al., 2010; Gao and Penzes, 2015; Nelson and Valakh,

2015; Smith et al., 2017) and the increased risk of neuropsychi-

atric symptoms in some individuals with CYFIP1 duplication.

Intriguingly, patients with temporal lobe epilepsy and pilocar-

pine-treated rats show an upregulation of CYFIP1 expression
aptic Function

SCs) (–70 mV) in CA1 pyramidal cells from P28–P34 control floxed (left) and

ings (contiguous 0.3-s segments).

e (cKO) (from 23.8 ± 1.8 to 30.3 ± 2.2 -pA; n = 13–14 cells; p = 0.0288) but no

.) All Student’s t test. Box-and-whisker plots indicate median (line), 25th to 75th

(whiskers) and mean (open circles).

.

e: from 5.2 ± 0.3 to 5.3 ± 0.4 ms; n = 13–14 cells; p = 0.935, n.s.; decay time:

.

PSCs) (–70 mV) in CA1 pyramidal cells from P28–P34 control floxed (left) and

ings (contiguous 0.3-s segments).

o 18 ± 1.4 -pA; n = 21–22 cells; p = 0.549, n.s.) and frequency between control

= 0.565, n.s.). All Student’s t test. Box-and-whisker plots indicate median (line),

rs) and mean (open circles).

).

e: from 4.7 ± 0.2 to 5 ± 0.3 ms; n = 22 cells; p = 0.527, n.s.; decay time: from

cKO (cKO) mice compared to floxed control (Ctrl) (from 1 ± 0.2 to 1.7 ± 0.2 pC;

0.3 ± 0.1 to 0.3 ± 0.03 pC; n = 18–20 cells; p = 0.753, n.s.) All Student’s t test.

range of data within 1.53 IQR of box (whiskers) and mean (open circles).
X cKOmice as a percentage of control mice highlighting the imbalance between

. See also Figure S4.
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consistent with the notion that increased CYFIP1 expression is

associated with altered E/I balance and associated behaviors

(Huang, 2016). Enhanced inhibition upon CYFIP1 deletion could

contribute to the intellectual disability and cognitive changes re-

ported in individuals with 15q11.2 microdeletions. Indeed,

excess inhibition contributes to cognitive impairment in Down

syndrome models where disrupted long-term potentiation,

learning, and memory can be improved by pharmacologically

targeting GABAARs (Rudolph and Möhler, 2014). Interestingly,

neuroligin 3 overexpression in hippocampal pyramidal cells

was also recently reported to selectively increase synaptic

inhibition by somatostatin-expressing interneurons that inner-

vate distal dendrites at the expense of perisomatic inputs

from parvalbumin-expressing interneurons (Horn and Nicoll,

2018). Whether CYFIP1 deletion and concomitant neuroligin 3

upregulation could similarly alter the balance of inhibitory circuit

control by these two types of interneuron remains to be

determined.

Our results have established a link between altered CYFIP1

dosage, changes in synaptic inhibition and excitation, and

altered E/I balance. This provides important insights into the

role CYFIP proteins have in synaptic function and network activ-

ity and how CYFIP1 dysregulation in 15q11.2 CNV may impact

CNS function to contribute to the development of neuropsychi-

atric and neurodevelopmental disorders. Furthermore, our

work supports the idea that synaptic inhibition is a therapeutic

target and that drugs acting on GABAARs may prove beneficial

for individuals harboring CYFIP1 CNVs.
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Experimental Models: Cell Lines

COS-7 ATCC Cat# CRL-1651

Experimental Models: Organisms/Strains

Mouse: Cyfip1tm2a(EUCOMM)Wtsi Wellcome Trust Sanger

Institute
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Mouse: Cyfip1NEX cKO This paper N/A

Rat: Wild-type Sprague Dawley Charles River N/A
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Genotyping primer, CAS_R1_Term (MutR): TCGTGGTAT

CGTTATGCGCC

(Pathania et al., 2014) N/A

Genotyping primer, Cyfip1_234230_F (WtF): TGGAAGTA

ATGGAACCGAACA

(Pathania et al., 2014) N/A

Genotyping primer, Cyfip1_234230_R (WtR): GTAACTAC

CTATAATGCAGACCTGAAG

(Pathania et al., 2014) N/A

Genotyping primer, Deletion_F (DelF): TGGTAGCCCTC

TTCTTGTGGA

This paper N/A

Genotyping primer, Deletion_R (DelR): CTCCAAGATTC

CCCCAAAAC

This paper N/A

CYFIP1 shRNA sense: (Yoon et al., 2014) N/A

GATCCCCgcatgtttgtctttatgtaTTCAAGAGAtacataaagac

aaacatgcTTTTTC

CYFIP1 shRNA antisense: (Yoon et al., 2014) N/A

TCGAGAAAAAgcatgtttgtctttatgtaTCTCTTGAAtacataaa
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Scrambled shRNA sense: (Yoon et al., 2014) N/A

GATCCCCttctccgaacgtgtcacgtTTCAAGAGAacgtgaca

cgttcggagaaTTTTTC

Scrambled shRNA antisense: (Yoon et al., 2014) N/A

TCGAGAAAAAttctccgaacgtgtcacgtTCTCTTGAAacg

tgacacgttcggagaaGGG

Recombinant DNA

GatewayTM pcDNATM-DEST47 vector Invitrogen Cat# 12281010

pDEST-mCherry-N1 Addgene Cat# 31907

pDEST47-humanCYFIP1GFP This paper N/A

pDEST47-human CYFIP2GFP This paper N/A

pDEST-mCherry-N1-human CYFIP1 This paper N/A

pDEST-mCherry-N1-human CYFIP2 This paper N/A

pcDNA6.2/V5-DEST ThermoFisher Scientific Cat #12489027
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pDEST-V5:2A:GFP This paper N/A

pDEST-CYFIP1-V5:2A:GFP This paper N/A

pSUPER.neo+GFP Oligoengine Cat# VEC-pBS-0006

pEGFP-C1 Clontech N/A

pCAG-DsRed Addgene Cat# 24001

GFP-actin J. Hanley (U. of Bristol) (Rocca et al., 2013)

Software and Algorithms

Fiji/ImageJ National Institutes of Health https://imagej.nih.gov/ij/docs/guide/

146-2.html

Metamorph Molecular Devices N/A

Imaris Bitplane N/A

GraphPad Prism GraphPad Software N/A

Clampfit Molecular Devices N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and request for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Josef Kit-

tler (j.kittler@ucl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All procedures for the care and treatment of animals were in accordance with the Animals (Scientific Procedures) Act 1986, and had

full Home Office ethical approval. All animals were maintained under controlled conditions (temperature 20 ± 2�C; 12 h light-dark cy-

cle). Food and water were provided ad libitum. Animals were group housed in conventional cages and had not been subject to pre-

vious procedures. Animals of either sexwere used for all experiments.Wild-type E18 Sprague-Dawley rats were generated as a result

of wild-type breeding, embryos of either sex were used for generating primary neuronal cultures.

Generation of the Cyfip1NEX cKO mouse
The Cyfip1 knockout (KO) mouse line (MDCK; EPD0555_2_B11; Allele: Cyfip1tm2a(EUCOMM)Wtsi) was generated using the Knockout-

First strategy on C57BL/6N Taconic USA background and was obtained from the Wellcome Trust Sanger Institute as part of the In-

ternational Knockout Mouse Consortium (IKMC) (Skarnes et al., 2011). The KO-first allele contains an L1L2_Bact_P cassette flanked

by frt sites inserted 50 of critical exons 4 to 6 of Cyfip1, disrupting gene function. The cassette can be deleted in the presence of flp

recombinase by crossing with a flp-expressing strain. The flp-directed recombination produces a functional allele with the critical

exons flanked by loxP sites (Cyfip1F/F) (see Figure S3 for further details). Cyfip1 conditional knockout animals were generated by

crossing Cyfip1F/F animals with a Nex-Cre line (Goebbels et al., 2006) inducing the specific deletion of Cyfip1 only in principal cells

of the neocortex (Cyfip1NEX cKO). P28-34 Cyfip1F/F (control) and Cyfip1NEX cKO of both sexes were used and were generated as a

result of Cyfip1F/F;NEXcre(�/�) x Cyfip1D/D:NEXcre(+/�) crosses to produce littermate controls. For genotyping, DNA was extracted

from ear biopsies and PCRs were performed. The Cyfip1 WT and KO alleles were genotyped using the following three primers:

(Cyfip1_234230_F (WtF): 50-TGGAAGTAATGGAACCGAACA-30), (Cyfip1_234230_R (WtR): 50-GTAACTACCTATAATGCAGACCT

GAAG-30) and (CAS_R1_Term (MutR): 50-TCGTGGTATCGTTATGCGCC-30). WtF and WtR produce a band from the WT allele while

WtF andMutR produce a band from the KO allele. Deletion ofCyfip1 exons 4-6 in the conditional KO allele was confirmedwith primers

(Deletion_F (DelF): 50-TGGTAGCCCTCTTCTTGTGGA-30) and (Deletion_R (DelR): 50-CTCCAAGATTCCCCCAAAAC-30).

Primary Neuronal Culture
Hippocampal neurons were obtained from E18 Sprague Dawley wild-type rat embryos of either sex as previously described (López-

Doménech et al., 2016; Vaccaro et al., 2017). Briefly, embryos were placed into ice-cold Hank’s Buffered Salt Solution (HBSS) sup-

plemented with 10 mM HEPES. Brains were isolated, meninges were removed and hippocampi were dissected. Tissue was then

incubated in 0.125% trypsin diluted in HBSS + HEPES for 15 min at 37�C. Tissue was washed twice in HBSS + HEPES and triturated

to a single cell suspension in attachment media (MEM supplemented with 10% horse serum, 1 mM sodium pyruvate, 0.6% glucose)

using a fire-polished glass pasteur pipette. Following trituration, neurons were plated in attachment media onto pre-prepared poly-L-

lysine (PLL) coated 13mm glass coverslips at a density of 35 x104 cells per 6cm dish (each containing 8 coverslips). 4-6 h later media

was changed to Neurobasal growth medium supplemented with B27, 1% glutaMAX and 33 mM glucose. PLL was incubated for a
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minimum of 3 h with coverslips at 500 mg/ml, washed twice in dH20 and dried. The cultures were maintained at 37�C with 5% CO2.

Experiments were performed at DIV 14-16 unless otherwise stated.

COS-7 Cell Culture
COS-7 cells were maintained in DMEM supplemented with 10% fetal bovine serum and penicillin/streptomycin (100 U/ml and

100 mg/ml respectively) at 37�Cwith 5%CO2. COS-7 cells were transfected for 48 h using the Nucleofector� device (Lonza) following

the manufacturer’s protocol.

METHOD DETAILS

Constructs
Human CYFIP1- and CYFIP2-GFP/mCherry fusion protein constructs were generated by cloning the coding sequences into

pDEST47GFP (Invitrogen) and pDEST-mCherry-N1 (Addgene, #31907) using the Gateway Cloning System (Invitrogen) and homol-

ogous recombination. For CYFIP1-2AGFP the destination vector pDEST-V5:2A:GFPwas developed in house. The sequence 2A-GFP

was cloned into pcDNA6.2/V5-DEST (ThermoFisher Scientific, #12489027) at the restriction enzyme site AgeI, C-terminal of the V5

sequence. In-Fusion� cloning (Takara, #638911) allowed for the 2A-GFP sequence to be in frame with V5. The CYFIP1 coding

sequence was then cloned into this vector again using Gateway homologous recombination. shRNA sequences against mouse

CYFIP1 and a scrambled control were cloned into pSUPER.neo+GFP (Oligoengine) following the manufacturers guidelines. Se-

quences were previously described and characterized by Yoon et al. (2014). For CYFIP1 shRNA, oligonucleotides (50-GATCCCCg

catgtttgtctttatgtaTTCAAGAGAtacataaagacaaacatgcTTTTTC-30) and (50-TCGAGAAAAAgcatgtttgtctttatgtaTCTCTTGAAtacataaaga

caaacatgcGGG-30) were annealed and for Scrambled shRNA oligonucleotides (50-GATCCCCttctccgaacgtgtcacgtTTCAAGA

GAacgtgacacgttcggagaaTTTTTC-30) and (50-TCGAGAAAAAttctccgaacgtgtcacgtTCTCTTGAAacgtgacacgttcggagaaGGG-30) were

annealed. pEGFP-C1 and pCAG-DsRed were purchased from Clontech and Addgene (#24001) respectively. The GFP-actin DNA

was a kind gift from J. Hanley (University of Bristol, Bristol, UK).

Antibodies
Primary antibodies were rabbit anti-CYFIP1 (Upstate, 07-531; ICC, 1:200; WB, 1:1000), mouse anti-GABAAR-b2/3 (Neuromab,

MAB341;WB, 1:500), guinea pig anti-GABAAR-g2 (Synaptic Systems, 224 004; ICC, 1:500), mouse anti-gephyrin (Synaptic Systems,

147 011; ICC, 1:500; IHC, 1:500; WB, 1:500), rat anti-GFP (Nacalai-Tesque, GF090R; ICC, 1:1000), mouse anti-GFP (Neuromab,

73-131; WB, 1:100), mouse anti-GIT1 (Neuromab, N39/B8; WB, 1:500), rabbit anti-Homer (Synaptic Systems, 160 002; ICC,

1:500; WB, 1:500), rabbit anti-neuroligin 2 (Synaptic Systems, 129 202; WB, 1:1000), mouse anti-neuroligin 3 (Neuromab,

N110/29; WB, 1:100), mouse anti-PSD95 (Neuromab, K28/43; ICC, 1:500; WB, 1:1000), rabbit anti-b-PIX (Upstate, 07-1450; WB,

1:2000), mouse anti-b-tubulin (Sigma, T5293; WB, 1:1000), rabbit anti-vGAT (Synaptic Systems, 131 003; ICC, 1:1000), guinea pig

anti-vGLUT (Synaptic Systems, 135304; ICC, 1:1000), mouse anti-V5 (Invitrogen, R960-25, ICC, 1:1000; WB, 1:1000). Secondary

fluorescent antibodies were conjugated to Alexa Fluor 488, 568, 647 (1:1000, Molecular Probes). Anti-rabbit and anti-mouse HRP

conjugated secondaries were from Jackson ImmunoResearch (WB, 1;1000).

Primary Neuronal Transfections
Hippocampal neurons were transfected using Lipofectamine-2000 (ThermoFisher Scientific). For two 13mm coverslips in individual

wells of a 24 well plate, 1 mg of DNA was combined with 100 ml of unsupplemented Neurobasal growth medium (NB) in one tube and

2 ml Lipofectamine with 100 ml NB in another tube. Following 5 min incubation at room temperature the Lipofectamine solution was

gently combined with the DNA and incubated for 20 min at room temperature to complex. 300 ml of prewarmed NB + 0.6% glucose

was added to the complex solution and gently mixed. Conditionedmedia was removed from coverslips and kept, 250 mL of the com-

plex solution was then dropped carefully onto each coverslip. Coverslips were incubated at 37�C for 2 h followed by replacing the

transfection solution with 1ml pre-warmed conditioned media. Hippocampal neurons were transfected 4-5 days prior to use.

Immunocytochemistry and Immunohistochemistry
Hippocampal cultures were fixed in 4% PFA (PBS, 4% paraformaldehdye, 4% sucrose, pH 7) for 7 min then permeablised for 10 min

in block solution (PBS, 10% horse serum, 0.5%BSA, 0.2% Triton X-100). Coverslips were incubated with primary antibody diluted in

block solution for 1 h, washed in PBS then incubated for 1 h with secondary antibody. Finally coverslips were washed and mounted

onto glass slides using ProLong Gold antifade reagent (Invitrogen). For surface labeling, block solution was used without detergent.

For immunohistochemistry, adult mouse brains of either sex were fixed in 4% PFA overnight and cryoprotected in 30% sucrose/

PBS solution overnight before freezing at �80�C. The brain samples were embedded in tissue freezing compound (TissueTek OCT)

and 30 mm brain sections were generated using a Cryostat (Bright Instruments, Luton, UK). Free floating thin sections were perme-

ablised for 4-5 h in block solution (PBS, 10% horse serum, 0.5% BSA, 0.5% Triton X-100, 0.2 M glycine) then incubated with primary

antibody diluted in block solution overnight at 4�C. For mouse primary antibodies, slices were first incubated overnight at 4�C with

mouse Fab fragment (1:50 with block solution; 115-007-003, Jackson ImmunoResearch) to reduce background staining on the

mouse tissue. Slices were washed 4-5 times in PBS for 2 h then incubated for 3-4 h with secondary antibody at room temperature.
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The slices were then washed 4-5 times in PBS for 2 h and mounted onto glass slides using Mowiol mounting medium. For antigen

retrieval, slices were incubated in sodium citrate solution at 80�C for 40 mins and then washed 3x in PBS prior to blocking.

Confocal Microscopy and Image Analysis
All confocal images were acquired on a Zeiss LSM700 upright confocal microscope using a 63X oil objective (NA: 1.4) unless other-

wise stated. For synaptic localization, enrichment and cluster analysis experiments from cultured neurons, a single plane image of

each cell was captured using a 0.5X zoom. From this, 3 sections of primary or secondary dendrite, �100 mm from the soma, were

imaged with a 3.5X zoom (equating to a 30 mm length of dendrite). For brain sections from adult male and female fixed brains, 2 low-

magnification regions of the hippocampus were captured using a 63X objective and 0.5X zoom. From this, 3 regions were imaged

within each hippocampal strata with a 2X zoom for analysis. Acquisition settings and laser power were kept constant within all

experiments.

Line scans used for protein localization were performed in ImageJ using the PlotProfile function (NIH, Bethesda, MD, USA), pixel

intensity was calculated as a function of distance along a manually drawn line and plotted on a graph. Synaptic enrichment and

cluster analysis was carried out using Metamorph (Molecular Devices, Sunnyvale, CA, USA). Analysis was carried out on the

zoom dendrite images and then averaged to give a value per cell. To quantify protein enrichment at synaptic sites, the protein fluo-

rescence intensity was measured as the average intensity within the labeled synaptic puncta and normalized to the average intensity

of the total process. For synaptic cluster analysis, the length of dendrite was traced to generate a dendritic region of interest (ROI).

This ROI was transferred to all cluster channels. A user-defined threshold was then applied to each synaptic marker channel and

regions were generated around the thresholded area within the dendrite ROI. Number of regions and total area of regions per

30 mm of dendrite were quantified as a readout for synaptic clusters. Clusters smaller than 0.01 mm2 were excluded from the number

of regions analysis. Thresholds were set individually for each cluster channel and kept constant across treatment conditions within an

experiment. For brain sections labeled with antibodies against gephyrin and VGAT, the Synapse Counter plugin for ImageJ (NIH, Be-

thesda, MD, USA) was used. Background subtraction and max filter parameters were set to 10 and 1 respectively. Clusters greater

than 0.095 mm2 and less than 1 mm2 were considered for total cluster area analysis. For spine morphology analysis of cultured neu-

rons, confocal image stacks were acquired. Spines were manually identified on 100-200 mm long dendritic filaments and analyzed in

Imaris software (Bitplane, Zurich, Switzerland). For spine subtype classification custom parameters were used. Classification was

entirely automated until the final step where blatant errors in classification were removed.

Time-gated STED imaging was carried out on a Leica TCS SP8 STED 3x microscope running LAS X (Version 2.01.14392) acqui-

sition software using a 100x HC PL APO CS2 oil immersion objective (NA 1.4). Oregon Green 488 (Thermo Fisher Scientific) and

Abberoir Star 440SX (Sigma) were excited using the 488nm line (15%) and the 405nm output (20%) from a white light laser (WLL,

operating at 70% of its nominal power) respectively. Fluorescence depletion, and therefore super-resolution, was accomplished us-

ing a 592nmSTED laser (1.5Wnominal power, 40% for bothOregonGreen 488 and Abberoir Star 440SX). All 20483 2048 pixel single

plane images were acquired at a scan speed of 400 Hz in bidirectional scan mode. The pixel size of 30.4nm2 was optimized for STED

imaging. The fluorescence signal was then detected by a Hybrid Detector (HyD, Standard mode) after passing through an Acousto-

Optical Beam Splitter (AOBS, detection range 482 – 510nm for Abberoir Star 440SX and 520 – 565nm for Oregon Green 488 when

doing two-color imaging). Time-gated detection was turned on to further improve the resolution in the STED images (0.5 – 6.0ns). The

detector gain was adjusted so that no saturation occurred in the images. All 2D STED images were deconvolved using the CMLE

(Classic Maximum Likelihood Estimation) algorithm in SVI Huygens Professional (Version 15.10.1p2) to improve the signal-to-noise

ratio.

Proximity Ligation Assay
Proximity ligation assays (Duolink�) were carried out using anti-CYFIP1 and anti-gephyrin antibodies or anti-gephyrin alone for con-

trol proximity ligation assays. Neurons were fixed and blocked as for immunofluorescence and incubated with primary antibodies.

Following primary antibody incubation, cells were washed in PBS before incubation with secondary antibodies conjugated with ol-

igonucleotides. Ligation and amplification reactions were conducted at 37�C, as described in the Duolink�manual, before mounting

and visualization using confocal microscopy (Norkett et al., 2016). For PLA analysis, confocal image stacks with a X0.5 zoom and

voxel dimensions 0.39 mm x 0.39 mm x 0.57 mmwere acquired. Analysis was carried out on maximum projection images using Meta-

morph (Molecular Devices, Sunnyvale, CA, USA). A user-defined threshold was applied to each image which best detected PLA

puncta and kept constant within an experiment. Puncta were then counted per field of view.

Electrophysiology in Dissociated Cultures
Whole-cell recordings were performed on transfected cultured hippocampal neurons at 14-17 DIV. Neurons were held at �70 mV.

Patch electrodes (4-5 MU) were filled with an internal solution containing (in mM): 120 CsCl, 5 QX314 Br, 8 NaCl, 0.2 MgCl2,

10 HEPES, 2 EGTA, 2 MgATP and 0.3 Na3GTP. The osmolarity and pH were adjusted to 300 mOsm/L and 7.2 respectively. The

external artificial cerebro-spinal fluid (ACSF) solution consisted of the following (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 2 MgCl2,

1.25 NaH2PO4, 2 CaCl2, and 25 glucose saturated with 95% O2/5% CO2 (pH 7.4, 320 mOsm). This solution was supplemented

with NBQX (20 mM), APV (50 mM) and TTX (1 mM) to isolate mIPSCs or with bicuculline (20 mM) and TTX (1 mM) for mEPSCs recording.

All recordings were performed at room temperature (22-25�C). The access resistance, monitored throughout the experiments,
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was < 20 MU and results were discarded if it changed by more than 20%. Miniature events and theirs kinetics were analyzed using

template-based event detection in Clampfit (Molecular Devices, Sunnyvale, CA, USA). Total charge transfer was calculated as

described by Peden et al. (2008). For all electrophysiological experiments, the experimenter was blind to the condition/genotype

of the sample analyzed.

Acute Hippocampal Slice Electrophysiology
To prepare acute hippocampal slices, male and female mice aged postnatal day 28-34 were used. Immediately after decapitation,

the brain was removed and kept in ice-cold dissecting solution. Transverse hippocampal slices (300 mm) were obtained using a vi-

bratome (Leica, VT–1200S). Slices were stored at 35�C for 30 min after slicing and then at 22�C. For the dissection and storage of

slices, the solution contained (in mM): 87 NaCl, 25 NaHCO3, 10 glucose, 75 sucrose, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2 and

7 MgCl2 saturated with 95% O2/5% CO2. For patch-clamp experiments, CA1 pyramidal neurons were identified under infrared-dif-

ferential interference contrast (DIC) imaging with a water-immersion 60X objective (Olympus) and whole-cell recordings were per-

formed as described above for cultured cells.

Preparation of Brain Lysates
Adult WT and conditional KO male or female whole brains or cortical regions were sonicated in lysis buffer (50 mM HEPES pH 7.5,

0.5% Triton X-100, 150 mMNaCl, 1 mM EDTA, 1 mMPMSF in the presence of antipain, pepstatin and leupeptin) then left to rotate at

4�C for 1 h. Membranes were pelleted by centrifugation at 14000 g for 15 min at 4�C. Protein content of the supernatant was assayed

by BioRad protein assay. Samples were then suspended in 3X protein sample buffer and analyzed by SDS-PAGE and western blot-

ting. Briefly, protein samples were separated by SDS-PAGE on 10% Tris-Glycine gels and blotted onto nitrocellulose membranes

(GE Healthcare Bio-Sciences). Membranes were blocked for 1 h in milk (PBS, 0.05% Tween, 4% milk), incubated in primary anti-

bodies diluted with milk overnight at 4�C before incubation in an appropriate HRP-conjugated secondary antibody for 1 h at room

temperature. The blots were developed with an ECL-Plus detection reagent (GE Healthcare Bio-Sciences). Densitometric analysis

was performed in ImageJ (NIH).

Golgi Staining
Dendritic and spinemorphology in P30mice was analyzed using the FDRapid Golgi Stain kit (FD NeuroTechnologies, Baltimore, MD,

USA) and Neurolucida (MBF Bioscience, Williston, VT, USA). Golgi-impregnated brains were sliced at 100 mm using a vibratome

(Leica Microsystems, Heerbrugg, Switzerland). Well-isolated hippocampal CA1 neurons were imaged at 20X using the Neurolucida

software system and an upright light microscopewith amotorized stage (MBFBioscience). The entire dendritic tree (apical and basal)

was traced and reconstructed. 3-dimensional Sholl analysis of reconstructions was performed using a custom MATLAB script. For

spine analysis, 50 mm z stacks of 2 mm step size were imaged at 40X using a ZEISS Axio Scan system and sections of basal dendrite

were randomly selected for analysis. Spine length and head width were manually traced in ImageJ and the data analyzed using a

custom Excel macro.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data were obtained using cells from at least three independent primary culture preparations or at least three independent animals

per genotype. Repeats for experiments and statistical tests carried out are given in the figure legends as N numbers and refer to num-

ber of cells unless otherwise stated. All statistical analysis was carried out using GraphPad Prism (GraphPad Software, CA, USA) or

Microsoft Excel. Data were tested for normal distribution with D’Agostino and Person to determine the use of parametric (unpaired

Student’s t test, one-way ANOVA, two-way ANOVA) or non-parametric (Mann-Whitney, Kruskal-Wallis) tests. Appropriate post hoc

tests were carried out in analyses with multiple comparisons and are stated in figure legends. p values < 0.05 were considered sig-

nificant. Data are shown as mean ± standard error of the mean (SEM).
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