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Abstract
Listening to even high quality text-to-speech - such as that

generated by a Deep Neural Network (DNN) driving a vocoder
- still requires greater cognitive effort than natural speech, under
noisy conditions. Vocoding itself, plus errors in predictions of
the vocoder speech parameters by the DNN model are assumed
to be responsible. To better understand the contribution of each
parameter, we construct a range of systems that vary from copy-
synthesis (i.e., vocoding) to full text-to-speech generated using
a Deep Neural Network system. Each system combines some
speech parameters (e.g., spectral envelope) from copy-synthesis
with other speech parameters (e.g., F0) predicted from text.
Cognitive load was measured using a pupillometry paradigm
described in our previous work. Our results reveal the differ-
ing contributions that each predicted speech parameter makes
to increasing cognitive load.
Index Terms: text-to-speech, deep neural networks, cognitive
load, pupillometry, adverse conditions

1. Introduction
Evaluation methods generally fail to consider the cognitive load
imposed by listening to synthetic speech. This is especially con-
cerning as synthetic speech demands the greatest effort even at
favourable signal-to-noise ratios [1]. This highlights the nega-
tive impact synthetic speech potentially has on the human cog-
nitive processing system. Therefore, a better understanding of
how the cognitive load affects listeners is important to eventu-
ally suggest new ways of generating synthetic speech that de-
mands low cognitive load.

Many perception studies have shown correlations between
fluctuations in pupil size, measured using pupillometry, and
changes in mental task load [2, 3, 4, 5]. These fluctuations could
be related to changes in attention, stress, and working memory
[6]. In speech understanding studies, the pupil response has of-
ten been used as an index for listening effort, i.e. the amount of
mental effort allocated to a listening task [7, 8, 9, 10].

In our previous works, we used pupillometry to measure
the cognitive load of synthetic speech [11, 12]. This method
has proven to be reliable in showing pupil dilation as an in-
dex of listening effort under noisy conditions. In quiet condi-
tions, however, we confirmed pupil dilation reflects more the
engaged attention of the listener rather than mental effort [12].
Under noisy conditions, increased pupil dilation for high qual-
ity synthetic speech indicated that listening effort increases as
signal-to-noise ratio decreases. For low quality systems such
as HMM-based speech synthesis ceiling listening effort appears
to be reached already at easier SNR levels. An HMM system
was used in [1] which explains the great effort demanded com-
pared to all other speech types. Recently, HMM-based speech
synthesis has been, in most cases, replaced by Deep Neural Net-
works (DNNs). Therefore, in this work we investigate whether

Table 1: Summary of all configurations evaluated. MCC: mel-
cepstral coefficients. BAP: band aperiodicities. Nat: natural.
Pred: predicted. Voc: vocoded. System B is copy synthesis and
System F is full text-to-speech.

System MCC F0 BAP DURATION

A Human speech
B Voc Voc Voc Nat
C Voc Pred Pred Nat
D Pred Voc Pred Nat
E Pred Pred Pred Nat
F Pred Pred Pred Pred

DNNs still demand greater cognitive effort than natural speech
by gradually stepping from natural speech to a full DNN TTS
system.

2. Experimental Design
We measured the cognitive load induced in listeners when lis-
tening to various types of speech ranging from natural speech
to full text-to-speech.

2.1. Data and Implementation

A database consisting of speech sampled at 16 kHz from a
British male speaker was used to train the DNN-based synthe-
sis system. A total of 2072, 200 and 270 training, validation
and testing sentences were used. Since we wish to measure
cognitive load of synthetic speech for real applications, struc-
turally correct and meaningful sentences for testing were used
in all experiments, taken from the Glasgow Herald newspaper.
All features were extracted using the WORLD vocoder [13].
60-dimensional mel-cepstral coefficients (MCCs), 25 band ape-
riodicities (BAPs) and logarithmic fundamental frequency (F0)
at 5 ms frame intervals were extracted. A DNN was trained us-
ing the Merlin toolkit [14] following the standard ”build your
own voice” recipe: acoustic and duration models each compris-
ing 6 feed-forward hidden layers; each hidden layer has 1024
hyperbolic tangent units. Table 1 shows the configurations of
systems constructed that vary from copy-synthesis (System B)
to a full DNN text-to-speech system (System F). Systems C and
D combine spectral parameters from copy-synthesis with F0 pa-
rameters predicted from text and vice versa. System E combines
predicted spectral and F0 features at durations copied from nat-
ural speech recordings by forced alignment.

2.2. Experimental set-up

As in [11], the speech stimuli were played to listeners through
headphones in a noise- and light-controlled room. Simultane-



ously, pupil size was measured using an eye tracker. All stimuli
were mixed with speech-shaped noise at signal-to-noise ratios
(SNRs) -1, -3 and -5 dB, chosen such that the cognitive load
is increased whilst intelligibility remains close to ceiling. In
accordance with the estimated psychometric function in [15]
which related keyword scores to SNR for speech-shaped noise,
the expected keyword correct percentages at -1, -3 and -5 dB are
approximately 80, 60 and 45% for natural speech respectively.
The procedure in this work was followed exactly in terms of
structure, presentation and data collection as described in [12].

Similarly to [12], stimuli were blocked by system, result-
ing in 6 blocks, each containing 20 sentences. The block order
was balanced using a 6 × 6 Latin square design to ensure all
listeners, systems and sentences were equally represented and
that no listener heard the same text more than once. At the end
of each block, self-reported cognitive load (CL), motivation to
listen, and naturalness scores were collected on 5-point rating
scales (1 - very unnatural, very difficult and unmotivated;
5 - very natural, very easy and highly motivated)

2.3. Participants

72 Native English speakers with no self-reported hearing prob-
lems, aged 19 to 37 years, were recruited. The participants were
equally divided between four experiments in which listening in
quiet and each SNR condition was evaluated separately.

2.4. Pre-processing of pupil measurements

All pre-processing was the same as [11]. The mean and standard
deviations (SD) of the pupil size, from 1 second before sentence
onset (baseline) until the start of the verbal response, were cal-
culated. Pupil size values more or less than 2 SD to the mean
were coded as blinks or artifacts. If total blink duration was
more than 20% of the trial, or an individual blink was longer
than 300 ms, that trial was excluded. For retained trials, blinks
were removed using linear interpolation using a window from
50 samples before the detected blink until 80 samples after. The
data was then downsampled to 50 Hz for faster processing. Sub-
sequently, the Event Related Pupil Dilation (ERPD) percentage
was computed. This was calculated using the equation in [16].
Some problems with the eye-tracker were experienced during
data collection where a warning of the pupil size was shown.
To ensure only viable responses were taken into account, a fil-
ter was applied to remove all trials where the ERPD was less
than zero for more than 80% of the individual trial.

2.5. Pre-analysis

Experiment 1 (Quiet): Two participants were excluded
from the analysis because more than 60% of their trials were
discarded during pre-processing. The threshold was increased
to 60% in this work compared to 50% in our previous work. At
50% exclusion, too many (14) participants would be excluded.
Trial exclusion depends on blinking, spikes in pupil response
and whether the eye-tracker lost the eye. Thus, the amount of
data that can become unusable will vary from experiment to
experiment. All trials with word-error-rate (WER) less than
10% were included in the analysis. If a threshold of 0% WER
were used, too much data would be discarded. All retained
trials averaged by system had a WER of less than 1%. In other
words: intelligibility was at ceiling.

Experiment 2 (-1dB SNR): Two participants were excluded
for the same reason mentioned above. Trials with WER ≥

Table 2: Summary of interpretation of each time term in GCA
Formula: ERPD ∼ (time1 + time2) ∗ SY STEM +
(time1+ time2|SUBJECT )+(time1+ time2|ITEM)+
(time1 + time2|GROUP )

Term Interpretation

Intercept Overall mean pupil dilation
Linear (time1) Overall rate of pupil dilation
Quadratic (time2) Shape of peak

20% were excluded. In [15], the expected intelligibility level
estimated from the psychometric curve was 80%. All retained
trials averaged by system had a WER ≤ 2.5%. At this SNR
level, listening to synthetic speech produced by a DNN-speech
synthesis system was still close to ceiling. In [12], we found
that at -1 dB SNR, intelligibility already started to suffer for
those systems compared (ie. Unit Selection, HMM-based syn-
thesis, and Hybrid speech synthesis). Therefore, the increased
quality produced when using a simple feed-forward DNN
architecture improves intelligibility under noisy conditions.

Experiment 3 (-3dB SNR): Two participants were excluded
from the analysis for the same reason above. Trials with
WER ≥ 40% were excluded to correspond with an intelligibil-
ity level of at least 60%. At this SNR, intelligibility starts to
suffer. All retained trials averaged by system had a WER ≤
10%.

Experiment 4 (-5dB SNR): One participant was excluded from
this analysis as too much data was discarded. In this exper-
iment, trials with WER ≥ 60% were excluded to correspond
with an intelligibility level of at least 40%. This is slightly more
lenient than the expected 45% level of intelligibility for natural
speech calculated in [15]. All retained trials averaged by system
had a WER ≤ 20%.

2.6. Analysis

In many listening effort experiments that use the pupillometry
paradigm [8, 10, for example], eye-tracking data is analyzed us-
ing only the mean and maximum pupil dilation. These values
are extracted by time-binning the pupil data and then selecting a
single time window. This approach eliminates a lot of the mean-
ingful information offered in eye-tracking data, notably changes
over time are lost. In contrast, Growth Curve Analysis (GCA)
[17] addresses these limitations and has become popular for the
analysis of such data [18]. Using GCA, the time course of the
ERPD within a specific time period in which the peak was ob-
served was modelled using a second-order (quadratic) polyno-
mial that makes the individual time terms independent. Using
model comparisons we found no significant difference in the
model fit beyond the second-order polynomial. A fixed effect
of system (various configurations) and random effects of sub-
ject, group (with respect to the Latin square design) and item
(sentence stimulus) were used on all time terms. Post-hoc tests
were performed by changing the baseline condition and cycling
through each of the six systems to get comparisons across all
systems for each time term. Table 2 summarizes what each time
term represents. Statistical significance (p-values) for individ-
ual parameter estimates were assessed using the normal approx-
imation. All analyses were carried out in R.



3. Results
3.1. Pupil Responses (ERPD %)

The raw data and GCA model fits for each of the four experi-
ments (when listening in Quiet, -1, -3, -5 dB SNR levels) are
shown in Figure 1. In all cases, the quadratic model provided a
fairly accurate fit to the data and significant improvement in all
time terms were found during model comparisons (p ≤ 0.01).
Due to the large number of comparisons and to make the results
more readable, we present in Table 3 the systems that had the
highest and lowest parameter estimates. In the intercept term
this corresponds with the highest and lowest mean pupil dila-
tion, in the linear term, the steepest and flattest slopes and in the
quadratic term, the sharpest and broadest peak shapes.

Table 3: Summary of systems that evoked the (a) highest and
lowest mean pupil dilation, (b) steepest and flattest slope, and
(c) sharpest and broadest peaks. Multiple systems are shown
when systems were found to be equivalent.

(a)

Listening condition Highest Lowest

Quiet C E,F
-1 dB A, B, F C, D
-3 dB D, F C
-5 dB E C

(b)

Listening condition Steepest Flattest

Quiet C, D, E A, B
-1 dB F A
-3 dB D,F A, B, C
-5 dB D, E C, F

(c)

Listening condition Sharpest Broadest

Quiet A, C, D, E B, F
-1 dB D, E A, B, C, F
-3 dB B, C, E, F A, D
-5 dB A,B,E C, D, F

3.2. Self-reported measures

The self-reported measures collected for each listening condi-
tion is presented in Figure 2. The changes as we move from
listening in quiet to listening in adverse noise conditions for
each system compared are discussed below.

System A (human), maintains a median of 4 in terms
of naturalness across all listening conditions. In quiet, CL is
reported as 1 which is very easy to listen to. When the noise
level increased, the CL also increased. However, CL stayed the
same for the -3 and -5 dB conditions.

System B (vocoded), maintains a median of 4 in terms
of naturalness across most listening conditions except -3 dB.
In quiet, CL is reported as 2 which is easy to listen to. When
listening in noise, CL increased as expected. In -1 dB and -3
dB the CL stayed the same. It is surprising that in the -5 dB

condition, naturalness is perceived to be higher than in the -3
dB condition.

System C (vocoded MCC and predicted F0), maintains
a median of 4 in terms of naturalness across most listening
conditions except in quiet. Although the speech of this system
was perceived to be less natural, listeners still reported CL as
2. As the noise level increased, the CL also increased. In the
-5 dB condition, the cognitive load is reported as less difficult
than the -3 dB condition.

System D (vocoded F0 and predicted MCC), has a
median of 3 in terms of naturalness across most listening
conditions. This score is lower than Systems A, B and C.
Similar to System B in the -5 dB condition, naturalness is
perceived to be the highest with a median of 4. Like System C,
CL was reported as 2 in quiet. The CL increases for -1 dB but
stays the same for the -3 and -5 dB condition.

System E (predicted F0 and predicted MCC), has a
median of 2.5 in terms of naturalness when listening in quiet.
It is observed that as the noise levels increased, the listeners
reported higher naturalness compared to quiet. Like all other
conditions, CL increased as the noise levels increased. Similar
to System D, in the -3 and -5 dB conditions the CL remained
the same.

System F (full TTS), has a median of 3 in naturalness in
most conditions. However, in the -5 dB condition, naturalness
was the highest with a median of 4. This was the same
observation for System D and E. The CL was reported as
medium in quiet and increased to difficult at -1 dB and stayed
difficult for all remaining noise conditions.

In all systems except System D, motivations levels were
high across all listening conditions except in the -3 dB con-
dition where motivation was the highest. System D sustained
motivation equally in all conditions.

4. Discussion
4.1. Discussion of time terms

The intercept term represents mean pupil dilation. Across all
experiments, we observed that the lowest and greatest mean
pupil dilation is closely related to the height of the peak pupil
dilation for each system. In quiet, System F (full TTS) has the
lowest mean pupil dilation (see Figure 1).

If pupil dilation was indexing listening effort in this condi-
tion, this would imply that synthetic speech is easier to listen
to than natural speech. The self-reported cognitive load scores
across all listening conditions show natural speech is perceived
as easier to listen to compared to synthetic speech. Therefore,
this supports our belief that synthetic speech is not easier to
listen to than human speech. Furthermore, in [12], the same
result (ie., high quality synthetic speech evokes a smaller pupil
dilation compared to natural speech) was observed. It was con-
firmed that engaged attention is being measured in this case and
not listening effort. Since the intelligibility even at -1 dB SNR
was still at ceiling and System A (human speech) evoked the
highest mean pupil dilation it is likely that the engaged atten-
tion was still being indexed by the pupil response at the -1dB
condition.

In the -3 dB condition, synthetic speech evokes the greatest
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Figure 1: ERPD % change from the baseline across all participants and conditions for each listening condition.
Dotted: raw data, Solid: quadratic model fit

pupil dilation. This result correlates more with the self-report
scores and thus we are more certain that in the -3 dB condition,
listening effort is likely the measure being indexed by the pupil
dilation. Since the goals of this work is to understand the cogni-
tive load contributions in terms of the listening effort, we focus
on the findings observed in the -3 dB and -5 dB conditions in
the next section.

The linear term represents the overall slope, which is the
change in pupil response from the start to the end of the trial.
System A (human speech) has the flattest slope and System F
(full TTS) has the steepest slope for all noise conditions except
the -5dB condition. This implies that the amount of cognitive
resources utilized when listening to human speech gradually in-
creases over time. It is the opposite when listening to synthetic
speech where the peak pupil dilation is reached much faster.
However, in the most difficult SNR this is reversed.

The quadratic term represents the shape of the peak pupil
dilation. When the estimate in the model is close to zero it has
a broader shape peak and when the estimate is high in value the
peak is sharper. System A has the sharpest peak in quiet and
-5 dB which could imply high engagement and high load. For
the middle SNR listening conditions it has the broadest peak.
System F, however, has the broadest peak shape in quiet, -1 dB
and -5 dB and we know that engagement was low and listening
effort was high which is opposite to System A. When comparing
the shape as we move from one condition to another, we find

interesting trends that reveal a relationship to the listening effort
when listening in noise.

4.2. Key findings

4.3. Self-reported measures

From the self-reported CL we observe that the maximum cog-
nitive load across all listening conditions is reached at the -3
dB condition for Systems A, C, D, and E. Systems A and C
have a maximum median of 3 whilst all other systems have a
maximum of 4. System F (full TTS) is the only system where
the maximum CL is reached at the -1dB condition. System B
(vocoded speech) reaches a maximum in the -5 dB condition.

Reported naturalness remained high for Systems A, B and
C across all listening conditions. For System D and F, natu-
ralness was only perceived as high in the -5 dB condition. For
System E, naturalness was only perceived as high from the -3
dB condition.

4.4. Noisy -3 dB condition

In the -3 dB condition, the ERPDs (see Figure 1) show System
A, C and E have a low ERPD. System B falls in the middle and
Systems D and F have a high ERPD.

With respect to mean pupil dilation for -3 dB (see Table
3a), System D and F had the highest means. These systems also
had the steepest slopes (see Table 3b). System C had the lowest
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Figure 2: Self-reported measures (1 - very unnatural, very difficult and unmotivated; 5 - very natural, very easy and highly motivated)

mean and flattest slope. System A and B fell in the middle with
respect to their means but were both flat in slope. System E fell
in the middle in both cases.

With respect to peak shape for -3 dB (see Table 3c), the
peak shape for System A and E remain the same as in the -1
dB condition. All other systems change peak shape. Systems
B, C and F change from broad to sharp. In contrast, System D
changes from sharp to broad.

Based on the observations described above, a high mean
pupil dilation and high ERPD together with a change in peak
shape corresponds to a high listening effort. This is observed for
Systems D and F. These systems also have the steepest slopes
compared to all other systems. This is additionally supported by
the self-reported CL scores where a CL of 4 was reached faster
than all other systems. Both these systems involve predicted
spectral features generated by an acoustic model. The differ-
ence between them is, System D uses natural duration whilst
System F uses predicted duration. This leads us to believe that
poor spectral prediction in the acoustic model contributes to an
increased cognitive load.

System B evokes a mean pupil dilation that is still on the
high end of the scale and changes in terms of its peak shape.
Therefore, it is possible that the vocoding itself contributes to
an increased cognitive load. The load, however, appears to get
compounded by poor spectral prediction which is supported by
the mean pupil dilation and ERPD being greater for System
D and F than System B. Furthermore, System B has a flatter

slope than Systems D and F which is also supported by the self-
reported CL reaching a maximum only in the most difficult con-
dition (-5 dB).

In contrast, Systems A and E evoke low ERPD and have
mean pupil dilations that falls in the middle. In terms of their
peak shapes System A and E remain the same as in the -1dB
condition. Low ERPD and an unchanged peak shape is there-
fore associated with low listening effort. Comparing System E
(low listening effort) to System F (high listening effort), they
differ only in duration. Therefore, duration prediction con-
tributes to an increased listening effort for synthetic speech.
System E, however, received higher CL scores compared to
System A. It was also perceived as unnatural in quiet. This
indicates that human speech still evokes lower listening effort
than synthetic speech even when using perfect duration.

System C has a combination of properties that are associ-
ated with both high and low listening effort. It evokes a low
ERPD, a low mean pupil dilation and the flattest slope. How-
ever, we observe changes in peak shape between the -1 dB and
-3 dB conditions. It is possible that predicted F0 helps in low-
ering the load but the conflict with with vocoding MCC causes
overall load to still remain high. The perceived naturalness was
lower than System A and B in quiet but the CL, like System A
only reached a maximum of 3. Therefore predicted F0 may help
reduce cognitive load but still sounds unnatural.



4.5. Noisy -5 dB condition

We observe that the mean pupil dilation is the greatest for Sys-
tem A and E. This is in contrast to the previous condition where
both these systems evoke the lowest ERPD. Once again, Sys-
tem B evokes a pupil dilation that falls in the middle. All three
systems (A, E and B) are also the only three systems to have
sharp peaks in this condition whilst all other systems have broad
peaks. The high pupil dilation and sharp peak correspond to
high listening effort in this condition which is expected given
that it is the most difficult noise condition in this work. More
interestingly, we observe that Systems D and F evoke a lower
mean pupil dilation in this condition compared to the easier
noise condition (-3dB). A similar finding was observed in [1]
when measuring cognitive load of TTS at -5dB. It was said to
indicate a task that is too challenging for the listener. Although
Systems A, B and E evoked the greatest responses, in relation
to the remaining systems this indicates that the cognitive load
was at least still manageable. The only property that Systems
A, B and E share is natural duration. However, one can argue
that System D also use natural duration yet suffers in this con-
dition. This reveals that it is not duration in isolation that con-
tributes to increased cognitive load but also the correlations that
exist between the spectral and F0 parameters which are absent
in Systems C and D as the features were extracted/predicted
separately. Although Systems C and D are unrealistic, it high-
lights the importance of modelling spectral and F0 features in
a unified framework such that their correlations are kept intact.
The ERPD for System C was the only system that remained un-
changed and had the lowest mean pupil dilation in this listening
condition. It is interesting that System C has the same perceived
CL score yet the ERPD and mean remain low. Therefore, this
suggests the importance predicted F0 plays in the generation of
synthetic speech.

5. Conclusion
The cognitive load of synthetic speech indexed by the evoked
pupil response in both quiet and noisy conditions were inves-
tigated. Our results confirm that even high quality output gen-
erated by a DNN-speech synthesis system still evokes greater
cognitive load than natural speech when listening under noisy
conditions. Attention and engagement is low when listening
in quiet and high cognitive load is reached much faster when
listening to synthetic speech than natural speech. The contri-
butions of cognitive load in DNN-based speech synthesis are
mainly due to poor spectral prediction and poor duration pre-
diction. When combining speech parameters extracted from
natural speech with predicted acoustic features, correlations be-
tween these features are destroyed. This alone appears to re-
sult in an increased cognitive load. However, this result high-
lights the importance of modelling spectral, F0 features and du-
ration in a unified framework. Conventional DNN-based speech
synthesis models like the one used in this work, models dura-
tion and acoustic features sequentially. This could explain why
they still evoke high cognitive load compared to natural speech.
Sequence-to-sequence models addresses this limitation. Results
of System C suggest that predicted F0 plays a role in reducing
cognitive load but further investigations need to be done to con-
firm this result. In conclusion, improved prediction of the spec-
trum, F0 and of duration will lead to reduced cognitive load in
synthetic speech. However, this is for the case of the rather neu-
tral prosody in the data we used and further work is needed to
investigate the case of expressive prosody.
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