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A B S T R A C T

Prediction models allow accurate estimate of individualized prognosis. Increasing numbers of models on survival
of CRC patients with surgical resection are being published. However, their performance and potential clinical
utility have been unclear. A systematic search in MEDLINE and Embase databases (until 9th April 2018) was
performed. Original model development studies and external validation studies predicting any survival out-
comes from CRC (follow-up ≥1 year after surgery) were included. We conducted random-effects meta-analyses
in external validation studies to estimate the performance of each model. A total of 83 original prediction models
and 52 separate external validation studies were identified. We identified five models (Basingstoke score, Fong
score, Nordinger score, Peritoneal Surface Disease Severity Score and Valentini nomogram) that were validated
in at least two external datasets with a median summarized C-statistic of 0.67 (range: 0.57–0.74). These models
can potentially assist clinical decision-making. Besides developing new models, future research should also focus
on validating existing prediction models and investigating their real-word impact and cost-effectiveness for CRC
prognosis in clinical practice.

1. Introduction

Colorectal cancer (CRC) is responsible for 8.5% of deaths attributed
to cancer worldwide [1]. The overall 5-year survival of CRC varies from
50% to 81% even within stage II CRC patients [2]. This within-stage
variation can be explained to some extent by a wide range of other
established prognostic factors such as carcinoembryonic antigen (CEA)
[3]. Although surgery is the mainstay treatment modality, prognostic
modelling integrating these factors may help optimize individualized
clinical decision-making on targeting adjuvant treatment to those at
most risk of relapsing and who may respond better to certain treatment

modalities [4], so as to minimize the potential harms of overtreatment.
Over the past decades, numerous statistical prediction models have
been developed, incorporating various variables such as demographic
[5], genetic [6] and clinic-pathological [5] factors. However, their
performance, reliability and clinical validity have been unclear.

This systematic review aims to provide a comprehensive overview
of current prognostication models for CRC patients undergoing surgical
resection, to perform meta-analysis for models that have been validated
in multiple datasets, as well as to evaluate the quality and performance
of these model development and validation studies.
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2. Methods

2.1. Literature search and study selection

This study was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement [7]. A systematic search (limited to English and human stu-
dies) was performed in MEDLINE and Embase from inception to April
9th, 2018 to identify all relevant studies. Three sets of search terms,
“Colorectal cancer”, “Prognosis” and “Prediction model”, were applied.
The search strategy was formulated based on the search filter for
identifying clinical prediction studies [8] and previous publications [9]
(detailed search syntax presented in Supplementary Table S1). The
reference list of each eligible article was also cross-checked.

We applied the following inclusion criteria: 1) studies developing or
validating statistical model(s) based on time-to-event data to predict
survival outcome (≥1 year) in CRC patients with surgical resection; 2)
studies with at least two predictors; 3) studies that reported a quanti-
tative measure of any aspect of model performance, such as metrics
evaluating overall performance, discriminative ability and calibration.
Conference abstracts, editorials and commentaries were excluded.
Studies were also excluded if the prediction rule of the model was
unavailable.

Two reviewers (YH and YO) screened the titles and abstracts

independently. Potentially relevant articles were reviewed in full. Any
disagreement was resolved by discussion, and a senior author (ET) was
consulted if necessary.

2.2. Data extraction and critical appraisal

One reviewer (YH) extracted all relevant data (Table S2) following
the guidelines of conducting systematic reviews of prediction model
studies [10]. A second reviewer (ZW) verified the accuracy of the ex-
tracted data. Model performance metrics that evaluated discriminative
ability (Harrell's C-statistic, also known as the area under the receiver
operating characteristic curve (AUC)), calibration (e.g. calibration
plot), and other metrics (e.g. R2) were extracted. If a paper reported
multiple models with different predictors or prediction rules, data were
extracted separately for each model.

We appraised each model using the CHecklist for critical Appraisal
and data extraction or systematic Reviews of prediction Modelling
Studies (CHARMS) [11]. Based on this checklist, the risk of bias for each
model was assessed following the criteria described in previous pub-
lications [12,13] which included six domains: 1) Participant selection;
2) Measurement and reporting of predictors; 3) Definition and mea-
surement of the outcome; 4) Events per variable (EPV); 5) Attrition
(loss to follow-up); 6) Data analysis. Details for the assessment rules are
summarized in Supplementary Table S3. One reviewer (YH) appraised

Fig. 1. Flow diagram of study selection.
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all included studies. A second blinded reviewer (XL) evaluated a 25%
random sample of all studies and cross-checked for any discrepancies.

2.3. Statistical analysis

Based on data availability, we performed meta-analyses of C-sta-
tistics across external validation studies that evaluated the same pre-
diction model to estimate the overall discriminative performance for
each model. The original dataset used to construct the model was not
included in the meta-analysis to avoid inflated estimates [10]. We

rescaled the C-statistic by applying a logit transformation [10]. The
extracted 95% CI of a C-statistic was used to estimate its variance, and if
this was not reported, the formula proposed by Debray et al. was used
to approximate the 95% CI [10]. The C-statistic was considered statis-
tically significant if the 95% CI excluded 0.5 [14]. Given the relatively
small number of validation studies for each model and the inherent
heterogeneity across external datasets with diverse populations and
clinical settings, we adopted the restricted maximum likelihood (REML)
estimation along with the Hartung-Knapp-Sidik-Jonkman (HKSJ)
method under a random-effects model to estimate the pooled C-statistic
and 95% CI [10, 15]. We also calculated the 95% prediction interval
(PI) integrating the heterogeneity for the summarized C-statistic to in-
dicate a possible range where a C-statistic of a future validation study
may be located [16,17]. Due to unavailable data, we were unable to
perform quantitative synthesis for other metrics evaluating model
performance.

3. Results

3.1. Overview of eligible models

We obtained 15,465 unique records from the initial search. An ad-
ditional validation study was identified from cross-checking the re-
ference of eligible studies [18]. In total, 83 articles comprising 83 ori-
ginal model development studies and 52 separate external validation
studies (Supplementary Table S4-S5) were included in this systematic
review. The detailed study selection is summarized in Fig. 1.

Among the 83 model development studies, forty-five (54%) of these
original models were based on early to locally advanced CRC (stage I-
III) patients, and 24% (N=20) focused on metastatic CRC. As for the
predictors, these models included a median of 5 predictors (range
2–18). Age was the commonest predictor (N=56, 67%). Other
common predictors included CEA (N=26, 31%), tumor grade or dif-
ferentiation (N=23, 28%), sex (N=19, 23%), T stage (n=16, 19%)
and N stage (N=16, 19%). Surgery type was adopted as a predictor in
13% (N=11) of all models. The majority of the models (N=73, 88%)
were developed using Cox proportional hazards regression. Other
methods included Weibull regression [19] and tree-based models [20].
The main outcome to be predicted was overall survival (OS) (N=47,
57%), disease-free survival (DFS) (N=17, 20%) and CRC specific
survival (N=13, 16%). The prediction time horizon varied from 1 year
to 10 years, with 80% (N=66) of the models reporting a 5-year pre-
diction horizon. To adjust for potential overfitting, 44 (53%) models
were internally validated using split-sample, bootstrapping or cross-
validation. Twenty-eight (34%) models were validated in an external
dataset by the same group of investigators. Only 11 (13%) models were
externally validated by independent investigators. For model pre-
sentation, 55 of the 83 models (66%) were presented as nomograms,
and the remainder as formulae, prediction rules, or web-based calcu-
lators. Detailed characteristics for each model development study are
presented in Supplementary Table S4.

Among the 52 separate external validation studies (detailed char-
acteristics in Table S5) and 22 (42%) of them validated original models
identified in our systematic review. For the other 30 studies validating
pre-existing models where the model performance was not evaluated in
the initial model development reports, we evaluated their performance
in these external validation studies. The study cohorts of external va-
lidation studies had significantly smaller sample size than model de-
velopment studies (median 277 vs. 814, Mann-Whitney-Wilcoxon test:
P < 0.001). The comparison of basic characteristics between model
development and external validation studies are summarized in
Table 1.

3.2. Critical appraisal

Risk of bias distribution of each domain for all included studies is

Table 1
Summarized basic characteristics of included model development studies and
external validation studies.

Variables Model Development
(N=83)

External
validation
(N=52)

P- values*

Participants (CRC
patients)

Cohort origin
Europe 16 (19%) 23 (44%) < 0.001
Asia 52 (63%) 19 (36%)
America 15 (18%) 5 (10%)
Other 0 5 (10%)

CRC Stage
I-III 45 (54%) 8 (15%) < 0.001
IV 20 (24%) 44 (85%)
Any 18 (22%) 0

Tumor location
Colon 15 (18%) 3 (6%) 0.005
Rectum 16 (19%) 3 (6%)
Any 52 (63%) 46 (88%)

Sample size
<500 28 (34%) 9 (17%) 0.04
>=500 55 (66%) 43 (83%)

No. predictors
<5 30 (36%) 16 (31%) 0.28
5–10 50 (60%) 36 (69%)
> 10 3 (4%) 0

Outcome
Overall survival 47 (57%) 24 (46%) 0.02
CRC-specific survival 13 (16%) 16 (31%)
Disease-free survival 17 (20%) 11 (21%)
Recurrence-free

survival
7 (8%) 15 (29%)

Other 10 (12%) 3 (6%)

Model discrmination
C statistic/AUC 76 (92%) 50 (96%) 0.35
Othera 4 (5%) 5 (10%)

Model calibration
Calibration plot 47 (57%) 7 (13%) 0.35
Hosmer-Lemeshow test 6 (7%) 0

Internal validation
Split sample 14 (17%) NA NA
Bootstrapping 13 (16%) NA
Cross validation 18 (22%) NA
Not reported 39 (47%) NA

Model presentation
Nomogram 55 (66%) NA NA
Formula 21 (25%) NA
Otherb 7 (8%) NA

*p-values for Chi-square test.
CRC, colorectal cancer; AUC, area under receiver's operating characteristic
curve.
a Including D-statistic, sensitivity and specificity.
b Including score rule and decision tree.
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summarized in Fig. 2. Overall, only two models reported by one article
were classified as low risk of bias for all domains [21]. The majority of
the models were classified as ‘low’ risk for participant selection
(N=97, 72%), predictors (N=104, 77%), outcome (N=122, 90%),
and EPV (N=74, 89%). However, for dataset attrition, 71 studies
(53%) were classified as ‘high’ risk, and with regard to data analysis,
most studies (N=104, 77%) were classified as ‘moderate’ risk of bias.
The detailed scores of risk of bias for each domain are presented in
Table S6 (model development studies) and Table S7 (external valida-
tion studies).

3.3. Model performance

The reported C-statistic for model development studies was sig-
nificantly larger than external validation studies (median 0.73 vs. 0.66,
Mann-Whitney-Wilcoxon test: P < 0.001).

We performed 15 meta-analysis for eight models (each single model
can be applied to predict multiple survival outcomes) that had been
externally validated at least twice: Basingstoke preoperative score, Fong
score, Iwatsuki score, Memorial Sloan Katherine Cancer Center
(MSKCC) nomogram, Nordinger score, Peritoneal Surface Disease
Severity Score (PSDSS), Kanemitsu nomogram and Valentini nomo-
gram. Their basic characteristics and estimate C-statistics from meta-
analysis are presented in Fig. 3. We found significant discriminative
ability for five models predicting six outcomes: the Basingstoke score
(preoperative) predicting recurrence-free survival (RFS), the Fong score
predicting RFS; the Nordinger score predicting RFS; the PSDSS score
predicting OS; the Valentini nomogram predicting distant metastasis
and OS. The pooled C-statistic of these six meta-analyses ranged from
0.57 to 0.74 (median 0.67). We were able to calculate the 95% PI for
five meta-analyses (Fig. 3). The 95% PI of all the five models crossed
0.5, suggesting that a future validation study could possibly found a
negative discriminative performance of that model.

The Fong score was the most commonly validated model. It utilized
seven predictors (positive resection margin, extrahepatic lesion, lesion

of regional lymph nodes for primary tumor, metastases-free period,
number of metastases, the largest size of metastasis and CEA) to predict
the RFS and OS of CRC patients with liver metastasis after curative
resection. The meta-analysis found a significant C-statistic of 0.62 (95%
CI: 0.55–0.68) for RFS prediction, but non-significant for OS 0.60 (C-
statistic= 0.60 95% CI: 0.45–0.74). The strongest discriminative per-
formance in relation to point estimates of C-statistics was observed for
the Basingstoke preoperative score (C-statistic: 0.74, 95% CI:
0.52–0.88) for RFS and the Valentini nomogram (C-statistic: 0.74, 95%
CI: 0.60–0.85) for distant metastasis.

For model calibration, 54 (40%) of all studies presented a calibra-
tion plot. Six studies employed the Hosmer-Lemeshow test to explore
the overall goodness of model fit, and none of them reported a statis-
tically significant departure of predicted outcomes from observed
(Table S4). We were unable to quantitatively synthesize the model
calibration because none of the studies reported the slope of the cali-
bration plot or observed-to-expected events ratio.

4. Discussion

4.1. Interpretation and clinical application

To the best of our knowledge, this is the first systematic review and
meta-analysis evaluating the performance of prediction models for
survival outcomes of CRC patients with surgical resection. Prediction
models can assist in estimating individualized prognosis, therefore
guiding more precise treatment for CRC patients. In this study, we re-
viewed 83 original prediction models along with 52 external validation
studies, and identified eight models that had been externally validated
at least twice demonstrating significant discriminative performance.

With regard to predictors, most of the included models were based
on common demographic and clinic-pathological factors. Genetic
markers such as RAS, BRAF mutations and microsatellite instability
(MSI) have already been recommended [22] to guide treatment for
metastatic CRC. However, their predictive performance has barely been

Fig. 2. Risk of bias assessment for six predefined domains for each included study. For participant selection, studies were rated as ‘moderate’ risk of bias if
participants were possibly selected in a non-consecutive manner as this allowed for potential selection bias. We categorized studies to be high risk of bias if their
selection criteria were inadequately described. With respect to the predictors, we assigned ‘moderate’ risk to studies where it was unclear whether the predictors were
measured after the outcome was revealed, and ‘high’ risk to studies where the measurement of predictors was not clearly described. For the outcome domain, studies
were assigned with ‘moderate’ risk when the measurement of CRC recurrence or progression was not clearly stated and ‘high’ risk if the whole follow-up procedure
was not adequately described. For EPV, studies were scored as ‘moderate’ risk with an EPV between six and ten, and ‘high’ risk if their EPVs could not be calculated or
were less than six. Studies were assigned with ‘high’ risk of attrition bias if insufficient information on loss to follow-up, and ‘moderate’ risk due to less than 20% of
loss to follow-up. In relation to data analysis, studies were classified as ‘moderate’ risk given that either internal validation or missing data handling was not
performed, and as ‘high’ risk if they neglected to report on either. The detailed classification rules are summarized in Table S3.
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investigated in existing prediction models. Other strong prognostic
factors for CRC such as chemo- or radiotherapy were only adopted in a
small proportion of included models (13/83) due to limited data ac-
cessibility. For the CRC community, therefore, these variables should be
routinely recorded in the future to develop stronger prediction models.
Exploring the potential incremental predictive value of these prognostic
predictors and other novel markers such as circulating tumor cells
(CTC) [23] and immune-scores [24], is still of merit.

In relation to model performance, the Fong score is the most com-
monly studied model and it has been externally validated four times.
The European Society for Medical Oncology (ESMO) consensus guide-
lines has discussed possible application of this score to guide adjuvant
treatment for CRC with liver metastasis after hepatectomy [25], but no
formal recommendations have been made. Our study identified statis-
tically significant but modest discriminative ability for this score (C-
statistic: 0.62 for RFS) as well as other models (range 0.55–0.74), which
merits further improvement. Additionally, the relatively small number
of external validations for each model and inherent heterogeneity
across different clinical settings resulted in C-statistics with wide PIs
crossing the null. The estimate discriminative performance of these
models should therefore be interpreted with caution. Whilst most
models adopted the C-statistic to evaluate the discriminative ability, its
limitations have been widely discussed. For instance, it is hard to in-
terpret the variation among C-statistics to compare the performance of
different models derived from the same sample [26,27]. Novel metrics,
such as the expected information for discrimination [28], may be
adopted in future research. Our review also found that model

calibration was poorly reported, which made it even more challenging
to evaluate the model accuracy.

4.2. Risk of bias evaluation

The main sources for risk of bias for the current models stemmed
from potential cohort attrition and methodological flaws in data ana-
lysis. The vast majority of included studies did not specify the presence
and extent of loss to follow-up in the study cohort, which could bias the
results and affect their validity [29]. With regard to data analysis, none
of the external validation studies in our review reported how the
missing data were dealt with, and only 22% of the model development
studies employed missing data imputation. In addition, according to the
CHARMS checklist and the proposed checklist of Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or Diag-
nosis (TRIPOD) [30], future model development studies should also
present more detailed prediction rules including the intercept or base-
line survival to allow for individualized risk prediction rather than
simply stratify CRC patients into risk groups. As for validation studies,
our review identified a paucity of external validation studies that
compared the validation dataset with the original model development
dataset in terms of characteristics of participants and distribution of
predictors. Model updating, if necessary, is also expected to be con-
ducted and clearly presented in future validation studies. It should be
noted that the CHARMS checklist is less sensitive to some sources of
bias specific to survival analysis. For example, some predictors that can
vary with time such as chemotherapy dosage, BMI and other

Fig. 3. Basic characteristics and summarized C-statistics of prediction models included in meta-analysis. Only external validation studies on the same prediction
model were included for each meta-analysis. OS, overall survival, RFS, recurrence-free survival, CSS, colorectal cancer-specific survival, LR, local recurrence, DM,
distant metastasis.PCI, peritoneal cancer index; CEA, carcinoembryonic antigen.
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biomarkers are mostly assessed as a fixed baseline measurement, and
other predictors such as second-line therapy are immeasurable at the
baseline, resulting in possible time-dependent bias [31].

4.3. Model validation and impact studies

Model performance can be artificially inflated if the metrics are
simply estimated based on the original sample that was used to develop
the model [32]. This ‘over-optimism’ could be attenuated with internal
validation. However, only half of the model development studies
identified in our systematic review reported internal validation metrics.
Fourteen (17%) of these models adopted split-sample approach despite
this method being less favored due to its inefficiency [33]. Future stu-
dies should consider more sophisticated internal validation methods
such cross-validation and bootstrapping [33]. External validation can,
but is not limited to, quantify the potential overfitting of the original
model and explore the generalizability of a model in diverse clinical
settings [34]. It is ideally performed by independent investigators to
avoid over-interpretation [34], but of note, only 13% of the new models
in our review have been externally validated by independent in-
vestigators. Furthermore, all the external validation studies reported by
independent investigators evaluated models constructed and published
prior to 2011, and therefore, future work on validating newer CRC
prognostic models is required.

It is also noteworthy that we failed to identify any impact studies,
which are critical in defining the models’ real-world impact by head-to-
head comparisons [35]. Aside from that, cost-effectiveness should also
be evaluated by health economic modelling, which is scarce in current
CRC prognostic models [36]. Finally, few studies have explored how
prediction models can be integrated into the clinical workflow [4],
which will also have ramifications on their clinical utility.

4.4. Limitations

Our study has several limitations. Firstly, the majority of the in-
cluded models were constructed and validated in developed countries.
The performance of these models remains unclear, and therefore, needs
to be validated and updated in other epidemiological settings. It is also
imperative to develop and validate models in those less-studied areas
especially where increasing CRC mortality rates have been observed
(such as Eastern Europe and South America) [37]. Secondly, our lit-
erature search was restricted to English-language publications, inad-
vertently omitting models developed or validated in some other popu-
lations. Thirdly, the relatively small number of included validation
studies (< 5) for each meta-analysis and between-study heterogeneity
led to wide confidence intervals. Therefore, the results of each meta-
analysis ought to be interpreted with caution, and need to be updated as
more validation studies for these models become available. In addition,
our meta-analysis was based on reported face value of model perfor-
mance metrics such as C-statistics. Multiple adaptations that enable the
calculation of the C-statistic from time-to-event data have been pro-
posed [38,39]. However, most included models did not report this in-
formation, which made it challenging to harmonize the extracted sta-
tistics and could compromise the accuracy of the meta-analysis.
Fourthly, this study aimed to comprehensively review the performance
of existing prediction models for CRC prognosis. Potentially useful
models that did not report a quantitative measure of model perfor-
mance were excluded, although this has been mitigated to some extent
by the inclusion and evaluation of any available external validation
studies of these models. Lastly, studies without a clear prediction rule,
such as models derived from genomic data using neural network, were
also excluded. It is impractical for these exploratory models to be va-
lidated by independent investigators, and so they are beyond the scope
of this systematic review.

5. Conclusion

Although there exist abundant prediction models on survival out-
comes of CRC patients with surgical resection, only five of them
(Basingstoke score, Fong score, Nordinger score, Peritoneal Surface
Disease Severity Score and Valentini nomogram) have been externally
validated in at least two datasets and demonstrate significant dis-
criminative ability, which may potentially assist clinical decision-
making. However, other aspects of these five models such as model
calibration, their impact in real-word and cost-effectiveness should be
further investigated before formal recommendation can be made for use
in clinical practice. As for other models that have not been validated in
independent datasets and are subject to risk of bias, current evidence is
insufficient to evaluate their performance externally, which does not
support for these models to be routinely applied. Future research should
focus not only on constructing new models with novel predictors, but
also on validating and investigating the impact of existing prediction
models to improve prediction for CRC prognosis.
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