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Abstract   

Spiradenoma and cylindroma are distinctive skin adnexal tumors with sweat gland differentiation and 

potential for malignant transformation and aggressive behaviour. We present the genomic analysis of 75 

samples from 57 representative patients including 15 cylindromas, 17 spiradenomas, 2 cylindroma-

spiradenoma hybrid tumors, and 24 low- and high-grade spiradenocarcinoma cases, together with 

morphologically benign precursor regions of these cancers. We reveal somatic or germline alterations of 

the CYLD gene in 15/15 cylindromas and 5/17 spiradenomas, yet only 2/24 spiradenocarcinomas. Notably, 

we find a recurrent missense mutation (22 tumors, 18 patients) in the kinase domain of the ALPK1 gene in 

spiradenomas and spiradenocarcinomas, which is mutually exclusive from mutation of CYLD and can 

activate the NF-κB pathway in reporter assays. In addition, we show that high-grade spiradenocarcinomas 

carry loss-of-function TP53 mutations, while cylindromas may have disruptive mutations in DNMT3A. 

Thus, we reveal the genetic landscape of adnexal tumors and therapeutic targets.   
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Introduction 

There are two main groups of adnexal tumors; those that are associated with the female reproductive system 

including tissues such as the ovaries, fallopian tubes and the connective tissues that surround these 

structures, and skin adnexal tumors of cutaneous origin. The word “adnexa” is Latin in origin and refers to 

the appendages of an organ. Spiradenoma and cylindroma are closely related benign skin adnexal tumors 

with sweat gland differentiation. They show histological similarities and may represent part of a 

morphological spectrum, further evidenced by rare spiradenoma-cylindroma hybrid tumors. The majority 

of tumors are sporadic and present as solitary nodules. Spiradenomas show a predilection for the 

extremities, while cylindromas commonly occur on the head and neck1. Occasionally, they may be multiple 

in the setting of the Brooke-Spiegler syndrome (BSS), a rare autosomal-dominant inherited disorder 

characterized by cylindromas, spiradenomas and/or trichoepitheliomas in individuals with germline 

mutation of the CYLD gene 2. Malignant transformation in spiradenoma (spiradenocarcinoma) and, less 

frequently, cylindroma (cylindrocarcinoma) is a rare event. Histologically these tumors are composed of a 

benign precursor and a morphologically distinct malignant component, which may be further subdivided 

into low-grade or high-grade3. The morphology of these tumors appears to be a good predictor of outcome. 

Morphologically low-grade tumors have potential for local recurrence, while disseminated disease and 

disease-related mortality is largely limited to high-grade carcinomas 3, 4, 5, 6. Little is known about the 

underlying genetic events that drive these tumors. Cylindromas are characterized by mutations in CYLD 

and approximately two thirds of sporadic cylindromas have also been reported to carry the MYB-NFIB 

fusion gene, which leads to overexpression of MYB, analogous to adenoid cystic carcinoma 7, 8, 9. No genetic 

data are available for spiradenomas and the events leading to malignant transformation and to the more 

aggressive behavior of the high-grade tumors are largely unknown. As yet, only mutations in the TP53 gene 

have been reported in the malignant tumors 10, 11.  

 

To improve understanding of these rare diseases we perform a comprehensive genomic characterisation 

of samples from a large collection of representative patients and detail the driver gene landscape and 

biological processes that are operative. Notably, we find a hotspot driver mutation in ALPK1 that defines 

spiradenoma and spiradenocarcinoma cases.  

 

Results 

Sample ascertainment and whole exome sequencing 

Samples were obtained through the University of Edinburgh Tissue Bank with ethical approval obtained 

under REC 15/ES/0094. Analysis of these samples was also approved by the Sanger Human Materials and 
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Data Management Committee (HMDMC). Cases were independently reviewed by two dermatopathologists 

to confirm diagnoses. In total 75 samples underwent next-generation sequencing, 52 with paired adjacent 

normal/germline DNA (from 42 patients), while the remaining 23 samples (15 patients) without matched 

normal/germline DNA were used as a validation cohort (Supplementary Data 1). Capillary sequencing 

was also performed on 10 cases from 10 additional patients to validate a hotspot mutation as described 

below. A full breakdown of the samples used at the various stages of analysis and available clinical 

characteristics of each patient is provided in Supplementary Data 1. Briefly, high- and low-grade 

spiradenocarcinoma, benign spiradenoma and dermal cylindroma patients had a median age of 72.5, 61.5, 

58 and 60 years at diagnosis, respectively. Notably, four patients (one cylindroma, one spiradenoma, one 

patient with a high-grade spiradenocarcinoma and a patient with both a cylindroma-spiradenoma hybrid 

hybrid tumour and a high-grade spiradenocarcinoma) were previously diagnosed with Brooke-Spiegler 

syndrome. Half of tumors (37/68; 54%) were located on the head and neck area while the remaining cases 

were from the trunk (19/68; 28%) or extremities (7/68; 10%). The tissue sites for the remaining 8% of 

tumors (5/68) were unknown. Formalin-fixed paraffin-embedded (FFPE) cores were collected from each 

tumor and DNA extracted, while uninvolved adjacent skin (epidermis/dermis/superficial subcutis) was used 

to obtain normal/germline DNA where available (referred to here as adjacent normal/germline). For several 

spiradenocarcinomas we analysed both low- and high-grade regions (Supplementary Data 1). DNA 

samples were whole-exome sequenced on the Agilent/Illumina platform at the Wellcome Trust Sanger 

Institute generating a median depth of 60x coverage (after duplicate removal and read clipping).  

 

The somatic mutational landscape of adnexal tumors 

DNA sequencing data from the 52 tumor/germline pairs was subjected to somatic variant calling (see 

Methods) resulting in the identification of 1124 somatic point mutations in exons of which 817 were protein 

altering and 307 were silent mutations. The number of somatic single nucleotide variants (SNVs) varied 

markedly between individual tumor samples (mean 21.6 mutations, range 2-144) (Fig. 1, Supplementary 

Data 2). In addition to SNVs, we also called 219 small insertion/deletions (indels) (Supplementary Data 

2). Recurrently altered cancer driver genes included CYLD (14 cases), NRAS (p.Q129E, p.Q61K in the same 

sample), AKT1 (p.E17K in three cases), TP53 (p.E286K, p.G266E, p.R248Q and indels p.D228Fs*20, 

p.R209Fs*6) and DNMT3A (p.R556M, p.R320*, E213_splice, E585_splice)(Fig. 1). All mutations shown 

were validated using high-depth (median depth of coverage 117x) targeted exome capture across all 

samples where DNA was available (Agilent design ID: S3065404) (Supplementary Data 1). To further 

validate our variant calls and to determine the accuracy of our whole-exome sequence capture analysis, we 

used our targeted exome data to assay a further 119 randomly selected somatic variants revealing an overall 

validation rate of 82%. For indels the validation rate was 73%. A pan-cancer analysis revealed that in 
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comparison to cancers sequenced by The Cancer Genome Atlas (TCGA), the tumors sequenced here have 

a low somatic point mutation burden in the exome and fall within the range of 0.04-2.88 mutations/Mb 

(Supplementary Fig. 1), a frequency similar to thyroid cancer and uveal melanoma. Generally, 

cylindromas were found to carry more mutations than the other tumor types (Wilcoxon test P = 0.0153). 

Potential associations between the number of somatic mutations and age, sex of the patient, and tumor site 

were examined using a generalised linear model. No significant relationships with any individual clinical 

feature were observed. An overview of the genomic landscape including all available clinical characteristics 

for these cases can be found in Supplementary Fig. 2. 

 

Identification of driver genes in adnexal tumors 

A typical tumor cell may contain tens to thousands of somatic mutations distributed across hundreds of 

genes. Only a handful of these genes when mutated confer a selective growth advantage and thus may 

facilitate the promotion of tumor growth12. We applied two independent driver gene discovery tools: 

IntOGen and dNdScv to detect potential driver genes in our adnexal tumor cohort 13, 14. The IntOGen driver 

gene prioritization framework combines scores from SIFT, PolyPhen2 (PPH2) and MutationAssessor 

(MA), to calculate the functional impact bias (FM bias) of mutations in genes against a background 

distribution 13, 15, 16, 17. Using this approach genes computed to have a significant functional impact score 

(OncodriverFM q value) are reported as drivers. dNdScv on the other hand is a maximum likelihood-based 

method used to quantify positive selection of genes mutated in cancer using the ratios of missense and 

disruptive mutations vs synonymous mutations. We performed driver gene analyses using both of the 

aforementioned workflows using somatic mutations from the cylindromas, spiradenomas and high-grade 

and low-grade spiradenocarcinomas. A consensus of these two approaches is reported here. CYLD and 

DNMT3A were identified as statistically significant driver genes in cylindroma. CYLD was also reported as 

a driver gene in spiradenoma, while the tumor suppressor gene TP53 was found to be significantly enriched 

with mutations in high-grade spiradenocarcinoma. Notably, ALPK1 was recurrently mutated at a hotspot 

position and was reported as a driver event in both spiradenoma (both methods) and spiradenocarcinoma 

(only by IntOGen), and is discussed in detail below. This mutation was absent from cylindromas. A 

complete list of the driver genes and significance values for each adnexal tumor type can be found in 

Supplementary Data 3. This table also provides the aggregate number of missense, nonsense and 

synonymous mutations identified in each gene.  

 

A recurrent ALPK1 mutation in spiradenoma and spiradenocarcinoma 

The ALPK1 (α-kinase 1) gene is a member of the α-kinase family and is located on chromosome 4q25 18. 

Recent studies have indicated that the expression of ALPK1 during infection/inflammation can result in the 
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activation of nuclear factor-kappa-B (NF-κB) signalling and downstream gene expression 19, 20. Somatic 

mutation of ALPK1 in 32/1397 lung cancer samples (2.29%) and 29/ 781 colorectal cancer samples (3.71%) 

has recently been reported 18 and ALPK1 has been shown to function as an oncogene in oral squamous 

cancers21. 

 

We discovered a recurrent somatic hotspot mutation in the alpha kinase domain of the ALPK1 gene 

(p.V1092A) in 7/16 spiradenomas, 2/8 high-grade and 2/6 low-grade spiradenocarcinomas (Fig. 1 & 2, 

Supplementary Data 2) from our discovery cohort. All mutations were validated using targeted gene panel 

sequencing (see Methods). The hotspot mutation (p.V1092A) was also validated via Sanger sequencing in 

8/11 of the aforementioned cases identified by whole exome sequencing. The position was also tested in 7 

wildtype samples, all of which were confirmed to be mutation negative (Supplementary Data 1). 

Interestingly, in several cases (n=5) we observed the ALPK1 p.V1092A mutation in the adjacent 

morphologically normal tissue (in addition to the tumor) from which the normal/germline DNA for somatic 

variant calling was extracted. The average mutant allele fraction of the mutation in these samples was 0.32 

suggesting that they are clonal or present in a significant proportion of cells. None of the other somatic 

mutations in the corresponding tumor sample were found in the sequence data from the adjacent 

morphologically normal tissue making extensive tumor to normal contamination unlike (see Methods). 

This mutation was also observed in sequence data generated from benign precursor regions (n=4) 

suggesting that the ALPK1 p.V1092A mutation may be an early founder/truncal mutation, or is associated 

with a field change, as has been widely reported for other cancers, particularly skin22. Interestingly, mutation 

of ALPK1 was mutually exclusive (q value 0.0014623) from mutation of CYLD 22, 24 (Fig. 1). To further 

confirm the presence of the ALPK1 p.V1092A mutation a further 10 spiradenoma tumor/normal pairs were 

tested via Sanger sequencing and the p.V1092A mutation was observed in six tumors.  

  

Mutation of CYLD in adnexal patients and tumors 

CYLD (CYLD Lysine 63 Deubiquitinase) encodes a cytoplasmic protein with three cytoskeletal-associated 

protein-glycine-conserved (CAP-GLY) domains and functions as a deubiquitinating enzyme and tumor 

suppressor25. CYLD regulates the NF-κB pathway, which plays important roles in cell growth and survival 
26, 27. Germline mutation of CYLD is associated with Brooke-Spiegler syndrome, which may present with 

cylindroma, cylindromatosis, trichoepithelioma and/or spiradenoma 2. Eleven of the twelve cylindroma 

patients we sequenced carried either germline or somatic protein altering mutations of CYLD. The final 

cylindroma case (PD29703a) was found to carry a somatic splice region mutation (16: 50815325 A/G) 

located three bases away from the splice junction. CYLD mutations were also found in 31% (5/16) of the 

spiradenomas (Fig. 1). All four patients with a prior Brooke-Spiegler syndrome diagnosis whose germline 
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we sequenced carried a germline CYLD mutation. The protein altering mutations in CYLD are shown in 

Fig. 2a. 

 

Promoter and regulatory mutations 

Cis- regulatory elements control the transcription of genes and mutations in these regions can potentially 

lead to aberrant protein production and tumorigenesis. Exome sequencing is not well equipped to detect 

cis- regulatory element mutations as it is designed to capture protein-coding regions. However, sufficient 

coverage (>10x read coverage) around exon boundaries allowed us to investigate the status of proximal 

regulatory elements such as promoters. Detected non-coding mutations were scored for pathogenicity 

weighting them with a CADD (Combined Annotation Dependent Depletion) variant deleteriousness score28 

(see Methods). Mutations were also annotated in the regulatory regions of known cancer driver genes. In 

this way, we identified mutations in the TERT promoter region (C228T and C250T) in four 

spiradenocarcinomas, known hotspot positions in other cancers 29. Somatic mutations in the proximal 

regulatory regions of other genes such as SPTA1, HMCN1 and COL11A1 were also detected 

(Supplementary Data 2).  

 

Mutational processes in adnexal tumors 

Somatic mutations in tumor cells may be the consequence of aberrant endogenous processes such as 

defective DNA repair or due to exogenous factors such as exposure to carcinogens. The imprint of a 

mutational process on DNA sequence is commonly referred to as a mutational signature 30. Analysis of 

mutational signatures has led to a better understanding of the underlying biological processes associated 

with a number of cancers and has also allowed patient stratification for therapy 31.  

To assess the presence of published human cancer mutational signatures in the catalogue of somatic 

mutations from adnexal tumors we used deconstructSigs (see Methods)32. This approach computes the 

weighted contributions of the 30 published COSMIC signatures and one additional unknown signature to 

the mutational catalogue of each sample. The heatmap in Fig. 3a represents the contribution of these 

signatures across all adnexal tumor subtypes. In more than a quarter (26.92%) of tumors the contribution 

of signature 1 was greater than 0.5 meaning most mutations in these samples can be attributed to this 

signature. Signature 1, is an endogenous mutational process associated with spontaneous deamination of 5-

methylcytosine, which is often correlated with age33. The mutation catalogue from cylindromas was also 

enriched for signature 7, which is predominantly found in skin cancers as a result of ultra violet (UV) light 

exposure. The predilection of cylindromas to form on the head and neck is likely to explain this signal. We 

also performed an analysis combining mutations for each tumor type together and again identified signature 
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1 and signature 7 in cylindromas, while several low-grade spiradenocarcinomas showed a signal for 

signature 26, which is thought to be associated with DNA mismatch repair 30. 

Somatic DNA copy number alterations 

The copy number status of our adnexal samples was assessed using Sequenza, an allele specific copy 

number analysis algorithm that uses matched tumor-normal pairs 34. Sequenza reported a total of 1,577 

somatic copy number changes (1,350 gains and 227 losses) across 52 tumors. Several high-grade 

spiradenocarcinomas showed large copy number changes, while low-grade spiradenocarcinomas 

demonstrated a comparably lower number of copy number events, although a larger number of samples 

will be required to fully explore the copy number landscape of these tumors. Cylindromas and spiradenomas 

generally showed few copy number changes, as did morphologically benign precursor regions. Genome-

wide copy number profiles across all subtypes are reported in Fig. 3b.    

 

The MYB-NFIB fusion in adnexal tumorigenesis 

A previous report has suggested a role for MYB-NFIB fusions in the pathogenesis of both adenoid cystic 

carcinoma and cylindroma 8, 9. Using dual-colour FISH we analysed 21 cases including 13 cylindromas, 7 

spiradenomas and 1 cylindroma-spiradenoma hybrid tumor in addition to an adenoid cystic carcinoma case 

known to carry the MYB-NFIB fusion as a control. This analysis revealed that, despite previous reports, 

none of the cylindromas were found to carry the fusion event 8. The MYB-NFIB fusion was also absent from 

the spiradenomas and cylindroma-spiradenoma hybrid tumor (Fig. 4a-b, Supplementary Figs. 3 & 4). 

Overexpression of MYB was, however, confirmed in cylindroma and spiradenoma cases using 

immunohistochemistry (Fig. 1 & Supplementary Data 4) suggesting other mechanisms of gene 

overexpression are operative.  

 

Germline analysis of adnexal tumor patients 

As mentioned above, we identified germline CYLD mutations in all four patients previously diagnosed with 

Brooke-Spiegler syndrome. A germline CYLD mutation (in-frame deletion) was also detected in an 

additional patient with no prior Brooke-Spiegler syndrome diagnosis (PD29699) (Fig. 1). To extend the 

analysis of germline variation in patients from our cohort we used samtools mpileup and the bcftools variant 

genotyping strategy 35. We assessed the coding mutation burden per gene using a Fisher’s exact test (see 

Methods) (Supplementary Data 2) 36 using variants from the 42 cases where adjacent normal/germline 

exome sequence had been generated. From this analysis CYLD was found to carry significantly more 

mutations than expected (Benjamini-Hochberg (BH) adjusted p-value 0.01), reconfirming its well-

established role as an adnexal tumor predisposition gene. We also detected a significantly high number of 
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mutations in FAT4, BFAR, CRB2 and PEX14 (BH adjusted p-value <0.05). FAT4 is a member of human 

FAT gene family which encodes a large transmembrane protein consisting of multiple extracellular cadherin 

domains and a cytoplasmic domain that can interact with signalling molecules 37. This gene is homologous 

to fat in Drosophila, a known tumor suppressor gene 38. It should be noted, however, that FAT4 has been 

reported as ‘disease-associated’ in several studies, which might suggest a high rate of polymorphism 39, 40, 

41. BFAR, the bifunctional apoptosis regulator, plays a role in the regulation of cell death and in this way 

could contribute to tumorigenesis 42. Notably for FAT4, BFAR, CRB2 and PEX14 we did not identify 

somatic mutations in the wildtype allele of these genes in the cases carrying germline mutations suggesting 

that if they are contributing to tumor formation they most likely do not function as classical tumor 

suppressors. Further, samples with germline variants in these genes also had germline or somatic loss-of-

function alleles of CYLD, making these less likely candidate predisposition genes. We next asked if 

mutations of known pathogenicity were found in the germline of any of our adnexal cases. In this way we 

found 14 pathogenic or likely pathogenic variants including missense mutations in PTEN and NSD1 

(Supplementary Data 2) (ClinVar database (dbSNP build 144). The PTEN mutation we found has been 

reported in a single individual in ClinVar with a Cowden-like syndrome and changes a phenylalanine to a 

serine (P200S). This substitution occurs at a position that is conserved across species. In silico analysis 

predicts that this variant is probably damaging to protein structure/function. Missense (disease causing) 

mutations in nearby residues (V191G, M198K, T202I, M205V, S207R) have been reported, supporting the 

functional importance of this region of the protein. That said, the clinical records for our patient (PD29681) 

do not mention Cowden syndrome and the patient was 81 when their skin tumor was removed. Further, we 

did not detect a somatic mutation in the other allele of PTEN. In contrast our patient carrying a germline 

mutation in NSD1 carries a well-established SOTO syndrome-associated allele (R2017W) predicted to be 

disruptive of SET domain function43, 44. Thus, of the 42 adnexal patients analysed here we have shown that 

five patients carry germline mutations in CYLD and propose several other candidate genes as mediators of 

germline susceptibility for follow-up studies.  

 

Analysis of tumors without matched germline DNA 

For 52 of the samples in our cohort we had matched tumor/adjacent normal-germline pairs (as described 

above). Matched germline DNA was not available for a further 23 samples (15 patients; 3 cylindroma, 1 

spiradenoma, 1 cylindroma-spiradenoma hybrid, 3 low-grade spiradenocarcinoma, 7 high-grade 

spiradenocarcinoma) and thus we used the tumor sequences from these cases as a validation cohort to look 

for variants in genes identified from the abovementioned analyses. We first called variants against an 

unmatched normal sample (Supplementary Data 1) and then filtered these data using variants in the ExAC 

database36 (with an allele frequency > 0.0001) and with variants from an in-house panel of 100 normal 
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germline exomes. We next focused on genes identified from our analysis of the discovery cohort (see 

Methods) revealing ALPK1 p.V1092A mutations in one cylindroma-spiradenoma hybrid, two low-grade 

spiradenocarcinomas and one spiradenoma. Loss-of-function mutations were also detected in CYLD in 

cylindroma cases (PD29695a, PD29696a, PD29700a) and in one low-grade spiradenocarcinoma 

(PD29676a). Tumors from two high-grade spiradenocarcinoma patients (PD29684, PD29685) were found 

to carry frameshift deletions in TP53 (p.P191fs*54 and p.T329fs*8). For each patient, the respective 

changes were present in all collected tumor samples indicating they maybe germline in origin or occur early 

in tumor development. An overview of the driver gene landscape and clinical characteristics of all 75 

tumors/samples can be found in Supplementary Fig. 5. 

         

Functional studies of the ALPK1 p.V1092A variant 

Given the role of ALPK1 in the regulation of the NF-κB pathway in infection we next asked if the ALPK1 

p.V1092A variant could activate NF-κB signalling and thus substitute for mutation of CYLD. To do this we 

generated full-length ALPK1 wildtype and p.V1092A mutant cDNA constructs in an expression vector. 

Since adnexal cell lines do not exist we transfected these constructs into a panel of six NF-κB reporter cell 

lines (Supplementary Fig. 6). Analysis in this way showed that the mutant construct activated NF-κB 

reporter activity to a considerably higher level than the wildtype construct in MCF7, WM266-4 and 

WM1552C cells, consistent with a role for this variant in driving tumor growth through the NF-κB pathway, 

akin to mutation of CYLD. To further confirm that the p.V1092A ALPK1 mutation activates NF-κB 

signalling we performed immunohistochemistry and found p65 staining of ALPK1 mutant spiradenomas 

was indistinguishable from staining of CYLD mutant cylindromas (Fig.4c).  

 

Discussion  

The analysis of adnexal tumors in this study yielded several remarkable results. Firstly, we identified a 

recurrent somatic missense ALPK1 mutation (p.V1092A) in the kinase domain of this alpha-kinase and 

demonstrated that this mutation activates NF-κB signalling in cell reporter systems. Importantly, ALPK1 

has previously been suggested to function as an oncogene45. Since kinases can be readily inhibited this 

mutation represents a potential therapeutic target, which might be particularly advantageous in the 

advanced/metastatic setting, where effective treatments have not been identified. Secondly, we found driver 

genes not previously associated with adnexal tumors. For example, statistical analyses revealed significant 

enrichment of mutations in DNMT3A in cylindromas, a gene previously linked to haematopoietic 

malignancies, where it plays a role in the regulation of DNA methylation 46, 47. Further studies will be 

required to establish the direct functional role of these mutations in adnexal tumors and their effect on the 

epigenetic landscape. Mutations in genes such as AKT1, BCOR and PIK3R1 were also observed and these 
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genes may also contribute to tumor development. In keeping with previous studies, we found frequent 

mutation of the CYLD gene7, 48. Somatic or germline CYLD mutations were found in 12/12 cylindroma 

patients (matched tumour-germline cases) with mutations also being observed in spiradenoma and high-

grade spiradenocarcinoma cases. Notably, these mutations were mutually exclusive from the 

abovementioned ALPK1 variant. As the aetiology of adnexal tumors is unknown we performed a mutational 

signatures analysis. This revealed the presence of signature 1 across all tumor types, which is age-

associated, but also the UV-associated signature 7 in cylindromas, presumably because these tumors are 

generally found on the head and neck. There was also some suggestion of signature 26, associated with 

mismatch repair, in low-grade spiradenocarcinomas. Tumors in our adnexal collection were not only low 

in terms of their somatic mutation burden but also appeared to lack significant copy number alterations, the 

exception being several of the high-grade spiradenocarcinomas which, compared to other adnexal tumors, 

were replete with copy number gains. Finally, we identified germline variants in CYLD that have not been 

described previously, and thus represent new pathogenic alleles. We also found cases with pathogenic 

variants in the ClinVar database including in PTEN and NSD1, suggesting potential adnexal tumor 

predisposition alleles. The identification of a patient with an NSD1 mutation, which is associated with Sotos 

syndrome, is of particular interest since previous case reports suggest adnexal tumors in some patients with 

this condition 49. These insights should be explored in larger case series. 

 

In summary, our paper reports the most comprehensive picture of the genomic landscape of adnexal tumors 

to date, including driver genes, copy number alterations and a potentially actionable kinase mutation and 

mutational signatures. We hope these studies will help inform the management of patients with these 

malignancies.  
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Methods 
 

Patients and samples 

Samples for whole exome sequencing (WES) and targeted gene panel sequencing (TGPS) were collected 

from 57 patients and divided into a discovery (tumor/adjacent normal-germline pairs) and a validation 

cohort (tumor only). The discovery cohort contained 52 tumors/samples and matched adjacent 

normal/germline DNA from 42 patients. This cohort was used for the initial genomic profiling and driver 

gene analyses. Mutations from 23 additional samples (15 patients) from the validation cohort were also 

reported. From some lesions we were able to obtain high-grade and low-grade spiradenocarcinoma regions 

which were sequenced and analysed separately. A detailed description of each case/sample can be found in 

Supplementary Data 1. All diagnoses were confirmed by two independent pathologists. Ethical approval 

was obtained from the West Lothian Tissue bank.  DNA was extracted using Qiagen kits.  

 

Whole-exome sequencing 

Exonic DNA was captured using the Agilent whole-exome capture kit (SureSelect All Exon V5). Captured 

material was indexed and sequenced on the Illumina Hiseq2500 platform at the Wellcome Sanger Institute 

to a median depth of 60x. Raw 75 bp pair-end sequencing reads were aligned with BWA (v0.7.12) to the 

GRCh37 human reference genome producing a single Binary Alignment Map (BAM) file for each sample 
50. Duplicated reads resulting from PCR were marked with BioBamBam (v2.0.54) 35, 50, 51.  

 

Targeted gene panel resequencing 

To confirm our findings from whole exome sequencing we validated mutations in the top recurrently 

mutated genes using panel sequencing (Supplementary Data 5). Genomic regions for 550 genes were 

captured using Agilent custom pulldown baits. Captured material was indexed and sequenced on the 

Illumina Hiseq4000 platform to a median depth of 117x. Raw 75 bp pair-end sequencing reads were 

processed using the same pipeline as used for whole-exome sequencing described above.  

 

Somatic variant detection 

Somatic variants were detected using CaVEMan, an expectation maximization–based somatic substitution 

detection algorithm 52. To ensure tumor and normal were paired correctly for somatic variant calling and to 

avoid any possible sample swap we used genotype data from 20,000 randomly selected germline variants. 

A pairwise correlation coefficient between each sample pair is shown in Supplementary Fig. 7. Candidate 

somatic variants were then filtered for quality and to remove common population variants (ExAC allele 

frequency > 0.0001). Small insertion and deletion (indel) detection was performed using the cgpPindel 
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pipeline (v0.2.4w) 53. Detected indels were then filtered for quality, sequence coverage in both tumor and 

normal, strand bias, and for overlap with known simple repeats or indels in an in-house normal panel.  

 

Variant quality control for FFPE artefacts 

Formalin fixation of tumor biopsies can have a detrimental impact on DNA integrity and introduce 

C>T/G>A sequencing artefacts54. These artefacts are more frequently observed at a 0.01-0.10 mutant allele 

fraction (MAF) 54. To remove these variants, we used the following filters:  

 

- Tumor read depth (TRD) and adjacent normal/germline read depth (NRD) greater than or equal to 

10. 

- Mutation with MAF <= 0.10 is kept only if TRD and NRD is greater than equal to 30.  

- Mutation with MAF <= 0.05 is kept only if TRD is greater than or equal to 100.  

 

After filtering our somatic point mutation validation rate from the whole exome sequencing data was 82% 

for SNVs and 73% for indels as confirmed by targeted sequencing.  

 

Mutual exclusivity analysis of ALPK1 and CYLD mutations 

Mutual exclusivity between ALPK1 and CYLD was evaluated using the DISCOVER23 co-occurrence and 

mutual exclusivity analysis tool. Somatic point mutations and small indels from all 52 tumors were 

combined into a single 𝑁𝑥𝑀binary data matrix, where each cell value 𝑉 ,  (i=1…N [Number of genes], 

j=1...M[Number of tumors] ) indicated the status of gene i in tumor j. 𝑉 ,  = 1 if gene i is mutated in tumor 

j and 0 otherwise. Alteration status of all genes across all tumors was used to generate a null distribution 

for background alternation rate estimation. Finally, we computed pairwise mutual exclusivity between any 

two genes mutated in more than two tumors, taking the null distribution in to account.  

 

Germline mutation burden analysis  

We applied an exome-wide Fisher’s exact test to assess the significance of observing n mutations in gene 

X in our 42 germline samples, given gene X has a mutation rate of Y in a control population. To select an 

appropriate control population, we performed a principal component analysis using 2504 individuals across 

multiple populations from the 1000 Genomes Project phase355. We randomly selected 2000 single 

nucleotide polymorphic variants (SNPs) and to mitigate the impact of population specific rare variants we 

only selected SNPs with a population allele frequency between 0.1 and 0.7. PCA analysis revealed that all 

42 patients with tumor-germline pairs were of European descent (Supplementary Fig. 8). Therefore, 

polymorphic variants from the ExAC database from individuals of non-Finnish European descent were 
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used as a negative control. Readers should be mindful of the strengths and weakness of such an approach56.  

A Combined Annotation Dependent Depletion (CADD) score filter was applied and only variants with a 

CADD score above or equal to 15 were taken forward for burden testing. We also ensured that only variants 

with sequence coverage of >10x in both the case and control data set were used. Finally, we applied a 

Fisher’s exact test on every gene to estimate the likelihood of observing n deleterious mutations given the 

background mutation rate of that gene in the control population. The Benjamini-Hochberg method was used 

to correct for multiple testing and only genes with an adjusted p-value less or equal to 0.05 were reported 

as significant. 

 

Mutational signature analysis 

To reduce the potential impact of artefacts from 5-methycytocine deamination and degradation in our FFPE 

samples, low allelic fraction mutations (mutant allele fraction < 0.10 and read depth < 10) were removed 

from the signature delineation process (as outlined above). Somatic point mutations were then mapped to 

the 96 possible trinucleotide contexts taking into account the probability of each mutation occurring in each 

trinucleotide within the human genome. We then applied deconstructSigs, a multiple linear regression-

based algorithm to reconstruct the mutation profile of each tumor sample using a linear combination of 

predefined mutational signatures 32. Thirty human cancer signatures as defined in Alexandrov et.al, were 

used for the reconstruction and one “unknown” signature 30.  

 

DNA copy number analysis 

To estimate allele-specific copy number profiles we used the Sequenza software package (v2.1.0), a 

probabilistic model-based algorithm applied to segmented average depth ratio (tumor versus normal) and 

B allele frequency34. Pre-processing and analysis with Sequenza were performed as described in the 

Sequenza documentation and fitted models were manually examined. For four tumor-normal pairs default 

fitted model suggested very high ploidy. However, after manual inspection of the depth ratio and B-allele 

fraction data an alternative solution closer to ploidy 2 was selected due to lack of evidence for high ploidy.  

 

Gene fusion analysis by Fluorescence in situ Hybridization 

Fusion gene analysis of the paraffin-embedded tissue sections was performed using the MYB-NFIB 

fusion/translocation FISH probe kit from CytoTest, following the manufacturer protocol. The MYB 5’ probe 

covers the entire MYB gene along with upstream (5’) and some downstream (3’) genomic sequences. The 

NFIB 3’ probe covers the 3’ (end) portion of the NFIB gene along with some adjacent genomic sequence. 

An adenoid cystic carcinoma (PD_ACC) case known to carry the fusion was used as a positive control.  

 



 15

 

ALPK1 hotspot validation using Sanger sequencing 

DNA was extracted as above for exome sequencing. The region of interest of ALPK1 was amplified using 

ThermoFisher Platinum HiFi Taq DNA polymerase (following manufacturer’s instructions) using the 

oligos shown below. Amplified products were sequenced by Sanger Sequencing (Eurofins) using the same 

oligos. Sequence traces were analysed by visual inspection.  

  

ALPK1 Forward: 5’ TTGATCTCCTCTCTCTTACTCCA 3’ 

ALPK1 Reverse: 5’ ATGCTAGCCTGATTATGTGGAA 3’ 

 
Functional analysis of ALPK1 mutation by NFkB reporter assays 

MCF-7, T-47D, WM266-4, WM1552C, PANC-1 and MIA PaCa-2 cells (obtained from the American Type 

Culture Collection [ATCC]) were seeded in T25 flasks to obtain 80% confluence for transfection. The 

following day, cells were transfected with 1.5µg WT or Mut ALPK1 cDNA and 1.5µg RFP using 

the Effectene kit (Qiagen), according to the manufacturer's protocol. After 24hr, 4,000 cells were 

transferred to six wells per line/construct in a 384-well TC-treated PelkinElmer Cell Carrier Ultra plate. 

After a further 24hr, cells were fixed with formaldehyde/PBS at a final concentration of 4% for 10 min 

at 37 °C . Cells were permeabilised in 0.2 % TritonX-100/PBS (Sigma Aldrich) for 10 min and blocked in 

2 % BSA/PBS for 1 hr at RT. Cells were stained with rabbit anti-p65/RELA NF-κB (Abcam; cat 16502; 

1:500) for 2hr at RT then Alexa 647 goat anti-rabbit IgG (Invitrogen, 1:500) for 1hr at RT. Cells were 

stained with 10µg/ml Hoechst (Sigma Aldrich; cat 33258) for 10 min at RT.  Images were taken using 

the PerkinElmer Opera confocal microscope and a 20x air objective. Image analysis was performed using 

custom image analysis scripts with PerkinElmer’s Columbus 2.6.0 software. 

 

MYB expression by immunohistochemistry  

MYB overexpression in cylindromas has been reported in several earlier studies57. We attempted to assess 

MYB expression status in 26 samples (11 cylindromas, 6 spiradenomas and 9 high-grade 

spiradenocarcinomas) using immunohistochemistry (IHC) (Supplementary Data 4). IHC was performed 

on 4-μm-thick formalin-fixed paraffin-embedded whole-tissue sections following antigen retrieval with 

Target Retrieval solution (pH 6.1; Dako, Carpinteria, CA, USA) in a pressure cooker using a rabbit 

monoclonal anti-MYB monoclonal antibody (1:200 dilution; clone EP769Y; Abcam, Cambridge, MA, 

USA) and the Envision+ polymer detection system (Dako). Immunohistochemistry for p65 was performed 

using an anti-NF-κB p65 antibody (1:5000 dilution; clone D14E12; Cell Signaling Technology, Danvers, 

MA, USA) as described for MYB above.  



 16

 

 
 

Data availability 

The data has been accessioned under the study EGAS00001001799 in the European Genome-phenome 

Archive. Source Data File 1 provides all of the variant calls in MAF and VCF format.  
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Legends to Figures  

 

Fig. 1: The driver gene landscape of adnexal tumors. Genetic data for the 52 cases where matched 

tumor/normal DNA sequencing data was available. Additional cases are shown in Supplementary Fig. 5. 

The germline and somatic mutations in this plot were validated by high-depth targeted exome sequencing. 

Only mutations in coding regions are shown except for TERT promoter variants and the splice region 

mutation in CYLD. Please note PD30271 and PD29730 are the same patient who had multiple tumors 

analysed. 

 

Fig. 2: Mutations identified in CYLD and ALPK1. Variants in CYLD (A) and ALPK1 (B) against the 

translation of the longest transcript of these genes (ENST00000458497.5 & ENST00000311559.13). 

Protein domains are from UniProt. All of the variants shown were validated by high-depth targeted exome 

sequencing. Adjacent normal represents morphologically normal tissue from the same block as the tumor 

which was used as a germline sample for somatic variant calling. Variants in red were called somatically. 

Variants in green were called from the adjacent normal tissue. The color of the circles indicate tumor/tissue 

type. The somatic splice region mutation in PD29703a in CLYD is not shown. C. Protein alignment of 

ALPK1 across vertebrates. The conservation score represents constrained elements in multiple alignments 

by quantifying substitution deficits. The arrow indicates the position of the p.V1092 residue in humans.  

 

Fig. 3: The somatic genetic landscape of adnexal tumors. A). The contribution of published mutational 

signatures in adnexal tumors detected using deconstructSigs 32. Total contribution per sample adds up to 

one. For this analysis we used all variants including those in non-coding regions such as 5’ and 3’ UTRs.  

B). The copy number landscape of adnexal tumors. This analysis was performed using Sequenza to define 

the absolute copy number for chromosomal segments. These analyses were performed using the tumors 

shown in Fig. 1. 

 

Fig. 4: Assessment of the MYB-NFIB fusion and p65 expression in adnexal tumors. A). Fluorescence 

in situ hybridization (FISH) imaging of the MYB-NFIB fusion in an adenoid cystic carcinoma and 

assessment in cylindroma samples. Previous reports have suggested that adnexal tumors such as cylindomas 

carry MYB-NFIB fusions which have been associated with MYB overexpression 8. Left panel shows an 

adenoid cystic carcinoma, which is positive control for the fusion event. Yellow signal results from the 

overlap of the green NFIB probe and red MYB probe. Right panel: a representative cylindroma which was 

fusion negative. B). Representative histopathological images of a cylindroma at 100x magnification, 

spiradenoma at 100x magnification, high-grade spiradenocarcinoma at 200x magnification and a low-grade 
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spiradenocarcinoma at 200x magnification. C). p65 immunohistochemistry of a CYLD mutant cylindroma 

(left) and an ALPK1 p.V1092A mutant spiradenoma (right) at 20x magnification.  


