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Abstract 

Background Age-related macular degeneration (AMD) is a common sight threatening 

condition.  However, there are a number of monogenic macular dystrophies that are clinically 

similar to AMD, which can potentially provide pathogenetic insights. 

Methods Three siblings from a non-consanguineous Greek-Cypriot family reported central 

visual disturbance and nyctalopia. The patients had full ophthalmic examinations and color 

fundus photography, spectral- domain ocular coherence tomography and scanning laser 

ophthalmoscopy. Targeted polymerase chain reaction (PCR) was performed as first step to 

attempt to identify suspected mutations in C1QTNF5 and TIMP3 followed by whole genome 

sequencing. 

Results The three patients were noted to have symptoms of nyctalopia, early paracentral 

visual field loss and, in older patients, central vision loss. Imaging identified pseudodrusen, 

retinal atrophy and RPE-Bruch’s membrane separation. Whole genome sequencing of the 

proband revealed two novel heterozygous variants in C1QTNF5, c.556C>T and c.569C>G. 

The mutation segregated with disease in this family, occurred in cis, and resulted in missense 

amino acid changes P186S and S190W in C1QTNF5. In silico modelling of the variants 

revealed that the S190W mutations was likely to have the greatest pathologic effect and that 

the combination of the mutations was likely to have an additive effect. 

Conclusions The novel mutations in C1QTNF5 identified here expand the genotypic 

spectrum of mutations causing late-onset retinal dystrophy.  
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WHOLE GENOME SEQUENCING REVEALS NOVEL MUTATIONS CAUSING 

AUTOSOMAL DOMINANT INHERITED MACULAR DEGENERATION 

 

Introduction 

Age-related macular degeneration (AMD) is one of the commonest causes of blindness in the 

developed world (1).  Early AMD is identified clinically by focal sub-retinal deposits known 

as drusen (2).  Late stage disease results in two main forms of disease; neovascular or wet  

AMD which results from choroidal neovascularization and dry or non-neovascular AMD 

which results in an insidious loss of the retinal pigment epithelium (RPE) followed by neuro-

retinal atrophy leading to geographic atrophy. Non-nvAMD is the commonest form of AMD 

accounting for up to 90% of cases (3).   

There are a number of Mendelian inherited diseases which mimic AMD with the 

development of drusen or drusen-like sub-RPE deposits, pseudodrusen, retinal atrophy and 

choroidal neovascularization (CNV). These diseases include late-onset retinal dystrophy (L-

ORD), Sorsby fundus dystrophy (SFD) and dominant drusen/Doyne’s honeycomb macular 

dystrophy (DD) for which a number of mutations have previously been described (4-6).  

In this article we describe the investigation of members of a family who present with macular 

degeneration with an autosomal dominant inheritance pattern. Standard screening of known 

mutation loci was negative for disease in this family. 

Materials and Methods 

Three patients from a single family were examined in the clinics of Moorfields eye hospital 

(MEH), London. All subjects underwent an ophthalmic examination performed by an 

ophthalmologist, which included best-corrected Snellen visual acuity (BCVA), slit lamp 

biomicroscopy of the anterior segment, and dilated fundus examination. Color fundus 

photographs were obtained (Topcon 3D OCT, Topcon Corporation, Tokyo, Japan).  Fundus 

autofluorescence (FAF) imaging was performed using 30° or 55° lenses using a confocal 



scanning laser ophthalmoscope (HRA+OCT Spectralis, Heidelberg Engineering, Heidelberg, 

Germany) and spectral-domain optical coherence tomography (SD-OCT) (HRA+OCT 

Spectralis, Heidelberg Engineering, Heidelberg, Germany) were performed on all patients. 

Additional pseudo color and ultra-widefield confocal scanning laser (Optos plc, Dunfermline, 

UK) were performed on some patients. Full-field electroretinography (ffERG) and pattern 

ERG (PERG) were also performed according to the standards agreed by the International 

Society for Clinical Electrophysiology of Vision Standards on one of the patients (7, 

8). Patients were dark adapted for a minimum of 20 minutes. The ffERGs were recorded 

under dark-adapted conditions to flash strengths of 0.01 and 10.0 candelas/s/m−2 (cd/s/m−2) 

and light-adapted ffERGs to a flash strength of 3.0 cd/s/m−2 (30 Hz and 2 Hz).  Informed 

written consent and peripheral blood samples were obtained for genetic analysis from all 

participants according to the protocols approved by the Research Management Committees of 

Moorfields Eye Hospital and in agreement with the tenets of the declaration of Helsinki. 

For initial molecular investigations in the proband a PCR amplification was performed to 

amplify intron 4 and exon 5 of TIMP3 and the c.489 C>G mutation region in C1QTNF5. The 

amplicons were sequenced using standardized sequencing protocols. Whole genome 

sequencing was performed as part of the National Institute for Health Research (NIHR) 

BioResource- Rare Diseases study and was performed as previously described (9). Briefly, 

WGS used the Illumina TruSeq DNA PCR-Free Sample preparation kit (Illumina, Inc.) and 

sequenced using an Illumina HiSeq 2500, generating minimum coverage of 15× for 

approximately 95% of the genome. Reads were aligned to the Genome Reference Consortium 

human genome build 37 (GRCh37) using Isaac Genome Alignment Software (version 01.14; 

Illumina, Inc.). Single nucleotide variations and small insertion deletions were identified 

using Isaac Variant Caller (version 2.0.17). To facilitate variant interpretation, a list of 

reported IRD-associated genes was assembled, including genes associated with syndromic 



forms of IRD or albinism, from various sources including RetNet and literature searches. 

This list was manually curated according to published evidence of pathogenicity to compile a 

shortlist of 224 high-confidence IRD associated genes. To identify pathogenic variants, a 

two-step variant filtering protocol was designed, utilizing automated filtering followed by 

manual review. For SNVs and indels, automated filtering identified variants that fulfil the 

following criteria: passes standard Illumina quality filters in >80% of the whole NIHR 

BioResource Rare Diseases cohort (n. 6,688); predicted to be a high impact, medium impact, 

or splice region variant, or present in the HGMD Pro database; 22 and has minor allele 

frequency (MAF) < 0.01 in control datasets including the NIHR BioResource Rare Diseases 

cohort and the Exome Aggregation Consortium (ExAC) database. If a variant is present in the 

HGMD Pro database, a higher MAF threshold of 0.1 was used. Finally, we identified just 

those variants that affect an IRD-associated gene.  Confirmatory bidirectional Sanger 

sequencing of C1QTNF5 was performed in all available family members. Amplification of 

DNA was performed using specifically designed primers by polymerase chain reaction, and 

the resulting fragments were sequenced using standard protocols. 

Variant nomenclature was assigned in accordance with GenBank Accession 

number NM_015645.4, with nucleotide position 1 corresponding to the A of the ATG 

initiation codon. Variants were identified as novel if not previously reported in the literature 

and if absent from dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/), EVS, and the 

Exome Aggregation Consortium database (ExAC; http://exac.broadinstitute.org) containing 

61 486 exomes, all accessed on 25/3/2016. Where relevant, potential splice site disruption 

was assessed using Splice Site Prediction by Neural Network 

(http://www.fruitfly.org/seq_tools/splice.html). 

UCSC genome browser was used to check for orthologues and conservation of protein 

sequence amongst species. Pathogenicity of the novel variant and original mutations were 

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://exac.broadinstitute.org/
http://www.fruitfly.org/seq_tools/splice.html


assessed using predictive algorithms of “Sorting Intolerant From Tolerant” (SIFT; in the 

public domain, http://sift.jcvi.org), Polymorphism Phenotyping v2 (PolyPhen-2; in the public 

domain, http://genetics.bwh.harvard.edu/pph2) and Mutationtaster 

(http://www.mutationtaster.org/). 

The effects of each amino acid substitution on protein folding and assembly were predicted 

with the FoldX package, using the homotrimeric crystal structure of the human C1QTNF5 

gC1q domain (PDB ID: 4NN0). A model of the 18-mer assembly was constructed based 

upon contacts present in the asymmetric unit of this structure. The predicted effect upon on 

protein folding was calculated using from the FoldX-calculated change in stability induced by 

an amino acid substitution for the isolated monomeric subunit. The predicted effect on trimer 

assembly was calculated as the difference between the change in stability for the trimer and 

the monomeric subunit in isolation. Finally, the predicted effect on higher-order assembly 

was calculated as the difference between the change in stability for the 18-mer and the trimer. 

When considering the trimer and 18-mer complexes, only a single subunit was mutated, 

reflecting the heterozygous nature of the mutations. The FoldX “RepairPDB” function was 

run prior to mutations. Ten FoldX replicates were performed for each mutation, and the 

average was presented here. 

 

Results 

A three generation non-consanguineous Greek Cypriot family with macular degeneration was 

studied. Inheritance followed an autosomal dominant pattern (Fig 1A).  The proband (II:4) 

was initially seen in 2011 aged 65. He was already registered blind and was otherwise well 

except for cardiovascular disease for which he had been treated with a stent 4 years 

previously. He continued to take aspirin, atenolol, clopidogrel, simvastatin and famotidine. 

He was asymptomatic until his sixth decade. Aged 54 years he presented with difficulty with 

http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2
http://www.mutationtaster.org/


night time vision, driving and reading. By the time of examination at MEH his BCVA was 

hand movements bilaterally. Slit lamp examination revealed posterior chamber intra-ocular 

lenses bilaterally (Fig 2A).  Fundus examination identified widespread retinal atrophy in the 

macula within the arcades with further peripheral scalloped atrophy (Fig 2B and C).  SD-

OCT with a cross section at the fovea revealed marked central retinal thinning suggesting 

neuroretinal atrophy at the fovea, sub-RPE deposits temporally and a thinned choroid (Fig 2D 

and E). Visual field to confrontation was diminished. Known mutations for L-ORD and SFD 

were excluded by PCR based sequencing. 

The sister of the proband (II:3) was first seen aged 67.  She had experienced 4 years of night 

blindness with worsening of central vision in both eyes and had a previous medical history of 

treated hypertension, asthma and ischemic heart disease. Examination revealed a BCVA of 

6/12 bilaterally.  Anterior segment examination revealed mild cataracts with only a few long 

anterior zonules superiorly which were difficult to identify on photography but were more 

clearly seen on examination (Fig 3A).  Fundus examination at first presentation showed 

marked atrophy at the macula with foveal sparing (Fig 3B) and more scalloped atrophy to the 

mid-periphery which were clear on SLO (Fig 3C). SD-OCT revealed near uniform sub-retinal 

thickening across the fundus (Figs 3D, 3E). Goldmann visual field (supplementary figure 1) 

were markedly reduced using III4e target and after 5 years of review there was marked 

progression of macular changes (Fig 3D). The phenotype resembled late-onset retinal 

dystrophy (L-ORD) which is an autosomal dominant retinal dystrophy usually presenting 

with dark adaptation delay and later central visual loss and which demonstrates marked 

macular, retinal atrophy and sub-RPE thickening on SD-OCT. However, testing for the c.489 

C>G, p.S163R mutation for L-ORD did not identify any pathogenic change.  

Case (II:7) was first seen in 2014 aged 54. She complained of mild dark adaptation delay. She 

was myopic with a previous history of right anisometropic amblyopia. She was otherwise 



healthy except for a history of hypertension controlled with losartan. Her BCVA was 6/18 

right and 6/5 left. Examination revealed fine long anterior zonule fibers superiorly at the lens 

(Fig 4A). Fundus examination revealed small white lesions outside the arcades with atrophy 

temporal to the macula (Fig 4B). There was bilateral peripapillary atrophy greater on the right 

than the left eye. Occasional pigment clumps were seen. The SD-OCT revealed areas of sub-

retinal thickening.  This was again in the temporal peripheral macula consistent with other L-

ORD cases and this region was also the first to have reduced auto-fluorescence (Figs 4C, D 

and E).  Ishihara color vision testing was full. Humphrey visual field testing identified 

increased blind spots on the right greater than the left (supplementary figure 2). 

Electroretinography showed mild generalized loss of rod function with no cone system 

involvement.  

The absence of causative mutations at the suspected loci for SFD and L-ORD prompted 

investigation using whole genome sequencing.  The proband was found to have two 

heterozygous variants at c.556C>T (p.P186S) and c.569C>G (p.S190W) in C1QTNF5 

(chromosome 11 position 119210217 and 119210204 respectively). These appeared to be in 

cis from inspection of the WGS reads (supplementary figure 4) in which the variants were 

always on the same read, when spanning both loci. These were confirmed by bidirectional 

sequencing of the PCR product of primers flanking this region (Fig 1B), and were shown to 

segregate with the disorder in two further affected and 3 unaffected siblings (likelihood given 

no linkage = 1:32, p= 0.03, LOD score = 1.5) 

To see if the two variants were novel we reviewed the ExAC database. The amino acids are 

highly evolutionarily conserved across species (supplementary figure 3). To confirm that the 

variants were pathogenic we used several online prediction tools to assess the impact of the 

amino acid substitutions (Fig 5B). The amino acid substitution S190W was found to be more 



consistently damaging than the P186S. The findings also compare favorably when compared 

to the prototypic S163R mutation suggesting that the variants are pathogenic. 

To understand how the variants may potentially affect trimerization and multimers formation 

we performed in silico mutagenesis as previously described. (10)Computational modelling 

indicated that the S190W substitution had a highly destabilizing effect upon trimer assembly, 

resulting in a calculated free energy difference (ΔΔG) of 9.7 kcal/mol, compared to the  

wild-type protein (Fig 5B). When combined with P186S, there was an additive effect of 

both the mutations, with a total ΔΔG of 12.3 kcal/mol. This is as highly destabilizing as 

the known pathogenic variants S163R and G216C reported previously.(10) To identify if a 

potential mechanism for pathogenicity we generated a three dimensional model of 

monomeric and multimeric C1QTNF5. The novel variants P186S and S190W cluster near to 

previously identified pathogenic mutations on the surface of the globular domain of 

C1QTNF5 suggesting that this is an important region for C1QTNF5 multimerisation. 

Discussion 

This report describes three cases from a pedigree who present with macular dystrophy with 

an autosomal dominant inheritance pattern. Although the cases tested negative for the 

prototype S163R mutation in C1QTNF5 which results in L-ORD, their clinical presentation 

was mainly consistent with L-ORD (11-17) as outlined by a previously described staging 

system (18). In this simple three stages system, stage 1 (0-40 years of age) patients were 

asymptomatic but may demonstrate long anterior zonules (LAZ). In stage 2 (40-60 years of 

age), patients report dark adaptation delay and nyctalopia and are noted to have macular 

degeneration sparing the fovea and clinical dark adaptometry delay.  In stage 3 (>60 years of 

age), patients lose central vision progressively and by late stage 3 disease there is full visual 

field loss.  The clinical findings of L-ORD have been summarized by a number of studies 

(11-17). 



There were a number of differences in the affected patients when compared to cases 

harboring the classical S163R mutations. The LAZ normally demonstrate peripupillary trans-

illumination defects however these were absent in all our cases. Additionally, the proband 

(II:4) already had bilateral cataract surgery which would have precluded the identification of 

long anterior zonules (Fig 2A). There was some variability in the presentation of visual 

symptoms amongst the cases. All three patients admitted to having symptoms of dark 

adaptation delay. However, proband (II:4) and (II:7) described symptoms from the age of 54.  

However, case (II:3) appears to have milder disease with symptoms starting in her early 

seventh decade.  Similarly case (II:3) has conserved central vision whilst proband (II:4) who 

is younger has already lost central vision bilaterally.  

L-ORD is a fully penetrant autosomal dominant macular and retinal degeneration. The first 

identified mutation in C1QTNF5 resulted from a substitution (S163R) (L-ORD,   OMIM   

608752).  However, recently several additional pathogenic variants in C1QTNF5 have been 

identified (10). Patients with L-ORD develop early drusenoid deposits, thick sub-RPE 

deposits which extend to the ora serrata, RPE atrophy and later widespread geographic 

atrophy (15). L-ORD results from a mutation in the gene C1QTNF5 (6).  The gene encodes a 

protein of the same name which is expressed by the RPE and ciliary body within the eye and 

is composed of a globular domain and collagen like domain with a nitrile end (19).  The 

protein belongs to the C1Q tumor necrosis superfamily which includes adiponectin (20). 

C1QTNF5 has been shown to have metabolic function increasing AMPK phosphorylation 

(21).   

C1QTNF5 is composed of 3 exons.  Exon 1 is a non-coding exon.  Exon 2 contains the start 

codon for translation codes for the N-terminal signal peptide and the collagen-like domain 

and exon 3 codes for the C-terminal globular domain (22).  Translation results in a 25kDa 

monomeric protein. C1QTNF5 forms trimers and has been shown to form high order 



multimers (6, 14, 19).  The proposed novel pathogenic variants in this pedigree are located at 

c.556C>T (P186S) and c.569C>G (S190W) in C1QTNF5.  

The exact effect of the mutations on C1QTNF5 protein are yet to be established. The crystal 

structure of full length C1QTNF5 was demonstrated by Tu and Palczewski (19). C1QTNF5 

has a complex structure leading to the formation of high order multimers resulting from 

complex hydrophobic and hydrophilic interactions, hydrogen bonds and disulfide bonds (19, 

23). The globular domain, where the mutations are all located, appears important for 

trimerization of C1QTNF5. The globular heads of C1QTNF5 contain 10 strands arranged in 

two anti-parallel β-sheets (24). The β-sheets are brought together by a hydrophobic ‘zipper’ 

(19).  

The pathogenic variants identified in this study as well as the previously identified variants 

all encode amino acids found on the surface of the globular domain of C1QTNF5 (Fig 5A) 

and form part of an apical loop which is predicted to play an important role in the interaction 

between C1QTNF5 monomers (19).  As a result it is predicted that they may disrupt 

trimerization. Using in silico modelling and energy stability calculations both novel variants 

were found to destabilize C1QTNF5 folding.  A combination of both variants may result in a 

greater pathogenic impact on C1QTNF5 stability. A review of the GNOMAD database 

reveals that there are loss of function variants in C1QTNF5, which do not result in eye 

disease suggesting that the changes are not likely to be due haplodeficiency. Therefore, the 

two variants are likely to be dominant negative or neomorphic alleles if they are pathogenic. 

As the mutations were found in cis it was not thought predicted that disease severity would be 

altered by the two mutations with a dominant-negative mechanism proposed.  The onset and 

progression of the case phenotypes was within the normal range of expected phenotypes for 

L-ORD. 



Recent studies using a human RPE expressing the recently identified mutations appear to 

confirm in silico predictions. There was a change in the polarity of C1QTNF5 secretion from 

the apical to basal membranes of RPE.  This may contribute to the thick deposits seen in post-

mortem samples of human L-ORD eyes and in the BM-RPE separation noted in the retinal 

SD-OCT scans of our patients (10, 15, 17, 25). We propose a similar disease mechanism for 

the novel pathogenic variants identified in our patients.  

A problem has been the validation of candidate pathogenic variants.  Whilst functional 

studies have so far proved the gold standard for validation it is currently too time consuming 

and costly to provide a functional characterization of all newly discovered candidate 

pathogenic variants.  A set of online tools has proven useful to confirm pathogenicity as has 

been used in this study. We also describe the use of computer modelling to identify protein 

stability.   Analysis comparing the accuracy of modelling tools compared to functional and 

experimental studies has shown that although they are accurate in identifying energy stability 

changes, they underestimate the ΔΔG (26). However, modelling tools may be particularly 

useful to test in the setting of genes coding for proteins involved in complex or high order 

structures such as C1QTNF5 where generation of complexes or high order hetero-multimers 

may be difficult in vitro.  Tools which combine various predictions including computer 

modelling such as meta-predictors are increasingly being developed using machine learning 

and may prove even more accurate in prediction in the future (27). 

In summary, we describe the clinical and molecular findings of a family presenting with a 

dominant macular degeneration.  We identified novel pathogenic variants in the gene 

C1QTNF5 which resulted in the clinical findings of nyctalopia, thick sub–RPE deposits, 

pseudodrusen, RPE and neuro-retinal atrophy.  The condition shares clinical similarities with 

the autosomal dominant macular degeneration L-ORD. 
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Figure Captions 

 

Figure 1 Family pedigree and electropherograms for the affected family. (A) Inheritance 

followed an autosomal dominant inheritance pattern. Base pair status was confirmed at 

suspected mutation sites for individuals tested within the family. (B and C) 

Electropherograms depicting patient wild- type and mutation sequences from the sense strand 

of genomic DNA. (B) An unaffected sibling shows wild type sequence at the suspected 

mutation sites (yellow band) (C) The proband demonstrates substitutions c.556C>T 

(p.P186S) and c.569C>G (p.S190W) at the suspected sites (yellow band).  

 

Figure 2 Imaging of proband (II:4).  (A) Anterior segment photograph showing 

capsulorhexis and intra-ocular lens with no clear lens zonules. (B) Ultra-widefield 

pseudocolor images showing marked retinal atrophy involving the fovea and peripheral 

macula. (C) Ultra-widefield SLO showing marked scalloped areas of reduced 

autofluorescence surrounded by a ring of increased autofluorescence. (D) Infra-red line scan. 

(E) SD-OCT line scan through the fovea showing neuro-retinal atrophy and sub-retinal 

deposits (white arrows) above Bruch’s membrane.  Additionally there is a markedly 

atrophied choroid.  

 

Figure 3 Imaging of case (II:3).  (A) Anterior segment photograph showing sparse superior 

fine long anterior zonules (white arrows). (B) Color fundus photograph at initial presentation 

showing large islands of atrophy across the macula and beyond the vascular arcades but 

sparing the fovea. (C) SLO showing islands of reduced autofluorescence sparing the fovea at 

first presentation. (D) 5 years follow-up SLO showing increasing areas of reduced 

autofluorescence involving the fovea. (E) Infra-red line scan (F) SD-OCT line scan 



performed at first presentation through the fovea showing mild neuro-retinal atrophy with 

loss of the ellipsoid and ELM hyper-reflective lines except for the fovea and sub-retinal 

deposits (red arrows) above Bruch’s membrane (Inset).  Additionally there is a markedly 

atrophied choroid.  

 

Figure 4 Imaging of case (II:7).  (A) Anterior segment photograph showing fine long anterior 

zonules superiorly and inferiorly. (B) Ultra-widefield pseudocolor images show mild 

peripapillary atrophy.  Additionally there are pigmentary and atrophic changes in the 

temporal macula (C) Ultra-widefield SLO showing early scalloped areas of reduced 

autofluorescence surrounded by a ring of increased autofluorescence in the temporal macula. 

(D) Infra-red line scan. (E) SD-OCT line scan through the fovea showing loss of the ellipsoid 

and external limiting membrane in the temporal fovea with a sub-retinal deposit in the same 

region (red arrows).  

 

Figure 5 C1QTNF5 protein structure model and stability prediction. (A) Transverse view of 

the three dimensional structure of trimeric C1QTNF5 with the positions of the previously 

described mutations (red) and novel mutations highlighted (purple). (B) Energy stability of 

the previous mutations and the new mutations as well as the combination of the two new 

variants in C1QTNF5 in monomer, trimer and high order. 

 

 

 

 

 


