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ABSTRACT 

The result of an experimental programme investigating a novel technique to strengthen web 

plates of steel plate girders against breathing fatigue due to shear buckling deformations is 

presented. An experimental test series is present in which six specimens were manufactured 

to simulate the end panel of a plate girder; these were strengthened with an optimized FRP 

retrofit panel that was developed in an earlier phase of the research project, and tested for 

plate girder web shear buckling deformation mitigation under repeated cyclic loading, as well 

as ultimate load capacity enhancement. Test results and non-linear finite element modelling 

demonstrated the efficiency of this technique for stiffening the web against these deformation 

and thus reducing the critical stresses, consequently increasing the fatigue life of the girders 

by a factor ranging between three and seven, depending on the applied stress range and the 

fatigue resistance assessment method. The research demonstrates the applicability of this 

novel FRP strengthening technique to prolong and extend the fatigue life of existing plate 

girder bridges. 
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INTRODUCTION 

The issue of damaged, deteriorating, or deficient bridges is a topic of considerable 

importance in the developed (and developing) world. Steel and composite steel-concrete 

bridges constitute a large number of the existing bridges worldwide. With the increasing 

number of structurally deficient bridges in the world, there is a need to adopt durable 

materials and cost-effective strengthening techniques (Assoodani, 2014). This paper focuses 

on a novel strengthening technique using fibre reinforced polymers (FRPs) to address a 

specific deficiency in steel plate girder bridges related to shear buckling deformations of their 

web plates; the work seeks to stiffen, strengthen, and extend the fatigue life of such girders. 

In the practical range of typical plate girder spans, shear stresses in the girders’ webs are 

relatively low compared to the bending stresses in the flanges. As a result, the web plates in 

such girders are generally made from much thinner plates than the flanges. These web panels 

are consequently prone to instabilities (buckling) at relatively low shear forces. For structures 

with dominant cyclic loading, this can lead to the so called ‘breathing’ phenomenon, which is 

the case with repeated axle loading of plate girders in bridges. ‘Breathing’ is an out-of plane 

displacement of the web plates, under shear loading, which can induce high secondary 

bending stresses at the welded plate boundaries. Fatigue damage due to repeated cycles of 

these bending stresses at the plate boundaries is a particular concern for many such bridges.  

Different techniques exist for strengthening steel structures; all of which have advantages 

and drawbacks. For instance, conventional techniques for strengthening steel structures – 

such as welding additional transverse/longitudinal stiffeners for example – require heavy 

equipment during installation, have fatigue performance concerns due to weld fatigue, and 

may result in a need for ongoing maintenance due to corrosion attack, etc. Amongst the 

available strengthening techniques and materials, the potential use FRPs is particularly 

appealing because of FRPs’ resistance to corrosion, speed of installation, low weight, and 

high tensile strength-to-weight ratio. 



A novel preformed corrugated FRP panel is introduced herein, which can be adhesively 

bonded to a plate girder web panel. The specific shape and configuration of the FRP panel 

was previously optimized using extensive finite element modelling that sought to minimize 

the cost of the FRP material and the quantity of adhesive used; taking the complexity of the 

multi-axial stress state in the web steel plate into consideration (Al-Azzawi et al., 2016). 

Tests were previously performed to verify the effectiveness of the FRP panels at increasing 

the shear buckling strength of web plates in steel plate girders, in addition to enhancing their 

fatigue performance, and also giving priority to maintaining the typical ductile failure 

associated with steel plate girders at the ultimate condition, since this is an important factor 

sometimes ignored by other common strengthening techniques. Fig.1 shows a typical steel 

plate girder with the proposed shear strengthening technique, in comparison to the more 

common flexural strengthening technique. 

 

BACKGROUND 

Research was undertaken at Lehigh University in the 1960s to study the fatigue behaviour of 

thin-web, welded plate girders (Yen and Mueller 1966). It was demonstrated that secondary 

bending stresses in the webs were caused by lateral (i.e. out-of-plane buckling) web 

deflections under cyclic loading. The magnitude of the deformations and the resulting 

stresses was as high as the yield strength of the web plate in some cases, leading to the 

development of fatigue cracks at the plate boundaries. The initial locations of fatigue cracks 

along the flanges adjacent to the web were shown to be in the regions of the highest 

secondary bending stresses, and comparing these stresses with the number of cycles at crack 

initiation, a clear correlation was observed (Yen and Mueller, 1966). 

Roberts et al. (1995a) performed research studying the rate of fatigue crack propagation 

and fatigue limit loads for slender steel web plates subjected to cyclic shear loading. Similar 

observations to Yen and Mueller (1966) were made, however in this case the experimental 



results were presented together with a theoretical procedure for predicting the residual shear 

strength of fatigue-cracked web panels. Roberts et al. (1995a) noticed that during fatigue tests 

the girders exhibited considerable web plate breathing, with pronounced shear buckles 

forming and reforming along the tension diagonals of the web panels during cyclic loading. 

Fatigue cracks formed along the toes of the welds between the web and boundary members, 

in regions of high secondary bending stresses caused by out-of-plane (i.e. buckling) 

deformations. The number of load cycles before fatigue crack initiation varied considerably; 

for higher load ranges the rate of propagation of fatigue cracks was reasonably uniform, 

whereas for lower load ranges it was variable. 

On the basis of their research, Roberts et al. (1995b) stated that stress ranges at 

potential fatigue crack locations could be predicted using either nonlinear finite element 

analysis (FEA) or approximate analytical solutions. They also demonstrated that the fatigue 

assessment procedures recommended in the Eurocodes, based on either principal stress 

ranges or normal and shear stress ranges, provided conservative estimates of the fatigue life 

for slender webs subjected to web plate breathing under cyclic shear loading. 

Skaloud and Zornerova (2005) also studied the fatigue response of slender plates in 

shear. They studied the limit state for the webs of steel plate girders subjected to repeated 

loading, and noted, unsurprisingly, that the response is affected by the cumulative damage 

process generated in the web under repeated loading.  

A limited numbers of researchers have studied the use of FRP materials for 

strengthening the webs of steel plate girders under short term shear loading. One such study 

was by Okeil et. al. (2009), who investigated the use of externally bonded GFRP pultruded 

sections for this type of application. The pultruded GFRP sections in this study were bonded 

to thin-walled steel plates in orientations that were assumed to best contribute to the out-of-

plane stiffness of the plate, rather than its in-plane strength, as is the more common practice 

in FRP strengthening applications. Beam (shear) specimens were tested to explore the out-of-



plane strengthening technique, increasing the ultimate capacity of the strengthened specimens 

by 56%; however reducing their ductility by a factor of four. 

Miyashita et al. (2012) have presented a series of shear buckling tests on seven steel 

plate girders with carbon FRP (CFRP) sheets bonded to both sides of the web panels as 

substitutes for steel web plate material lost due to corrosion attack. Test variables included 

the web aspect ratio (aw/d =1 and 1.5) and the plate slenderness ratio (hw /tw = 133 and 166). 

Different numbers of CFRP layers and carbon fibre orientations were used. Increases in the 

ultimate capacity of the specimens, between 6.2% and 29%, were reported, along with a 

proposed modification to Basler’s equation (Basler, 1961) to account for the addition of 

bonded CFRP, showing a good correlation with their experimental results. 

More recently, Assoodani (2014) conducted an experimental programme to study steel 

plate girders and steel-concrete composite plate girders retrofitted with CFRP composites 

adhesively bonded to the web plates and loaded primarily in shear. A combination of 

pultruded CFRP plates and fabric CFRP sheets was used in this case. The maximum increase 

in the capacity of the strengthened specimens was 132% for a specimen strengthened with 

mechanically anchored pultruded CFRP plates on both the tension and compression web plate 

diagonals.   

Much of the available work on the use of FRP materials for strengthening plate girders 

against web plate buckling under shear loading has focused on application of existing FRP 

materials and products for such strengthening applications. Little work has been undertaken 

to develop custom FRP strengthening materials for such applications, and no research 

appears to be available in the literature addressing the performance of FRP strengthening 

systems for web plate buckling in steel plate girders under cyclic loads; in these applications 

both the stiffening of the web against out of plane ‘breathing’ deformations and the 

strengthening effect of the externally-bonded FRP on the ultimate limit state are relevant. 

Both of these issues are addressed in the current study. 



EXPERIMENTAL PROGRAMME 

Six specimens were manufactured to simulate the end panel of a plate girder and were 

strengthened with an optimized FRP retrofit panel that was developed in an earlier phase of 

the research project. These were subsequently tested for plate girder web shear buckling 

deformation mitigation under repeated cyclic loading, as well as ultimate load capacity 

enhancement. 

 

Specimen Description 

The tested specimens represent end panels of longer plate girders that would be made from 

several panels. The objective was to consider a web panel with low bending stresses but 

where high shearing forces exist, since such panels are most likely to suffer fatigue failure 

due to out-of-plane ‘breathing’ deformations. Instead of joining two end panels and testing 

them under a central point load, as is common in typical laboratory-scale testing of plate 

girder panels under shear loading, symmetry was exploited and only one panel was tested at 

any given time, as shown in Fig. (1). The specimens were provided with rigid-end posts to 

insure that the tension field was fully developed within the web plate. The web plate aspect 

ratio (aw/hw) was chosen as equal to 1.5, which is a common value assumed in design practice 

(Assoodani, 2014), and the web plate thickness was chosen (essentially arbitrarily, but 

informed by a range of testing considerations) as 2 mm. This resulted in a relatively high web 

plate slenderness ratio (hw/tw) of 245, where aw, hw and tw are the length, height, and thickness 

of the web, respectively. This high slenderness ratio was chosen intentionally to best 

demonstrate the potential stiffening effect of the proposed FRP strengthening technique. The 

web plate was made from S275 grade steel (i.e. 275MPa nominal yield strength), while the 

flanges and stiffeners were made from S355 steel. The web and flange plates were welded 

together using a manual arc welder with a continuous all-round (5 mm) fillet weld. Fig. (2-a) 

shows a schematic of the test specimens used.  



The preformed corrugated FRP panel section used in the current study and shown in 

Fig. (2-b) was made from three layers of either GFRP or CFRP using a vacuum bagged wet-

layup process, and their resulting mechanical properties were determined experimentally. The 

GFRP laminate had a thickness of 1.43 mm and a modulus of elasticity (Ef) of 18.02GPa, 

while the CFRP laminate had a thickness of 1.67 mm and a modulus of elasticity of 

48.12GPa; more details can be found in (Al-Azzawi et. al, 2018). The reason for changing the 

FRP section with respect to SP-6 (Fig. 2-b) is the different length of the FRP panel resulting 

from different alignment schemes as will be seen in the experimental programme. 

 

 

Test Variables 

The variables investigated in the cyclic loading test series presented herein are mainly the 

FRP material type and the alignment of the FRP stiffening/strengthening panels with respect 

to the compression diagonal; these are detailed in Table 1, which provides an overview of the 

experimental programme and the various specimens tested and parameters varied. The 

programme involves testing six plate girder sections. The first three specimens were (SP-1) 

the control specimen, (SP-2) a GFRP strengthened specimen, and (SP-3) a CFRP 

strengthened specimen. Specimens SP-2 and SP-3 were strengthened with diagonal FRP 

panels (oriented at an angle of 34° from horizontal) and tested for shear buckling under low 

cycle static load, to failure, as a precursor to the subsequent three tests on strengthened 

specimens under cyclic loads. The cyclic tests involved testing three additional specimens; 

two of these were GFRP (SP-4) and CFRP (SP-5) strengthened specimens that were identical 

to the static specimens SP-2 and SP-3, respectively. A third cyclic loaded specimen (SP-6) 

was also tested, for which the alignment of the CFRP strengthening system was changed to 

45° from horizontal, rather than 34°, to assess its effects on the efficiency of the proposed 

strengthening technique. Both alignments are illustrated in Fig. (3), which gives photographs 

of specimens strengthened with CFRP after the FRP materials were bonded. 



Specimen Preparation 

Before FRP bonding the specimens were grit-blasted to the required surface roughness to 

ensure a high quality bond with the epoxy adhesive used. The specimens were then cleaned 

until a surface free from dust and debris was reached, and then washed with acetone to insure 

that the surface was free from contamination and oxidation products. Sikadur 330 epoxy was 

then applied to the steel plate, and the FRP panel was adhered. The FRP panel was then 

attached to the specimen using a special fixture to hold it in position. Finally, a uniformly 

distributed load was applied to press the panel toward the steel plate to reduce air bubbles. 

This load was maintained for 24 hours until the initial set of the epoxy adhesive, and then 

removed. 

 

Test Instrumentation 

Fig. (4) shows the instrumentation used in the tests, including diagrams and photos for both 

the statically and cyclically loaded specimens. The first three specimens had four single 

bonded foil strain gauges (S7-S10) attached to their top and bottom flanges. A single strain 

gauge rosette was used in the centre of the web plate to measure the vertical, horizontal, and 

diagonal strains. The location of the LPs and strain gauges are shown in Fig. (4-a) where S 

refers to strain gauges and LP refers to linear potentiometers. Five of the LPs (LP1 to LP5) 

were used to determine the out-of-plane displacements of the web plate, two LPs (LP6 and 

LP7) were used to monitor the potential rigid-body rotation in the testing rig (i.e. out-of-plane 

movement), one LP (LP-8) was used to determine the deflection at the bottom end of the 

tested plate under the applied load, and a final two LPs (LP9 and LP10) measured the in-

plane rotations in the columns of the restraining frame used to test the samples.  

To reduce the number of channels and the large amount of data produced during the 

cyclic loading tests, a number of changes were made to the instrumentation as the testing 

programme progressed; these are highlighted in Fig. (4-b) and Fig. (4-c). For the three cyclic 



tests only LP-2, LP-9, and LP-10 were maintained in position, to measure the central out-of-

plane displacement and the in-plane rotations of the tested specimen. LP-1 was moved to a 

new position (shown in Fig. 4-b) because this location displayed large out-of-plane 

displacements, comparable or even some times exceeding the central out-of-plane 

displacement, during the initial static testing.  

The bonded foil strain gauges were distributed within the tension field zone. In 

addition, a single rosette strain gauge was attached to both faces of the web plate at a distance 

of 112.5 mm from the plate tension corner where the maximum strain was anticipated using 

the finite element model (Al-Azzawi et al., 2016). In this way, the secondary bending stresses 

could be calculated and compared to those experienced in the unstrengthened control tests. 

For the final cyclic specimen, SP-6 (with CFRP strengthening at 45° inclination from 

horizontal), an attempt was made to compare the secondary bending strains between the 

estimated location and at the corner of the tension field by using 2 additional strain gauge 

rosettes on each face of the web plate. In addition, the tension field strains were measured at 

45° (parallel to the expected tension field), as can be seen from Fig. (4-c).  

Strain gauge and displacement gauge (LP) readings were recorded at a rate of 10 Hz 

using a Vishay 7000 data acquisition system. Loading was applied using a 1000kN servo-

hydraulic Instron actuator, at a stroke rate of 1.0 mm/minute for the static tests and a loading 

frequency of 2.0Hz for the cyclic tests, with the specimens and actuator mounted within a 

steel self-reacting restraining frame. Before each test, the central out-of-flatness (initial 

imperfections) of the web plates was measured and recorded for further investigation with 

post testing numerical modelling.  

 

Testing Method 

For the first three pseudo-static tests, the load was applied through six cycles, with each cycle 

increasing the load by 20% of the ultimate capacity of the unstrengthened control specimen. 



This was done to detect possible debonding of the FRP strengthening systems at different 

loading stages. In the final cycle, the load was increased continuously until the specimen 

failed.  

For the cyclic (fatigue) tests, the loading range was chosen between 40-80% of the 

ultimate capacity of the corresponding pseudo-static testing control specimen. Each specimen 

was tested for two million load cycles, except SP-4, which was tested for only one million 

load cycles because it demonstrated only very limited breathing during testing. All tests were 

halted periodically to check the specimen and take the residual readings. After the prescribed 

number of loading cycles was completed, the specimen was tested again for its ultimate static 

shear strength using the same testing procedure as that used for the static tests. 

 

EXPERIMENTAL RESULTS 

Table 2 shows the experimental results both for the pseudo-static and cyclic tests. For each 

specimen the designation is given along with the measured initial imperfection, the test 

method applied, and the ultimate load. Details of the cyclic regime, including the number of 

cycles are also provided for the cyclic tests. It is noteworthy that, because no FRP debonding 

whatsoever was detected for any specimen at any loading stage, the residual ultimate loads of 

the cyclic tests are likely to be very close to their corresponding static ultimate strength, 

taking into consideration the difference in the behaviour resulting from different initial 

imperfections which are well known to play a major role in the behaviour of plate girders, 

especially strengthened ones as discussed in the following sections. It is also important to 

note that in Table 2 the designed loading range of 40-80% was not fulfilled exactly because 

the preliminary calculation are dependent on the pseudo-static test specimens (SP-2 and SP-

3) while the final loading range calculations (which is simply the applied load divided by the 

ultimate load capacity) is performed based on the final residual ultimate capacity of cyclic 



specimens (SP-4, SP-5 and SP-6). This what caused the variations between the designed and 

the applied loading ranges.   

Fig. (5-a) compares the load versus central out-of-plane displacement (to be called 

buckling curves from now on) for all tested specimens. Generally, it can be seen that SP-6 

(CFRP-45°) performed the best among all specimens and increased the ultimate shear 

strength by 88%. Most of the buckling curves followed the same pattern where there 

behaviour was linear up to approximately 80% of the ultimate capacity and then curved 

dramatically towards the failure plateau forming a bilinear pattern. However, the only 

exceptions to this general behaviour were (SP-3 and SP-4) because their buckling mode 

followed their reversed initial imperfection. This caused some reduction in their 

strengthening effect but it did not reduce the stiffening effect within the working stress limits. 

At this point it should be mentioned that in spite of the fact that the proposed strengthening 

technique is designed to be mostly effective when the buckling mode is toward the bonded 

FRP section (induced by the pre-buckling mode caused by the unbalanced composite 

section), but even if the buckling direction is reversed due to the reversed initial imperfection 

(SP-3 and SP4) this does not suggest that the strengthening technique will lose all its 

efficiency because as can be seen from Fig. (5-a) They still perform better than the control 

specimen, especially within the working stress limit which is usually not exceeded in 

practical cyclic loading. Nevertheless, it is preferable to investigate the direction of the initial 

imperfection before tending to bond the new FRP section on either of the steel plate faces to 

get most possible strengthening efficiency.      

Fig. (5-b) shows the variation of the maximum out-of-plane displacement with the 

applied loading cycles. From this figure it can be seen that the out-of-plane displacement was 

almost constant all over the 2 million cycles of loads except when the loading amplitude was 

changed for practical considerations as marked on the figure. This is a good indication that no 

debonding took place during the cyclic test and this conclusion was further confirmed by 



visual observation during and after the tests. However, by looking at Fig. (5-b) it is worth 

mentioning that SP-6 had lesser out-of-plane displacement than SP-5 (both having CFRP) 

because the 45° strengthening technique was much more efficient than the diagonal one with 

much higher stiffness. But, SP-4 (GFRP) had smaller out-of-plane displacement because of 

the reversed buckling mode. 

  

Assessing the Stiffening Effect of the Proposed Strengthening Technique 

Fig. (6-a) shows the dimensionless version of the buckling curves. The load was simply made 

dimensionless by dividing it by the corresponding shear yielding load using the Von Mises 

criterion where the yielding shear stress can be taken equal to (fy/√3). For the displacement 

axis, this was performed by dividing the out-of-plane displacement by a limiting 

displacement (the limit where the behaviour of the curves turns into non-linear).  

The stiffening effect was quantified by dividing the area between the y-axis and the buckling 

curve of the control specimen by the corresponding area of each of the strengthened 

specimens except the ones who had a reversed buckling mode (SP-3 and SP-4). This is called 

the stiffness index and is illustrated in Figs. (6-b) and (6.c) and shown in Table 3, for more 

details about this index refer to (Al-Azzawi et al., 2018). It is worth mentioning that in order 

to be able to fairly compare the stiffness of the strengthened specimens with the 

unstrengthened control specimen (SP-1), the initial imperfection needs to be compatible 

which is experimentally very difficult because each specimen had different initial 

imperfection. This problem was solved by creating a new control buckling curve for each 

different initial imperfection using finite element analysis, see Fig. (6-e). The model was 

verified against experimental data as will be seen in the numerical modelling section and 

showed very good convergence. Hence, the difference in the initial imperfection was taken 

into consideration in the calculations of the stiffness indicators.  



 However, From Table 3 it can be seen that the proposed strengthening technique 

succeeded in increasing the stiffness indicator of the specimens by a factor ranging between 3 

to 9 times the stiffness of the corresponding control ones. 

This high increase in the stiffness of the strengthened specimens was not on the 

expense of ductility. As a matter of fact the energy absorption capacities of the strengthened 

specimens were even increased by a factor ranging between 1.5 and 2.5 that of the control 

specimen as can be seen in Table 3. This increase in the absorption capacity was calculated 

by dividing the area between the x-axis and the buckling curve for the strengthened specimen 

by the corresponding are of the control one. This is called the energy absorption index and 

can be seen in Figs. (6-b) and (6-d), for more details about this index refer to (Al-Azzawi et 

al., 2018). SP-6 (CFRP-45°) succeeded the best in both the stiffness and energy absorption 

criteria. However, it is very important to note that Fig. (5-a) might imply that the proposed 

strengthening technique reduced the ductility, but actually it did not. This is because the 

unloading part of the curve for each specimen does not mean failure. Apart from SP-2 

(GFRP) the specimens never reached a failure plateau and there was no drop in the ultimate 

load capacity, on the contrary there was still a possibility for specimens to undergo extra 

loading but the test was stopped manually either because the load reached a high level that 

may lead to the distortion of the testing rig (SP-6 for instance) or because the deformation 

was too high (SP-1). It is believed that the tests could have been continued to higher 

deformational levels just like the control specimen (SP-1). This is why the strengthened 

specimens curves where extended almost horizontally following the trend of the curve itself 

to the same deformation level as the control one as can be seen in Fig. (6-a). The above-

mentioned ductility calculations were based on the extended curves shown in Figs. (6-a and 

6-d) rather than Fig. (5-a).    

 

 



Fatigue Performance of the Strengthened Specimens 

There are several methods available to estimate the fatigue life expectancy for different 

members and mechanical systems depending on their function, material, and the type of 

applied loads. However, for structural members undergoing high-cycle fatigue (members that 

do not encounter high plastic strain within their working stress limits), the stress range 

method is globally accepted and adopted in most international standards like AASHTO, 

AISC, and the Eurocode.   

For unclassified details, Eurocode 3 recommends that the fatigue assessment be based on the 

geometric stress range. This is defined as the maximum principal stress range in the vicinity 

of a weld (Robert et. al., 1995). In the current study the values of the principal surface stress 

ranges calculated from the experimental strain measurements for the cyclic strengthened 

specimens (SP-4, SP-5, and CP-6) at the diagonal tension corner near the welding and the 

ones determined using finite element analysis for the unstrengthened control specimen will be 

used in conjunction with the Eurocode fatigue strength curves to estimate the life expectancy 

of the specimens and study the effect of the proposed strengthening technique in reducing the 

stress ranges for the same service loads, and consequently to increase their fatigue life limit. 

Taking the maximum experimentally measured surface stress range at the corner for each of 

the cyclically tested strengthened specimens (SP-4, SP-5, and SP-6) and comparing it with 

the corresponding stress range associated with the control specimen for the same applied load 

range. In this comparison, the applied load range was taken equal to 20-80% of the ultimate 

capacity of the control specimen (SP-1). It is worth mentioning at this point that apart from 

the un-strengthened control specimen (SP-1), the other two specimens tested under static 

loading (SP-2 and SP-3) are meant to demonstrate the increase in stiffness indices due to the 

proposed strengthening technique which then leads to a reduction in the deformation due to 

shear buckling which would ultimately cause fatigue failure. In addition to that, they acted as 

a precursor for the corresponding cyclic specimens (SP-4 and SP-6) to determine their 



ultimate load capacity in order to be able to determine the possible loading ranges during the 

cyclic tests. SP-2 and SP-3 were not used for the fatigue calculations itself presented in this 

section.   

Fig. (7) demonstrates how reducing the stress range is reflected by increasing the 

fatigue life expectancy represented by the number of the loading cycles (N) using the 

Eurocode fatigue curves for normal stress range (Δσr) and shear stress range (Δτr) with a 

detail category of 125MPa and 80MPa, respectively. These stress ranges are the highest 

classification curves for a welded joint section. In this figure, the experimentally measured 

stress range is projected on the prescribed detail category taken from Eurocode 3 in 

comparison to the higher stress range of the control specimen under the same loading 

amplitude. This reduction in the stress ranges for the same loading amplitude results from 

strengthening the specimen with the proposed FRP corrugated panel designed and 

implemented in the current study. From Fig. (7), it can be seen that the shear stress range 

criterion gives a fatigue life expectancy several times higher than the corresponding normal 

stress range criterion. This high discrepancy between the two methods raises a lot of 

questions about the validity of the shear stress range as a criterion for the assessment of 

fatigue life expectancy; which is recommended solely by the Eurocode and non of the other 

standards use this method. 

Tables 4 shows the calculations of the number of cycles required for the fatigue failure 

according to the Eurocode for the three strengthened specimens tested cyclically in this work. 

For the strengthened specimens, the strain values at the specific loading range were taken 

directly from the available test data and then transferred into stresses by multiplying them by 

the modulus of elasticity and then the maximum principal stress is calculated using Mohr 

circle. The same procedure was followed for the control specimen except that the strains at 

the corner were determined using the finite element model for the same loading range. In 

Table 4, ΔL is the applied load range, ΔƐ is the measured normal strain range, Δσr is the 



calculated normal stress range, Δɣ is the measured shear strain, Δτr is the calculated shear 

stress range, Nσr is the number of cycles determined from the normal stress range criterion, 

and Nτr is the number of cycles determined from the shear stress range criterion. 

From Table 4, SP-6 (CFRP-45° strengthened specimen) offers the best enhancement in 

the fatigue life estimation with a factor of 3.8 times the control one, in comparison to 3.6 and 

3.3 for SP-4 (GFRP strengthened) and SP-5 (CFRP-diagonally strengthened) specimens, 

respectively. However, this improvement in the fatigue life estimation is obviously restricted 

by the capacity of the control specimen and the applied loading ranges in addition to the yield 

stress limit of the web plate. The strain in the control specimen was several times higher than 

the yielding strain but the limit of yield stress (275MPa) governed the calculations. So, it is 

expected that the enhancement in the fatigue life estimations would be several times higher if 

a fatigue strain criterion were to be applied instead of the current stress criterion or a web 

steel plate with higher yield stress is used.  

Finally, Fig. (8) shows the variations in the improvement of the fatigue life of the 

strengthened specimens with changing the loading range within the limit of the control 

specimen. In this figure, the resulting number of cycles is drawn as a function of the loading 

ranges both for the normal and shear stress criteria. From this figure, it can be seen that 

reducing the loading range from (ΔL=70kN) to (ΔL=50kN) results in moderate increase in 

number of loading cycles, however, reducing the stress range further will lead to a dramatic 

increase in the number of cycles until the limit of (ΔL=35kN) where the number of loading 

cycles is increased logarithmically reflecting an endurance limit. 

 

NUMERICAL MODEL OF THE CONTROL SPECIMEN 

Geometrical and material non-linear finite element analysis (GMNA) was used to model the 

control specimen. The web steel plate was modelled using a nine node reduced integration 

shell element S9R5, which has five degrees of freedom per node. S9R5 elements are meant 



for slender plates and were derived originally according to Kirchhoff thin plate bending 

theory. This element is not available in Abaqus standard CAE and can be used only through 

an Abaqus input file. A Matlab code was written to create the nodes and element incidences 

to be incorporated in Abaqus input files. The size of the web elements was chosen to be 

20×20 mm which satisfies the condition of (hw/20) based on a full convergence study 

published in a previous paper (Al-Azzawi et al. 2015). The initial imperfection was found 

using the elastic Eigen buckling modes; these were initiated using the buckling analysis 

available in Abaqus CAE and then the experimentally measured initial imperfection were 

imposed using Abaqus script commands in the input file. All other parts of the specimen 

(flanges and stiffeners) were modelled using S4R shell element available in standard Abaqus 

CAE. The flanges and stiffeners elements size were approximately 20×20 mm and 10×10 

mm, respectively. This size of elements was chosen based on their corresponding member 

size and according to a convergence study which showed that changing these element sizes 

does not cause any significant change in the numerical outcomes. Fig. (9) shows the finite 

element model for the control specimen and the corresponding contour distribution for the 

out-of-plane displacement.  

An elastic-perfectly plastic stress-strain curve was adopted for the steel constitutive 

model, with a modulus of elasticity (Es) of 200GPa and yield strength (fy) of 275MPa and 

355MPa for the 2 mm web plate and the flanges and stiffeners, respectively. 

Fig. (10) compares the numerical model outputs against the experimentally measured 

out-of-plane displacement and in-plane deflection. The numerically predicted strain at the 

centre of the web plate is also verified against the experimental ones in Fig. (11) both for the 

front and back faces of the web steel plate. From both figures, it can be stated that the model 

is valid and capable of predicting both the strength and the deformational behaviour of the 

control specimen with high accuracy. 

  



CONCLUSIONS 

The current paper is part of an extensive experimental programme aiming to propose a 

new strengthening technique to stiffen thin-walled steel plate girders against shear buckling 

and breathing. In order to ensure the viability of this technique, certain criteria must be met. 

The proposed strengthening technique needs to be cost effective and easy to apply. It should 

also maintain the typical ductile failure associated with steel plate girders, something which is 

usually neglected in other common strengthening techniques. Additionally it should be 

possible to implement the solution on only one face of the plate girder to ensure applicability 

in cases where reaching the second face is difficult and/or costly. Provided all these 

conditions can be met the method will provide a relevant and practical solution with many 

advantages over the limited existing techniques. 

In part-I of this paper (Al-Azzawi et. al, 2018), it has been shown that all of the goals 

highlighted above were achieved in the current study by proposing a new engineered 

preformed corrugated FRP strengthening panel. The FRP panel is bonded along the 

compression diagonal of the web plate in a 45° alignment scheme. The unique design of this 

new FRP panel enables effective stiffening of steel plate girder whilst also meeting the 

additional criteria outlined above. The proposed preformed corrugated FRP panel reduced the 

required FRP material by approximately 8 times (volumetrically) and the required epoxy 

bond surface area by 7 times. This leads to a reduction in the cost of the strengthening 

process whilst causing no reduction to bond strength of the specimen and maintaining the 

typical ductile failure associated with intact steel plate girders. The preservation of bond 

strength can be attributed to the design of the corrugated FRP panel where it is strong in the 

major axis along the compression diagonal and weak along the secondary axis along the 

tension diagonal to allow the steel plate to extend in tension without debonding.  

The panel was designed to be applied to only one face of the web plate forming a 

prebuckling mode which forces the specimen to buckle towards the outermost fibres of the 



FRP panel. This results in the FRP panel being stressed in tension, the stress state for which it 

performs most efficiently. The only drawback of single side application is that if the web 

plate has a reversed initial imperfection it could lead to a reversed buckling mode. In this case 

the outermost FRP fibres would be in compression instead of tension forming local wrinkles 

causing a premature failure of the FRP panel; however, this could only happen beyond the 

working stress limit. This problem can be solved by choosing the correct web face to bond 

the FRP panel by tracking the initial imperfection mode (which is believed to be difficult in 

field applications). In the latter case where it is difficult to track the initial imperfection, 

bonding the FRP panel to both sides of the web steel plate will be preferable. However, if this 

is not possible then the stiffening effect will remain the same and the fatigue performance 

will be enhanced as suggested. The only drawback would be that the ultimate strength will 

not be increased as expected, which is something unimportant unless part of the original 

design. 

The FRP panel was optimized with respect to different variables that can affect its 

performance and its efficiency was tested both under static loading in part-I of this work and 

cyclic loading regime in the current work (part-II). From the results presented in this paper, it 

can be concluded that the proposed strengthening technique survived up to 2 million cycles of 

loading with no signs of debonding regardless the fact that the applied cyclic loading range 

was 40-80% of the ultimate static capacity for the strengthened specimens, which is 

considered higher than the practical loading range which usually does not exceed 60 to 70% 

of the ultimate capacity.   

As a final statement, using the proposed strengthening technique minimizes the 

economic and temporal cost of strengthening, increases the life expectancy of the plate girder 

by up to 7.0 times that of the original design and increases its ultimate capacity by 88% 

whilst maintaining a ductile failure mode. 
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Table 1. Test variables in the final series of tests 

Ref. 
FRP 

type 

Fibre 

orientation  

Loading 

type 

FRP panel 

alignment 

SP-1 - - Static - 

SP-2 Glass  +45°/-45° Static Diagonal 

SP-3 Carbon  0°/90° Static Diagonal 

SP-4 Glass  +45°/-45° Cyclic Diagonal 

SP-5 Carbon  0°/90° Cyclic Diagonal 

SP-6 Carbon  0°/90° Cyclic 45° 

 

 

 

 

 

 

 

Table 2: Experimental test results  

Ref. Specimen 
Panel 

alignment 

Loading 

type 

Cycle range, 

thousands 

Loading 

range 

Initial 

imperfection, 

mm 

Ultimate 

load, kN 

Ultimate 

residual 

load, kN 

SP-1 Control - Static - - 2.76 87.9 - 

SP-2 GFRP Diagonal Static - - +0.35 113.7 - 

SP-3 CFRP Diagonal Static - - -1.47 105.2 - 

SP-4 GFRP Diagonal Cyclic 

0 - 500 35% - 70% 

-0.38 - 128.04 

500 - 1000 40% - 80% 

SP-5 CFRP Diagonal Cyclic 

0 - 1000 32% - 64% 

+1.14 - 140.07 

1000 - 2000 38% - 76% 

SP-6 CFRP 45° Cyclic 0 - 2000 37.5% -75% +0.03 - 165.11 

 

 

 

 

 



Table 3: Increase in stiffness and energy absorption for the strengthened specimens 

Ref. Specimen Test method Stiffness index 
Energy 

absorption index 

SP-1 Control Specimen Static 1.0 1.0 

SP-2 GFRP Static 7.94 1.72 

SP-3 CFRP Static - - 

SP-4 GFRP Cyclic - - 

SP-5 CFRP Cyclic 3.74 2.02 

SP-6 CFRP (45°) Cyclic 9.36 2.46 

 

 

 

 

Table 4:  Enhancement in the fatigue life estimation of the strengthened specimens  

Specimen 
ΔL 

kN 

ΔƐ 

mm/mm 

Δσr  

MPa 

Δɣ 

mm/mm 

Δτr 

MPa 

Eurocode fatigue 

equations 

Nσr Nτr 

Control 52.7 0.0011 220 0.0009 69.2 366,852 4,120,824 

Life increase (times the control specimen) 1.0 1.0 

SP-4 52.7 0.00072 143.7 0.0007 53.4 1,316,544 15,122,212 

Life increase (times the control specimen) 3.56 3.67 

SP-5 52.7 0.00074 147.9 0.00072 55.3 1,206,855 12,688,721 

Life increase (times the control specimen) 3.29 3.08 

SP-6 52.7 0.0007 140.9 0.0006 46.3 1,395,844 30,880,859 

Life increase (times the control specimen) 3.80 7.49 
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Web Plate 

 

FRP shear strengthening 

Fig. (1): Schematic showing the proposed strengthening technique compared 

to a typical flexural FRP strengthening. 

(c) FRP Flexural Strengthening (b) Proposed FRP strengthening against shear buckling 

(a) Typical steel plate girder 

specimen 

Steel section 

FRP strip 



 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2): Specimen details and FRP sections 

(b) FRP strengthening sections 

FRP section typically used for the first five specimens in the cyclic series of tests 

(a) Plate girder specimen details 

FRP section used for SP-6 in the cyclic series of tests 



 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

Fig. (3): Photos for the strengthened specimens. 

(a) SP-5 (CFRP- Diagonal) 

(b) SP-6 (CFRP- 45°) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) SP-1 (Control specimen), SP-2 (GFRP), and SP-3 (CFRP) - Static tests 

(b) SP-4 (GFRP) and SP-5 (CFRP) - Cyclic tests 

(c) SP-6 (CFRP) - Cyclic test 

Fig. (4): Test instrumentation. 
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(a) Buckling curves 

Fig. (5): Static and cyclic buckling curves for all tested specimens.  

(b)  Variations of the Out-of-plane displacement with the number of loading cycles 

SP-5: Max load amplitude 
increased from 64% to 76% 

SP-4: Max load amplitude 
increased from 70% to 80% 

SP-6 
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Fig. (6): Assessing the stiffening effect of the proposed strengthening technique. 

(d) An example for calculating the area under 

the curve (energy absorption) for SP-5 

 

(e) Dimensionless buckling curves with different hypothetical initial 

imperfections analyzed using the FEM 
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Fig. (7): Fatigue life estimation of the strengthened specimens. 

 

(a) Direct stress range – Detail category 125 N/mm
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(b) Shear stress range - Detail category 80 N/mm
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(a) Direct stress range criterion 
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Fig. (9): Finite element model for the control specimen (SP-1). 
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(a) Buckling curve of the control specimen (SP-1) 

Fig. (10): Comparison between the experimentally measured deformations and 

the predictions of the finite element model. 

(b) Deflection curve of the control specimen (SP-1) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

-0.010 -0.005 0.000 0.005 0.010 

A
p

p
lie

d
 L

o
ad

, 
kN

 

Strain mm/mm 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

-0.010 -0.005 0.000 0.005 0.010 

A
p

p
lie

d
 L

o
ad

, 
kN

 

Strain mm/mm 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

-0.010 -0.005 0.000 0.005 0.010 

A
p

p
lie

d
 L

o
ad

, 
kN

 

Strain mm/mm 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

-0.010 -0.005 0.000 0.005 0.010 

A
p

p
lie

d
 L

o
ad

, 
kN

 

Strain mm/mm 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

-0.010 -0.005 0.000 0.005 0.010 

A
p

p
lie

d
 L

o
ad

, 
kN

 

Strain mm/mm 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

-0.010 -0.005 0.000 0.005 0.010 

A
p

p
lie

d
 L

o
ad

, 
kN

 

Strain mm/mm 

Fig. (11): Comparison between the experimentally measured strains and the 

predictions of the finite element model for the control specimen (SP-1). 

(a) Ɛx front face (b) Ɛx back face 

(c) Ɛy front face (d) Ɛy back face 

(e) ϒxy front face (f) ϒxy back face 
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