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Summary 

Myelin allows for fast and efficient axonal conduction, but much remains to be determined about 

the mechanisms that regulate myelin formation. To investigate the genetic basis of myelination, 

we carried out a genetic screen using zebrafish. Here we show that the lysosomal Gprotein 

RagA is essential for CNS myelination. In rraga-/- mutant oligodendrocytes, target genes of the 

lysosomal transcription factor Tfeb are upregulated, consistent with previous evidence that 

RagA represses Tfeb activity.  Loss of Tfeb function is sufficient to restore myelination in RagA 

mutants, indicating that hyperactive Tfeb represses myelination. Conversely, tfeb-/- single 

mutants exhibit ectopic myelin, further indicating that Tfeb represses myelination during 

development.  In a mouse model of de- and remyelination, TFEB expression is increased in 

oligodendrocytes, but the protein is localized to the cytoplasm, and hence inactive, especially 

during remyelination.  These results define essential regulators of myelination and may advance 

approaches to therapeutic remyelination.  

 

Introduction 

Myelin, the membranous sheath that insulates axons in vertebrates, is essential for both 

rapid conduction of action potentials and for metabolic and trophic support of axons 

(Funfschilling et al., 2012; Sherman and Brophy, 2005; Simons and Nave, 2016).   

Oligodendrocytes mature from oligodendrocyte precursor cells (OPCs), some of which 

differentiate during development, while others persist into adulthood (Emery, 2010).  Adult 

OPCs can differentiate into myelinating oligodendrocytes to form new myelin in the adult brain, 

which occurs in response to motor learning in the healthy brain and also in diseases such as 

Multiple Sclerosis (MS) (Almeida and Lyons, 2017; Bengtsson et al., 2005; McKenzie et al., 

2014; Münzel et al., 2013). MS results from inflammatory disruption of myelin in the CNS. 

Demyelination and irreversible axon loss in MS lead to impaired vision, loss of coordination, 
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muscle weakness, fatigue, and cognitive impairment (Browne et al., 2014; Dutta and Trapp, 

2011; Franklin and Ffrench-Constant, 2008; Münzel et al., 2013). Despite the importance of 

myelination in the healthy and diseased CNS, the molecular mechanisms that control 

oligodendrocyte development are only partly understood. 

 

Lysosomes, long recognized as degradative organelles in the cell, are emerging as 

important signaling hubs that integrate nutrient availability with specialized cellular functions 

(Appelqvist et al., 2013; Ferguson, 2015; Saftig and Haas, 2016; Settembre and Ballabio, 2014; 

Settembre et al., 2013). Biochemical studies have defined the roles of several essential 

lysosomal proteins in the context of nutrient sensing and regulation of metabolic pathways 

(Efeyan et al., 2015). For example, in the presence of amino acids, GTP-bound heterodimeric 

Rag-GTPases (RagA or B bound to Rag C or D) recruit mTORC1 to the lysosomal membrane, 

where its then activated to induce protein synthesis and cell growth (Kim et al., 2008; Sancak et 

al., 2008; Shaw, 2008). This process requires the guanine nucleotide exchange factor (GEF) 

activity of the Ragulator complex, encoded by the lamtor genes (Bar-Peled et al., 2012; Sancak 

et al., 2010). Additionally, RagA regulates the activity of Transcription Factor EB (TFEB), which 

controls lysosomal biogenesis and autophagy (Sardiello, 2016; Sardiello et al., 2009; Settembre 

et al., 2011).  When nutrients are available and lysosomal activity is sufficient, RagA recruits 

TFEB to the lysosome, where it is phosphorylated and inactivated.  When the cell is starved or 

when lysosomal activity is disrupted or insufficient, TFEB is dephosphorylated, allowing it to 

enter the nucleus and activate target genes that control lysosome biogenesis, autophagy, and 

lipid catabolism (Martina and Puertollano, 2013; Napolitano and Ballabio, 2016).  In addition to 

controlling lysosomal activity in phagocytic cells (Shen et al., 2016), RagA and RagB also 

function in cardiomyocytes, underscoring the important roles of the lysosomes in diverse cell 

types (Kim et al., 2014). Moreover, TFEB activation promotes clearing of intracellular debris in 

laboratory models of neurodegenerative diseases such as Huntington’s disease (Appelqvist et 
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al., 2013; Martini-Stoica et al., 2016; Williams et al., 2008), but the roles of RagA and TFEB in 

other aspects of CNS development and disease remain unexplored. 

 

Starting with a forward genetic screen in zebrafish, we define essential functions for several key 

lysosomal signaling molecules in myelination. We show that mutations in rraga or the Ragulator 

component lamtor4 result in reduced CNS myelination. We find that TFEB target genes are 

significantly upregulated in myelinating glia of rraga-/- mutants. Consistent with the hypothesis 

that increased TFEB activity blocks myelination in rraga-/- mutants, elimination of tfeb activity 

rescues myelination in rraga-/- mutants. Additionally, in tfeb-/- mutants we observe ectopic 

myelination in the dorsal spinal cord and ectopic expression of myelin basic protein (MBP) in the 

hindbrain.  Moreover, transient overexpression of a nonphosphorylatable Tfeb construct 

represses mbp mRNA expression, further demonstrating that tfeb represses myelination in the 

developing CNS. We also explored the possibility that TFEB may be regulated during 

remyelination after injury.  We find that localization of TFEB to the cytoplasm of 

oligodendrocytes (where it is inactive as a transcription factor) increases during remyelination in 

a mouse model of focal demyelination. Together, our results reveal essential roles for RagA and 

TFEB in regulating myelination, and suggest that manipulation of TFEB or its downstream 

effectors may represent a new avenue for improving therapeutic remyelination in MS. 

 

 

Results 

The Rag-Ragulator complex is essential for CNS myelination 

In a forward genetic screen using zebrafish, we identified rraga and lamtor4, which encode 

RagA and the Ragulator component Lamtor4, respectively, as genes essential for microglia 

development (Shen et al., 2016). To examine myelination in zebrafish carrying mutations in 

these genes, we analyzed the expression of the myelin markers myelin basic protein (mbp) and 
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proteolipid protein (plp1b) by in situ hybridization (ISH). Homozygous rraga-/- mutants exhibited 

reduced mbp mRNA expression in the central nervous system (CNS) (Figure 1A, white arrows), 

whereas mbp expression in the peripheral nervous system (PNS) was normal (Figure 1A, black 

arrows). Similarly, expression of plp1b mRNA was reduced in rraga-/- homozygous mutants 

(Figure 1B). As described previously (Shen et al., 2016), lamtor4-/- homozygous mutants and 

rraga-/- mutants have very similar phenotypes (Figure S1).  

 

Previous biochemical studies have provided evidence that the Rag-Ragulator complex recruits 

mTORC1 to lysosomes, where it is activated in response to amino acids (Napolitano and 

Ballabio, 2016; Sancak et al., 2010). To determine if reduced mTORC1 activity might cause the 

reduction of myelin in rraga-/- mutants, we compared the phenotypes of rraga-/- and mtor-/- 

mutants using the previously identified mtorxu015 insertional allele (Ding et al., 2011). This 

analysis revealed important differences in the rraga-/- and mtor-/- mutant phenotypes. mtor -/-

mutants exhibited a slight delay in overall development and partial reduction in mbp expression 

both in the CNS and PNS (Figure 1C), whereas rraga-/- mutants exhibit a strong, CNS-specific 

reduction of mbp expression (Figure 1A). In addition, treatment of wildtype zebrafish with 

Torin1, a potent and specific inhibitor of mTOR signaling (Thoreen et al., 2012), led to an overall 

developmental delay and slight reduction of mbp expression in both CNS and PNS, similar to 

mtor-/- mutants (Figure S2). Collectively, these experiments show that mtor-/- mutants express 

nearly normal levels of mbp in the CNS, in contrast to the strong and specific reduction of mbp 

in the CNS that is evident in rraga-/- mutants. These phenotypic studies indicate that the Rag-

Ragulator complex has a role in oligodendrocyte myelination that is independent of mTOR. 

 

 

RagA acts autonomously in oligodendrocytes 
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To determine the cellular basis of RagA function in CNS myelination, we transiently expressed 

full-length wildtype rraga mRNA in rraga-/- mutants under the control of different cell type-

specific regulatory sequences. Expression of mbp was rescued in rraga-/- mutants when the 

wildtype rraga gene was expressed in oligodendrocytes (claudinK promoter), but not when 

expressed in neurons or microglia (huC or mpeg promoter, respectively) (Figure 1D,E).  

Previous transcriptomic studies in mammals show that Rraga expression increases in 

myelinating oligodendrocytes, consistent with its cell autonomous function in myelination 

(Marques et al., 2016). Combined with our previous analysis of microglia (Shen et al., 2016), 

these results indicate that RagA has independent and cell autonomous functions in 

oligodendrocytes and microglia. 

 

 

Myelin is reduced but oligodendrocytes are present in rraga-/- mutants 

 

To determine if myelin ultrastructure is disrupted in rraga-/- mutants, we performed transmission 

electron microscopy on transverse sections of the ventral spinal cord in wildtype and rraga-/- 

mutant zebrafish.  At 5 dpf, wildtype siblings had approximately 4-fold more myelinated axons 

than rraga-/- mutants (Figure 2A). At 9 dpf, the number of myelinated axons increased in 

wildtype siblings, whereas no additional myelinated axons were detected in rraga-/- mutants 

(Figure 2B). rraga-/- mutants and their wildtype siblings had similar numbers of myelinated axons 

in the posterior lateral line nerve, which is a component of the PNS (Figure 2C). This 

ultrastructural analysis of rraga-/- mutants confirms that RagA is essential for myelination in the 

developing CNS, but not the PNS. 

 

To determine if CNS myelin is reduced because rraga-/- mutants have fewer oligodendrocytes 

than wildtype, we examined the expression of olig2. Expression of olig2 mRNA, which marks 
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motor neurons and cells of the oligodendrocyte lineage (Ravanelli and Appel, 2015; Zhou and 

Anderson, 2002), was normal in rraga-/- mutants at 3 dpf, as detected by in situ hybridization 

(Figure S3A).  Similarly, analysis of the transgenic reporter Tg(olig2:GFP) (Shin et al., 2003) at 

4 dpf showed that the number and distribution of olig2-GFP expressing cells were comparable 

between rraga-/- mutants and their wildtype siblings (Figure 2D).  

 

To examine later stages of oligodendrocyte development, we used the transgenic reporter line 

Tg(claudink:EGFP ), which expresses GFP in mature oligodendrocytes and Schwann cells 

(myelinating glia of the PNS) (Münzel et al., 2012). The claudink:EGFP reporter is expressed in 

the CNS of rraga-/- mutants, but at lower levels than in wildtype siblings (Figure 2E, Figure S3B). 

In agreement with the olig2 marker analysis, oligodendrocyte cell bodies are visible in both 

rraga-/- mutants and their wildtype siblings (arrows), but in rraga-/- mutants the myelinating 

processes that normally extend along the axonal tracts are severely reduced (Figure 2E, 

arrowheads). These studies indicate that cells of the oligodendrocyte lineage are present in 

rraga-/- mutants, and that the onset of myelination is disrupted. 

 

Transcriptomic analysis reveals upregulation of lysosomal genes and TFEB targets in 

myelinating glia of rraga-/- mutants 

 

To investigate the pathways that are disrupted in myelinating glia of RagA mutants, we 

conducted RNA-sequencing of FACS-sorted Tg(claudinK:GFP) expressing cells from wildtype 

and rraga-/- mutant larvae at 5 dpf. claudink is expressed in oligodendrocytes and Schwann cells 

(Münzel et al., 2012), but because myelin appears to be normal in the PNS of rraga-/- mutants 

(Figure 1A, 2E), differences detected in Tg(claudink:GFP) expressing cells are likely to reflect 

changes in the oligodendrocyte transcriptome. Comparison of wildtype and rraga-/- mutant 

samples revealed 343 genes significantly upregulated in Tg(claudink:GFP) expressing cells of 
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rraga-/- mutants (>2.5X , p<0.01) and 298 significantly downregulated genes (<2.5X, p<0.01) 

(Figure 3A, Tables S1, S2 and S3). Consistent with the reduction of myelination in the CNS of 

rraga-/- mutants, expression of myelin genes including plp1b and myelin protein zero (mpz) was 

significantly reduced (Figure 3A). Also consistent with our observation that PNS myelin is 

normal in rraga-/- mutants, the key regulators of Schwann cell myelination egr2b and pou3f1 are 

expressed at similar levels in wildtype and rraga-/- mutants. 

 

Functional annotation with PANTHER (Mi et al., 2013, 2017) revealed that genes associated 

with lysosomal activities were significantly enriched within the upregulated genes in rraga-/- 

mutant myelinating glia (GO term: cellular component, Table S1). TFEB directly activates the 

expression of more than 400 genes involved in lysosomal biogenesis, autophagy, mitophagy, 

lipid catabolism and lysosomal biogenesis (Medina et al., 2011; Napolitano and Ballabio, 2016; 

Nezich et al., 2015; Palmieri et al., 2011; Settembre et al., 2011). We compared our lists of 

genes differentially expressed in myelinating glia of rraga-/- mutants (upregulated and 

downregulated) to a previously compiled list of TFEB target genes (Palmieri et al., 2011). 17 

previously defined TFEB target genes were upregulated in myelinating glia of rraga-/- mutants, 

including ctsa, ctsba, atp6ap1b, agtrap, hexb and sqstm1 (Figure 3A and Table S3). Similar 

analysis identified 4 TFEB target genes in the downregulated dataset, namely hoxc13a, 

prkag2b, naglu and comtd (Figure 3A  and TableS3). 

 

 

Confirming and extending our analysis of TFEB target gene expression in myelinating glia, we 

performed quantitative RT-PCR on total RNA from wildtype and rraga-/- mutants. Our analysis of 

21 well established TFEB target genes (Palmieri et al., 2011) confirmed that ctsba, ctsa and 

sqstm1 are significantly upregulated in rraga-/- mutants, and identified 9 more TFEB target 

genes upregulated in whole-animal RNA samples, including gla, hexa,  lamp1a, psap, clcn7, 
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gba and neu (Figure S4A). Taken together these experiments provide evidence that TFEB 

target genes are upregulated in oligodendrocytes of rraga-/- mutants, consistent with previous 

reports demonstrating that RagA represses TFEB in other cell types (Martina and Puertollano, 

2013).  

 

The Rag-Ragulator complex promotes CNS myelination by repressing TFEB 

 

Recent work has shown that active Rag GTPases repress TFEB by binding and recruiting it to 

lysosomes, where TFEB is phosphorylated and inactivated (Martina and Puertollano, 2013).  

Previous studies show that both Rraga and Tfeb are expressed in oligodendrocytes and that 

their expression increases as myelination progresses, consistent with the possibility that RagA 

antagonizes TFEB activity in oligodendrocytes (Lister et al., 2011; Marques et al., 2016).  These 

previous studies, together with the upregulation of TFEB target genes in myelinating glia of 

rraga-/- mutants, led us to investigate whether aberrantly increased TFEB activity blocks 

myelination in rraga-/- mutant oligodendrocytes. This hypothesis predicts that TFEB represses 

myelination and that inactivation of TFEB would rescue CNS myelination in rraga-/- mutants 

(Figure 3B). 

 

We used Crispr–Cas9 to generate mutations near the 5’end of the tfeb coding sequence and 

establish two new alleles of tfeb: tfebst120 and tfebst121 (Figure 3C). As expected for a loss of 

function allele, quantitative RT-PCR analysis showed that some known TFEB target genes are 

indeed downregulated in tfeb transheterozygous mutants (tfeb st120/st121, henceforth indicated as 

tfeb-/- mutant), including hexa, gba, gla, neu1, psap and sqstm1 (Figure S4B). Strikingly, 

expression of mbp and plp1b mRNA was partially restored in rraga-/- mutants heterozygous for 

tfeb+/- mutations, and mbp was restored to wildtype levels in rraga-/-;tfeb-/- double mutants 

(Figure 3D, Figure S5). Furthermore, in the ventral spinal cord, electron microscopy analysis 
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revealed that rraga-/-; tfeb-/- double mutants have many more myelinated axons than rraga-/- 

single mutants (36 and 8, respectively) (Figure 3E,F).  Our analysis of myelin gene expression 

and myelin ultrastructure in these mutants indicates that TFEB is hyperactive in 

oligodendrocytes of rraga-/- mutants and that inhibiting TFEB activity can rescue myelination in 

rraga-/- mutants.  

 

To test the hypothesis that TFEB represses myelination in the developing CNS, we examined 

expression of mbp mRNA, myelin ultrastructure, and MBP protein in tfeb-/- mutant larvae. At 5 

dpf mbp and plp1b mRNA levels are indistinguishable in tfeb-/- mutants and their wildtype 

siblings (Figure 3D and Figure S5). To determine if tfeb-/- mutants have normal myelin, we next 

examined CNS ultrastructure by transmission electron microscopy. While our analysis revealed 

no statistical difference in the number of myelinated axons in the ventral spinal cord of tfeb-/- 

mutants and their wildtype siblings (ventral: 54 vs. 51, Figure 4A), there was a significant 

increase in the number of myelinated axons in the dorsal spinal cord of tfeb-/- mutants (dorsal: 

48 vs. 32, Figure 4B). To determine if oligodendrocytes are altered in the brain of tfeb-/- mutants, 

we examined the expression and localization of MBP protein in the hindbrain of 8 dpf tfeb-/- 

mutants and siblings.  MBP protein is normally localized in oligodendrocyte processes and 

largely excluded from the cell body (Figure 4C). In the hindbrain of 8 dpf tfeb-/- mutants, 

however, we observed MBP ectopically expressed in a region of the hindbrain that normally 

contains oligodendrocyte cell bodies with little or no MBP (Figure 4 C,D, red arrows). Our 

analysis of tfeb-/- and rraga-/-;tfeb-/- double mutants indicates that TFEB represses myelination in 

CNS, and that RagA is essential to prevent hyperactivity of TFEB in oligodendrocytes. 

 

Our hypothesis that TFEB activity represses myelination in the CNS predicts that 

overexpression of a constitutively active (i.e. non-phosphorylatable) form of TFEB will repress 

myelination (Puertollano et al., 2018; Sardiello et al., 2009; Settembre et al., 2011). To 
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determine if overexpression of constitutively active Tfeb represses myelination we transiently 

expressed a phosphorylation-null Tfeb mutant (Tfeb PN: S3A+S149A+S221A+S484A+S486A), 

under the control of the claudink promoter. Transient transgenesis results in high variability of 

transgene expression both within and between individuals. To select individuals with a higher 

rate of transgenesis, the transgenesis vector contained a cmlc2:GFP reporter, which allowed 

transgenic animals to be identified by GFP expression in the heart. At 4 dpf, injected fish were 

sorted into GFP+ or GFP- groups (transgenic and weakly or non transgenic, respectively), and 

mbp expression was monitored by in situ hybridization. As predicted, transient overexpression 

of phosphorylation-null Tfeb resulted in a decrease in mbp mRNA expression levels in some of 

the injected fish (Phospho-null 12%, 6/50 fish) (Figure 4E).  Together, our data provide evidence 

that RagA functions to promote myelination by repressing TFEB, which in turn inhibits 

myelination in the CNS. 

 

Levels of cytoplasmic TFEB increase in remyelinating lesions in mouse 

 

Our data indicate that Tfeb represses myelination during development. We next explored 

whether TFEB is altered after injury during the process of remyelination. We used an adult 

mouse model of demyelination and remyelination, where focal demyelination is induced by 

stereotactic injection of the demyelinating agent L-α-lysophosphatidylcholine (LPC) into the 

corpus callosum (Boyd et al., 2013) (Figure 5A). Remyelination relies on the recruitment of 

oligodendrocyte precursor cells (OPCs) to demyelinated lesions and their subsequent 

differentiation into myelin-forming oligodendrocytes. In this model, oligodendrocyte 

differentiation begins at 10 days post injection (dpi), early remyelination is present at 14 days 

dpi and is complete by 28 days dpi (Boyd et al., 2013). Immunohistochemical analysis of control 

adult mouse corpus callosum (either uninjected or injected with PBS) showed that the majority 

of CC1+ oligodendrocytes have low levels of cytoplasmic TFEB expression, but there were a 
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small number of oligodendrocytes with high TFEB expression (Figure 5B, C, D). TFEB 

expression was almost exclusively localized to the cytoplasm of CC1+ oligodendrocytes, with 

nuclear TFEB localization rarely observed (approximately 1/cell per optical frame) (Figure 5B, C, 

D). During the early stages of remyelination (14 dpi), we observed a significant increase in the 

number of oligodendrocytes with high cytoplasmic TFEB expression in the lesion and perilesion 

areas (Figure 5E and E’). The number of oligodendrocytes with high cytoplasmic expression of 

TFEB dropped significantly at the late remyelination stage (28 dpi), when the lesion is mostly 

remyelinated (Figure 5F and F’).   

 

 
Discussion 

TFEB represses myelination 

Our experiments demonstrate that TFEB inhibits myelination. TFEB loss-of-function mutations 

cause ectopic myelination in the dorsal spinal cord and ectopic expression of Myelin Basic 

Protein in the hindbrain. Conversely, rraga-/- mutants have increased TFEB activity, which in 

turn blocks myelination. Furthermore, expression of constitutively active TFEB also inhibits mbp 

expression.  Consistent with previous biochemical studies (Martina and Puertollano, 2013), our 

analyses showed that RagA and TFEB have opposing functions in CNS myelination in vivo. In 

striking contrast to rraga-/- single mutants, rraga-/-; tfeb-/- double mutants have apparently normal 

levels of mbp expression. Expression of mbp is also partially rescued in rraga-/-; tfeb+/- mutants, 

indicating that myelination is very sensitive to the level of tfeb function.  Thus, the analysis of 

both loss and gain of TFEB activity defines TFEB as a repressor of myelination.  

 

Oligodendrocytes are present in rraga-/- mutants and are competent to myelinate if tfeb activity 

is partially (haploinsufficiency) or fully eliminated, indicating that TFEB blocks mbp expression in 

pre-myelinating oligodendrocytes.  Previous studies have defined a brief developmental window 
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(~5 hours in zebrafish) during which an oligodendrocyte can initiate new myelin segments 

(Czopka et al., 2013).  After this critical period, new myelin segments are not initiated, although 

previously established segments are maintained and expanded.  It is possible that TFEB closes 

the critical period, such that myelination is greatly curtailed by hyperactive TFEB in rraga-/- 

mutants. 

 

There are many possible mechanisms by which TFEB might repress myelination. TFEB is a 

transcriptional regulatory protein, raising the possibility that TFEB might directly repress myelin 

gene expression in oligodendrocytes.  There are, however, no reported TFEB binding sites in 

the vicinity of the myelin basic protein gene, suggesting that TFEB represses myelination 

indirectly.  In other cell types, TFEB activates hundreds of target genes that regulate diverse 

lysosome-related processes, including lysosome biogenesis and exocytosis, autophagy, and 

lipid catabolism (Napolitano and Ballabio, 2016).  Our analysis indicates that TFEB activates at 

least some of these previously known target genes in oligodendrocytes as well.  It is likely that 

inappropriately increased activity of one or more TFEB-regulated processes disrupts 

myelination in oligodendrocytes.  For example, TFEB hyperactivity might disrupt the trafficking 

of endolysosomal organelles to the membrane or synthesis of lipids critical for the formation of 

the membranous myelin sheath, which could in turn impede myelination. 

 

RagA and other regulators of TFEB in myelination 

Our mutational analysis demonstrates that the lysosomal genes rraga and lamtor4 are essential 

for myelination in the CNS, but not the PNS. RagA and Lamtor4 are components of the Rag-

Ragulator complex, which recruits TFEB to the lysosome, where it is phosphorylated and 

inactivated (Efeyan et al., 2015).  mTOR, which is recruited to the lysosome by RagA-

dependent and -independent mechanisms, is one kinase that can phosphorylate and inactivate 

TFEB (Martina et al., 2012; Roczniak-Ferguson et al., 2012; Settembre et al., 2011, 2012) .  If 
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mTOR inactivated TFEB in the context of myelination, we would expect mtor-/- mutants to have 

hyperactive TFEB and a phenotype similar to rraga-/- mutants. Our data, however, suggest that 

mTOR is not the only kinase that can repress TFEB activity in oligodendrocytes, because mtor-/- 

mutants have much more mbp expression in oligodendrocytes than rraga-/- mutants.  Previous 

studies show that the kinases GSKβ3, ERK2, AKT, and PKCβ can also phosphorylate TFEB, 

and some combination of these likely controls TFEB activity during myelination (Li et al., 2016; 

Martina and Puertollano, 2013; Medina et al., 2015; Palmieri et al., 2017; Puertollano et al., 

2018; Roczniak-Ferguson et al., 2012; Settembre et al., 2011).   

 

TFEB during remyelination 

Our analysis indicates that TFEB represses myelination during development, raising the 

question of its role during remyelination. In control mouse white matter, TFEB is mainly detected 

at low levels in the cytoplasm of mature oligodendrocytes and is rarely localized in the nucleus. 

TFEB protein levels increase in the cytoplasm of mature oligodendrocytes during remyelination, 

suggesting that it is predominantly inactive and thus permitting the remyelination process. After 

remyelination is complete, TFEB expression declined to near normal levels. It may seem 

somewhat paradoxical that levels of TFEB - a repressor of myelination - increase in 

remyelinating cells. One possibility is that TFEB, as a component of the integrated stress 

response (Martina et al., 2016), is more highly expressed due to the stress of the injury, and is 

subsequently inactivated by cytoplasmic localization when remyelination commences. RagA 

and kinases that phosphorylate TFEB (GSKβ3, ERK2, AKT, PKCβ, mTORC) may be essential 

to retain TFEB in the cytoplasm during remyelination. Animals with increased TFEB function, 

e.g rraga-/- mutants or Tfeb phosphorylation-null transgenic animals, will be valuable models in 

which to better characterize the role of TFEB and its regulators in the context of remyelination.  

 



15 
 

Understanding the nature of the signals that regulate TFEB expression and localization in 

oligodendrocytes of the healthy and diseased brain will be critical to understand its function in 

oligodendrocyte development, myelination, and remyelination.  Elucidating the target genes and 

processes downstream of TFEB that are inhibitory to myelination may define additional 

regulators of myelination and myelin repair, which in turn may suggest strategies for therapeutic 

remyelination.  

 

Acknowledgements 

We thank Talbot laboratory members for helpful discussions and technical advice and Tuky K. 

Reyes and Chenelle Hill for fish maintenance. Transmission electron microscopy was performed 

with assistance from John J. Perrino in the Stanford Cell Sciences Imaging Facility; this work 

was supported in part by ARRA Award number 1S10RR026780-01 from the National Center for 

Research Resources (NCRR). Cell sorting for this project was performed with assistance from 

Brandon J. Carter and Qianyi Lee, using instruments in the Stanford Shared FACS Facility. 

RNA sequencing was performed with assistance from the Stanford Functional Genomics 

Facility. Mouse tissue was kindly generated by Amanda Boyd. K.S was supported by a 

fellowship from A*STAR Singapore, and E.L.B. was supported by a fellowship from the National 

Science Foundation. W.S.T. is a Catherine R. Kennedy and Daniel L. Grossman Fellow in 

Human Biology. LZ and AW are supported by a MS Society UK Centre Grant. This work was 

supported by NIH grant R01NS050223 and NMSS grant RG-1707-28694 to W.S.T. 

 

Author Contributions 

K.S. and W.S.T. formulated the idea. K.S. and A.M.M. designed, performed and analyzed the 

experiments on zebrafish. K.S. and H.I. performed and analyzed quantitative PCR analysis. 

K.S., H.I. and E.B. performed bioinformatics analysis. L.Z. and A.W. designed, performed 



16 
 

and analyzed experiments pertaining to mice.  A.M.M., K.S., H.I. and W.S.T. analyzed data 

and wrote the manuscript, with input from all authors. 

 

Declaration of Interests 

The authors declare no competing financial interests. 

 

References 

Almeida, R.G., and Lyons, D.A. (2017). On Myelinated Axon Plasticity and Neuronal Circuit 
Formation and Function. J. Neurosci. 37, 10023–10034. 

Appelqvist, H., Wäster, P., Kågedal, K., and Öllinger, K. (2013). The lysosome: from waste bag 
to potential therapeutic target. J. Mol. Cell Biol. 5, 214–226. 

Bar-Peled, L., Schweitzer, L.D., Zoncu, R., and Sabatini, D.M. (2012). Ragulator Is a GEF for 
the Rag GTPases that Signal Amino Acid Levels to mTORC1. Cell 150, 1196–1208. 

Bengtsson, S.L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., and Ullén, F. (2005). 
Extensive piano practicing has regionally specific effects on white matter development. Nat. 
Neurosci. 8, 1148–1150. 

Boyd, A., Zhang, H., and Williams, A. (2013). Insufficient OPC migration into demyelinated 
lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol. (Berl.) 
125, 841–859. 

Browne, P., Chandraratna, D., Angood, C., Tremlett, H., Baker, C., Taylor, B.V., and Thompson, 
A.J. (2014). Atlas of Multiple Sclerosis 2013: A growing global problem with widespread 
inequity. Neurology 83, 1022–1024. 

Czopka, T., ffrench-Constant, C., and Lyons, D.A. (2013). Individual Oligodendrocytes Have 
Only a Few Hours in which to Generate New Myelin Sheaths In Vivo. Dev. Cell 25, 599–609. 

Ding, Y., Sun, X., Huang, W., Hoage, T., Redfield, M., Kushwaha, S., Sivasubbu, S., Lin, X., 
Ekker, S., and Xu, X. (2011). Haploinsufficiency of Target of Rapamycin Attenuates 
Cardiomyopathies in Adult ZebrafishNovelty and Significance. Circ. Res. 109, 658–669. 

Dutta, R., and Trapp, B.D. (2011). Mechanisms of neuronal dysfunction and degeneration in 
multiple sclerosis. Prog. Neurobiol. 93, 1–12. 

Efeyan, A., Comb, W.C., and Sabatini, D.M. (2015). Nutrient-sensing mechanisms and 
pathways. Nature 517, 302–310. 

Emery, B. (2010). Regulation of oligodendrocyte differentiation and myelination. Science 330, 
779–782. 



17 
 

Ferguson, S.M. (2015). Beyond indigestion: emerging roles for lysosome-based signaling in 
human disease. Curr. Opin. Cell Biol. 35, 59–68. 

Franklin, R.J.M., and Ffrench-Constant, C. (2008). Remyelination in the CNS: from biology to 
therapy. Nat. Rev. Neurosci. 9, 839–855. 

Funfschilling, U., Supplie, L.M., Mahad, D., Boretius, S., Saab, A.S., Edgar, J., Brinkmann, B.G., 
Kassmann, C.M., Tzvetanova, I.D., Mobius, W., et al. (2012). Glycolytic oligodendrocytes 
maintain myelin and long-term axonal integrity. Nature 485, 517–521. 

Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T.P., and Guan, K.-L. (2008). Regulation of TORC1 
by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945. 

Kim, Y.C., Park, H.W., Sciarretta, S., Mo, J.-S., Jewell, J.L., Russell, R.C., Wu, X., Sadoshima, 
J., and Guan, K.-L. (2014). Rag GTPases are cardioprotective by regulating lysosomal function. 
Nat. Commun. 5, 4241. 

Labun, K., Montague, T.G., Gagnon, J.A., Thyme, S.B., and Valen, E. (2016). CHOPCHOP v2: 
a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, 
W272–W276. 

Li, Y., Xu, M., Ding, X., Yan, C., Song, Z., Chen, L., Huang, X., Wang, X., Jian, Y., Tang, G., et 
al. (2016). Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat. Cell 
Biol. 18, 1065–1077. 

Lister, J.A., Lane, B.M., Nguyen, A., and Lunney, K. (2011). Embryonic expression of zebrafish 
MiT family genes tfe3b, tfeb, and tfec. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 240, 2529–2538. 

Lyons, D.A., Pogoda, H.-M., Voas, M.G., Woods, I.G., Diamond, B., Nix, R., Arana, N., Jacobs, 
J., and Talbot, W.S. (2005). erbb3 and erbb2 are essential for schwann cell migration and 
myelination in zebrafish. Curr. Biol. CB 15, 513–524. 

Lyons, D.A., Naylor, S.G., Mercurio, S., Dominguez, C., and Talbot, W.S. (2008). KBP is 
essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the 
cellular basis of Goldberg-Shprintzen syndrome. Development 135, 599–608. 

Lyons, D.A., Naylor, S.G., Scholze, A., and Talbot, W.S. (2009). Kif1b is essential for mRNA 
localization in oligodendrocytes and development of myelinated axons. Nat. Genet. 41, 854–
858. 

Manoli, M., and Driever, W. (2012). Fluorescence-Activated Cell Sorting (FACS) of 
Fluorescently Tagged Cells from Zebrafish Larvae for RNA Isolation. Cold Spring Harb. Protoc. 
2012, pdb.prot069633. 

Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcão, A., Xiao, L., Li, H., 
Häring, M., Hochgerner, H., Romanov, R.A., et al. (2016). Oligodendrocyte heterogeneity in the 
mouse juvenile and adult central nervous system. Science 352, 1326–1329. 

Martina, J.A., and Puertollano, R. (2013). Rag GTPases mediate amino acid-dependent 
recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475–491. 



18 
 

Martina, J.A., Chen, Y., Gucek, M., and Puertollano, R. (2012). MTORC1 functions as a 
transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 
903–914. 

Martina, J.A., Diab, H.I., Brady, O.A., and Puertollano, R. (2016). TFEB and TFE3 are novel 
components of the integrated stress response. EMBO J. 35, 479–495. 

Martini-Stoica, H., Xu, Y., Ballabio, A., and Zheng, H. (2016). The Autophagy–Lysosomal 
Pathway in Neurodegeneration: A TFEB Perspective. Trends Neurosci. 39, 221–234. 

McKenzie, I.A., Ohayon, D., Li, H., Faria, J.P. de, Emery, B., Tohyama, K., and Richardson, 
W.D. (2014). Motor skill learning requires active central myelination. Science 346, 318–322. 

Medina, D.L., Fraldi, A., Bouche, V., Annunziata, F., Mansueto, G., Spampanato, C., Puri, C., 
Pignata, A., Martina, J.A., Sardiello, M., et al. (2011). Transcriptional Activation of Lysosomal 
Exocytosis Promotes Cellular Clearance. Dev. Cell 21, 421–430. 

Medina, D.L., Di Paola, S., Peluso, I., Armani, A., De Stefani, D., Venditti, R., Montefusco, S., 
Scotto-Rosato, A., Prezioso, C., Forrester, A., et al. (2015). Lysosomal calcium signalling 
regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17, 288–299. 

Mi, H., Muruganujan, A., Casagrande, J.T., and Thomas, P.D. (2013). Large-scale gene 
function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566. 

Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., and Thomas, P.D. (2017). 
PANTHER version 11: expanded annotation data from Gene Ontology and Reactome 
pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183–D189. 

Montague, T.G., Cruz, J.M., Gagnon, J.A., Church, G.M., and Valen, E. (2014). CHOPCHOP: a 
CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, W401–W407. 

Münzel, E.J., Schaefer, K., Obirei, B., Kremmer, E., Burton, E.A., Kuscha, V., Becker, C.G., 
Brösamle, C., Williams, A., and Becker, T. (2012). Claudin k is specifically expressed in cells 
that form myelin during development of the nervous system and regeneration of the optic nerve 
in adult zebrafish. Glia 60, 253–270. 

Münzel, E.J., Jolanda Münzel, E., and Williams, A. (2013). Promoting remyelination in multiple 
sclerosis-recent advances. Drugs 73, 2017–2029. 

Napolitano, G., and Ballabio, A. (2016). TFEB at a glance. J. Cell Sci. 129, 2475–2481. 

Nezich, C.L., Wang, C., Fogel, A.I., and Youle, R.J. (2015). MiT/TFE transcription factors are 
activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 210, 435–450. 

Palmieri, M., Impey, S., Kang, H., di Ronza, A., Pelz, C., Sardiello, M., and Ballabio, A. (2011). 
Characterization of the CLEAR network reveals an integrated control of cellular clearance 
pathways. Hum. Mol. Genet. 20, 3852–3866. 

Palmieri, M., Pal, R., Nelvagal, H.R., Lotfi, P., Stinnett, G.R., Seymour, M.L., Chaudhury, A., 
Bajaj, L., Bondar, V.V., Bremner, L., et al. (2017). mTORC1-independent TFEB activation via 



19 
 

Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. 
Commun. 8, 14338. 

Park, H.-C., Mehta, A., Richardson, J.S., and Appel, B. (2002). olig2 Is Required for Zebrafish 
Primary Motor Neuron and Oligodendrocyte Development. Dev. Biol. 248, 356–368. 

Puertollano, R., Ferguson, S.M., Brugarolas, J., and Ballabio, A. (2018). The complex 
relationship between TFEB transcription factor phosphorylation and subcellular localization. 
EMBO J. 37, e98804. 

Ravanelli, A.M., and Appel, B. (2015). Motor neurons and oligodendrocytes arise from distinct 
cell lineages by progenitor recruitment. Genes Dev. 29, 2504–2515. 

Roczniak-Ferguson, A., Petit, C.S., Froehlich, F., Qian, S., Ky, J., Angarola, B., Walther, T.C., 
and Ferguson, S.M. (2012). The transcription factor TFEB links mTORC1 signaling to 
transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42. 

Saftig, P., and Haas, A. (2016). Turn up the lysosome. Nat. Cell Biol. 18, 1025–1027. 

Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and 
Sabatini, D.M. (2008). The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to 
mTORC1. Science 320, 1496–1501. 

Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). 
Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its 
Activation by Amino Acids. Cell 141, 290–303. 

Sardiello, M. (2016). Transcription factor EB: from master coordinator of lysosomal pathways to 
candidate therapeutic target in degenerative storage diseases. Ann. N. Y. Acad. Sci. 1371, 3–
14. 

Sardiello, M., Palmieri, M., Ronza, A. di, Medina, D.L., Valenza, M., Gennarino, V.A., Malta, 
C.D., Donaudy, F., Embrione, V., Polishchuk, R.S., et al. (2009). A Gene Network Regulating 
Lysosomal Biogenesis and Function. Science 325, 473–477. 

Settembre, C., and Ballabio, A. (2014). Lysosomal adaptation: how the lysosome responds to 
external cues. Cold Spring Harb. Perspect. Biol. 6, a016907–a016907. 

Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., 
Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. 
Science 332, 1429–1433. 

Settembre, C., Zoncu, R., Medina, D.L., Vetrini, F., Erdin, S., Erdin, S., Huynh, T., Ferron, M., 
Karsenty, G., Vellard, M.C., et al. (2012). A lysosome-to-nucleus signalling mechanism senses 
and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108. 

Settembre, C., Fraldi, A., Medina, D.L., and Ballabio, A. (2013). Signals from the lysosome: a 
control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283–
296. 



20 
 

Shaw, R.J. (2008). mTOR signaling: RAG GTPases transmit the amino acid signal. Trends 
Biochem. Sci. 33, 565–568. 

Shen, K., Sidik, H., and Talbot, W.S. (2016). The Rag-Ragulator Complex Regulates Lysosome 
Function and Phagocytic Flux in Microglia. Cell Rep. 14, 547–559. 

Sherman, D.L., and Brophy, P.J. (2005). Mechanisms of axon ensheathment and myelin 
growth. Nat. Rev. Neurosci. 6, 683–690. 

Shiau, C.E., Monk, K.R., Joo, W., and Talbot, W.S. (2013). An anti-inflammatory NOD-like 
receptor is required for microglia development. Cell Rep. 5. 

Shin, J., Park, H.-C., Topczewska, J.M., Mawdsley, D.J., and Appel, B. (2003). Neural cell fate 
analysis in zebrafish using <Emphasis Type="Italic">olig2</Emphasis> BAC transgenics. 
Methods Cell Sci. 25, 7–14. 

Simons, M., and Nave, K.-A. (2016). Oligodendrocytes: Myelination and Axonal Support. Cold 
Spring Harb. Perspect. Biol. 8. 

Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J.-P., and 
Thisse, C. (2004). Spatial and temporal expression of the zebrafish genome by large-scale in 
situ hybridization screening. Methods Cell Biol. 77, 505–519. 

Thoreen, C.C., Chantranupong, L., Keys, H.R., Wang, T., Gray, N.S., and Sabatini, D.M. (2012). 
A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113. 

Williams, A., Sarkar, S., Cuddon, P., Ttofi, E.K., Saiki, S., Siddiqi, F.H., Jahreiss, L., Fleming, A., 
Pask, D., Goldsmith, P., et al. (2008). Novel targets for Huntington’s disease in an mTOR-
independent autophagy pathway. Nat. Chem. Biol. 4, 295–305. 

Zhou, Q., and Anderson, D.J. (2002). The bHLH Transcription Factors OLIG2 and OLIG1 
Couple Neuronal and Glial Subtype Specification. Cell 109, 61–73. 

 

 

Figure 1. rraga is essential for CNS myelination and acts autonomously in 

oligodendrocytes 

 (A-E) Analysis of mbp or plp1b mRNA expression at 5 dpf by whole mount in situ hybridization. 

(A) Compared to their wildtype siblings, rraga-/- mutants show reduced mbp expression in the 

CNS (white arrows), whereas mbp expression in the PNS is normal (black arrows). (B) 

Expression of plp1b is also reduced in rraga-/- mutants. See also Figure S1. (C) mtor-/- mutants 

are developmentally delayed and have a small reduction in mbp mRNA expression levels in the 
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CNS and PNS. See also Figure S2. (D)  Quantification of rescue of mbp expression in rraga-/-

mutants following expression of wildtype rraga under the control of the claudink, mpeg 

(expressed in macrophages) or huc promoter (expressed in neurons). (E) Whole mount in situ 

hybridization analysis of mbp mRNA expression in 5 dpf rraga-/- mutants following expression of 

wild type rraga under the control of different tissue-specific promoters. mbp mRNA expression is 

partially or fully rescued only when wild type rraga is expressed in oligodendrocytes (claudinK 

promoter).  All panels show dorsal views, with anterior to the top. Genotypes of all animals 

shown were determined by PCR after imaging. Scale bar = 50 µm. 

 

Figure 2. CNS myelination is severely reduced in rraga mutants although 

oligodendrocytes are present  

(A,B) TEM images of transverse sections of the ventral spinal cord (CNS) at 5 dpf (A) and 9 dpf 

(B) show fewer myelinated axons in rraga-/- mutants (middle panel) compared to wildtype 

siblings (left panel). Quantification of the number of myelinated axons in the ventral spinal cord 

at 5 dpf and 9 dpf is shown on the right; bar graph depicts average values and standard error; 

individual measurements are also shown.  (C) TEM images of transverse sections of the 

posterior lateral line nerve (pLLn) at 9 dpf show normal myelination in rraga-/- mutants (middle 

panel) compared to the wildtype sibling (left panel). Quantification of the number of myelinated 

axons in the pLLn at 9 dpf is shown on the right; bar graph depicts average values and standard 

error; individual measurements are also shown. Red arrows indicate unmyelinated axons and 

yellow arrows indicate myelinated axons. 3 wildtype and 3 rraga-/- mutants were analyzed. Scale 

bar = 1µm. (*** p <0.001, Student t-test, two-tailed). (D) Lateral view of 4 dpf Tg(olig2:EGFP) 

larvae showing comparable numbers of olig2-positive cells in both wildtype (top panel) and 

rraga-/- mutant (lower panel); panel shows anterior to the left and dorsal up. See also Figure S2. 

(E) Dorsal view of 4 dpf Tg(cldnk:EGFP) embryos showing presence of oligodendrocytes 

(arrows) in both wildtype (top panel) and rraga-/-
 
mutants (lower panel), but reduced expression 
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of GFP along myelinated axonal tracts (arrowheads). Panel shows anterior to the left and dorsal 

up. Genotypes of all animals shown were determined by PCR after imaging.  

 

Figure 3. RagA promotes CNS myelination by repressing TFEB 

(A) Volcano plot depicting the genes differentially expressed (p<0.01) in rraga-/- mutants relative 

to wildtype animals. Among the significantly downregulated genes (<2.5X) are mpz and plp1b 

(purple), which at this stage are characteristic of CNS myelin. Expression levels of 17 previously 

defined targets of TFEB (red) are upregulated (>2.5) in rraga-/- mutants. Inset graph depicts 

previously known TFEB targets (red) upregulated in rraga-/- mutants. See also Table S1-S3 (B) 

Diagrammatic representation of the hypothesis that RagA promotes myelination by repressing 

TFEB, which inhibits CNS myelination. (C) Diagrammatic representation of TFEB protein and of 

predicted truncated proteins encoded by tfebst120 and tfebst121 mutant alleles. (D) Expression of 

mbp mRNA, as detected by whole mount in situ hybridization, is reduced in CNS of rraga-/- 

mutants, but is restored in rraga-/-;tfeb-/- double mutants. rraga-/-;tfeb-/- double mutants and tfeb-/- 

mutants are indistinguishable from wildtype larvae. See also Figure S5. Scale bar = 50 µm. (E) 

TEM images of transverse sections of the ventral spinal cord (CNS) at 9 dpf show that 

myelination is restored in rraga-/-;tfeb-/- double mutants. Red arrows indicate unmyelinated axons 

and yellow arrows indicate myelinated axons. Scale bar = 1µm.  (F) Quantification of the 

number of myelinated axons per hemi ventral spinal cord at 9 dpf is shown on the right; graph 

depicts average values and standard deviation; individual measurements are also shown. 3 

individuals of each genotype were analyzed. (Statistical analysis: Pairwise comparisons using 

one-way ANOVA, Tukey post-hoc test significant interaction p<0.0001 ****, p <0.001***). 

 

Figure 4. TFEB represses myelination in the CNS 

(A,B) TEM images of transverse sections of the spinal cord at 9 dpf show an increased number 

of myelinated axons in the dorsal spinal cord of tfeb mutants. Quantification of the number of 
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myelinated axons per ventral (A) or dorsal (B) hemi spinal cord is shown on the right. Graph 

depicts average values and standard deviation; individual measurements are also shown. 

Yellow arrows indicate myelinated axons. Scale bar =5 µm. (Statistical analysis: Two-tailed 

unpaired t-test with Welch’s correction). 3 wildtype and 4 tfeb-/- mutant animals were analyzed. 

(C) Dorsal view of the hindbrain of 8 dpf larvae shows robust expression of MBP protein in 

myelinating oligodendrocyte processes in wild type and tfeb-/- mutants, and ectopic expression 

of MBP protein in tfeb-/- mutant cell bodies (red arrows). Scale bar = 50 µm.  (D) Quantification 

of the number of ectopic MBP positive cells in tfeb-/- mutants (tfeb-/-, n=11) and siblings (n=13 for 

wildtype and tfeb+/- heterozygotes) (Pairwise comparisons using one-way ANOVA, Tukey post-

hoc test significant interaction p<0.0001 ****); bars represent standard deviation values. 

Individual values are also depicted. Genotypes of all animals shown were determined by PCR 

after imaging. (E) Whole mount in situ hybridization analysis of mbp mRNA expression in 5 dpf 

fish following transgenic expression of phosphorylation-null Tfeb (Tfeb NP) under the control of 

claudink promoter. mbp mRNA expression is reduced in some fish overexpressing the 

construct. (F) Quantification of the percentage of fish with reduced mbp mRNA expression. 

(Statistical analysis: Fisher’s exact test, two tailed, p< 0.01 **). 

 
Figure 5. Remyelinating lesions in mouse show increased levels of cytoplasmic TFEB. 

(A) Low power image of LPC injected corpus callosum, 14 dpi stained for MBP (red), CC1 

(green) and Hoechst (blue). The area of the lesion is outlined with dashed white line, and the 

perilesion area is marked. (B) TFEB is mostly found in the cytoplasm in mature 

oligodendrocytes of the rodent corpus callosum, both in those expressing low levels (white 

asterisk) and high levels (red asterisk).  Rarely both cytoplasmic and nuclear TFEB expression 

is detected (white arrow). (C) A few mature, CC1 (green) expressing oligodendrocytes of the 

adult, normal, rodent corpus callosum show high level expression of TFEB (red) in the 

cytoplasm. Most express low levels of TFEB in the cytoplasm (C’, TFEB white). (D) PBS-
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injected control corpus callosum 14 dpi. CC1+ oligodendrocytes display a similar TFEB 

expression profile to untreated controls (C,C’) (E) LPC-injected tissue 14 dpi (early 

remyelination time point). An increased number of CC1+ oligodendrocytes with high cytoplasmic 

TFEB expression appear in the corpus callosum (E,E’). (F) LPC-injected tissue 28 dpi (late 

remyelination time point). Very few CC1+ oligodendrocytes have high cytoplasmic TFEB 

expression (F,F’). (G) Quantification of the percentage of CC1+TFEB+ cells with high 

cytoplasmic TFEB levels in the corpus callosum after LPC focal lesion induction. Graph depicts 

average value and SEM. Individuals values are also represented. A marked increase is 

observed during early remyelination in lesion and perilesion areas (14 dpi) that significantly 

drops at later remyelination stages. Statistical analysis: non parametric ANOVA (Kruskal-Wallis 

test) with Dunn’s post hoc test. Total P value 0.0456 and significance between 14dpi and 28 dpi. 

 

 

 

STAR Methods 

Contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 

the Lead Contact, William S Talbot (william.talbot@stanford.edu). 

 

Experimental model and subject details 

Zebrafish 

Zebrafish embryos, larvae and adults were produced, grown and maintained according to 

standard protocols approved by the Stanford University Institutional Animal Care and Use 

Committee. Ethical approval was obtained from the Stanford University Institutional Animal Care 

and Use Committee. To obtain embryos and larvae used in experiments, adults 3-18 months 

were crossed. Adult density was maintained at 5-10 fish/L, with a 14hr light/ 10nr dark cycle and 

mailto:william.talbot@stanford.edu
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fish were fed twice daily. Water temperature was maintained at 28ºC. Embryos and larvae were 

treated with 0.003% 1-phenyl-2-thiourea (PTU) to inhibit pigmentation, and they were 

anesthetized with 0.016% (w/v) Tricaine prior to experimental procedures.    

Published strains used in this study include: wildtype TL, mtorxu015 (Ding et al., 2011), 

Tg(olig2:GFP) (Shin et al., 2003), Tg(cldnk:GFP) (Münzel et al., 2012), rragast77 and lamtor4 

st99/st99 (Shen et al., 2016). Details of the construction of the new strains generated in this study 

are described below.  

 

Mouse 

Mice were housed and used according to standard UK Home Office regulations, under project 

license 60/ 4524 awarded to AW. 12-14 week old C57BL/6 male mice were used for all 

experiments. Experimental details are described below.  

 

Method details 

In situ hybridization 

In situ hybridization on embryos and larvae was performed using standard methods (Thisse et 

al., 2004). Briefly, embryos were fixed overnight in 4% paraformaldehyde, dehydrated for at 

least 2 hr in 100% methanol, rehydrated in PBS, permeabilized with proteinase K, and 

incubated overnight with antisense riboprobes at 65°C. The probe was detected with an anti-

digoxigenin antibody conjugated to alkaline phosphatase (11093274910, Sigma-Aldrich). 

Images were captured using the Zeiss AxioCam HRc camera with the AxioVision software. 

Probes for mbp and olig2 were previously described (Lyons et al., 2009; Park et al., 2002). A 

700 bp fragment of plp1b gene was amplified from 5 dpf whole larvae cDNA using the following 

primers: 5’- AACAGCCGTGGTTGTGTAAAGC-3’ and 5’-TATGTTGGCCAGTGCATTTCCAC-3’. 

The resulting fragment was cloned into the pCRII vector using Dual promoter TA cloning Kit 

(K207020, Invitrogen) to generate a riboprobe for plp1b. The construct was linearized with SpeI 
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and antisense probe was transcribed with T7 RNA polymerase (AM2085, Ambion). For each 

genetic cross, at least 3 independent clutches were analyzed. For each genotype a minimum of 

10 total fish were analyzed.   

 

Whole-mount immunofluorescence 

For MBP immunofluorescence 8 dpf zebrafish larvae were fixed in 4%PFA/PBS, overnight at 

4ºC. Larval brains were dissected and incubated with rabbit anti-MBP (Lyons et al., 2005). Anti- 

rabbit Alexa Fluor568 was used at 1/1000 (A-11011, ThermoFisher).  Embryos were mounted in 

DAPI Fluoromount-G (SouthernBiotech). Transgenic zebrafish embryos were mounted in 1.5% 

low melting point agarose in distilled water. Images were captured using a Zeiss LSM 5 Pascal 

or Zeiss LSM 7 microscope. Objectives used were Plan-Neofluar 10× (numerical aperture 0.30) 

and 20× (numerical aperture 0.75). All fish were genotyped after imaging and analysis.   

 

Crispr/Cas9 targeting 

sgRNAs were designed using CHOPCHOP (https://chopchop.rc.fas.harvard.edu/, (Labun et al., 

2016; Montague et al., 2014), transcribed with T7 polymerase (E2040S, New England Biolabs) 

and purified using mirVana miRNA isolation kit (AM1560, Ambion). Cas9 protein (Macrolab, 

Berkeley, http://qb3.berkeley.edu/macrolab/cas9-nls-purified-protein/) was injected together with 

300 ng sgRNA into 1-cell stage embryos, and the embryos were genotyped after analysis to 

detect lesions. sgRNAs used were: TFEB (5’-GGTGCACTGATGGCTGGCGT-3’).  

 

tfebst120 and tfebst121 mutant alleles 

tfeb mutants were generated by raising embryos injected with sgRNA 5’-

GGTGCACTGATGGCTGGCGT-3’. Two mutants were isolated and tested. tfebst120 contains a 

5 bp deletion which results in a change in reading frame after amino acid 45 and a premature 

stop codon after amino acid 61 compared to 491 amino acids for the WT protein. tfebst121 
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contains a 8 bp deletion which results in a change in reading frame after amino acid 46 and a 

premature stop codon after amino acid 60. tfeb mutants were genotyped using the primers 5′- 

GCTCATGCGGGACCAAATGC -3′ and 5′- GGTCACACTAACAAATGTGG -3′. PCR products 

were digested with Cac8I (R0579, New England Biolabs). Mutant (233+83 bp) and WT (213bp + 

83 +25 bp) bands were distinguished by running the digested PCR product on a 3% agarose 

gel. tfebst120/st120, tfebst121/st121 and tfebst120/st121 transheterozygotes all displayed equal 

phenotypes. All experiments were performed in transheterozygous fish. 

 

FAC sorting and RNA sequencing 

WT and rraga-/- mutant Tg(cldnk:GFP) larvae at 5 dpf were distinguished by neutral red staining 

and pooled for RNA isolation (Shen et al., 2016), in two independent experiments. Dissociation 

of embryos was carried out as previously described (Manoli and Driever, 2012) and GFP-

positive cells were isolated at the Stanford Shared FACS Facility. RNA was isolated using the 

Qiagen RNeasy micro kit (74004, Qiagen) and provided to the Stanford Functional Genomics 

Facility. Libraries were prepared and sequenced using the Illumina NextSeq Mid platform.  

 

qRT-PCR 

Total RNA was extracted from larvae at 5 dpf with the RNAeasy kit (QIAGEN). cDNA was 

synthesized using iScript supermix (Biorad). qPCR was performed with SsoAdvancedTM 

Universal SYBR Green Supermix (Bio-Rad) on the Bio-Rad CFX384 Real-Time PCR Detection 

System. All experiments were done in biological and technical triplicates. Transcript levels were 

normalized to ef1-alpha (primers were previously reported (Shen et al., 2016; Shiau et al., 

2013).  Relative mRNA levels were calculated using ΔΔCT. 

 

 

RNA Seq analysis  
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Over 7.5M paired end reads were obtained for each sample. These reads were mapped to the 

zebrafish reference genome (NCBI) using CLC Genomics Workbench 11.0 

(http://www.clcbio.com/products/clc-genomics-workbench/) and over 90% of the sequenced 

fragments mapped to annotated genes. Differential expression analysis was performed by 

comparing the mapped WT and rraga-/- mutant reads, while controlling for the two independent 

experiments. Annotation was performed using the Danio rerio annotation file downloaded from 

Gene Ontology Consortium (http://www.geneontology.org/page/download-annotations). Raw 

and analyzed data were deposited with GEO, GSE119332. 

 

Gene Ontology Enrichment 

The list of 343 genes upregulated (p<0.01, >2,5X) in myelinating glia of rraga-/- was queried in 

PANTHER11 using gene ontology term cellular component (Mi et al., 2013, 2017). 

 

Identification of Tfeb targets in genes upregulated in rraga-/- mutants 

Significantly upregulated (p<0.01, >2.5X) and downregulated genes (p<0.01, <2.5X) in rraga-/- 

mutants were mapped to human orthologues using the Ensemble Biomart feature and 

compared to the list of TFEB targets (471 genes, (Palmieri et al., 2011)). 15 zebrafish genes 

orthologous to human Tfeb target genes were identified in the upregulated dataset, and 4 were 

identified in the downregulated dataset. Manual curation identified two additional upregulated 

genes with human TFEB target orthologues. Processing and analysis of gene lists was 

performed using Python.  

 
 

Expression constructs and transient injections 

The coding sequence of rraga was cloned from 5 dpf embryonic cDNA pool and directionally 

inserted into pCR8/GW/TOPO vector (Invitrogen). Synthetic DNA encoding sequence of Tfeb 

http://www.geneontology.org/page/download-annotations
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(ENSDART00000182200.1) and Tfeb phosphorylation-null mutant was obtained from 

Integrated DNA Technologies (IDT) and subcloned into pCR8/GW by Gibson assembly (New 

England Biolabs). For transient transgenesis, rraga, tfeb and tfeb phospho-null sequences were 

subcloned into pDestTol2CG2 by multisite gateway. The tissue-specific regulatory sequences 

used have been reported elsewhere (Shen et al., 2016; Shiau et al., 2013). Tissue-specific 

transgenes were transiently expressed by co-injecting 12-25 pg of Tol2 plasmids described 

above and 100-200 pg of Tol2 transposase mRNA in 1 cell embryos.  

 

Transmission Electron Microscopy 

TEM was performed as described previously (Lyons et al., 2008). Briefly, decapitated embryos 

were fixed in 2% glutaraldehyde and 4% paraformaldehyde in 0.1 M sodium cacodylate buffer 

(pH 7.4). The posterior portion of the larvae was used to isolate DNA for genotyping. For 

secondary fixation, samples were fixed in 2% osmium tetraoxide, 0.1 M imidazole in 0.1 M 

sodium cacodylate (pH7.4), stained with saturated uranyl acetate, and dehydrated in ethanol 

and acetone. Fixation and dehydration were accelerated using the PELCO 3470 Multirange 

Laboratory Microwave System (Pelco) at 15°C. Samples were then incubated in 50% Epon/50% 

acetone overnight, followed by 100% Epon for 4 hr at room temperature. Samples were then 

embedded in 100% Epon and baked for 48 hr at 60°C. Blocks were sectioned using a Leica 

Ultramicrotome. Thick sections (500–1,000 μm) for toluidine blue staining were collected on 

glass slides, stained at 60°C for 5 s, and imaged with the Leica DM 2000 microscope using the 

Leica DFC290 HD camera and Leica Application Suite software. After the desired region of the 

spinal cord was reached, we collected ultrathin sections for TEM analysis on copper grids, and 

we stained them with uranyl acetate and Sato’s lead stain (1% lead citrate, 1% lead acetate, 

and 1% lead nitrate). Sections were imaged on a JEOL JEM-1400 transmission electron 

microscope. 

http://uswest.ensembl.org/Danio_rerio/Transcript/Summary?db=core;g=ENSDARG00000010794;r=11:22287954-22361306;t=ENSDART00000182200
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Drug Treatment 

For Torin1 treatment, WT fish were incubated in 1 μM Torin1 (4247, Tocris Bioscience) in 

embryo water with PTU from 24 hpf to 5 dpf; fresh embryo medium, PTU and Torin1 were 

replaced daily.  

 

 

LPC-induced demyelinating lesions in rodents 

Focal demyelination was induced via stereotactic injection of L-α-Lysophosphatidylcholine (LPC,  

L4129, Sigma-Aldrich) into the corpus callosum of 12-14 week old C57BL/6 male mice (n=2-3 per 

time point). Anesthetized animals received 2μL of 1% LPC through a burr hole in the skull and at 

stereotactic coordinates 1.2 mm posterior, 0.5 mm lateral, 1.4 mm deep to the bregma over 4 

minutes using a 30 gauge needle attached to a Hamilton syringe and driven by a Nano pump (KD 

Scientific Inc., Holliston, MA). The needle was additionally left on site for additional 4 minutes to 

avoid backflow. Similar stereotactic injection of PBS was followed to create a surgical control 

(PBS control). LPC causes reversible focal demyelination without axonal loss. The time course of 

de- and remyelination is well established and reproducible with demyelinated lesions appearing 

as early as 3 days post injection (3dpi). Two time points with early (14 dpi) and late (28 dpi) 

remyelination were analyzed. Mice were subsequently perfused with 4% PFA, the brain tissue 

was harvested, cryoprotected in 30% sucrose and frozen embedded in OCT compound.  

 

Immunohistochemistry of mouse tissue and quantification. 

10 μm thick cryosections were briefly washed in PBS and microwaved for 10 minutes in Vector 

Unmasking Solution for antigen retrieval (H-3300, Vector) before blocking with 10% normal 

horse serum, 0.3% Triton-X in 1xPBS for 1 hr at RT. Sections were then incubated with primary 

antibodies in the same solution overnight at 4oC in a humidified chamber. Following washes in 
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PBS, the cryosections were incubated with Alexa Fluor secondary antibodies (Thermo Fischer 

Scientific, 1:1000) for 1 ½ hrs at room temperature and counterstained with Hoechst for the 

visualization of the nuclei. Primary antibodies used: rabbit polyclonal anti-TFEB (Bethyl 

laboratories inc, A303-673A, 1:1000), mouse IgG anti-APC (CC1, OP80, Merck-Millipore, 1:500) 

and rat IgG2a anti-Myelin Basic Protein (clone 12, AbD Serotec, 1:300). All slides were mounted 

using mowiol mounting medium (475904, MERCK- Millipore) and imaged using Leica TCS SP8 

confocal microscopy. From each section 3-5 random fields (145.31μm x 145.31μm each) were 

obtained. 2 sections were analyzed per animal. Total number of CC1/TFEB double positive 

oligodendrocytes was counted in lesion and perilesion areas (CC1+TFEB+/mm2). For the same 

area, the number of CC1/TFEB double positive cells with high cytoplasmic TFEB levels was 

also counted (CC1+ TFEB+ cytoplasmic high/mm2). Values for each sample were averaged, and data 

are depicted as mean percentage of CC1+ TFEB+ cytoplasmic high/CC1+TFEB+ cells. 

 

 

Quantification and Statistical analysis 

Sample sizes were chosen based on previous publications and are indicated in each figure 

and/or figure legend. No animal or sample was excluded from the analysis unless the animal 

died during the procedure. Except for electron microscopy samples, zebrafish larvae were only 

genotyped after image acquisition and analysis. EM samples were blinded before counts of 

myelinated axons numbers were performed. The experiments were not randomized. Sample 

sizes, statistical test and P values are indicated in the figures or figure legends. Statistical 

significance was assigned at P < 0.05. Statistical tests were performed using GraphPad Prism 

6 or Prism 7 software. 

 

Table S1. Related to Figure 3. Genes significantly upregulated in FAC-sorted cldnk:GFP 

positive cells of rraga-/- mutants 
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Table S2. Related to Figure 3. Genes significantly downregulated in FAC-sorted 
cldnk:GFP positive cells of rraga-/- mutants 



KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

rabbit anti-MBP (Lyons et al., 2005) NA 

Anti-Digoxigenin-AP, Fab fragments Sigma-Aldrich Cat#11093274910 

monoclonal mouse IgG2B anti-APC MERCK-Millipore Clone#CC1, OP80 

monoclonal IgG2A anti-Myelin Proteolipid Protein MERCK-Millipore clone PLPC1, 
MAB388 

polyclonal rabbit IgG anti -TFEB Bethyl laboratories A303-673A 

Chemicals, Peptides, and Recombinant Proteins 

Torin1 Tocris Bioscience Cat#4247 

Recombinant Cas9-NLS protein Macrolab, Berkeley 
 

http://qb3.berkeley.e
du/macrolab/cas9-
nls-purified-protein/ 

Deposited Data 

Raw and analyzed data RNAseq This publication GEO: GSE119332 

   

Experimental Models: Organisms/Strains 

Zebrafish: mtorxu015  Ding et al., 2011 N/A 

Zebrafish: Tg(olig2:GFP) Shin et al., 2003 N/A 

Zebrafish: Tg(cldnk:GFP) Münzel et al., 2012 N/A 

Zebrafish: tfebst120 This publication N/A 

Zebrafish: tfebst121 This publication N/A 

Zebrafish: rragast77 Shen et al., 2016 N/A 

   

Oligonucleotides 

plp1b riboprobe  
Forward: AACAGCCGTGGTTGTGTAAAGC 
Reverse: TATGTTGGCCAGTGCATTTCCAC 

This publication N/A 

st120/st121 genotyping primer  
Forward: GCTCATGCGGGACCAAATGC 
Reverse: GGTCACACTAACAAATGTGG 

This publication N/A 

st77 genotyping primer  
Forward: GGTACACAAGATGGACCTGGTT 
Reverse: GATAATTGAGGCAGATGAAGTCTT 

Shen et al., 2016 N/A 

   

atg9b-F GGCACCATATCAAGAACCTCG 
atg9b-R CCACAAACAGGAATTGCACAAG 

This publication  

clcn7-F TCCACGTTTCCCTCCTATTC 
clcn7-R AGGAACAGTGTATGGCGTTG 

This publication  

ctsa-F ATCAGTGGAGCAAAGCACAG 
ctsa-R GACCAGCGGGTTATTGAGAT 

This publication  

ctsba-F TGTGATCTCAGCCCTTTCAG 
ctsba-R TATGTCCAGCCGTCCAAGTA 

This publication  

ctsd-F AGGCCTATTGGCAGATTCAC 
ctsd-R GTCCACAATGGCTTCACATC 

This publication  

ef1a-F AGGACATCCGTCGTGGTAAT 
ef1a-R AGAGATCTGCACCAGGGTGGTT 

This publication  

gba-F TCAGCAGACCAGCCTAGAAA 
gba-R ACCGTTTGATCCCAGACTTC 

This publication  

Key Resource Table



gla-F TTCGCAAGACCTGTAACCAC 
gla-R CATGTCAGGGTCATTCCATC 

This publication  

hexa-F GACCCTTCCTTTCCGTATCA 
hexa-R CCTGGCATGTTCAATCACTC 

This publication  

lamp1a-F  GACGAGACGACCAACCTGAC 
lamp1a-R  CTGCCTCAAACACAACGCTC 

This publication  

lamp1b-F TGAACTACTTGGTGGGAACG 
lamp1b-R ATCTCCCTTGACACCGAAAG 

This publication  

mcoln1b-F ACACGTTCGACATAGACCCTC 
mcoln1b-R TACCAACTTCTGAAAATTAAGGGTG 

This publication  

neu1-F ATGGGAAGTCATGGGAGAAG 
neu1-F TCCTCAGCAGAACCTCCTTT 

This publication  

psap-F CAGCAGCTCATGTCTATGGAACAG 
psap-R AGCAGGGATGGATTTGGCAGG 

This publication  

scpep1-F ATACAGCAGCAAAGGCAGTG 
scpep1-R TGTCATGGACCAAAGGTCAG 

This publication  

uvrag-F ACCGGAGGAAGAACAGTTTG 
uvrag-R CACACCTCAGAATCCCAATG 

This publication  

vps11-F GCACATCGACGACAATAACC 
vps11-R TCGTCTTCCTCAATCTGCTG 

This publication  

vps18-F ATGAACTGCCTGTCCAGTTG 
vps18-R ATATCGCCTCCTTGAAGTGG 

This publication  

vps8-F TGTCGGAGTCTTGTTTCTGC 
vps8-R TGGCTCATCCTCATCTTCAG 

This publication  

wipi1-F CAGATGGCTGGTCAGAGAAA 
wipi1-R TGAATAGCTGCCCATCAGAG 

This publication  

wipi2-F ACTTGGACGGGATACTTTGG 
wipi2-R AGCGCAGATGTTCTTGTGTC 

This publication  

 

Recombinant DNA 

Plasmid: claudink:Tfeb PN:polyA  This publication  

   

Software and Algorithms 

GraphPad Prism GraphPad Software RRID:SCR_002798; 

URL: http://www.gra

phpad.com/ 

CLC Genomics Workbench 11.0 QiagenBioinformatics RRID:SCR_011853; 

URL: http://www.clcb

io.com/products/clc-

genomics-

workbench/ 

   

 

http://www.clcbio.com/products/clc-genomics-workbench/
http://www.clcbio.com/products/clc-genomics-workbench/
http://www.clcbio.com/products/clc-genomics-workbench/
http://www.clcbio.com/products/clc-genomics-workbench/
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Figure S1 

 

 

 

 

 

 

Figure S1. Related to Figure 1. lamtor4 is essential for CNS myelination. 

(A) Analysis of mbp mRNA expression at 5 dpf by whole mount in situ hybridization. Compared 

to their wildtype siblings, lamtor4-/- mutants show reduced mbp expression in the CNS (white 

arrows), whereas mbp expression in the PNS is normal (black arrows). All panels show dorsal 

views, with anterior to the top. Genotypes were determined by PCR after imaging. Scale bar = 

50 µm. 
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Figure S2 

 

 

Figure S2. Related to Figure 1. Torin treated fish are developmentally delayed 

mbp mRNA expression at 5 dpf as detected by whole mount in situ hybridization. Wildtype 

larvae treated with the mTOR signaling pathway inhibitor TORIN1 have delayed developmental 

progression and slightly reduced levels of mbp mRNA both in the CNS and PNS. Genotypes 

were determined by PCR after imaging. Scale bar = 50 µm.  
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Figure S3 

 

 

Figure S3. Related to Figure 2. rraga-/- mutants have normal number of cells expressing 

olig2. 

(A) Analysis of olig2 mRNA expression at 3 dpf by whole mount in situ hybridization. Number of 

olig2 positive cells is similar in rraga-/- mutants and wildtype siblings. 

(B) Dorsal view of 4 dpf Tg(claudinK:GFP) zebrafish larvae shows that rraga-/- mutants express 

claudink:GFP, but at reduced levels. Genotypes were determined by PCR after imaging 
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Figure S4 

 

 

Figure S4. Related to Figure 3. RagA  promotes CNS myelination by repressing TFEB 

(A) Whole animal quantitative RT-PCR analysis reveals overexpression of some TFEB target 

genes in rraga-/- mutants. (B) Whole animal qRT-PCR reveals reduced expression of some 

TFEB target genes in tfeb-/- mutants. Graphs depict average values and standard error of the 

mean (** p <0.01, Student T-test, two-tailed). 
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Figure S5 

 

 

Figure S5. Related to Figure 3. plp expression is restored in rraga-/-;tfeb-/- double mutants 

Dorsal view of 5 dpf whole mount in situ hybridization to detect plp1b mRNA. Expression of 

plp1b mRNA is nearly absent in rraga-/- mutants, but is restored in rraga-/-;tfeb-/- double mutants. 

By this assay rraga-/-;tfeb-/- double mutants and tfeb-/- mutants  are indistinguishable from 

wildtype larvae.  Expression of mbp is also partly rescued in rraga-/-;tfeb+/- mutants.  Genotypes 

were determined by PCR after imaging. Scale bar = 50 µm 
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Table S3 

 

Table S3. Related to Figure 3. Upregulated or downregulated TFEB target genes in FAC-

sorted cldnk:GFP positive cells of rraga-/- mutants 

 

Upregulated TFEB target genes Downregulated TFEB target genes 

Zebrafish Gene Human Gene Zebrafish Gene Human Gene   

agtrap AGTRAP hoxc13a HOXC13 

amdhd2 AMDHD2 prkag2b PRKAG2 

atp6ap1b ATP6AP1 naglu NAGLU 

atp6v0e1 atp6v0e1 comtd1 COMTD1 

atp6v1ab ATP6V1A   

cst14a.2 CSTB   

cst14b.1 CSTB   

ctsa CTSA   

ctsba CSTB   

flcn FLCN   

hexb HEXB   

hoxb7a HOXB7   

ifi30 IFI30   

megf9 MEGF9   

sqstm1 SQSTM1   

tpp1 TPP1   

vps33a VPS33A  
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