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Two-Stage Admission and Scheduling Mechanism
for Electric Vehicle Charging

Yuchang Wang, Student Member, IEEE, and John S.Thompson, Fellow, IEEE,

Abstract—In order to provide an efficient charging service to
future electric vehicles, it is important for the charging station
to estimate its available capacity. As the charging station usually
has a fixed number of chargers and a limited charging capacity, it
cannot accommodate all the arriving cars. Thus, a decision has to
be made by the charging station whether a new arriving car can
be admitted and then be scheduled for charging. This not only
depends on the charging station’s physical constraints but also
depends on how certain the charging station is towards its energy
supply. We study the problem of EV charging using various
energy sources (such as energy from the grid, renewable energy
such as solar photovoltaic panels, and local energy storage) and
their impacts on the charging station’s performance. Unlike
the energy from the grid, solar generation varies with time
and cannot be predicted precisely. To this end, we introduce
a multiplier k to measure the effect of solar prediction error
and a composite performance index (the Figure of Merit) to
capture the charging station’s utility, also taking account of EVs’
charging requirements. We further propose a two-stage admission
and scheduling mechanism to find the optimal trade-off between
accepting EVs and missing charging deadlines by determining
the best value of k under various energy supply scenarios.

Index Terms—Electric Vehicles, Admission control, Scheduling,
Solar energy, Energy storage, Stochastic optimization.

I. INTRODUCTION

ELECTRIC Vehicle (EV) technology has attracted a grow-
ing interest from the public in recent years. EVs, as an al-

ternative to the traditional internal combustion engine vehicles,
are widely perceived as a green solution to improve energy
efficiency and reduce carbon emissions [1]. EVs typically have
a high energy requirement with a high charging rate, hence
their rapid growth under the notion of a smarter grid can place
a considerable amount of stress on the existing power grid
without effective scheduling mechanisms.

There are some existing papers studying the EV charging
and scheduling problem that can help to balance the load
and avoid overload on the grid, such as in [2]–[5]. These
papers mainly consider the case that the charging energy is
drawn from the grid and focus on a deterministic setting where
the scheduling problem can be solved using Mixed Integer
Linear Programming (MILP) or various congestion manage-
ment approaches [6]. However, if an EV is entirely charged
by coal-fired power plants, the CO2 produced is generally
more than for an alternative fuel-driven vehicle [7], which
will lose the environmental benefits of introducing EVs. Thus,
integrating renewable energy in coordination with EV charging

Y. Wang and J. S. Thompson are with Institute for Digital Communications,
University of Edinburgh, Edinburgh EH9 3JL, U.K. (Email: {yuchang.wang,
john.thompson}@ed.ac.uk).

is promising. Due to the time-varying and unpredictable nature
of renewable energy generation, it becomes more challenging
than using the energy from the main power grid.

In this paper, we study the problem of EV charging and
scheduling using renewable energy at a microgrid-like charg-
ing station, where the upcoming EVs are charged by the energy
from the solar panels as well as the local energy storage.

A. Related Works

Although EV charging scheduling involving renewable en-
ergy is now being studied such as in [8]–[14], they fail to
address the necessity of introducing an effective admission
control prior to real-time scheduling. Rather, these works
assume that the charging station has the capacity to charge
all arrivals. Although prior work in [15] has addressed the ad-
mission issue prior to charging scheduling, it did not consider
the case of how to use renewable sources when only a forecast
of the expected energy is available.

On the other side, many papers have focused on the ben-
efits to either the EVs or the charging station, but not both
simultaneously. References [2], [3], [16] have mainly focused
on EV users’ perspective. In [2], the EV users are incentivized
to report their charging requirements to the charging station
truthfully, thus the quality of service is guaranteed. Other
work in [9], [17]–[19] has mainly focused on optimizing
the system’s cost, but they did not pay much attention to
the EV owners’ satisfaction level. A pricing signal has also
been leveraged to schedule, guide and coordinate EV charging
such as work in [20]–[22]. Some papers have considered a
deterministic energy availability setting in a charging scenario
such as in [9], [13], [23], but their approaches cannot cope
well with the uncertainty of renewable energy prediction.

In this work, we aim to fill the gap using renewable energy
effectively to charge EVs by introducing a stochastic solar
generation model, an effective admission control prior to the
charging process, and a composite performance index to reflect
both the charging station’s utility and EVs’ satisfaction level.

B. Main Contributions

We consider a commercial charging station powered by
on-site solar panels and a local energy storage unit, that
provides the charging service in the daytime. We first develop
a stochastic solar generation model by introducing a multiplier
k for the solar energy prediction to account for the effect of
prediction error. A performance index (the Figure of Merit)
is proposed to measure the charging station’s utility. It takes
into account the EV users’ charging requirements as well as
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a penalty factor for turning away new arrivals and missing
charging deadlines. The aim is then to maximize the Figure
of Merit (FoM) by deciding which arriving EV to admit
based on the uncertain solar supply and EV requirements.
Thus, a priority-based two-stage admission and scheduling
mechanism is further proposed to find the optimal value of
k that maximizes the charging station’s FoM .

We extend the work presented previously in [24] by op-
timizing the multiplier k over time as well as investigating
the impact of a local energy storage on the charging station’s
FoM . The main contributions can be summarized as follows.
• Introduce a multiplier k to account for the effect of solar

generation prediction error.
• Propose the Figure of Merit (FoM) to measure the

charging station’s performance.
• Propose a priority-based two-stage mechanism to solve

FoM maximization problem.
• Investigate the impact of integrating energy storage and

the cost of using various energy sources.
The remainder of this paper is organized as follows. Section

II presents the system description and the mathematical models
for the charging problem. Section III shows the proposed
two-stage mechanism. Section IV illustrates the numerical
evaluations. The conclusions are given in Section V. Table
I further shows the main notation used in this paper.

II. PROBLEM FORMULATION

The charging station, such as a shopping mall, is equipped
with on-site solar panels and energy storage units. It can be
assumed that EVs can wirelessly contact the station in advance
to try to reserve a charging spot and reduce risk. In practice,
there may also be other conventional grid-connected or similar
islanded stations within the same area that a rejected car can
try. Web services1 can also provide information about car
charging to consumers and help them to plan their journey.
Such services can process EV charging requests and estimate
each station’s capacity, in order to divert the on-the-move EVs
to the best station, such as in the work proposed in [16], [25],
[26]. Thus, a rejected EV will not become immobile due to
low battery state, as long as another station is available. In this
article, we evaluate one specific charging station’s performance
and suppose that the charging station has M charging points
installed and operates in the daytime, as shown in Fig. 1.

A. EV Arrival Model

Suppose that EVs arrive at the charging station following
a Poisson distribution with an average arrival rate λ 2 and a
charging task:

(Ei, tai , t
d
i , a

m
i ), (1)

1Such as www.chargeyourcar.org.uk in the United Kingdom
2The average arrival rate λ is normally assumed as a constant variable in

many papers, such as [14], [15], [27]. The arrival rate can be also modelled as
a time-dependent variable λ(t) for a potential higher accuracy, such as work
in [28], [29]. Considering our main focus is to investigate the admission and
scheduling mechanism, for simplicity, we assume a stationary Poisson arrival
of the EVs in this study.

TABLE I
SUMMARY OF NOTATION

Symbols Description
M the number of chargers at the charging station
λ arrival rate of EVs which follows a Poisson distribution
T total charging timeslots considered in a day
τ duration of each timeslot
t current timeslot, denoted as t ∈ {1, 2, ..., T }
tai EV i’s arrival time [timeslot]
tdi EV i’s charging deadline urgency [timeslot]
Ei EV i’s charging energy requirement [kWh]
am
i EV i’s maximum charging rate [kW]

ai EV i’s actual charging rate
Ri (t) the remaining energy requirement for EV i at time t

ωi EV i’s priority factor
SATi EV i’s satisfaction level
pg price of buying the energy from the grid [p/kWh]
ps maintenance fee of solar panels [p/kWh]
pb operational cost of the storage [p/kWh]
B storage capacity [kWh]
B(t) energy status of the storage at time t [kWh]
Sr the cumulative solar residual of the day [kWh]
Eb energy left in the storage at the end of the day [kWh]
S total solar generation [kWh]
γ the normalized penalty factor
Nar total number of arriving EVs
Nad the number of admitted EVs
Nms the number of EVs missing their charging deadlines
Rs the ratio of missing charging deadlines to the

number of admissions
Pd the ratio of declined EVs upon arrival
N(t) the admission set of EVs at t
Nc (t) the charging set of EVs at t

where Ei is the charging energy requirement [kWh], tai is the
arrival time, am

i is the maximum charging rate [kW], and the
deadline urgency tdi is the maximum number of timeslots 3

within which EV i requires to be charged. Hence the active
charging interval for i is [tai , t

a
i +tdi ]. The energy level of EV i’s

battery can be increased by ∆i(t) = τai(t) within each timeslot,
where τ is the duration of one timeslot which is assumed to
be 10 minutes. The variable ai(t) is the actual charging rate
with ai(t) ∈ [0, am

i ], ∀t and can be assumed as a constant for
each timeslot. The remaining energy requirement for EV i at
t can be written as:

Ri(t) = Ei −

t∑
x=1
∆i(x). (2)

EVs can be put in different priority orders based on their
battery states and the remaining charging times. A priority
factor is further defined to capture this relation as:

ωi(t) =
tai + tdi − t

Ri(t)
. (3)

EV i is more patient if it has a longer deadline with a lower
energy requirement. The lower ωi(t) is, the more urgent it is

3One timeslot has a duration of 10 minutes.
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Fig. 1. System Model.

for EV i to be charged, so a highest possible charging rate ai(t)
is preferred. This relation can be further captured to reflect EV
users’ satisfaction level as:

SATi(t) ∼
1

ωi(t)(am
i − ai(t))2

. (4)

For an EV to have a higher satisfaction level, a higher SATi(t)
is preferred. This principle is also accounted for in the design
of the admission and scheduling mechanism, that EVs are
admitted by the order of their priority factor and are allocated
highest possible charging rates in turn.

B. Energy Supply Model

As shown in Fig. 1, the energy used to charge EVs can be
bought from the grid with a price pg as in [15]. Alternatively,
the energy can be generated from on-site solar panels with a
lower maintenance fee ps and stored for later use. At each
considered timeslot, the storage can be charged from the solar
panels or discharged to serve the EVs.

Solar Generation: Energy generated from solar panels is
time-varying and limited, denoted as S(t). Based on histor-
ical data and the weather forecast, S(t) can be predicted,
though the prediction is not always accurate. An effective
scheduling mechanism should be able to adjust to this pre-
diction uncertainty and be able to estimate the total capacity
of the solar generation, since the actual values cannot be
predicted precisely. The prediction uncertainty can be assumed
as independent and identically distributed Gaussian samples
with standard deviation σ and mean zero, denoted as e(t) ∼
N(0, σ), since any correlations can be removed by applying
various techniques from time series analysis. Thus S(t) can be
represented as:

S(t) = Ŝ(t) + e(t), (5)

where the prediction profile of the solar energy generation Ŝ(t)
and its standard deviation σ are extracted and estimated from
the national grid database [30].

A prediction interval gives a range within which we expect
the future observations to lie. The system should not be too
optimistic as that will lead to over-admission of EVs and
the system will miss many charging deadlines. Conversely, it
should not be too pessimistic which will lead to charging less

cars than the system will allow and losing revenue. Hence a
multiplier k is introduced to capture the effect of the prediction
error e(t). We expect the future solar energy observation S(t)
in Eq. (5) to lie within a prediction interval:

[Ŝ(t) − kσ, Ŝ(t) + kσ], k ∈ R, (6)

with a specified probability depending on k. For instance,

1) if k = 0, S(t) = Ŝ(t);
2) if k = 1, S(t) has a probability of 0.68 to lie within
[Ŝ(t) − σ̂, Ŝ(t) + σ̂].

Let us denote the lower bound of the prediction interval as:

Slb(t, k) = Ŝ(t) + kσ, k ∈ R, (7)

where S(t) has a specified probability to lie above Slb(t, k).
For instance,

1) if k = −1, S(t) > Ŝ(t) − σ with probability 0.84;
2) if k = +1, S(t) > Ŝ(t) + σ with probability 0.16.

Storage: A local energy storage unit can be introduced to
hedge against the uncertainty of the random variables such as
the solar energy generation and EVs’ charging requirements.
By providing sufficient flexibility, storage can help increase the
station’s FoM . At time t, the excess solar energy after charging
EVs can be stored for later use. However, introducing energy
storage will also introduce an extra cost to the charging station.
An operational cost pb of the storage is yielded per unit energy
charged or discharged, that is every time when the energy state
of the storage B(t) changes. The cost pb can be assumed to
be proportional to the storage capacity B. In this paper, we
exclude the installation cost of the storage but to exploit the
appropriate capacity of the storage to fulfil this task as an
energy buffer. Thus, we assume the storage is controlled by
the charging station which decides when to charge or discharge
the storage unit in order to maximize the FoM .

Therefore, we aim to find the optimal value of k where
the charging station can achieve the best trade-off between
admitting cars and failing to meet their deadlines. To this end,
a performance index is proposed next to measure the charging
station’s utility and EV owners’ satisfaction level.

C. The Figure of Merit (FoM)

The revenue of the charging station is related to providing
charging service to the admitted EVs. If an admitted EV is not
charged as promised, the charging station will pay a penalty.
This fits into a scenario where there is a trade-off between
the admission rate and the successful service rate. Hence only
evaluating the admission rate is not a fair measurement of
the system performance. A composite performance index is
further defined to better capture this relation, called the Figure
of Merit (FoM):

FoM = U ·
Nad − γNms

Nar
. (8)

The terms in this equation are defined as follows:



4

1) U: is the utilization of the energy supply and defined as
the ratio of energy usage of the day. Depending on the capacity
of the storage, there will possibly be some solar energy wasted
and some energy left in the storage unit. U can be written as

U(k) = 1 −
∑T

t=1 Sr (t, k) + Eb(k)∑T
t=1 S(t)

, (9)

where Sr is the excess solar energy, Eb is the amount of energy
left in the storage at the end of the day at 6pm, and S is the
actual solar generation.

2) γ: is the penalty factor and can be defined as

γ =
γms

γpd
, (10)

where γms and γpd represent the penalty weights placed on
missing charging deadlines and rejecting cars, respectively.
Turning away arriving EVs will affect the charging station’s
reputation in the long run but it is not as significant as failing to
deliver the promised charging service by the desired deadline,
thus it is reasonable to assume that γ > 1. The penalty factor
γ can be seen as a normalized coefficient to reflect the effect
of how much more severe it is to miss charging deadlines
than to decline cars on admission. For instance, setting γ = 3
means that the penalty for missing charging deadlines is 3
times larger than rejecting new arrivals.

3) Nad, Nms, Nar : represent the number of admitted EVs,
the number of EVs missing their charging deadlines, and the
number of new arrivals. Further, Eq. (8) can be written as

FoM(k) = U(k) ·
(
1 − γ

Nms

Nad(k)

)
·

Nad(k)
Nar

= U(k) · (1 − γRs(k)) · (1 − Pd(k)),
(11)

where Rs is the ratio of missing charging deadlines and Pd is
the probability of declining cars upon arrival.

The proposed composite performance index FoM is able
to reflect the benefit for both the charging station’s utility and
EVs’ satisfaction. By the definition of FoM in Eq. (8), some
factors are considered to reflect the station’s performance, such
as the utilization of the energy supply U, the penalty factor
γ, the number of EVs being admitted Nad and the number
of EVs missing their charging deadlines Nms . However, the
values of U, Nad and Nms are determined by taking account of
EV owners’ satisfaction level defined in Eq. (4). The objective
for EV i is to maximize its satisfaction subject to its priority
factor ωi(t) and its allocated charging rate ai(t).

D. Optimization Problem Formulation

In the proposed system, if the solar generation and the
EVs’ charging tasks are known, the optimization problem
can be solved using mixed integer programming. However,
the charging station does not know precisely how much solar
energy will be generated from the solar panels in the future,
and needs to make decisions under uncertainty. The objective
of the charging station is to maximize its FoM by finding
the best value of k, that is to maximize the utilization of
the energy supply and its admission rate but to minimize the
rate of missing charging deadlines as in Eq. (11). The value

of FoM can be further calculated by determining Pd based
on the estimated solar generation at the admission stage, Rs

based on the actual solar generation and Sr, Eb based on the
allocated charging rate ai(t) at the scheduling stage. Therefore,
the optimization problem can be formulated as

maximize
k∈R

FoM(t, k)

subject to ai(t) ∈ [0, am
i ];∑

i∈Nc (t,k)

ai(t) ≤ S(t) + B(t);

|Nc(t, k)| ≤ M;
Nc(t, k) ⊆ N(t, k);

(12)

where Nc(t, k) is the charging set, | · | represents the number
of elements in a set, and N(t, k) is the admission set. The
proposed model has an inherent two-stage decision process,
since the objective function FoM is determined by decisions
made in both stages. In the first admission stage (Section
III-A), we use a stochastic model to represent PV genera-
tion to decide the number of admissions Nad . In the sec-
ond scheduling stage (Section III-B), we use the currently
available data to decide the number of missing charging
deadlines Nms and the utilization of the energy supply U.
Thus, this is a coupled unseparated stochastic optimization
problem. Since the expression of the objective function FoM
is non-differentiable, traditional optimization methods such
as Lagrange and Dual decomposition are not able to solve
such a problem. Furthermore, the optimal decision made
at a certain timeslot requires the full knowledge of future
information, such as future solar energy generation, which
is hard to acquire in practice. A Markov Decision Process
(MDP) approach could yield better performance. However, we
have not evaluated this approach in the paper as the number
of states required to adequately capture the dynamics of the
system (such as the number of cars charging, battery states,
charging deadlines, etc.) would be very large. This would make
the MDP very complex to process. Our objective is to use a
single parameter k to adjust the stochastic estimate of solar
energy to maximize the FoM . Therefore, we design a heuristic
two-stage mechanism to tackle this complicated problem based
on current available information to achieve the highest utility
FoM at each timeslot, as discussed in the next section.

III. TWO-STAGE MECHANISM

In order to solve the optimization problem in Eq. (12), we
propose a priority-based two-stage Admission and Scheduling
mechanism, as described in this section.

A. Admission Control Algorithm (ACA)

Suppose that EV i arrives at the station at time t with
a charging task (Ei, tai , t

d
i , a

m
i ). For the charging station, the

available solar supply at t is known while the future solar
generation is only available as an estimate Ŝ(t). Along with the
energy state B(t) in the local energy storage at t, the admission
control is to decide which new arrivals to admit, given that
there are Nar (t) new arrivals during t, where i ∈ Nar (t).
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Algorithm 1 Admission Control Algorithm (ACA).

1: Input: (Ei, tai , t
d
i , a

m
i ), t, Nex(t, k), B(t), Slb .

2: Output: N(t, k).
3: procedure ACA( (Ei, tai , t

d
i , a

m
i ), t, Nex , B(t), Slb )

4: Define j ∈ {{i, ∀i ∈ Nar (t)},Nex(t, k)}.
5: Compute Aw(t) from eq. (13).
6: for T = t to Aw(t) do
7: Compute priority ωj(T) from eq. (3).
8: Rank ωj(T) in ascending order as ωa

j (T).
9: ωa

j (T) ← ωa
j (T)(1 : min{|ωa

j (T)|, M}).
10: for j in the order of ωa

j (T) do
11: ∆1

j (T) = min{τam
j , Rj(T), Slb(T, k)}.

12: . Update Rj(T).
13: ∆2

j (T) = min{τam
j − ∆

1
j (T), Rj(T), B(t)}.

14: . Update Rj(T).
15: ∆j(T) = ∆1

j (T) + ∆
2
j (T).

16: Virtually allocate ∆j(T) to j.
17: if Rj(T) == 0 then
18: t fj = T ;

19: Admit i into set Nad(t, k) if t fi <= tai + tdi .

20: Output → N(t, k) = {Nex(t, k),Nad(t, k)}.

Among those, only EVs in set Nad(t, k) are admitted, while
the rest are declined. We first define an admission window as
in Definition 1.

Definition 1. An admission Window is the maximum re-
maining time before the deadlines of both the existing and the
arriving EVs at t, within which the admission decision to EV
i ∈ Nar is made. It can be written as

Aw(t) = max{tai + tdi − t, tdj }, i ∈ Nex(t, k), j ∈ Nar (t), (13)

where Nex(t, k) is the set of previously admitted EVs that are
still in the charging station at t.

Definition 2. The Admission Rule: A new arrival i ∈ Nar

is virtually scheduled from t to Aw(t). If its virtual finishing
time t fi is earlier than its deadline (tai + tdi ), then i is admitted.

Along with Nex(t, k), the set of cars in the system (being
the updated admission set) can be expressed as N(t, k) =
{Nex(t, k),Nad(t, k)}, where Nad(t, k) ⊆ Nar (t). This proce-
dure is further shown in Algorithm 1. Every time Algorithm
1 is executed, the admission set N(t, k) is updated.

As discussed in Section II-B, we know that if the charging
station is too conservative towards the prediction of solar
generation, i.e., the lower bound Slb(t, k) is lower than the
actual solar generation S(t), the admission control would admit
fewer EVs than its actual capacity, hence the charging station
will lose revenue. If the charging station is too optimistic in
its prediction, the admission control would let more EVs in
than its actual capacity, hence some admitted cars will not be
able to meet their charging deadlines and the charging station
will pay a penalty to those cars’ owners. In order to compute
the Figure of Merit (FoM) of the charging station, Nc(t, k)

Algorithm 2 Charging Scheduling Algorithm (CSA).
1: Input: N(t, k), t, S(t), B(t).
2: Output: Nc(t, k), Sr , Eb .
3: procedure CSA( N(t, k), t, S(t), B(t) )
4: Define i ∈ N(t, k).
5: Compute priority ωi(t) from eq. (3).
6: Rank ωi(t) in ascending order as ωa

i (t).
7: ωa

i (t) ← ωa
i (t)(1 : min{|ωa

i (t)|, M}).
8: for i in the order of ωa

i (t) do
9: ∆1

i (t) = min{τam
i , Ri(t), S(t)}.

10: . Update Ri(t), S(t).
11: ∆2

i (t) = min{τam
i − ∆

1
i (t), Ri(t), B(t)}.

12: . Update Ri(t), B(t).
13: ∆i(t) = ∆1

i (t) + ∆
2
i (t).

14: Allocate ∆i(t) to i.
15: B(t) = B(t) +min{B − B(t), S(t)}.
16: . Update S(t).
17: . Sr ← S(t).
18: . Eb ← B(t).
19: Output → Nc(t, k), Sr , Eb and S.

(being the set of cars being charged at t)4 needs to be further
determined using the Charging Scheduling Algorithm (CSA).

B. Charging Scheduling Algorithm (CSA)

In Section III-A, all the admitted EVs, i.e., i ∈ N(t, k),
should be scheduled for charging at this stage. According
to the admitted EVs’ priority order ωi(t), the available solar
energy S(t), the number of available chargers M , the charging
rate limit am

i and the available energy in the storage B(t), the
charging station needs to decide which EV to charge for the
current timeslot. The procedure is shown in Algorithm 2.

The charging rate ai(t) is allocated as shown in Lines 8-
14 of Algorithm 2 based on the current solar generation and
the energy in the storage. Then the charging set Nc(t, k), the
cumulative excess solar energy Sr and the total solar energy
generation S are computed and determined accordingly from
Algorithm 2.

In the next section, we use numerical evaluations to show
how the proposed two-stage Admission Control Algorithm
(ACA) and Charging Scheduling Algorithm (CSA) are im-
plemented to solve the charging station’s FoM maximization
problem in eq. (12) for different energy supply scenarios.

IV. NUMERICAL EVALUATIONS

We investigate a microgrid-like charging station using vari-
ous energy sources to charge the arriving EVs and show how
the proposed two-stage admission and scheduling mechanism
affects the charging station’s Figure of Merit and the corre-
sponding optimal value of k. In Table II, the charging rate
considered is at 50 kW level, so the considered charging
scenario is within the range of fast charging. Since our
main focus is to investigate the impact of the uncertain solar

4Among N(t, k), only EV i ∈ Nc (t, k) can be charged with Nc (t, k) ⊆
N(t, k).
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Fig. 2. Performance comparison between Admission Control (AD) and FIFO
when use the energy from the grid, in terms of (a) Rejection Probability (b)
Service Rate (c) Average Delay per EV per timeslot (d) Average Number of
EVs in the System per timeslot.

generation on the charging station’s performance, we assume
typical stochastic distributions for other variables. Specifically,
EV arrivals are assumed to follow a Poisson distribution;
EV charging requirements and their deadline urgencies are
assumed to be distributed uniformly. We examine several
scenarios by gradually increasing their complexity.

A. Energy from the Grid

In this section, we assume the energy supply is drawn from
the power grid and is sufficient to meet all charging require-
ments. A First In First Out (FIFO) scheme is implemented
as the benchmark for the proposed priority-based admission
(AD) scheme. The performance of AD and FIFO is compared
in terms of rejection probability, successful service rate, delay
times and the number of EVs in the system, as shown in Fig.
2. The simulation parameters follow Table II with EVs’ arrival
rate λ varying from 0.5 to 4 per timeslot. We further calculate
the Figure of Merit (FoM) 5 following Eq. (8) when using
AD and FIFO, based on the results from Fig. 2 (a) and (b).

If the penalty factor is set to be γ = 3, the charging station
outperforms up to 13 times in terms of FoM under AD
(where FoM = 0.9416) than FIFO (where FoM = 0.0711)
when λ = 2.5. It can be also observed that the rejection
probability for the AD scheme increases above 0 when the
arrival rate is larger than 2.5. This result is in line with Fig.
2 (c) and (d), where the delay times and the number of cars
in the system increase significantly for the FIFO scheme also
from λ ≥ 2.5. This is because the charging station’s capacity
is limited due to the physical constraints such as the total
number of chargers, each charger’s capacity and individual
EV’s maximum charging rate, even though the energy supply
from the grid is sufficient. Thus, introducing an effective
admission and scheduling scheme is important for the charging

5Note that the utilization U = 1 in this case.

TABLE II
SIMULATION PARAMETERS

Parameter Values
No. of chargers M 5

Charger’s capacity C 50 [kW]
Charging station’s opening time 6am-6pm

Total timeslots in a day T 72
EV arrival rate λ [0.5, 1, 1.5, 2]

EV battery capacity ∼ U(25, 40) [kWh]
EV charging energy requirement Ei ∼ U(8.3, 13.3) [kWh]

EV maximum charging rate am
i ∼ U(30, 50) [kW]

EV deadline urgency tdi ∼ U(1, 15) [timeslots]
Shorter and longer deadlines ∼ U(1, 7), U(1, 30) [timeslots]

Penalty factor γ [1, 3, 6]
Estimated standard deviation of solar prediction error σ̂ 13 [kWh]

Price of buying energy from the grid pg 10 [p/kWh]
Maintenance fee of solar panels ps 5 [p/kWh]
Operational cost of the storage pb 10 [p/kWh]

* ∼ U(· , ·) represents a uniform distribution.

station to gain revenue. Next, we increase the complexity of
the system by replacing the energy supply from the grid with
energy from solar panels.

B. Energy from the Solar Panels

This is the case where the charging station uses solar
energy to charge EVs. Suppose that we know precisely how
much energy is generated precisely from the solar panels,
so the true value S(t) equals the prediction Ŝ(t) in (5). The
solar energy prediction profile used is shown in Fig. 3 (a).
We can see in Fig. 3 (b) that EVs’ rejection probability is
massively influenced by the availability of the solar energy
when compared to using the energy from the power grid.
In practice, the prediction is not always equal to the true
value as we have discussed in Section II-B. The prediction
profile of the solar generation Ŝ(t) and the standard deviation
of the prediction error σ are extracted and estimated from
the national grid database [30]. We then solve the formulated
FoM maximization problem by finding the best value of k. If
k = −0.5, the relation of the solar prediction profile, the true
values and the defined lower bound of the prediction (Eq. (5),
(6), (7)) is shown in Fig. 3 (a).

1) Optimize k: We start to optimize k as a constant value.
The objective is to find the best choice of k that maximizes the
value of FoM subject to the energy constraints and the solar
prediction uncertainty. We conduct a Monte Carlo simulation
for 500 runs, using the parameters in Table II. The value of
FoM is computed when EVs arrive at a rate from 0.5 to 2
per timeslot, and the results are shown in Fig. 4. The optimal
value of k for various arrival rates λ and penalty factors γ
is summarized in Table III. The impact of the penalty factor
γ on the final optimal value k∗ for various arrival rates λ is
further shown in Fig. 5. We can see that the optimal k∗ to
maximize the FoM decreases when the penalty γ increases
from 1, 3 to 6. This indicates that the larger the penalty factor
is, the more conservative the charging station is towards the
solar prediction.

Shorter and longer deadline urgencies: We further in-
vestigate the impact on the optimal value of k and FoM if
the arriving EVs have shorter (e.g., 7 timeslots being half
of the baseline of 15 slots) and longer (e.g., 30 timeslots)
deadline urgencies. Simulation results show the comparison
in terms of FoM for td = 7, 15, 30 in Fig. 6. We can
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vehicles per timeslot and penalty factors γ = 1, 3, 6, and the highlighted
optimal value of k.

see that the optimal value of k is reduced (being more
conservative) by 2.5% 6 under the shorter deadline scenario
and increased (being less conservative) by 2.5% under the
longer deadline scenario. However, when compared to the
corresponding changes in FoM∗ (49.3% and 44.6%), these
variations in k are small enough to be neglected. This indicates
that the deadline urgency td will not affect the optimal value
of k, thus the proposed scheme could work well for EVs
with various deadline urgencies. In addition, longer deadline
urgency means that the charging station has more available
time to successfully schedule more EVs, hence the value of
FoM is higher.

Stronger Uncertainty (2σ): We show how the proposed
scheme could work well for systems with stronger uncertainty.

6A normalized degree of variation of a vector a is defined to better measure
the changes in values of k and FoM as: D(a∗) = ∆a∗

max(a)−min(a) where a∗

is the value of interest.
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In one-step ahead forecasting, we know that the standard
deviation of the forecast distribution is almost the same as
the standard deviation of the residuals. Hence the standard
deviation of solar prediction error σ can be estimated from
the prediction profile Ŝ. If a less accurate forecasting method
is used, we would expect that the standard deviation of the
residuals is higher, hence the system has stronger uncertainty.
We conduct simulations with the parameters in Table II but
replace the standard deviation with σs = 2σ to find the optimal
value of k that maximizes FoM . The comparison to σ in
terms of FoM is shown in Fig. 7. It can be observed that
a lower arrival rate (λ = 1.5) yields a higher FoM . This is
because more arrivals will lead to more EVs being rejected
due to the charging station’s limited capacity. Since a higher
penalty is paid in total, the FoM is lower. We can also see
that when the uncertainty is stronger (2σ), having an overly
conservative prediction (k < −1.3) will lead to no EVs being
accepted at all. In addition, it is shown that the optimal value
of k increases by 2.5% when λ = 1.5 and by 5% when λ = 2,
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thus a stronger uncertainty allows the charging station to make
a less conservative prediction. However, when compared to
the corresponding changes in FoM (58.6% and 80.1%), these
variations in k are small enough to be ignored. This indicates
that a stronger uncertainty (2σ) will not significantly affect
the optimal value of k, thus the proposed scheme could work
well for systems with a stronger uncertainty.

2) Optimize k(t): Previously, k is assumed as a constant.
Intuitively, the charging station should be more certain about
the solar prediction as the time approaching to the end of the
day. Hence, we would expect k varies over time. We take the
case where λ = 1.5, γ = 3 for example. From Table III, we
know that the optimal value of k is -0.3. We assume that k is
a linear function of time t, and can be written in the form as

k(t) = k∗ + mr t, (14)

where mr is the gradient and is a constant. Re-arrange Eq.
(14) as

k(t) = −0.3 +
kr + 0.3

72
t, kr ∈ [kmin, kmax], (15)

where kmin = −3, kmax = 3, according to the 3σ rule. The
objective is transformed to find which one from this set of
lines in k(t) can make FoM(k(t)) achieve its maximum value.
We compute the value of FoM when kr is from -3 to 3. As
shown in Fig. 8, FoM reaches its optimal value 0.3014 when
kr = 0.4. From Eq. (15), the optimal k(t) can be written as

k(t) = −0.3 + 0.00972t, (16)

where FoM is improved by 5.5% when compared to the
case where k has a constant value in Section IV-B1. The
comparison is also shown in Fig. 8.

The set of lines in k(t) is demonstrated in Fig. 9. We can see
that the optimal line k∗(t) is increasing over time, meaning that
the charging station is making a less conservative prediction
of the solar generation. This is because with less time left till
the end of the day, the impact of paying penalties on the value
of the FoM is getting less significant. This is in line with the
result in Fig. 8, where FoM(k∗(t)) outperforms FoM(k∗) by
5.5%.
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C. Energy from Storage

A high rejection rate of the arriving cars will cause a
reputation loss to the station over time. Introducing local
energy storage can not only reduce the fluctuation of solar
prediction uncertainty but can also increase EVs’ admission
rate by leveraging stored energy for charging. In this section,
we show the impact of the storage’s capacity and its initial
state on system’s performance in terms of FoM . A low storage
capacity is similar to using the energy from the solar panels
while a high storage capacity might be more similar in terms
of reliability to using the energy from the power grid.

TABLE III
k∗ FOR SOLAR ONLY CASE.

HH
HHλ
γ 1 3 6

1 0 -0.1 -0.3
1.5 0 -0.3 -0.4
2 -0.2 -0.5 -0.7

TABLE IV
k∗ FOR SOLAR WITH STORAGE.

HH
HHλ
γ 1 3 6

1 0 -0.1 -0.3
1.5 -0.1 -0.3 -0.4
2 -0.3 -0.7 -0.8
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Suppose that the energy storage has a sufficient capacity
to accommodate all excess solar energy. First, we conduct a
Monte Carlo simulation for 500 times to compute the optimal
value of k as a constant value, as shown in Table IV. We
further show the comparison of FoM under the optimal k
values without (Table III) and with (Table IV) an energy
storage in Fig. 10. It is worth noting that when comparing
the results in Table III and Table IV, the optimal value of k
decreases slightly in four scenarios, i.e. when (λ = 1.5, γ = 1),
(λ = 2, γ = 1), (λ = 2, γ = 3) and (λ = 2, γ = 6),
respectively. However, when compared to the corresponding
changes in FoM∗ from Fig. 10 (being 63.5%, 63.7%, 68.4%
and 58.4%), the variations in k∗ (being 2.5%, 2.5%, 5% and
2.5%) are small enough to be neglected. This indicates that
the implemantation of storage units will not affect the optimal
value of k, but can increase the FoM significantly.

We still take the case where λ = 1.5, γ = 3 for example.
Following the steps in Section IV-B2, the k constant can be
optimized over time t. The corresponding FoM is computed
as shown in Fig. 11, where the optimal value of FoM and
k(t) coincide with the case when k has a constant value, i.e.
k∗(t) = k∗ = −0.3. This is because sufficient storage capacity
is able to balance the time-varying solar generation. We then
discuss the impact of the storage’s capacity and its initial state
on charging station’s performance.

1) Insufficient Storage Capacity: Define the storage ca-
pacity as B. 7 We investigate when the charging station
implements a smaller storage: 1/4, 1/2 and 3/4 of B. We still
take the case where λ = 1.5, γ = 3 for example. Following the
steps in Section IV-B2, the optimal value of FoM is computed
as shown in Fig. 12. When the storage has a small capacity
(B/4), the optimal value of k coincides with the case when
there is no storage installed, as in Eq. (16). As the capacity
increases (B/2, 3B/4, B), the optimal value of k remains
as a constant -0.3 as shown in Fig. 11. From Fig. 12 we

7Through 500 Monte Carlo simulations when a sufficient storage is as-
sumed, the average storage capacity limit is X = 257 kWh. Thus we assume
the full storage capacity is B = X.

k
r
, where k(t)=-0.3+t·(k

r
+0.3)/72

-3 -2 -1 0 1 2 3

F
o
M

(k
(t

))

0.48

0.5

0.52

0.54

0.56

0.58

0.6
λ=1.5, γ=3

k

-2 0 2

F
o
M

(k
)

0.4

0.45

0.5

0.55

0.6
(-0.3, 0.5942)

k
*
 = -0.3

(-0.3, 0.5942)

k(t) = -0.3

Fig. 11. Figure of Merit (FoM) when multiplier k is a function of time t
with sufficient storage capacity.

Storage Capacity

0 1/4B 1/2B 3/4B B

F
o
M

(k
*
(t

))

0

0.1

0.2

0.3

0.4

0.5

0.6
λ=1.5, γ=3

Fig. 12. Figure of Merit (FoM) with different storage capacities under their
corresponding optimal values of k(t).

can see that the performance gain in terms of FoM when
compared to a zero storage case is 43%, 69%, 90%, 96% for
a storage with capacity B/4, B/2, 3B/4, B respectively. If the
operational cost of the energy storage is proportional to its
capacity, implementing energy storage with capacity B/4 with
a FoM gain of 43% is most economically beneficial. If we
aim to be able to store more excess solar energy, implementing
three storage units with capacity of B/4 each can not only
achieve a FoM gain of 129% but can also save 1/4 of the cost
compared to implementing a full capacity storage system.

2) Initial State of Storage: In the previous discussion in
Section IV-C, we assume that the energy storage starts empty
at 6am. Here, we further investigate how the initial state
affects the system and the proposed scheme. Suppose that the
storage’s capacity is 193 kWh, which accounts for three B/4
storage units. We still take the case where λ = 1.5, γ = 3 for
example. Following the steps in Section IV-B2, the optimal
value of k remains a constant -0.3 when the storage starts
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empty, 1/4 full, 1/2 full, and 3/4 full, while the optimal value
of FoM increases from 0.5725 to 0.6123, 0.6488 and 0.6869,
respectively. Further, the amount of energy in the storage with
a different initial state is shown in Fig. 13. It is straightforward
to see that the more energy to start with, the more EVs the
charging station is able to charge in the beginning of the day
(when solar is low), hence the value of FoM is increasing
with the storage’s initial state, but the optimal value of k stays
the same at −0.3. This indicates that the starting state of the
storage will not affect the optimal value of k, thus the proposed
scheme could work well regardless the storage’s initial state.

D. Discussion of the cost of using various energy sources

In this section, we discuss the cost paid by the station for the
energy consumed in order to meet EVs’ charging requirements
when use the energy from the grid, on-site solar panels and
storage units, respectively.

The connected operation of the charging station indicates
that energy is supplied from energy providers based on some
contract. We take the conventional grid-connected operation
as a benchmark to give an estimate of the charging station’s
maximum charging capacity, subject to EVs’ requirements. For
simplicity, we assume that the charging station is contracted
with an energy provider under three different price plans:

1) A fixed tariff of 10 pence per kWh energy.
2) A time-of-use (TOU) rate of 15 pence for on-peak (6am-

10am, 5pm-6pm) and 5 pence for off-peak (10am-5pm)
per unit kWh energy [31], denoted as Grid-TOU-plan1.

3) A TOU rate of 13 pence per kWh for on-peak hours
and 8 pence per kWh for off-peak hours, denoted as
Grid-TOU-plan2.

First, we have computed the total energy consumed to
charge EVs from supplier, PV, and PV storage system under
the optimal operation point of the proposed approach over 500
different scenarios via Monte Carlo simulations, as shown in
Figure 14 (a).

Let pg denote the price of per unit energy from supplier,
pb denote the operational cost of the storage that is yielded
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Fig. 14. Compare (a) Total energy consumed to charge EVs, and (b) The
corresponding costs when using energy from supplier, PV with storage system,
and PV in one day.

per unit energy charged or discharged, and ps denote the
maintenance fee of solar panels per unit energy output. The
costs of using energy from supplier under these three price
plans are calculated, along with the costs of using PV and PV
storage system.

Following the simulation parameters in Table II with EVs’
arrival rate λ varying from 0.5 to 2 per timeslot and the
penalty factor γ = 3, the comparison of the costs is shown
in Figure 14 (b). If energy is bought from supplier, following
the steps in Section IV-A, EVs are admitted based on their
priority orders. If energy is drawn from PV and storage units,
following the steps in Section IV-B2, the optimal value of k(t)
to maximize FoM is first computed, then used to calculate
the corresponding cost when the station operates under these
optimal points (i.e., at the maximal FoM).

It can be observed that depending on the actual tariff and
energy consumption, the TOU hours tariff does not always
outperform a fixed price plan, i.e., the costs are shown as
Cost(TOU-plan2) > Cost(fixed) > Cost(TOU-plan1).8 Never-
theless, energy from supplier is the most expensive source
with energy from PV being the cheapest option. Implementing
storage units can hedge against the uncertainty of the station
and increase the utilization of PV, so that the energy consumed
to charge EVs increases in Figure 14 (a), as well as the
performance index FoM , but it will bring extra cost as shown
in Fig. 14 (b).

In practice, depending on the wholesale market situation,
balancing requirements from the system operator, the costs
of increasing on-site PV and storage’s capacity, the charging
station might be able to arbitrage using storage. However, by
applying our proposed admission and scheduling mechanism,
the charging station can obtain a comprehensive evaluation of
its self-consumption pattern before negotiating any deals with
aggregators and system operator.

8In practice, the prices and peak times also vary based on the season and
day of the week.



11

V. CONCLUSION

We have studied the problem that a charging station needs
to decide which arriving EVs to admit and schedule according
to its limited energy capacity in order to achieve an optimal
utility. To this end, we first introduce a multiplier k to
account for the effect of solar energy prediction uncertainty.
Then we propose a performance index (the Figure of Merit,
FoM) to measure the charging station’s utility, and formulate
the problem as FoM maximization. A two-stage admission
and scheduling mechanism is then proposed to solve the
optimization problem. The multiplier k is first optimized as
a constant (where FoM has a 29.5% gain compared to when
k is not optimized (i.e., k = 0) for λ = 1.5, γ = 6) then as
a function of time (where FoM has a 5.5% gain compared
to when k is optimized but as a constant (i.e., k = −0.3)
for λ = 1.5, λ = 3) by finding the maximum value of FoM
under various energy supply scenarios. Through Monte Carlo
simulations, we have shown the solution to the optimization
problem and discussed the impact of some of the key factors
(such as shorter and longer deadline urgencies, stronger uncer-
tainty of the prediction error, the storage capacity and its initial
state, and the cost of various energy sources) on the charging
station’s performance in terms of FoM and the corresponding
optimal value of k.
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