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Abstract

The current advances in communication and computing technologies are havinga large impact in industry, leading to what’s known as the fourth industrialrevolution or Industry 4.0. One of the challenges being addressed is to augmentmachines with the intelligence to mimic the cognitive functions of the humanmind. In this context, machine perception is one of the core capacities to interpretdata related to the world around us. For this purpose, computer vision (CV) is acommonly used solutions due its versatility and low cost implementation of theoptical sensors.This thesis studies two different visual perception problems: object
recognition and simultaneous localization and mapping (SLAM). The proposedsolutions focus on single camera (monocular) approaches in industrialenvironments. This is specially challenging due to the lack of textured surfacesof objects typical in industry, uncontrolled illumination changes, non-Lambertianmaterials – that render many reflections – and cluttered scenes. Both problemsconsist in understanding the scene and determining the camera motion asaccurately as possible. Object recognition sets its focus on identifying target3D objects in the scene, whereas SLAM aims to recover the 3D structure of thescene.The first part of this thesis proposes a novel model-based object recognitionmethod which uses geometric properties. It combines model surface conics andedge templates to reduce the image search space increasing the localizationrobustness and saving computational time. In addition, the proposed method isintegrated into a complete augmented reality (AR) framework for guidance inmaintenance in industry, called ARgitu. It generates and presents virtual andaugmented information, including the tools required for the development of newcontents and adapt AR technology applications into the advanced manufacturingindustry.
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The second part of this thesis presents a direct monocular SLAM system,called Direct Sparse Mapping (DSM). It uses a direct formulation within amapping framework to locate the position of the camera in the scene and builda consistent global map. Up to our knowledge, this is the first fully direct SLAMapproach to reuse map point reobservations. As a direct method, it does not relyon point matches and it can work with points sampled across image edges –instead of only corners – and obtain a more descriptive reconstruction despitethe sparse geometry representation. The system is robust inmscenes with lowtexture and motion blur. The extensive experimental validation demonstrates thatthe proposed direct mapping framework outperforms current direct odometryapproaches – even with loop closure – both in the estimated trajectory and mapaccuracy.



Resumen

Los avances actuales en las tecnologías de comunicación y computación estánteniendo un gran impacto en la industria, conduciendo a la que se conoce comola cuarta revolución industrial o Industria 4.0. Uno de los principales retos esproporcionar a las máquinas la inteligencia necesaria para imitar las funcionescognitivas de la mente humana. En este contexto, la percepción e interpretacióndel mundo que nos rodea es una de las capacidades principales. Para estepropósito, la visión por computador es una solución muy usada debido a suversatilidad y bajo coste de implementación de los sensores ópticos.Esta tesis estudia dos técnicas de percepción visual diferentes:
reconocimiento de objetos y localización y mapeo simultáneos (SLAM porsus siglas en inglés). Las soluciones propuestas se centran en una únicacámara (monocular) en entornos industriales. Esto es un desafío debido ala falta de superficies con textura en la escena, cambios de iluminación nocontrolados, materiales no-Lambertianos – que producen muchos reflejos – yescenas abarrotadas. Ambos problemas consisten en comprender la escena ydeterminar el movimiento de la cámara con la mayor precisión posible. Elreconocimiento de objetos se enfoca en identificar objetos objetivo en la escena,mientras que el SLAM pretende recuperar la estructura tridimensional de laescena.La primera parte de esta tesis propone un nuevo método de reconocimientode objetos basado en modelos que utiliza propiedades geométricas de losmismos. Combina cónicas de la superficie del modelo y plantillas de aristaspara reducir el espacio de búsqueda en la imagen, aumentando la solidez de lalocalización y reduciendo el tiempo de cálculo. Además, el método propuestose integra en un sistema industrial completo de realidad aumentada (RA),llamado ARgitu, empleado para el guiado en el mantenimiento. El sistemagenera y presenta información virtual y aumentada, incluyendo las herramientas
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necesarias para el desarrollo de nuevos contenidos y adaptar las aplicacionesde tecnología RA en la industria de fabricación avanzada.La segunda parte de esta tesis presenta un sistema de SLAM monoculardirecto, llamado Direct Sparse Mapping (DSM). El método utiliza unaformulación directa dentro de una infraestructura de mapeo para localizar laposición de la cámara en la escena y construir un mapa global consistente. Hastadonde sabemos, es el primer enfoque de SLAM totalmente directo que reutilicereobservaciones de los puntos del mapa. Como método directo, no depende deemparejamientos entre puntos y puede trabajar con puntos muestreados a travésde las aristas en una imagen – en lugar de esquinas únicamente – y obteneruna reconstrucción más descriptiva a pesar de utilizar una representaciónde puntos dispersa. Además, el sistema es robusto contra escenas con pocatextura y desenfoques debido al movimiento. La extensa validación experimentaldemuestra que la infraestructura de mapeo directa que se propone supera a losenfoques de odometría directa actuales – incluso con cierre de bucle – tanto enla trayectoria estimada como en la precisión del mapa.
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Chapter 1

Introduction

1.1 Introduction to Visual Perception

We, as human beings, perceive the world that surrounds us using our senses.This allows us to interact with physical objects and, even, explore the worldaround us. For example, we are able to localize ourselves in an arbitrary roomor recognize many different objects. To do so, we use our senses to receivedifferent physical signals which are interpreted by our brain. Among all oursenses, sight is the most important. It captures the 3D world observed by oureyes.Computer vision is the scientific field that tries to mimic human sightusing computers. In computer vision, human eyes and brain are substitutedby cameras and computers respectively. Cameras capture and process light toform a computer-friendly representation of the world using digital images. Ashuman eyes, cameras include optical sensors and lenses to help capturing light.Researchers in computer vision study different image processing techniques toextract information from them. The ultimate goal is to obtain an artificial sightsense applicable to many different fields, such as industrial robotics, augmentedreality, medicine, cars or even space exploration. Fig. 1.1 presents some realexamples of these applications.Nowadays, digital cameras are in general small, low-power and easy touse. Computer vision applications usually rely only on one or several cameras,a processing unit and their power supply. Many vision applications relyon the light reflected by the environment. Thus, computer vision provides anon-invasive perception solutions which can be adapted to many environmentsand applications with an affordable and readily available hardware. For instance,
3



4 Chapter 1. Introduction

(a) Mars rover. ©Nasa (b) Autonomous car. ©Uber

(c) Mobile augmented reality. ©Ikea
Figure 1.1: Examples of different computer vision applications. (a)illustrates the NASA rover developed to explore Mars. It includescameras for obstacle avoidance and autonomous navigation. (b) showsan autonomous vehicle developed by Uber. (c) presents an augmentedreality application for interior decoration by Ikea.

mobile devices and mobile robots benefit from the previous properties allowingto build more efficient devices with smaller sizes and longer life operations.Computer vision applications can be built using many different configurationsof cameras obtaining information from different parts of the electromagneticspectrum. One of the most common types of camera are RGB matricial cameras.These cameras capture color information from the visible spectrum. A chipcollects photons in discrete elements, or pixels, forming a 2D matrix. Thesecameras can be configured for different applications in different configurations:single-camera configurations are also called monocular systems; two-camerascan form a stereo-vision system capable of capturing both the color of eachpixel, and its depth as well (the distance of each pixel to the camera set).
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RGB-D cameras have the same capabilities, but they usually emit a patternedinfrared light or use time-of-flight technology to measure the distance to eachpixel. Other systems such as LIDAR, emit an infrared laser light to measure thedistance to points very accurately. Nowadays, they are still quite expensive andcumbersome to use due to the high density of information captured.The specific hardware configuration for a computer vision application shouldbe selected depending on its specific requirements. In this thesis, we focuson monocular RGB systems, as they are one of the most basic configurationsand usually all the technology developed for them can be extended to otheralternatives.We focus on how a computer vision system can be used to interpret itssurrounding environment from three different points of view:

1. Camera motion: refers to the ability to estimate how a camera is movingthrough the environment. This means to estimate the 6 DoF (3 DoF forposition and 3 DoF for orientation) of the camera, also known as camera
pose. If the camera pose is estimated each new frame, we talk about cameratracking with respect to a either a global or local reference. In this case,the focus is set on camera motion neglecting the elements that composethe scene.2. Object recognition: refers to the ability to detect and localize the positionof a 3D target object with respect to the camer from a single image. In thiscase, the focus is set on specific elements of the scene and their relativepose to the camera.3. Scene reconstruction: refers to the ability to estimate a 3D representationof the environment from 2D images, also known as 3D map. The map canbe represented in many different ways such as a point cloud or a triangularmesh. In any case, its construction requires to estimate the 3D locationof the components of the map (points in the case of a point cloud). Inthis case, the focus is set on the structure of the scene even if the objectscontained in the environment are not identified.

In many applications, such as in the case of a robot moving in a room, weneed both the camera motion (to locate the robot) and the scene reconstruction(to locate obstacles) simultaneously. In this case, we are discussing about the
visual simultaneous localization and mapping problem (VSLAM). In contrast tostereo systems or RGB-D cameras, monocular systems cannot perceive the 3D
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structure of the environment using a single image without any prior knowledge ofthe scene. In this case, the stereo image pair needed to reconstruct the scene isobtained from inter-frame motion, which allows to recover the 3D geometry usingtriangulation. As we will see later, monocular cameras have other difficulties thatwill have to be addressed.In summary, this thesis deals with the problem of object recognition andVSLAM using a monocular camera. We address these problems in real-timewhich requires to be estimated at camera frame rate (usually around 30Hz). Inthis context, there are two main applications which are directly related with boththese technologies: augmented reality and mobile robotics.
1.1.1 Augmented Reality

Augmented Reality (AR) is the technology that aims to integrate virtual objectswithin a real image to create the feeling that virtual and real objects coexistin the same world. AR systems require to perceive the environment and itscomponents to properly align virtual elements in the image. One crucial aspectin AR systems is to trick the human brain into thinking that virtual objectsbelong to the real world while the camera is moving through the environment.This requires to precisely estimate the position and orientation of the camerawith respect to the environment in real-time, which we previously labelled ascamera motion or object recognition. Once we know the camera pose, we canrealistically render virtual object with the appropriate perspective projection.AR technology can be applied in many applications, such as games andfilms. The following sections present some of the industrial fields in which ARhas spread.
Assembly and Maintenance

AR holds an important promise by helping workers in an evermore challengingworkplace. Regarding advanced manufacturing, many authors (Palmarini et al.,2018) have demonstrated the benefits of AR-based solutions for guidance inmaintenance and assembly tasks in industry. The use of AR systems allows atechnician to visualize the spatial layout of all the objects that compose a taskand any relevant information about them. Virtual annotations assist during thewhole process, e.g. the maintenance of complex machinery (see Fig. 1.2a). For
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(a) AR with a robot arm (b) Mixed reality glasses. ©Hololens
Figure 1.2: On the left an example of AR maintenance task and on theright the Hololens head-mounted display.

now, the prototype systems use mobile devices or head-mounted displays suchas the Hololens of Microsoft (see Fig. 1.2b).
Medicine

Medicine is another promising field for AR technology. In this case, virtualannotations assist the surgeon during an operation, e.g. to reduce the numberof incisions. In contrast to assembly and maintenance tasks, these applicationsrequire to handle with deformable environments and achieve higher accuracylevels. For example, during an engine assembly task the accurate location of ascrew could not be so important but during a surgical procedure the location ofan specific tissue could be crucial for the success of the procedure (see Fig. 1.3).Currently, there are some works that allow tracking the camera position (Lamarcaand Montiel, 2018) and obtaining real-time reconstructions of the tissue duringits deformation (Leizea et al., 2017).
1.1.2 Mobile Robotics

Mobile robotics refers to a robot with locomotion capacities (see Fig. 1.4).This type of robots includes many kinds of autonomous systems such as AGV(Autonomous Guided Vehicles) that transport materials, tools or other robots inindustry, autonomous cars and drones.
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Figure 1.3: Augmented reality based surgery (Plantefève et al., 2016).
In contrast to most industrial robots, the base is not anchored to an specificspace location and, thus, they have the ability to move through the environment.When we say that a mobile robotic is autonomous we mean that it has theability to navigate in an arbitrary and unknown environment without requiringany additional external input. An autonomous mobile robot needs the capabilityof locating itself and understand the 3D structure of its surrounding environmentin order to take the right decisions, such as obstacle avoidance or path planning.Thus, autonomous mobile robots are highly dependant on SLAM. Ultimately, amobile robot could interact with humans and physical objects in the environment,which would require to understand the elements contained in the world.One of the most common examples is the cleaning robot. Initially, a cleaningrobot was designed to arbitrary change its direction when it collided with anobstacle. Currently, however, they build a 3D model of the environment andthey plan the most efficient path to optimally clean all the area. This impliesexploring unknown areas, path planning, obstacle avoidance, etc. Consequently,it is very important to accurately localize the mobile robot and obtain the bestrepresentation of the structure so it can take the most optimal decisions. It is alsoimportant to take into consideration the computational time so the estimationsare updated throughout the operation without delay.Finally, autonomous vehicles are also a promising field where SLAM playsan important role. An autonomous car should be able to navigate from anunknown environment without colliding with external objects, other vehiclesand, more importantly, persons. At the same time, it should understand the 3Dstructure of the road and its components, such as other vehicles, traffic signs orpedestrians. Similar to medical applications, in the case of autonomous vehicles
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Figure 1.4: Left: an autonomous mobile robot equipped with an RGB-Dcamera and a laser scan. Right: an autonomous flying drone equippedwith an RGB camera ©DJI.
the visual system must provide reliable estimates because it could lead to seriousconsequences otherwise. There are some works related to this field (Usenkoet al., 2015) but they are still far from being robust and complete solutions withall the required capacities.



10 Chapter 1. Introduction
1.2 Motivation

Nowadays, many companies see AR and autonomous mobile robotics astwo important tools to provide new services related to their products andmanufacturing processes. Indeed, the so called Industry 4.0 includes AR andautonomous mobile devices as part of their main components. The idea isto create factories in which machines are improved with new sensors andconnectivity capacities, connected to a central system that can control, visualizeand take decisions of the whole production line on its own.In this context, AR works as a novel interface between people and machinesto provide communication and cooperation capabilities in real-time. For example,the factory itself could inform a technician about an expected failure and ARwould assist the technician during the whole maintenance process with virtualinformation in situ. Consequently, the impact of the failure in the productionline would be reduced saving production errors and cost. On the other hand,autonomous mobile robotics can improve the flexibility of the factories withautomatic and modular structures. In this way, the system would be able to makedecisions on its own and adapt the production to each situation as autonomouslyas possible.As we have already seen, AR and autonomous mobile robotics matchperfectly with computer vision. Consequently, there is no doubt that any ofthese technologies should include cameras in their assemblies. Besides, bothaugmented reality and autonomous mobile robotics have the same problem incommon: establishing the pose of a moving device, such as a headset or a robot,and understanding the world around it. For instance, the quality of the userexperience in an AR application is directly related with the stability of thevirtual annotations anchored in the image.Despite many recent technological advances, several challenges remain thatlimit the wide adoption of these technologies in industrial applications:
• AR-based systems require suitable authoring tools for the development ofnew contents, such as virtual annotations and their animations. Currentframeworks usually require the use of complex animations and designtools that in many cases require advanced programming. While this is aminor issue in some applications, such as games, it limits the adoptionof AR in small and medium size companies that may lack personnelwith the required skills. In addition, there are also limitations in the
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available hardware for AR. Many devices such as head-mounted displaysare, in many cases, intrusive and not suitable for a long use in ergonomicconditions or in situations that require safety.

• Autonomous mobile robots require suitable algorithms to understand theirsurroundings and take decisions on their own. Current mobile robotics aredesigned to follow a predefined path to complete a task. This requires tore-program the robot each time the task is modified which needs qualifiedpersonnel with the required qualifications.
The following presents a more detailed explanation of the technicalchallenges – regarding visual perception technologies – that limit theestablishment of AR and autonomous mobile robotics in the industry.

Object recognition for AR in industry

Object recognition enables to understand the elements contained in theenvironment using just a single image. It does not require to adapt theenvironment and allows artificial devices, such as mobile robots, to interact withthe environment. A very common solution is to use visual landmarks (features)detected in the image that come from textured surfaces in the scene. The objectposition is established by matching those features with a preprocessed databaseof images of the object. However, these alternatives are optimized for objects withpatterned surfaces which are not usual in industrial environments. Besides, thelarge amount of highly structured data required during the training phase makesthem unsuitable for a direct industry application.Industrial environments are characterized by cluttered scenes withuncontrolled illumination changes (see Fig. 1.5). They usually contain objectswith non-Lambertian surfaces (for example metallic). In this case, the brightnessof a point of the surface varies with respect to the viewing angle. These surfacesare not well suited to most common object detection algorithms. However, in thiscontext, it is very common to know the CAD model of the objects of interest ofthe scene. CAD model are a rich source of distinctive elements such as edgesand corners that can help overcome the challenges of detection due to reflexions.
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Figure 1.5: Example of a real industrial environment. Image providedby Ekin S. Coop.
Visual SLAM for autonomous mobile robotics in industry

The nature of an autonomous mobile robot is to explore unknown environments.This implies to perceive the world around the robot and take decisions basedon the structure of the 3D world around it, such as path planning. Besides,an autonomous mobile robot usually ignores any prior information regardingthe elements of the scene and, thus, object recognition technologies are not asuitable solution. In this context, visual SLAM provides a straight solution wherethe structure is estimated from the robot motion and vice versa.In contrast to object recognition that works with a single image, visual SLAMexploits video streams which nowadays are easily obtainable with consumercameras. They take advantage of the temporal coherence and assume smallcamera motions between consecutive frames. They are able to apply predictivealgorithms to reduce the computational budget while maximizing the informationgain. However, using only temporal constraints leads to very inaccurate results.
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It is very common to apply non-linear optimizations taking into considerationpast information too. As a result, current approaches to visual SLAM can bereferred as online methods where the estimates are incrementally corrected asnew information is obtained.Like other computer vision algorithms, visual SLAM algorithms havetraditionally reduced the image data to a sparse set of feature observationscorrelated across different images. Although this framework provides enoughinformation to accurately estimate the camera motion, the resultingreconstructions are rather poor. The estimated map is usually composed of avery sparse set of features which limits its applicability to real problem. Forinstance, an autonomous vehicle could estimate its position precisely, but itwould not be able to identify if there are any obstacles along its trajectory.This is a severe limitation for many applications and it must be dealt with. Inaddition, this framework relies on feature repeatability and, thus, it requiresenough textured surfaces in the environment.
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1.3 Objectives

The main objective of this thesis is the development of new computer vision basedperception algorithms using monocular systems that enable new augmentedreality and robotics – especially mobile robotics – applications in industrialsettings. As discussed above, two main problems have been identified andaddressed in this work:
1. Regarding object recognition, industrial settings usually contain objectswhose characteristics are not easily handled with state-of-the-artmethods. They lack textured surfaces, their appearance can change dueto dirt, illumination changes or the presence of non-Lambertian surfaces,and are usually placed in occluded positions with cluttered backgrounds.We propose the following sub-objectives for this problem:• Development of a monocular solution for the detection of objects inthe industry based on the CAD model and without the requirementof complex training phases or costly capturing data processes.• Integration of the detection algorithm in a complete trackingframework for the development of AR applications.• Development of a full industrial AR application for guidance inmaintenance operations.2. Regarding visual SLAM methods, current approaches recover a low pointdensity 3D map with a limited capability to describe the structure of theenvironment.In general, they are focused on estimating the camera location asaccurately as possible, but they neglect the quality of the map. We proposethe following sub-objectives for this problem:• Development of a robust and accurate monocular visual SLAMsolution capable of handling challenging industrial situations suchas motion blur and untextured scenes.• Development of a mapping solution with the ability to generatemore descriptive, accurate and consistent reconstructions of theenvironment for practical applications.• Evaluation of the proposed solution with respect to both the cameralocalization and accuracy of the reconstructed map.
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1.4 Contributions

On the basis of the previous objectives, this thesis focuses on researchingsolutions for object recognition and visual SLAM in industrial environments.The main contributions for each of the research developments of this thesis aredetailed below.
1. Review of 3D computer vision techniques

We present a complete and lightweight summary of different 3D computervision techniques, including the results provided by the community duringmany years of research that led to the most influential algorithms incomputer vision. Normally, these works appear spread over the massiveliterature, but we have gathered them up in a chapter. We start from themost basic concepts to the most complex ones, giving in each case therequired details to make a straightforward implementation. We believeit can serve as a guide for both new and experienced researchers, andcontribute to the wide adoption of advanced techniques, such as directmethods, in real world computer vision applications.
2. Model-based object recognition for guidance in industrial

maintenance

We propose a novel model-based object recognition method that usesgeometric properties of the CAD model. More precisely, it uses acombination of model circles and edge templates which are automaticallyextracted during a pre-processing stage. Thus, it does not require userintervention. The method uses correspondences between model circlesand image ellipses to reduce the search space and estimate an initialobject location hypothesis. Then, it uses the model shape in the form ofedge templates to solve the revolution symmetry ambiguity. The resultingmethod does not rely on the texture of the scene and it is able to handle thechallenging conditions found in industrial environments. We additionallyintegrate the proposed approach into a tracking framework that exploitsthe temporal coherence using the same geometric features. Finally, wepresent a full AR application for guidance in maintenance, called ARgitu.It generates and presents virtual and augmented information, including
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the tools required for the development of new contents. ARgitu uses theproposed recognition and tracking pipeline to align virtual elements in theimage.

3. Direct Sparse Mapping (DSM)

We propose DSM, a novel direct monocular SLAM systems. As adirect formulation, it does not rely on traditional feature matches (withdescriptors) and works directly with pixel intensity values of images. Incontrast, points are associated to only one frame and correspondences arerecomputed as part of the optimization. Thus, it does not require pointsto be recognizable on their own and can work with points with a locallyhigh gradient module, such as edges and weak intensity variations. As aresult, DSM can handle strong motion blur and low textured environmentscompared to traditional indirect approaches.In contrast to current state-of-the-art direct approaches that are only ableto perform visual odometry with a temporary map, DSM uses a mappingframework to build a consistent global map. It uses the same objectivefunction and map points for all the tasks: initialization, tracking andmapping. Up to our knowledge, it is the first fully direct SLAM approachto reuse map point reobservations. To obtain this, DSM builds a persistentmap and combines photometric bundle adjustment (PBA) with covisibilityconstraints to handle map point reobservations from already visitedscene regions. Instead of using feature matches as indirect approaches,the covisibility is obtained from a novel combination of geometric andphotometric constraints. The result is a more consistent, complete anddense reconstruction with provides a richer description of the environment.We have extensively evaluated the solution in a public available datasetachieving the most accurate results up to date for a direct method. For thefirst time, we have measured both the precision of the camera trajectoryand map reconstruction. Finally, we have published our implementationas open-source code.
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1.5 Dissemination

1.5.1 Publications

The research carried out in this thesis has generated the following peer-reviewedpublications:
• Zubizarreta, J., Aguinaga, I., Amundarain, A. A framework for augmented

reality guidance in industry. In The International Journal of Advanced
Manufacturing Technology (2019) doi:10.1007/s00170-019-03527-2

• Zubizarreta, J., Aguinaga, I., Montiel, J.M.M., Direct Sparse Mapping. In
arXiv:1904.06577 (submitted to IEEE Transactions on Robotics, 2019).

1.5.2 Open-Source Software

We have released the following open-source software:
• DSM (https://github.com/jzubizarreta/dsm),

Direct Sparse Mapping

1.5.3 Videos

Demonstrating videos of DSM:
• EuRoC MAV dataset: https://youtu.be/sj1GIF-7BYo

https://github.com/jzubizarreta/dsm
https://youtu.be/sj1GIF-7BYo
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1.6 Thesis Outline

This thesis is divided into 6 chapters. Chapter 1 has introduced the situationof visual perception technologies and the research fields in which this thesisis focused. We have also presented the factors that have motivated this worktogether with the main objectives and the application fields. As this thesis isbased on object recognition and visual SLAM technologies, Chapter 2 presentsa more in-depth classification of the approaches currently in the state of the art.Chapter 3 presents an overview of the technical foundations which are relevantfor the remainder of the thesis. In particular, we describe the intrinsic geometryinvolved in computer vision problems as well as different representations forcameras and 3D structure. Furthermore, we provide the required optimizationtools to solve the proposed problems. Chapter 4 deals with the problem ofobject recognition in industrial environments and presents a complete frameworkfor AR guidance in industry. Afterwards, Chapter 5 presents a fully directSLAM approach with map reuse capabilities. Finally, Chapter 6 presents theconclusions of this work and a number of interesting future research directions.Some additional technical concepts are presented in detail in the appendicesat the end of this document. They have been excluded from the main body of thedocument to facilitate the reading flow of the work.



Chapter 2

Background

In the last decades the popularity of computer vision has grown considerablydue to its large range of possibilities. For instance, almost any mobile deviceincludes one or multiple cameras and integrates computer vision algorithms toincrease its capacities, such as screen unlock using face recognition. Anotherexample are filming drones which are able to identify and follow a target actorenabling impressive recordings with very difficult shoots.This has lead to an increase of the research effort with the development ofmany different techniques. In this chapter we provide a classification of differentcomputer vision techniques focused on the two main research areas of this thesis:object recognition and visual SLAM. As many of the techniques can be appliedto many different visual sensors, we maintain the classification independent ofthe selected sensor.
2.1 Object Recognition

The main goal of object recognition is to locate the camera position andorientation, also known as camera pose, with respect to target objects in thescene using a single image. This requires to distinguish the elements thatcompose the scene and estimate their position and orientation in the 3D space.In general, it is very common to previously have some kind of information aboutthe object of interest, such as specific patterns or 3D shape. This knowledgeis exploited beforehand to extract information about the object (training) andobtain the most descriptive representation to recognize the object in an image.Thus, it is important to evaluate not only the recognition performance but thewhole process, including the training. For instance, the training could become
19
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Figure 2.1: Marker example formed of black and white squares.
impractical for real applications due to the amount of user experience requiredfor its implementation in industry. Finally, this section deals only with rigidobjects which implies that the size and shape of the object do not change overtime, even when external forces are applied. However, the camera, the object orboth can move freely in space.
2.1.1 Marker-based

Marker-based systems work with easily identifiable patterns (see Fig. 2.1) thatare artificially added to the scene. The idea behind markers is to add predefinedvisual features to the world so they facilitate the recognition task. They havebeen widely used in industry and AR applications due to their simplicity, lowcost and good performance. The main drawback of marker-based systems is thatthey require to adapt the environment which is not always possible. Besides,marker-based systems cannot handle occlusions and they fail when the markeris not completely visible.The marker pattern is normally composed of simple geometries, such assquares and circles, printed in black and white stickers (Pagani et al., 2011).The configuration of the geometric elements inside the marker codify a uniqueidentifier that allows to distinguish one marker from the others. In order toobtain the position of the camera with respect a maker it is common to performthe following steps: (1) threshold the input grayscale image to segment themarker from the rest of the image; (2) match the maker with respect to apre-compiled dataset comparing the unique identifier; (3) estimate the cameralocation knowing the correspondences between 2D-3D vertices in the marker.As we know the marker is planar, it is easy to obtain the camera location usingan homography (Hartley and Zisserman, 2004).
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Figure 2.2: ORB feature matching (Rublee et al., 2011).
2.1.2 Textured-based vs. Geometry-based

Textured-based methods rely on the object’s own surface pattern. In this case,the surface must contain distinctive appearance features in order to make itpossible to recognize the object in the image. These methods proceed in twosteps: First, the input image is processed to extract salient visual features (Rostenand Drummond, 2006, Shi and Tomasi, 1994) which are locally represented usingan appearance vector called descriptor, such as SIFT (Lowe, 2004), SURF (Bayet al., 2006) or ORB (Rublee et al., 2011). Descriptors are used to distinguisheach visual feature from the others by measuring the distance between thevectors. Second, the extracted visual features are matched against a pre-compileddataset comparing the descriptors (see Fig. 2.2) and the camera pose is estimatedfrom the 2D-3D correspondences (Lepetit et al., 2009). During the last step, itis very common to use an outlier removal strategy such as RANSAC (Szeliski,2010). The main drawback of feature-based approaches is that they rely on therepeatability of the selected features and, thus, fail in low textured scenarios,such as industrial environments.
Geometry-based methods do not rely on the texture of the surface ofthe object but on its shape. In general, they work with edges of the objectwhich are easily identifiable using image gradients (Canny, 1986, K.Vairalkarand S.U.Nimbhorkar, 2012, Topal and Akinlar, 2012). In this approaches, itis very common to compare the input image with a pre-compiled dataset ofimages of the object in different positions, also called templates. DominantOrientation Templates (DOT) is a popular method (Hinterstoisser et al., 2010). Itmeasures the similarity between two images by comparing the orientation of thegradients. This method was extended to handle depth sensors in (Hinterstoisser
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Figure 2.3: Pose estimation of different objects using chamfer matchingtechniques (Liu et al., 2010). In green the object templates.
et al., 2012b) and color information in (Peng, 2015). Chamfer Matching isanother popular method which evaluates the distance between image edges(see Fig. 2.3). It can be efficiently computed using image Distance Transform(DT) (Felzenszwalb and Huttenlocher, 2004). Later, Liu et al. (2010) extendedthe chamfer matching formulation to include edge orientations which increasesits robustness. The main drawback of these approaches is that their performancedegrades significantly with cluttered backgrounds and their large search space.As they do not perform any previous matching scheme, the registration isexecuted by brute force, which considerably slows down their performance.However, geometry-based approaches are more suitable for untextured objects.
2.1.3 Model-based vs. Image-based

As we have already seen, most approaches work against a pre-computed dataset,which is the training step that we have mentioned before. Thus, we can classifythe recognition approaches depending on how the training is performed.
Model-based approaches use a 3D virtual model of the object of interest. Themodel is available beforehand and contains information about the 3D geometryof the model. Sometimes it also contains information about the object surface,such as its texture or material. The model is usually represented as a triangularmesh, which is normally obtained using a computer-aided design software or
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Figure 2.4: Sphere training of a virtual model using an sphere pathBratanič et al. (2015). Each arrow represents a virtual camera fromwhich rich information about the model is extracted.
a 3D scanner. These approaches normally generate a set of virtual camerasaround a sphere centered in the object (see Fig. 2.4) (Álvarez and Borro, 2013,Bratanič et al., 2015, Imperoli and Pretto, 2015). For each virtual camera, therequired information is extracted, e.g. visual features, 3D visible geometry, edgetemplates, etc. In this way, the pre-computed dataset will contain a detaileddescription of the object from many different points of view.Instead of using virtual cameras, image-based approaches work with realimages of the object of interest. Thus, these approaches require the intervention

Figure 2.5: Image-based training where a marker is used to estimatethe camera pose (Hinterstoisser et al., 2010).
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Figure 2.6: Image-based training where the 3D geometry is estimatedfrom SfM techniques. Top row shows the final reconstruction with allthe cameras. Bottom row shows some of the images captured by theuser and used for the reconstruction.
of the user to capture images of the object from different points of view. In orderto obtain the camera location for each view, it is common to use the following twoalternatives: (1) use a marker with a predefined configuration with respect theobject (see Fig. 2.5) (Hinterstoisser et al., 2010); (2) use Structure from Motion(SfM) techniques (see Sec. 3.4) to reconstruct the 3D model from the images (seeFig. 2.6) (Pillai and Leonard, 2015, Wang et al., 2018). For the latter, it is veryusual to use features with descriptors to obtain 2D correspondences betweenthe images and triangulate the 3D position of each feature. Consequently, thiskind of solutions are typically oriented to rich textured objects. However, it is
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Figure 2.7: PoseCNN for 6D pose estimation. The output of thenetwork is trained to provide semantic labeling, 3D translationestimation and 3D rotation regression (Xiang et al., 2017).
also possible, for example, to extract edge templates from the images and usegeometric-based solutions.
2.1.4 Machine Learning-based

Nowadays, there is a large amount of data and computational power at ourdisposal. Machine learning approaches take advantage of this situation todevelop algorithms based on statistical models that provide artificial systemsthe ability to automatically learn and improve from experience, without beingexplicitly programmed. Automatically learn means that the algorithm is able tofind the optimal parameters that fit the model without the user intervention, and
experience refers to the large amount of data (examples) that feeds the algorithm.As a results, machine learning approaches are highly dependant on very largedatasets that are required to train the statistical model and are crucial to obtaina general solution.One of the most popular approaches inside machine learning is Deep
Learning due to its impressive results. These are more complex techniques thatuse multiple layers with the aim of analyzing different characteristics in the data.Regarding computer vision, we can talk about Convolutional Neural Networks(CNN) which apply different convolutions in each layer to analyze the images
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(Garon and Lalonde, 2017, Li et al., 2018, Tekin et al., 2017, Xiang et al., 2017).For instance, lower layers could identify edges in the image while higher layerscould detect human faces. Fig. 2.7 shows an schematic diagram of a 6D poseestimation network. Currently, however, it has been demonstrated (Garon andLalonde, 2017) that these approaches fail when an object is occluded more than20%. Besides, the large amount of highly structured data required during thetraining phase makes them unsuitable for a direct industry application.
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2.2 Visual SLAM

The goal of Visual SLAM (VSLAM) is twofold: reconstruct the 3D world andobtain the camera pose within the reconstruction. In general, VSLAM is anincremental process in which new data – in the form of frames – arrivessequentially in time while the camera is moving freely in the space. The problemis stated as a probabilistic model that takes the camera noisy measurementsand estimates the 3D geometry (camera pose and structure) without anyprior knowledge of the scene. This section presents a classification of VSLAMapproaches depending on how the above problem is formulated and solved.Besides, if we want to classify and evaluate VSLAM approaches, we shouldtake both the localization and mapping performance into account. The core ofthe following classification is inspired by Engel (2016).
2.2.1 Direct vs. Indirect

Indirect approaches work with an intermediate representation of the image,normally in the form of a sparse set of features. These features are matchedacross images to establish 2D correspondences. In this case, image featuresare treated as noisy measurements and inserted into a probabilistic model toestimate the 3D geometry (Gomez-Ojeda et al., 2019, Mur-Artal et al., 2015).In contrast to the textured-based methods presented above, VSLAM indirectapproaches can also use other kind of matching strategies that exploit the videostream such as optical flow techniques (Buczko and Willert, 2016). Then, the 3Dcamera motion and feature positions are optimally estimated from the 2D featurecorrespondences. During optimization, indirect approaches optimize a geometricerror, i.e. the reprojection error, which has good convergence properties. Themain limitation of these approaches is that they rely on feature repeatability. Asa result, lack of texture or motion blur degrade considerably their performance.In contrast, direct approaches work directly with pixel intensities andskip the pre-processing step (see Fig. 2.8). Thus, they do not rely on featurerepeatability and tend to be more accurate and robust when the scene containslittle texture and with motion blur. This property allows direct approaches tosample across all available data, such as edges and weak intensity variations,which generates a more complete representation of the 3D scene structure (Engelet al., 2016a). During optimization they optimize a photometric error, i.e. theintensity error, following the Lukas-Kanade framework (Baker and Matthews,
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Figure 2.8: Comparison between feature-based (indirect) and directapproaches (Schops et al., 2014). Direct approaches skip the featureextraction and matching steps.
2004). They do not work with explicit correspondences and use image gradientsto guide the optimization in the right direction. As a result, the main limitation ofdirect approaches is their small convergence radius due to the high non-linearityof image data. In this case, it is very common to use a framework where onlyconsistent data is used, e.g. close in time estimates that are almost not affectedby accumulated error (drift).
2.2.2 Dense vs. Sparse

Dense methods use all the available pixels in the image. They obtain a veryrepresentative reconstruction at the cost of high computational and memorydemands. As a result, they require GPU’s to run the algorithms in real-time.It is very common to see this kind of approaches together with direct techniques(Stühmer et al., 2010). In contrast, sparse methods use only a small percentage ofpixels in the image which allow using CPU’s only. However, they obtain a verypoor representation of the scene. Traditionally, sparse approaches have been
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Figure 2.9: Density comparison. From left to right: sparse (Mur-Artalet al., 2015), semi-dense (Engel et al., 2014) and dense (Pizzoli et al.,2014).
used together with indirect techniques using corners as image features (Kleinand Murray, 2007). Recently, semi-dense approaches have been presented whichuse all pixels with high gradient magnitudes. These are not so computationallydemanding and estimate a fairly complete reconstruction. Similar to denseapproaches, it is usual to combine semi-dense methods with direct techniques(Engel et al., 2014). Fig. 2.9 shows a comparison of the obtained reconstructionfor different density techniques.When working with dense approaches, there are usually many pixels withouttexture information, such as points in a white wall. In this case, it is very commonto add a geometric prior into the formulation which connects pixels around a localregion. Typically, a planar or an smooth surface condition is applied (Conchaand Civera, 2015, Newcombe et al., 2011).
2.2.3 Filtering vs. Bundle Adjustment

The solution to a VSLAM problem involves finding the full maximum likelihoodwhich estimates the model parameters that maximize the probability of obtainingthe actual measurements. This framework grows every new frame and, thus,becomes quickly intractable in real-time. Typically, there are two possibilitiesto overcome this issue, filtering and bundle adjustment, that can be distinguishedin how they manage the problem structure internally. Fig. 2.10 illustrates theoverall problem and these two alternatives in the form of a graph. A more in-depthanalysis of these two techniques can be found in Strasdat et al. (2010), in whichthis section is inspired.
Filtering methods continuously update a joint probability distribution overall the selected parameters following the Kalman filter (Welch and Bishop, 2006).New measurements are inserted into the distribution with high uncertainty and
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Figure 2.10: Optimization comparison in the form of a graph. Thenodes Ti and yj represent the camera poses and the 3D positionof each feature respectively. Edges between nodes represent the 2Dimage measurements. Left: full VSLAM problem where all camerasand features are inserted into the optimization. Middle: sequentialfiltering where only the latest camera is retained. Since old camerasare removed, an statistical correlation is set between 3D features toavoid losing information. Right: windowed bundle adjustment whereonly a set of cameras and features are inserted into the optimization.(Strasdat et al., 2010)
contribute to reduce the uncertainty of the whole model. All cameras other thanthe current one are marginalized and removed from the state vector. This createsan statistical correlation between world features to avoid losing past informationand requires to fix their linearization (i.e. Jacobians are not re-evaluated). In thisway a compact representation is achieved that does not grow over time but thegraph quickly becomes fully interconnected. Consequently, filtering approachesscale poorly with the number of feature variables (O(m + n)3 where m is thenumber of cameras and n the number of features) as they require to storeand update a joint distribution over all the interconnected variables. Thus, theefficiency of filtering approaches is limited by the number of features in the map(Davison et al., 2007).

Bundle adjustment approaches retain all the information in the form of anon-linear objective function (Triggs et al., 2000). To handle the optimization inreal-time, only a small set of past cameras is retained (keyframes), typically inthe form of a sliding window of most recent cameras. The rest of cameras are keptfixed and do not contribute to estimates. In contrast to filtering, the resultingoptimization remains relatively efficient even if the number of features grows(O(m3+m2n)). However, bundle adjustment methods require to re-evaluate eachobservation whenever they are updated, which limits the number of observationsthat can be inserted into the model (Klein and Murray, 2007). Strasdat et al.(2010) concluded that bundle adjustment approaches achieve higher accuracy
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than filtering ones, specially for large problems where significantly more featuresare used.More recently, several works have been presented that mix both alternatives(Engel et al., 2016a, Leutenegger et al., 2015, Qin et al., 2018). These approachesuse a sliding window, where the bundle adjustment is performed, and marginalizeall the rest of parameters that leave the optimization window. In this way, theyhave the ability to summarize and take into account all the old information in themarginalized term while continuously updating a large number of parametersin the windowed optimization. As we show in the following section, using amarginalization strategy has further disadvantages that makes it unsuitable formaintaining a global map.
2.2.4 Odometry vs. Mapping

Odometry methods are only interested in estimating the camera location asaccurately as possible each time step. Although both localization and mappinggo hand in hand, odometry approaches neglect the quality of the map. Thismeans that they do not care about the map accuracy or its usage in real worldapplications, e.g. obstacle avoidance during navigation. Typically, odometryapproaches build a local map to precisely estimate the camera pose. To obtainthis, they use a sliding window with a marginalization strategy as presented inthe previous section, which maintains a lightweight optimization (Engel et al.,2016a, Leutenegger et al., 2015, Qin et al., 2018). The main drawback of odometryapproaches is that if the camera revisits already mapped areas, they cannot reusemap features as they are included in the marginalization term and they areforced to duplicate them. This causes motion drift and structure inconsistencies.However, in some applications, such as autonomous driving in a highway, thismay not be an issue as it is probable that we will not traverse two times thesame area and other sensors, such as GPS, could complement this task.
Mapping approaches on the other hand aim to estimate both the cameralocation and the structure as accurately as possible. They build a persistent mapand continuously process map feature re-observations. As a result, they reducethe drift in the estimates. Instead of using a sliding-window and marginalization,they retain old parameters fixed in the windowed bundle adjustment andselect active parameters according to covisibility criteria, i.e. cameras thatobserve several map features in common. This strategy allows Jacobians to bere-evaluated and, thus, they are able to reuse existing map information. Typically,
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mapping methods have been used together with indirect approaches since theycan correlate far away images and easily correct the accumulated drift due totheir good convergence properties (Klein and Murray, 2007, Mur-Artal et al.,2015, Strasdat et al., 2011).
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2.3 Discussion

Despite recent advances in this two kind of technologies, it is still challengingto adapt them to real applications. This section presents the main advantagesand drawbacks of the above technologies and provides the reasons why we haveselected or discarded each of them for this thesis.
Object recognition. This work is focused on object recognition in industrialenvironments. These are characterized by cluttered scenes with uncontrolledillumination changes and they usually contain objects with non-Lambertiansurfaces. Thus, it is very important to evaluate each technology in this situation.Markers provides a simple and accurate solution in real-time. However,these solutions require to adapt the environment. Besides, they are sensitive todirt and occlusions: they only work well when the markers are totally visibleby the camera. In fact, this is a common scenario in manufacturing, consideringthat hands and tools can easily occlude the working space.Texture-based methods are optimized for objects with patterned surfaceswhich are not usual in industrial environments. In contrast, geometry-basedapproaches provide a more robust solution but they fail with clutteredbackgrounds and require higher computational times. In our opinion, fusinggeometry-based approaches with a previous matching scheme could be the bestsolution. The matching step would provide an initial guess of the object locationand limit the search space only to its vicinity. As a result, the system would beable to skip many wrong object locations by searching locally around the initialguess using geometric-based techniques. It also would reduce the computationaltime due to the reduced search space. Note that the matching approach shouldalso be developed with geometric-based techniques in order to guarantee arobust performance under untextured environments.Regarding the training, it is very common to have access to the CAD modelof the target object and these are a rich source of distinctive geometric elementssuch as edges and corners that can help overcome the challenges of detectiondue to reflections. For example, a large number of man-made objects containrevolution elements such as holes or cylinders, which are easily identifiable inthis kind of environments and that are stable under changes of illumination.For these reasons, a model-based training would be more appropriate than an
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image-based one that requires the intervention of the user and usually relieson image features with descriptors.Finally, learning-based methods require very large datasets and cannothandle severe occlusions. They are very sensible to the training data whichcurrently limits their applicability out of controlled laboratory conditions.Although their results are impressive in many areas, their framework is still alimitation for a direct application in the industry, specially in small and mediumsize companies.
Visual SLAM. This thesis is also about developing VSLAM techniques toobtain not only an accurate localization of the camera but a useful 3Drepresentation of the environment too. From our point of view, this wouldextend the possibilities of VSLAM approaches to new applications, such as fullautonomous navigation with path planning, obstacle avoidance and collaborativecapacities.Direct techniques have proven to be an effective formulation for estimatingthe scene geometry and camera motion. They avoid all intermediate steps offeature detection and matching, and produce accurate geometry estimates evenin poorly textured scenes where indirect methods fail. Besides, since they do notrely on feature repeatability they can work with all image pixels that containmeaningful information such as edges and textured surfaces. As a result, directapproaches use higher density of features even with sparse algorithms andobtain a more complete representation of the 3D structure where the shape ofthe elements contained in the scene are more easily identifiable.In this context, bundle adjustment is a very efficient scheme to accuratelyestimate all the involved parameters and allows working with higher number offeatures than filtering techniques. Currently, the photometric bundle adjustment(PBA), i.e. bundle adjustment with direct techniques, has only been developedfor visual odometry. This is due to the fact that using a mapping schemewould include cameras and features distant in time and, hence, affected bythe estimation drift. As a result, PBA would not compensate the drift because ofthe small convergence radius of direct techniques. In this cases, a very commonalternative is to use a multiscale framework that may overcome this kind of issues.In addition, the lack of explicit feature matches makes it even more difficult toselect which cameras and features should be included in the photometric bundleadjustment as far in time cameras are not visually correlated in any way. Despite
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all these drawbacks, we believe in the potential of using a PBA with a mappingscheme to build an accurate and consistent global map.
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Technical Foundations





Chapter 3

Technical Foundations

A critical step in any computer vision application is understanding how the 3Dworld maps into the 2D image captured by a camera. Thus, before we startexploiting image data, we need to understand how 2D image pixels are relatedto the 3D world.In this thesis, a camera is represented as a 3D coordinate system in spaceand its corresponding image a 2D plane as defined in Fig. 3.1.
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zimage
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3D 
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Figure 3.1: Definition of coordinates systems involved in a camerasensor1.
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This chapter presents the notation and basic 3D computer vision conceptsused throughout this thesis. First, Sec. 3.1 and 3.2 establish the mathematicaltools used to represent the 3D scene geometry. Later, Sec. 3.3 explains howcamera sensors capture information from the 3D world and Sec. 3.4 presentshow the 3D geometry relates in different images. Finally, Sec. 3.5 introducesthe required optimization tools to accurately estimate all the involved geometryparameters.

3.1 3D Geometric Primitives

The real world contains elements with many different and complex shapes. In thecontext of computer vision, it is very common to simplify scene elements usinga more basic geometric representation. This section presents some of the mostcommon geometric primitives used in 3D computer vision.
3.1.1 Points

A point is the basic geometric entity representing a dimensionless object whoseonly attribute is its position in space. 2D points u ∈ R2 can be representedwith two coordinates u, v and we will use them to define pixel locations in theimage as
u = [uv] . (3.1)

A very common option to represent a point in a 3D space x ∈ R3 is to useCartesian coordinates as
x = xy

z

 . (3.2)
In principle, the capturing range of a camera sensor is not limited in depthand it is able to capture 3D points at infinity (points in the horizon). TheCartesian representation of points contains a discontinuity at z = ∞ whichmakes handling points close to the horizon more complex. As an alternative,

1Buda model obtained from http://graphics.stanford.edu/data/3Dscanrep/

http://graphics.stanford.edu/data/3Dscanrep/
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(Civera et al., 2008) propose to use the inverse depth, ρ = 1/z , given by

x = 1
ρ

mu
mv1
 , (3.3)

where m = [mu, mv ]T represents the projected coordinates of a 3D point (seeSec. 3.3.1). The inverse depth has the following useful properties:
• The inverse depth is continuous at z = ∞. This enables handling farpoints, i.e. point close to the horizon, which in some cases can providevery rich information about camera orientation.
• The inverse depth contains a discontinuity at z = 0, but this is a raresituation since those point should not be seen by a camera (see Fig. 3.1).
• The inverse depth representation produces a more linear observationmodel (Sec. 3.4.2). Thus, it suits optimization problems better (Sec. 3.5.5)provinding faster convergence rates.
• If we fix the location of a pixel, the inverse depth allows to representa 3D point with just one parameter which reduces the dimension of theoptimization problem.
If we use the last property and fix the pixel location, this representationrequires to associate each point to a reference frame (usually the first one inwhich it was observed). As a result, using an inverse depth representation ofpoints limits the management of points and cameras separately. If we want totreat points and cameras independently, we need to transform points back toCartesian coordinates.Besides, note that the Eq. 3.3 contains a discontinuity at ρ = 0, whichcould make the reader think that, after all, we will still have the same issue aswith Cartesian coordinates. However, Sec. 3.4.2 presents an elegant solution toobtain a linear mapping function between two camera views using the inversedepth and exploit all the positive characteristics described above. The inversedepth parameterization will be used in the proposed visual SLAM method ofChapter 5.
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Finally, we define the (̄·) operator to express a point in homogeneouscoordinates given by

x̄ =

x
y
z1
 and ū = uv1

 , (3.4)
which is going to be useful for many operations such as rigid bodytransformations.
3.1.2 Lines

2D lines can be represented using a normal vector perpendicular to the line
n = (nu, nv )T and the distance d to the origin. Any point u in the line is givenby

uTn + d = nuu+ nvv + d = 0. (3.5)
The normal vector can also be expressed using polar coordinates as n =(cos θ, sin θ)T where θ is the angle with respect to x-axis.3D lines can be represented using two auxiliary points p, q that belong tothe line. Any point in the line can be obtained as a linear combination of thesetwo points as

l = (1− λ)p + λq. (3.6)
Note that this representation has six DoF (three for each point), while linesin 3D space only have four. To overcome this problem many other alternativeshave been proposed. However, their presentation is out of the scope of this thesis.The interested reader can find further about them in chapter 3 of Hartley andZisserman (2004).

3.1.3 Planes

3D planes can be represented using the normal vector to the plane n =(nx , ny, nz)T and the distance d to the origin. Any point x in the plane mustfollow:
xTn + d = nxx + nyy+ nzz + d = 0. (3.7)
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Figure 3.2: Ellipse definition: a and b are the major and minorsemi-axis lengths, θ the ellipse orientation relative to the x axis and(x0, y0) the coordinates of the ellipse center.
Similar to 2D lines, the normal vector can be expressed relative to twoangles θ, φ using spherical coordinates.

3.1.4 Conic Sections

Conics result from the intersection of the surface of a cone with a plane. A conicsection can be represented using a quadratic equation as
Ax2 + Bxy+ Cy2 + Dxz + Eyz + Fz2 = 0 (3.8)

or in matrix form as
[
x y z

]  A B/2 D/2
B/2 C E/2
D/2 E/2 F

xy
z

 = xTQx = 0. (3.9)
Conic sections can be classified in three different types depending on thevalue B2 − 4AC :
• if < 0 is a hyperbola,
• if = 0 is a parabola, and
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• if > 0 is a ellipse,
Circles are a special case of an ellipse when A = C and B = 0. In thisthesis, ellipses and circles are used as robust geometric features for objectrecognition and pose estimation in Chapter 4. For a ellipse defined as in Fig.3.2, the coefficient values are given by

A = b2 cos2 θ + a2 sin2 θ,
B = 2(b2 − a2) sin θ cos θ,
C = b2 sin2 θ + a2 cos2 θ,
D = −2Ax0 − By0,
E = −2Cy0 − Bx0,
F = Ax20 + Bx0y0 + Cy20 − a2b2.

(3.10)
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3.2 Rigid Transformations

In this work, we consider the case of a camera moving in space. In thiscase, the same 3D elements can be observed from different viewpoints. Afterpresenting how 3D world elements are represented mathematically, we canproceed to establish the geometric transformations of those elements betweendifferent camera views (see Fig. 3.3). This section presents how the position andorientation of world elements can be established relative to each viewpoint. Forsimplicity, we will use points but the formulation can be easily extendable toother geometric primitive forms (Hartley and Zisserman, 2004).

ci

cj

Tji

x

ui

uj

Figure 3.3: Relative representation of 3D geometry.
Given two cameras, the 3D coordinate transformation from camera i to j canbe expressed using a 4× 4 matrix representation as

Tji =
 R t

0 0 0 1
 , (3.11)

where R ∈ R3×3 is the relative rotation matrix from the special orthogonalgroup SO(3) and t ∈ R3 is the relative translation vector. As a result, the relative
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transformation Tji is from the the special Euclidean group SE (3) with an overallof 6 DoF (3 for rotation and 3 for translation). The inverse transformation Tij isdefined as

Tij = T−1
ji =

 RT −RT t

0 0 0 1
 . (3.12)

In this thesis we will solve different numerical problems that involveestimating the parameters of SE(3) transformations, such as the pose of 3Dobjects or a moving camera. In the case of using a matrix representation, itmeans that we have to estimate 12 parameters (9 for the rotation and 3 fortranslation) with only 6 DoF, which is a clear over parameterization. In the restof this section, we will present different parameterization solutions that simplifyoptimization problems with a better representation (less parameters).
ci

cj

ck

Tji

Tjk

TkiFigure 3.4: Rigid transformations between different poses of a movingcamera.
Finally, we define the composition operator � which transforms the relativecoordinates of a given 3D point x or concatenates two transformations as (seeFig. 3.4)

xj = Tji � xi, (3.13)
Tji = Tjk � Tki. (3.14)

Using the matrix representation of the Eq. 3.11, the composition is directlyachieved as a matrix-vector multiplication or matrix-matrix multiplication as
x̄j = Tji · x̄i → xj = R · xi + t, (3.15)

Tji = Tjk · Tki. (3.16)
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3.2.1 Euler Angles

A 6D pose can be represented using Euler angles and a translation vector.These angles are the minimal representation of a pose orientation with only3 parameter: yaw α , pitch β and roll γ . The geometrical representation of theangles is shown in Fig. 3.5. Thus, the full pose is defined with only 6 parametersas
ξ = [α, β, γ, tx , ty, tz]T (3.17)

x

y

z

yaw α

pitch β

roll γ

Figure 3.5: A common convention for the Euler angles.
There are many alternatives on how these angles are sequentiallyconcatenated to form the final orientation R. One of the most common optionsis to first apply yaw (around Z axis), then pitch (around Y axis) and finally roll(around X axis). As a result, the rotation matrix is given by

R = Rx (γ) Ry(β) Rz(α), (3.18)with
Rz(α) = cos α − sin α 0sin α cos α 00 0 1

 (3.19)
Ry(β) =  cos β 0 sin β0 1 0

− sin β 0 cos β
 (3.20)

Rx (γ) = 1 0 00 cos γ − sin γ0 sin γ cos γ
 (3.21)
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One of the main drawbacks of the Euler angles is that they suffer fromsingularities. In certain configurations, e.g. when pitch approaches ±90◦, therepresentation looses a DoF (Gimbal Lock). This means that for some specificconfigurations there is not a unique solution of a triplet of angles. This isunsuitable for optimization since we may move along the set of degeneratedsolutions and get stuck. Thus, the Euler angles representation requires to detectand handle these situations individually. For this reason, this representationhas been discarded from this thesis since there are more suitable alternativesdescribed below.

3.2.2 Quaternions

As an alternative, a 6D pose can be expressed with a quaternion and atranslation vector. In contrast to Euler angles, quaternions do not suffer fromsingularities but they are represented with 4 parameters, giving a 6D poserepresentation with 7 parameters as
ξ = [qx , qy, qz , qw , tx , ty, tz]T , (3.22)

where the quaternion is always normalized to unit length q2
x+q2

y+q2
z+q2

w = 1.Therefore, a quaternion has only three independent parameters and it can also berepresented with three parameters plus the unit length constraint. The rotationmatrix associated to a quaternion is given by
R =  1− 2(q2

y + q2
z ) 2(qxqy − qzqw ) 2(qxqz + qyqw )2(qxqy + qzqw ) 1− 2(q2

x + q2
z ) 2(qyqz − qxqw )2(qxqz − qyqw ) 2(qyqz + qxqw ) 1− 2(q2

x + q2
y)
 . (3.23)

The main drawback of quaternions arise during numerical optimizations. Inthese situations, the representation may drift from the unit length constraintand, consequently, a normalization is required each few iterations (or aftera relative big increment is estimated). In this thesis, 6D poses will beinternally represented as quaternions since it is a very compact and efficientrepresentations for pose composition (Eq. 3.13 and 3.14). However, otherparameterization based on Lie groups (Sec. 3.2.3) will be used to representrotations during optimizations.
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Figure 3.6: Lie group SE (3) and Lie algebra se(3) representation.

3.2.3 Lie Groups and Lie Algebra

As mentioned earlier, a 6D pose belongs to the special Euclidean group SE(3)which is a Lie group. During numerical optimization problems is very commonto exploit the mathematical properties of Lie groups to represent 6D poses. Thissection does not present Lie groups in detail but the required tools to apply theirtheory to optimization problems. A more in-depth introduction to Lie groups canbe found in (Varadarajan, 1984).A Lie group is a smooth manifold where the product and inverse operationsare smooth functions. Every Lie group has an associated Lie algebra, which isthe tangent space around the identity element of the group (see Fig. 3.6). Anytangent vector is given by the linear combination of the basis elements of theLie algebra, which are called generators. In the case of the Lie group SE(3), itscorresponding Lie algebra se(3) is given by
se(3) = {ωxG1 + ωyG2 + ωzG3 + txG4 + tyG5 + tzG6}, (3.24)

where ω = [ωx , ωy, ωz]T ∈ R3 represent the rotation coordinates from so(3) and
t = [tx , ty, tz]T ∈ R3 the translation coordinates, with a total of 6 parameters:

ξ = [ωx , ωy, ωz , tx , ty, tz]T . (3.25)
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The generators are expressed as

G1 =


0 0 0 00 0 −1 00 1 0 00 0 0 0
 G2 =


0 0 1 00 0 0 0
−1 0 0 00 0 0 0

 G3 =


0 −1 0 01 0 0 00 0 0 00 0 0 0


G4 =


0 0 0 10 0 0 00 0 0 00 0 0 0
 G5 =


0 0 0 00 0 0 10 0 0 00 0 0 0

 G6 =


0 0 0 00 0 0 00 0 0 10 0 0 0


In addition, we define the exponential map of a Lie group as the functionthat converts elements from the algebra to the manifold. Its inverse, the logarithmmap, converts elements from the manifold to the algebra (see Fig. 3.6) as
exp : se(3)→ SE (3) (3.26)

log : SE (3)→ se(3) (3.27)
The closed-form expression for the exponential map is given by

exp(ξ) = [eω̂ Vt0 1 ]

eω̂ = I3 + sin θ
θ ω̂ + 1− cos θ

θ2 ω̂2

V = I3 + 1− cos θ
θ2 ω̂ + θ − sin θ

θ3 ω̂2
θ = |ω|,

(3.28)



Section 3.2. Rigid Transformations 51
where the hat operator (̂·) corresponds to the skew-symmetric matrix of thevector. The closed-form expression for the logarithm map is given by

log(T) = [ωt′]

ω = ln(R)∨ = θ2 sin θ · (R − RT )∨
t′ = V−1t

V−1 = I3 − 12 ω̂ + 1
θ2
(1− θ2 tan(θ/2))ω̂2

θ = arccos( tr(R)− 12 )
,

(3.29)

where R and t are the rotation matrix and translation vector of the SE (3) pose,and the vee operator (·)∨ is the inverse of the hat map.Following the notation of Eq. 3.14 the composition of a rigid transformation
T ∈ SE (3) with a tangent vector ξ ∈ se(3) is directly estimated using theexponential map as

ξ � T = exp(ξ) · T. (3.30)
This representation provides the optimal space in which to representdifferential quantities on a rigid transformation, such as derivatives oruncertainty. Thus, it is a very appropriate parameterization for numericaloptimizations. The most important properties of the tangent space are:
• The tangent space is a vector space with the same dimensions as thenumber of DoF of the group, thus, providing a minimal representation.
• The exponential map exactly maps elements from the tangent space se(3)to the group SE(3). Thus, we can estimate incremental updates thatmaintain the final state in the manifold.
• The adjoint linearly and exactly maps elements from one tangent spaceto another, which simplifies many operations.
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In this thesis the Lie algebra is used throughout all the rigid transformationoptimizations. The implementation in C++ of all the above functions are freelyavailable in the open-source library Sophus2, which is used in this thesis.

Adjoint

The adjoint transforms elements from one tangent space to another. The mostimportant property of the adjoint is that the transformation is linear and exact,which guarantees that the tangent space has the same structure at all pointson the manifold. Given a transformation T and a tangent vector ξ , the adjointrepresentation AdjT is defined aŝ
AdjT · ξ = T · ξ̂ · T−1. (3.31)

Taking the exponential map on both sides of the Eq. 3.31 we get to theexpression:
T · exp(ξ) = exp(AdjT · ξ) · T, (3.32)which is a direct application of the adjoint that transforms an algebra elementfrom the right tangent space to the left tangent space of T. The adjointrepresentation of a SE(3) transformation is given by
AdjT = [R t̂ · R0 R

]
∈ R6×6. (3.33)

In this thesis the adjoint is used to simplify the jacobian expressions in theproposed visual SLAM approach (App. C), but it has many other uses such aspose uncertainty propagation (Engel et al., 2014).
Jacobians

Another advantage of Lie representation is that jacobian expressions aresimplified. Following the Eq. 3.24, the Lie algebra is defined as the coefficientsof the linear combination of the group generators. Thus, the jacobian of a Liegrop element with respect to its algebra around zero is directly given by thegroup generators as
∂T
∂ξ

∣∣∣∣
ξ=0 = ∂exp(ξ)

∂ξ

∣∣∣∣
ξ=0 = [ G1 | . . . | G6 ] . (3.34)

2https://github.com/strasdat/Sophus

https://github.com/strasdat/Sophus
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where [·| . . . |·] represents the complete jacobian with all the partial derivativesstacked in matrix form.This property allows us to easily obtain the partial derivatives of a pointtransformation with respect to its algebra. This can be done by differentiatingthe equation x̄j = Tji · x̄i (Eq. 3.13) with respect to a small increment composedto Tji around zero as

∂(exp(ξ) · Tji · x̄i)
∂ξ

∣∣∣∣
ξ=0 = [ G1x̄j | . . . | G6x̄j

]
= [ I3 −x̂j

]
∈ R3×6.

(3.35)
Note that we have used the left-composition convention, but similarly theright-composition could be used using the adjoint of T:
∂(Tji · exp(ξ) · x̄i)

∂ξ

∣∣∣∣
ξ=0 = ∂(exp(AdjTji · ξ) · Tji · x̄i)

∂ξ

∣∣∣∣
ξ=0

= ∂(exp(ξ ′) · x̄j )
∂ξ ′

∣∣∣∣
ξ ′=0

∂exp(AdjTji · ξ)
∂ξ

∣∣∣∣
ξ=0

= [ G1x̄j | . . . | G6x̄j
]
· AdjTji

= [ I3 −x̂j
]
· AdjTji ∈ R3×6.

(3.36)
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3.3 Image Formation

The sensor of a camera captures the light energy coming from the surfaces ofthe objects of the 3D world as a 2D discretized image, where each element, orpixel, integrates the amount of energy during the exposure time. This process,also known as image formation, explains the principle from which the irradianceof a 3D surface point is mapped into a 2D image pixel intensity value.The camera calibration is the pre-processing step by which the internalparameters of a camera that take part in the image formation processare estimated. We can distinguish two parts in the calibration process: (1)the geometric calibration which estimates the parameters involved in thetransformation of a 3D point into a pixel location in the image plane; (2) the
photometric calibration which estimates the parameters that describe how theemitted energy by scene surfaces is transformed into pixel intensity values. Fig.3.7 shows an schematic representation of the different elements involved in theimage formation process.
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Figure 3.7: Image formation process. Inspired by (Newcombe, 2012)

3.3.1 Geometric Calibration

The geometric calibrations describes the model by which the 3D world isprojected onto the image plane. In this work, we will only discuss central cameramodels, this is, models where all light rays intersect in a unique point, theprojection center. The perspective projection is one example of central camerabecause all light rays intersect in the camera center.Real cameras require sufficient light to capture the scene information. Thisis obtained modifying the aperture of the optics, which is the opening areathrough which the light travels. The non-zero aperture violates the centralcamera assumption and, as a result, the central model is never completely
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Figure 3.8: Geometric projection involved during the image formationprocess.
fulfilled in practice. However, the aperture value is usually very small and thecentral model accurately models real cameras.Generally, we define Θ ⊂ R3 as the set of 3D points x with a valid projectionon a camera and Ω ⊂ R2 the image domain in pixels. Given a 3D point x =(x, y, z)T ∈ Θ in a camera coordinates, we define the central projection functioninto the 2D image plane π(x) : Θ→ R2 as

π(x) = [mu
mv

] = m, (3.37)
where the close-form expression depends on the selected camera model.Once we project a 3D point onto the image plane, we must transform theresulting coordinates to pixels and their relative position of the image plane tothe origin as shown in Fig. 3.8. This can be achieved by the intrinsic calibrationmatrix K : R2 → Ω. Using homogeneous coordinates it is given by

ū = Kπ(x) = Km̄ = fumu + cu
fvmv + cv1

 = uv1
 , (3.38)

with
K = fu 0 cu0 fv cv0 0 1

 , (3.39)
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Figure 3.9: Pinhole camera model.
where f = [fu, fv ]T stands for the sensor focal lengths in pixels, cu, cv denotethe optical center projection in pixels, also known as principal point, and u =(u, v )T ∈ Ω the projected point in pixels. The focal length transforms pointcoordinates to pixel units and the principal point changes the origin to theupper left corner.Note that when projecting a point, we loose the z dimension. Thus, the 3Dcoordinates of the point cannot be recovered directly. However, we can definethe inverse projection function (unprojection) π−1(m) : R2 → S2 which definesthe ray by which all points are projected to these image coordiantes. The 3Dcoordinates are back-estimated for points with known depth z as:

x = z · π−1(m) = 1
ρ · π

−1(K−1u), (3.40)
where K−1 is expressed as

K−1 = 1/fu 0 −cu/fu0 1/fv −cv /fv0 0 1
 . (3.41)

Pinhole Model

The ideal perspective projection is modeled using the pinhole camera model. Fig.3.9 shows a geometric representation of the pinhole projection. The projectionof a 3D point onto the image plane can be obtained by dividing the pointcoordinates by their z component as
πp(x) = 1

z

[
x
y

]
, (3.42)
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which is defined for Θ = {x ∈ R3 | z > 0}. Its inverse is given by

π−1
p (m) = mu

mv1
 . (3.43)

This model assumes a linear projection function between the 3D world andthe 2D image plane. This implies that straight lines in the world remain asstraight lines in the image. However, real world lenses do not obey the linearmodel and contain non-linear distortions, specially wide-angle and fisheyelenses. The latter increase the field-of-view by introducing significant distortionto the image, which is easily appreciable in the image by the curvature in theprojection of straight lines (see Fig. 3.10).A frequent approach to solve this is to apply a non-linear function to thepinhole-based projected point m and then multiply it by the camera intrinsicmatrix K. However, implemented in this manner it has a singularity at z = 0,which makes it unsuitable for cameras with a field-of-view close or larger than180◦. In these cases, the non-linear distortion should be taken into accountinside the projection function, which implies an independent implementation tothe pinhole model. This reasoning is appreciable in the wide-angle and fisheyemodels presented in the App. A.
3.3.2 Image Undistortion

In many computer vision applications it is convenient to remove the geometricdistortion from the input image and simplify subsequent operations using asimpler model, such as the pinhole one. This is normally estimated in apre-processing step using image undistortion techniques, which find the warpedimage that fits the new projection model. In the rest of this thesis, we will use thepinhole model and, unless stated otherwise, assume all images to be undistorted.Consequently, before we apply any of the proposed approaches, applying thefollowing undistortion technique to the input image will be required.Given an input image I with its geometric calibration K and π(x), therectified image Ir is obtained finding for each pixel in the rectified image urthe corresponding pixel location in the original one u. This can be efficientlydone unprojecting each pixel from Ir with the output pinhole model and projectingonto the input image I as
u = Kπ(π−1

r (K−1
r ur)). (3.44)



58 Chapter 3. Technical Foundations

Figure 3.10: Image undistortion. Top left: the original distorted imagewhere straight lines in the world are projected as curves. Top right: theundistorted image will all the pixels from the original one. It containsmany invalid pixels shown in black but straight lines in the worldremain as straight lines in the image. Bottom: the undistorted imagecropped to fit the maximal square area with valid pixels.
Then the rectified image intensity values are estimated using aninterpolation function f (I, u) over the input image as follows:

Ir [ur ] = f (I, u), (3.45)
where usually a bilinear interpolation function is used.The undistorted image may contain pixels that were outside of theboundaries of the original image (see Fig. 3.10) and, thus, the output imagehas to be cropped. Normally, the output projection function is selected such themaximum valid image area is covered. Note that the output image might containinterpolation artifacts, such as blurring and aliasing. Thus, it is essential to selectthe most suitable projection and interpolation models for each case. Finally, itis not advisable to apply undistortion techniques to wide-angle lenses sincethe field-of-view is reduced significantly due to cropping. In theses cases, it isrecommended to include the projection model into the mathematical formulationof the algorithm and preserve the advantages of using this kind of lenses.
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3.3.3 Photometric Calibration

The photometric calibration describes how the energy emitted by a surface point,also known as irradiance, is mapped into the observed pixel intensity value. Thephotometric capturing process makes the same surface point be observed withdifferent pixel intensity values, for example, due to the exposure time changes.Indirect methods normally ignore the photometric model of the sensor sincefeature detectors are usually invariant to variations in intensity. Consequently,they do not require any photometric correction to associate points fromdifferent images. On the contrary, direct approaches make use of the so calledphoto-consistency assumption, which states that a surface point is observedwith the same color from different viewpoints. Thus, they require to transformpixel intensity values to measurements independent of the photometric capturingprocess.Assuming a scene composed of Lambertian surfaces with a constantillumination, we can consider the irradiance of each point consistent in time. Forthis reason, the irradiance can be used as a direct measurement to associatepoints over different frames. Given a projected surface point u, its irradiance B(u)can be estimated from its pixel intensity value I [u] as
I [u] = G(tV (u)B(u)), (3.46)where:

• The exposure time t controls the amount of light that reaches theimage sensor. For example, when the scene ligh level is low, a longerexposure time is required to guarantee enough information is captured,and vice-versa. In many cameras this value is adaptable or even automatic.• The lense vignetting V is the brightness attenuation towards the imageperiphery (Szeliski, 2010).• The response function G is the non-linear physical response of the sensorthat maps irradiance values to intensity ones (Debevec and Malik, 1997).It also models other user defined operations such as gamma correction.
In this thesis, we will only compensate the automatic exposure changes,but the complete photometric model could also be included as a pre-processingstep. A more detailed explanation of the photometric calibration can be found in(Engel et al., 2016b).
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3.4 Multiple View Geometry

This section presents the intrinsic geometry that is behind multiple cameraviews. We will start from the simple two-view case and extend the formulationto multiple cameras at the end of this section. Since the following techniques areextensively used in computer vision problems, we will not provide an in-depthexplanation of their mathematical background which can be found in (Hartleyand Zisserman, 2004).
3.4.1 Epipolar Geometry

The epipolar geometry is the intrinsic projective geometry between two cameraviews, which can be obtained from a stereo system or from a moving camera.For simplicity, we will consider a monocular camera moving relative to a scenewith already calibrated intrinsic parameters.Given two cameras with a known relative pose Tji, we define the epipolargeometry as the intersection of the image planes with the set of planes with theline that joins the camera centers (baseline) as axis. Consequently, the epipolargeometry only depends on the relative pose (Sec. 3.2) and the projective model(Sec. 3.3) between the two cameras. Fig. 3.11 shows an specific example wherea 3D point x constraints the epipolar plane. In the epipolar geometry we candistinguish the following elements:
• The epipole, e, is the point of intersection of the line that joins the cameracenters with the image planes. It can also be seen as the projection of onecamera center in the image plane of the other camera.
• An epipolar plane is a plane from the family of planes containing thebaseline. If it is constrained with a 3D point, the plane is unique.
• An epipolar line is the line intersection of the epipolar plane with theimage planes. All the epipolar lines intersect in one point, the epipole.
It can be seen in Fig. 3.11 that for each pixel location ui in one image,there is a corresponding epipolar line in the other image. As a consequence, ifwe want to obtain the corresponding pixel uj we only need to search along theepipolar line rather than the entire image. This is a very useful property of the



Section 3.4. Multiple View Geometry 61

ci cj
baseline

x

ei

ujui

ej

epipolar
plane

epipolar
lines

TjiFigure 3.11: Epipolar geometry
epipolar geometry that we will exploit in the proposed visual SLAM approachof Chapter 5 to find pixel point correspondences between images.The correlation that maps a point in one image to a corresponding epipolarline in the other image is mathematically expressed as the fundamental matrix
F ∈ R3×3. Given a pair of corresponding image pixels ui and uj , the mappingcondition is given by

ūTi · F · ūj = 0. (3.47)
This is the most basic property of the fundamental matrix. Importantly, itstates that it is possible to relate pixel points from two camera views withoutany knowledge of the cameras calibration and position, just the fundamentalmatrix. As a result, it can be computed up to scale directly from pixel pointcorrespondences (in general at least 7). The details of the fundamental matrixcalculus can be found in the chapter 11 of (Hartley and Zisserman, 2004).Another option is to use the essential matrix E when the calibration of thecameras is already known. In this case, the relationship between the fundamentalmatrix and the essential matrix is given by

E = KT · F · K. (3.48)
Similar to the fundamental matrix, the essential matrix can be estimatedfrom pixel point correspondences (in general at least 5) and the calibration
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matrix K. The essential matrix can be estimated up to scale using the five-pointalgorithm in (Nistér, 2004). Once the essential matrix is known, we can recoverthe relative pose between the two camera views up to scale and a four-foldambiguity. However, it is easy to decide the correct solution by selecting theoption with the largest number of points in front of both cameras. This test isalso known as cheirality test.The fundamental and essential matrices are very useful when workingdirectly with pixel points. Thus, it is a very efficient way of obtaining the initialrelative pose (up to scale) between consecutive images in a monocular systems,where we initially miss the 3D structure. Once we have recovered the 3D motion,we can estimate the 3D structure by triangulation. In this thesis, we will usethe essential matrix to initialize the proposed monocular visual SLAM approachof Chapter 5 from an input video sequence.However, in this thesis we are interested in recovering the 3D structure ofthe scene. Consequently, we will work with 3D primitives rather than 2D pixelpoints in the image. The mapping function of a pixel point with known depth zfrom one image to the other using Cartesian coordinates is given by

uj = K · π(Tji · x̄i) = K · π(R · xi + t), (3.49)
with

xi = z · π−1(K−1ui). (3.50)
Apart from the definition given before, the epipolar line can also beunderstood as the projection of the optical rays of one camera in the imageplane of the other camera. As a result, using the Eq. 3.49 it is possible totraverse the epipolar line with a 1-dimensional search varying the values of thepoint depth z .

3.4.2 Inverse Depth Mapping

Previously, in Sec. 3.1, we have discussed that using Cartesian coordinatescomplicates the management of points at infinity. In contrast, the inverse depthprovides a better representation with continuous values for z > 0. Using theinverse depth, the pixel mapping formulation of the Eq. 3.49 is transformed to:
uj = K · π(R · 1ρ · π−1(K−1ui) + t). (3.51)
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However, although ρ = 1/z is continuous for z > 0, the Eq. 3.51 contains adiscontinuity for ρ = 0→ z =∞. Thus, the question is: why are we using theinverse depth? Luckily for us, we can scale the whole problem by ρ and obtaina linear expression in inverse depth as

uj = K · π(R · K−1ui + ρ · t), (3.52)
where the final pixel location uj is the same as in the original case. As aresult, the Eq. 3.52 maps pixels from one camera to another using a lineartransformation in inverse depth. This formulation allows to exploit all the benefitsof the inverse depth (Sec. 3.1) with a linear observation model which suits betterfor optimization problems (Sec. 3.5.5). In this thesis, we will extensively use thisformulation in the proposed visual SLAM approach of Chapter 5.
3.4.3 Bundle Adjustment

We have already seen that the epipolar geometry from the two-view case isenough to recover the structure and motion. However, the estimation of the3D geometry is a chicken-and-egg problem where the structure is required toestimate the motion and vice-versa. As a consequence, the two-view solution isconditioned by projective geometry ambiguities which lead to inaccurate results.The bundle adjustment (BA) provides a more accurate solution by jointlyestimating the structure and motion from multiple views. Its name refers to the
bundles of rays connecting camera centres to 3D features, which are adjustedoptimally with respect to both the structure and camera pose parameters (Triggset al., 2000). Fig. 3.12 shows a scheme of a traditional BA problem with threecameras and a single 3D point.The BA problem is formulated as a non-linear least squares optimization.Starting from and initial solution, which is commonly provided by the two-viewepipolar geometry, the BA iteratively refines the structure and motion parametersby minimizing a certain cost function. Overall, the cost function quantifiesthe error between the observed and predicted feature measurements. We candistinguish two types of BA formulations: (1) the geometric BA (GBA) – themost traditional one – that minimizes the reprojection error between the imagelocations of observed and predicted image points; (2) the photometric BA (PBA)that minimizes the intensity error between the image pixels of observed andpredicted image points. In the GBA when the predicted location gets closer tothe observed one, the error is reduced. However, in the PBA this may not happen
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Figure 3.12: Geometric bundle adjustment example with orange andblue squares representing predicted and observed image locationsrespectively. The minimized reprojection error is represented as a redarrow in the image plane.
due to the fact that images are highly non-linear. As a result, the convergenceradius of the PBA is quite small, around 1-2 pixels (Engel et al., 2016a), meaningthat the initial parameters should be close to the solution.In general, given a set of observations obsi and their corresponding predictedvalues predi(ζ) with respect to motion and structure parameters ζ , the BAobjective function is formulated as

f (ζ) = 12 n∑
i=1 (obsi − predi(ζ))2, (3.53)

which can be solved using non-linear optimization techniques such as theones presented in Sec. 3.5. It is very common to use the Levenberg-Marquardtalgorithm presented in Sec. 3.5.3 with a robust influence function described inSec. 3.5.4 to take into account the presence of outliers.Furthermore, the observations are usually independent from each otherand, thus, point parameters are not correlated. This property provides a sparsestructure of the problem, which can be exploited to solve the BA problem faster.Fig. 3.13 shows the sparse structure of the hessian matrix when camera andpoint parameters are ordered. As can be seen, the point block is diagonal and,hence, easily invertible. The Schur complement (Sec. 3.5.5) takes advantage ofthis sparsity, also called primary structure, to obtain a reduced problem with only
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Figure 3.13: Sparsity of the hessian structure in a bundle adjustmentproblem. Camera pose blocks are represented in blue, point locationblocks in orange and camera-point blocks in green. The greycolour indicates the fill-in that occurs when the structure points areeliminated using the Schur complement trick.
the camera parameters. As a consequence, a fill-in occurs in the camera poseblock. However, the reduced problem is much faster to solve than the originalone, specially with large scale problems with thousands of points.It is important to note that all the measurements in a BA problem arerelative. This means that if we move all cameras and points with the same rigidtransformation, we get exactly the same cost function value. Consequently, thereare six DoF that we cannot observe (gauge freedom), i.e. the absolute pose. Tohandle this situation, it is very common to fix the pose of one camera, e.g. thefirst camera pose. This trick allows us optimize the rest of camera and pointparameters while maintaining the absolute pose of the whole problem fixed.Furthermore, if we are working with a monocular system there is still oneDoF that we cannot observe, i.e. the problem scale (absolute distance). Thisis due to the fact that a camera is an angular measuring sensor that does notmeasure distances (see Fig. 3.14). One possible solution is to use a stereo systemwhere the baseline between both cameras is known and the absolute distancecould be observed. However, similar to the absolute pose, there is still an scaleambiguity when we jointly estimate the motion and structure parameters. Acertain BA problem and its corresponding scaled counterpart give exactly thesame cost function value. As a result, the solution may drift in the scale directionif we do not fix the gauge freedom. Another common solution, is to fix several
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Figure 3.14: A monocular camera measures angles and, thus, it isimpossible to distinguish if a camera has moved from black to greenposition or from black to blue position. Consequently, the absolutescale is unobservable. Inspired by (Strasdat, 2012)
cameras which defines a fixed relative scale during optimization, e.g. the firsttwo camera poses.In this thesis, we will include a monocular PBA in the proposed visual SLAMapproach (Chapter 5) and we will show how to increase its convergence radiuswith a multiscale formulation. Besides, we will increase the robustness of theoptimization to outliers using a probabilistic formulation. Finally, we will applyall the described implementation tricks to efficiently solve the problem equationsand remove the gauge freedoms.
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3.5 Non-linear Least Squares

In many computer vision and robotics problems the solution is estimated as theminimum of an objective function f (ζ) with respect to some model parameters
ζ . In this thesis, we extensively use non-linear least squares optimizations toestimate different model parameters, such as camera poses, formulating bothgeometric and photometric cost functions. This section presents the optimizationfundamentals required to solve non-linear least squares problems independentlyof the cost function type since the same optimization techniques can be appliedin both cases.In non-linear least squares problems, the objective function is of the form:

f (ζ) = 12 n∑
i=1 r

2
i (ζ), (3.54)

where each ri(ζ) is a non-linear cost function and ζ the cost function arguments.By minimizing this function f (ζ), we estimate the values of the parameters ζ thatbest fit the model of the data. The above expression can also be expressed invectorized form as
f (ζ) = 12 || r(ζ) ||22, (3.55)

where r(ζ) = [r1, . . . , rn] is the stacked cost vector and || · ||2 de L2 norm.In general, we cannot guarantee to find a global minimum, so we are forcedto find a local minima in the vicinity of an initial guess ζ (0). In practice, estimatinga closed-form solution to the cost function is usually too complicated and mostoften impossible, so it is locally approximated using the Taylor expansion aroundthe current model parameters ζ . As a consequence, we are usually not ableto estimate the exact minimum and we need to iteratively improve the initialparameters until convergence:
ζ (t+1) = δζ (t) + ζ (t), (3.56)

where δζ (t) is the estimated increment that reduces the cost function.The rest of this section presents various alternatives to solve the optimizationproblem, which differ in the way they approximate the cost function (Hartleyand Zisserman, 2004). Besides, we also explain several mathematical tricks toimprove both the solution quality and the computational performance (Nocedaland Stephe, 2006, Triggs et al., 2000).
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3.5.1 Newton’s Method

The Newton’s method approximates the objective function f (ζ) from the Eq. 3.55using the second-order Taylor expansion as
f (ζ + δζ) ≈ f (ζ) + gT δζ + 12δζTHδζ, (3.57)

where g = ∂f (ζ)
∂ζ is the gradient vector and H = ∂2f (ζ)

∂ζ2 is the Hessian matrix. Theminimum of the quadratic function is calculated equating the derivatives to zeroas
δζ = −H−1g, (3.58)where δζ is the Newton step. The Newton’s method is given by iterating theNewton step. Assuming that H is positive definite, the solution can be estimatedusing linear algebra, e.g. Cholesky decomposition. The gradient and the Hessianof f (ζ) can be expressed in term of the Jacobian J(ζ) = ∂r(ζ)

∂ζ as
g = ∂f (ζ)

∂ζ = J(ζ)T r(ζ), (3.59)
H = ∂2f (ζ)

∂ζ2 = J(ζ)T J(ζ) + r(ζ)∂2r(ζ)
∂ζ2 . (3.60)

If the function is quadratic, Newton’s method converges in one iteration.However, Newton’s method requires the function to be twice differentiable, whichis not always possible. Besides, the derivative expressions of H could be verycomplicated for complex cost functions and computationally inefficient. If theresiduals are close to linear (i.e. ∂2r(ζ)
∂ζ2 is small) or small (i.e. r(ζ) is small) theHessian can be simplified using an approximated value. The following methodsexploit this property from the Hessian matrix.

3.5.2 Gauss-Newton Method

The Gauss-Newton method is extensively used in computer vision due toits simplicity. It takes the previous structural properties of the Hessian intoconsideration and drops the second term. This gives the Gauss-Newtonapproximation to the least squares Hessian
H ≈ J(ζ)T J(ζ), (3.61)
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which gives the following linear system, also known as normal equations:

J(ζ)T J(ζ)δζ = −J(ζ)T r(ζ). (3.62)
This equations are only an approximation of the second-order Taylorexpansion and can also be obtained linearizing the residual r(ζ) instead of

f (ζ) (Nocedal and Stephe, 2006):
f (ζ + δζ) ≈ 12 || r(ζ) + J(ζ)δζ ||22 . (3.63)

Solving the normal equations gives the Gauss-Newton step as
δζ = −(J(ζ)T J(ζ))−1J(ζ)T r(ζ). (3.64)

If the initial residuals are small (i.e. we are close to the solution) andthe problem is well parametrized (i.e. locally near linear) the method leadsto rapid local convergence. However, when the initial estimate is far from thesolution, it may converge to a saddle point rather than a minimum, and forlarge steps the approximation may be inaccurate. In this cases, it is advisableto use other alternatives that guarantee that the estimated step follows a localdescent direction, such as Levenberg-Marquardt, and that the objective cost willcertainly decrease.
3.5.3 Levenberg-Marquardt Method

Newton’s and Gauss-Newton methods provide good convergence propertieswhen the initial guess ζ (0) is near the solution. Otherwise, they tend to getstucked in a saddle point or do not even converge. In this cases, it would beuseful to have an step control procedure to guarantee that the optimizationmethod chooses a descent direction.One possible solution is to use the Gradient Descent method. Itapproximates the Hessian with a multiple of the identity matrix, i.e. H ≈ αIand uses the gradient vector as the most rapid decrease of the cost function as
αδζ = −J(ζ)T r(ζ) = −g, (3.65)

where α controls the step size. However, the gradient descent method has slowconvergence since it tends to zigzag.
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The Levenberg-Marquardt method is a combination between aGauss-Newton and a gradient descent, where the step is adaptively controledto move smoothly between both. For example, the Levenberg-Marquardt stepwill move to a gradient descent step when the Gauss-Newton step fails. In thiscase, the normal equations (Eq. 3.62) are replaced by a regularized systemgiven by (J(ζ)T J(ζ) + λD)δζ = −J(ζ)T r(ζ), (3.66)where λ is the dampening parameter that controls the step and D is somepositive definite matrix. A very common option is to choose D = diag(J(ζ)T J(ζ)).The value of λ changes to guarantee that the estimated δζ gives a costdecrease. When the obtained δζ leads to an increase of the error, λ is multipliedby a factor and the normal equations (Eq. 3.66) are solved again. Otherwise, λis divided by a factor and the increment is accepted. Note that when λ is small,the hessian matrix H ≈ J(ζ)T J(ζ) and the computed step will be close to theoriginal Gauss-Newton step. On the other hand, when λ is large, the Hessianmatrix H ≈ λD and the computed step will be close to a gradient descent step.In this way, the Levenberg-Marquardt "interpolates" between a Gauss-Newtoniteration, which has a fast convergence in the local vicinity of the solution, anda gradient descent iteration, which guarantees a decrease in the cost function.

3.5.4 Robustified Least Squares

Least squares problems are very sensitive to outliers, i.e. measurements that donot fit the model and have high residual values. These measurements have ahigh impact in the optimization and can corrupt the system. It is already knownthat just one outlier measurement can ruin the whole optimization (Leys et al.,2013). One possible solution is to weight each residual differently and reduce theinfluence of high residual measurements. The robustified least squares functionis of the form:
f (ζ) = 12 n∑

i=1 (ωi · r2i (ζ)), (3.67)
where ωi is the weight for each individual residual ri(ζ). The correspondingsystem of equations for the robustified Gauss-Newton model is given by(J(ζ)TWJ(ζ))δζ = −J(ζ)TWr(ζ), (3.68)

where W is a diagonal matrix with the weights ωi. The Eq. 3.68 is solvedequivalently to the normal equations by fixing the weights each iteration.
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Figure 3.15: Comparison of the weighted errors obtained from twoof the most common M-estimators: Tukey (k = 4.685) and Huber(k = 1.345).
Optimizing the Eq. 3.68 is equivalent to minimizing the negativelog-likelihood given independent measurements r(ζ). If we assume Gaussiandistributed measurements, the weights ωi can be approximated as the square rootof the inverse covariance of the measurements. However, if we assume equallyGaussian distributed measurements, we will treat all measurements equallyand outliers cannot be neutralized. In this case, it is advisable to assume otherprobability models for the measurements. In Chapter 5 we explain how to extendthe above formulation with a t-distribution model (see App. D) and improve theperformance of the proposed visual SLAM approach.Sometimes, however, it is not possible to know how the measurements aredistributed or they are assumed to be Gaussian distributed. In this case, thereare different heuristic models, also known as M-estimators, that mitigate theinfluence of outlier measurements (see Fig. 3.15):
• Huber: It is a hybrid between the L1 and the L2 norm. It gives linearinfluence to outlier as

ω(r) = {1 if |r| < k
k
|r| otherwise, (3.69)

where k is usually fixed or dynamically changed with the value k =1.345σ for N (0, σ 2).
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• Tukey: It is more aggressive than Huber and directly eliminatesmeasurements that exceed a certain residual threshold as

ω(r) = {(1− r2
k2 )2 if |r| < k0 otherwise, (3.70)

where k is usually fixed or dynamically changed with the value k =4.685σ for N (0, σ 2).
Importantly, any robust influence function ω(r) has to be carefullyimplemented. Measurements with high residual are actually the ones with richinformation about how should the model parameters ζ be corrected and theymay not be strictly outliers. If we totally remove them, we may drastically slowthe convergence or even not get a good solution. One possible implementationis to start iterating with a large outlier threshold and reduce it each iteration.In this way, we will systematically detect outliers measurements that do not fitthe model and mitigate their influence.

3.5.5 Implementation Strategies

The following sections describe some implementation strategies to speed up theoptimization progress. A more in-depth explanation of the presented strategiestogether with additional useful approaches can be found in (Nocedal and Stephe,2006, Triggs et al., 2000).
The Schur Complement

All the optimization methods presented above are suitable for small numberof parameters. However, when optimizing a large scale problem, they becomeextremely expensive. In this cases, solving the normal equations is thecomputational bottleneck of the optimization. Luckily for us, there are manyproblems, such as the Bundle Adjustment, where the normal equations have acertain sparse block structure that can be exploited (see Fig. 3.13).Given an optimization problem with two block of parameters, we can writethe normal equations (Eq. 3.62) as[
H11 H12
H21 H22

] [
δζ1
δζ2
] = [−g1

−g2
]
. (3.71)
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If each individual cost function r(ζ) depends on any number of parametersblock from ζ1 but just one parameters block from ζ2, it is easy to see that H22 isa block diagonal matrix and, thus, easily invertible. For instance, in a standardBundle Adjustment problem, each cost function depends on one or more camerasbut just one 3D point. As a consequence, we can use the Schur complement toeliminate the δζ2 parameter blocks from the optimization and reduce the linearsystem as (H11 −H12H−122 H21)δζ1 = H12H−122 g2 − g1. (3.72)
As a result, the system can be solved using a reduced system with just thedimensions of ζ1. Once again, if we think in a Bundle Adjustment problem, itis very common to have fewer cameras (ζ1) than points (ζ2). In this case, thedim(ζ1)� dim(ζ2) and solving the reduced system is much faster.Once the δζ1 increments are estimated, we can back-substitute the δζ2increments as

H21δζ1 + H22δζ2 = −g2. (3.73)
Parameterization

In numerical optimization problems we can distinguish two types of variableparameterizations:
• Global parameterization: it is the internally used parameterizationto store problem variables. It is preferable to choose a globalparameterization without singularities. In this thesis, for example, we willuse quaternions to store camera pose orientations and perform pose-pointand pose-pose compositions (see Sec. 3.2.2).
• Local parameterization: it is the parameterization used duringoptimizations. It should be locally as nearly linear as possible to guaranteethat the cost function is locally nearly quadratic (see Sec. 3.5.2). At thesame time, it is desirable to avoid overparameterized representationsto remove null directions of the cost function. Similar to the globalparameterization, it should not contain singularities. All these propertieshelp to obtain a more stable optimization with faster convergence rates.In this thesis, we will use Lie algebra to represent camera poses duringoptimizations (see Sec. 3.2.3) because it provides a minimal representationwithout singularities around zero.
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Preconditioning

It is possible to accelerate an optimization problem by transforming the linearsystem to improve the eigenvalue distribution of H. Sometimes it is advisable touse an ideal Hessian rather than the observed one. This section does not providea detailed explanation of the mathematical background around preconditioningbut presents some useful tools to be applied in real optimization problems.Usually the problem is transformed applying as a linear change in the variablesvia a non-singular matrix C as
ψ = C · ζ. (3.74)

Consequently, the transformed linear system is given by
(C−THC−1)δψ = −C−Tg, (3.75)

where the convergence rate will depend on the eigenvalues of the matrix
C−THC−1 rather than those of H.The most simple form of preconditioning is a variable scaling. This isuseful when the objective function is highly sensitive to small changes in acertain direction and relatively insensitive in another direction. Another possiblesituation arises when the problem variables have different magnitudes. In thiscase, the matrix C is a diagonal matrix in which the coefficients are selected toequal the magnitudes of the variables. For instance, in this thesis we needto estimate rigid transformations. In this case, it is important to scale thetransformation parameters to take into account the impact of the differencesbetween a unit change in rotation and translation parameters.Another simple form of preconditioning is the Jacobi preconditioner. Similarto the variable scaling, the Jacobi preconditioner uses a diagonal matrix usingthe values of the hessian as C = diag(H)1/2. In this case, the preconditionermatrix sets the diagonal of the transformed hessian to one. As a result, it is avery efficient solution for diagonal dominant hessian matrices, such as the onesin a bundle adjustment problem.
3.5.6 Generalized Optimization on Manifolds

Gauss-Newton, Gradient Descent and Levenberg-Marquardt methods have beenexplained in the context of Euclidean spaces. However, as presented in Sec. 3.5.5,
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the usage of an appropriate local parameterization during incremental estimationis very important. Consequently, the local parameterization may not belong tothe Euclidean space. This section generalizes the above approaches to work onnon-Euclidean manifolds, such as Lie groups (see Sec. 3.2.3).When optimizing in the Euclidean space, we want to solve the equation:

∂f (ζ + δζ)
∂δζ

∣∣∣∣
δζ=0 = 0, (3.76)

which is iteratively solved by updating the current parameters will smallincrements, as proposed in the Eq. 3.56, using one of the above optimizationapproaches.Note that the composition of the current state vector with the estimatedincrement is performed using the vector addition. In order to generalize the aboveexpressions, we will use the � operator defined in Sec. 3.2, which describesthe composition in a general form. As a result, the general expression for aoptimization is given by
∂f (δζ � ζ)

∂δζ

∣∣∣∣
δζ=0 = 0, (3.77)

with a general iterative update rule according to:
ζ (t+1) = δζ (t) � ζ (t). (3.78)

In the case of an optimization in the Euclidean space, it will be directlythe vector addition as defined in Eq. 3.56. In contrast, if the optimization isperformed on a non-Euclidean manifold, the composition must be defined. Forinstance, the iterative update rule for a SE (3) pose optimization is performedusing the matrix multiplication together with the exponential map as define inEq. 3.30. Finally, mention that we have used the left-composition conventionduring this section. However, the right-composition convention could also beused, as they are linearly related by the Adjoint (see Sec. 3.2.3).
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Chapter 4

Object Recognition

The problem of object recognition aims to obtain the position and orientationof 3D world elements using a single image. This is a very challenging task inthe case of industrial environments since these are characterized by clutteredscenes, uncontrolled illumination changes, non-Lambertian untextured surfacesand dynamic scenes (see Chapter 2). The popularity of object recognitiontechnologies is growing in the industry in conjunction with AR. Once a 3Dobject has been recognized, its pose is used to initialize a tracking system thatallows superimposing virtual annotations properly aligned with the object. Thisallows a technician to visualize any relevant information related with a taskassociated to its context. For instance, Platonov et al. (2007) presents an ARsystem used to maintain and repair a combustion engine. Hanson et al. (2017)presents a system for guiding workers in a kit preparation tasks, while Makriset al. (2016) presents an AR based interaction system for collaborative robotics.As discussed in Chapter 2 there are still many open challenges to integratecurrent state-of-the-art approaches into real industrial applications. Nowadays,marker based solutions are still used in advance manufacturing due to theirreliability and accuracy in untextured environments. Ragni et al. (2018) proposean augmented reality tool to guide an operator during the alignment of the rawmaterial with respect to the machine reference. Mendikute et al. (2017) proposean efficient and accurate portable solution to measure and align large raw partsbefore machining. These approaches require to adapt the environment and, thus,the technician intervention. While this may be a minor issue in some applications,it limits the widely integration of AR into real industrial applications. On theother hand, learning-based methods have shown impressive results for somedatasets created in laboratory conditions. However, they still fail to obtain the6D pose under uncontrolled industrial conditions, where the training settings are
79
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Figure 4.1: Example of some components of a real broaching machine.Note how they contain many holes and cylinders that are easilydetectable in the image. The objects have been provided by Ekin S.Coop.
usually far from the real operation ones. Besides, they usually require trainingstages of many hour, days or even weeks with arduous capturing processes,which is unsuitable for real advanced manufacturing processes.One of the main goals of this thesis is the development of a robust objectrecognition approach to handle real operations in real industrial conditions.More precisely, we aim to develop an AR tracking framework for guidingin maintenance for advanced manufacturing. This is a very specific practicalapplication and, thus, we will focus our research on this particular topic. Forall the previously mentioned reasons, we have centred the attention of ourresearch on traditional geometry-based solutions that have proven to be robustin industrial environments (Álvarez et al., 2011). In particular, we have observedthat many of the components in a manufacturing machine contain revolutionelements, such as holes or cylinders (see Fig. 4.1), which we will exploit in theproposed solution. They are easily identifiable in this kind of environments andare stable under changes of illumination. At the same time, we have created ourown dataset with real 3D industrial objects under many different configurations– instead of a third-party dataset – to obtain laboratory simulations close toreal operating conditions.This chapter addresses the challenge of object perception in industrialenvironments and the integration of AR technologies into a real industrial
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Figure 4.2: ARgitu application applied to the maintenance of a robotarm. The proposed AR pipeline estimates the 6-DOF of rigid parts ofa robot arm. This allows superimposing augmented information likean animation of a ratchet attached to this body.
maintenance guidance tool as shown in Fig. 4.2. We present a novel model-based3D object recognition method which combines model surface conics and edgetemplates. This helps reducing the image search space, increasing localizationrobustness and saving computational time. Additionally, we integrate theproposed approach into a full AR pipeline including a feasible 3D object training,recognition and tracking tasks. Finally, we present a full industrial framework forguidance in maintenance, called ARgitu, which includes a general easy-to-useauthoring tool for the development of new contents and adapt AR technologyapplications into the advanced manufacturing industry.The chapter is organized as follows. We overview the related literaturein Section 4.1. We present the novel AR pipeline (Section 4.2) based onthe proposed 3D object recognition in Section 4.2.2. The full AR applicationframework is described in Section 4.3. We report the experimental results of theproposed approach and compare it with the state-of-the-art in Section 4.4.
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4.1 Related Work

AR systems are increasingly becoming an important tool to provide new servicesto companies in advanced manufacturing. The adaptation of AR technologies toindustrial environments is currently, however, an open challenge. The qualityof the user experience is directly related with the stability of the annotationsanchored in the image. There has been an extensive progress in the developmentof new vision based recognition methods in the last years. This section presentsa brief study of current recognition methods which are focused on detectingnon-lambertian objects due to their applicability in industrial settings.Line segments are attractive for object recognition since many man-madeobjects contain them (Akinlar and Topal, 2011, Brown et al., 2015, Rafael et al.,2012). In Bay et al. (2005), the authors use a color based histogram for linematching, and geometric restrictions to reduce outliers and add new matches.Wang et al. (2009a) and Zhang and Koch (2013) develop a SIFT-like linedescriptor (Wang et al., 2009b) dividing the line segments in subregions andextracting gradient information from each one. Using a similar technique, Liuand Marlet (2012) and Zhang and Koch (2012) introduce geometric consistencyin a graph matching-based scheme. Zhao et al. (2016) present a new geometricdescriptor to match images captured under different image conditions. In LuWang et al. (2009) and Tombari et al. (2013), the geometric configuration of linesegment groups is used instead. They both develop a semi-local descriptor usinggeometric information between edgelets and gradients. Later, Verhagen et al.(2014) introduce a scale invariant approach for improving the descriptivenessof line segments. Moreover, Damen et al. (2012) present a method for learningand detecting rigid non-lambertian 3D objects by representing each object as aclusters of edge segments. However, they show that the method lacks precision. InMicusik and Wildenauer (2015a), line segments are used for indoor localizationby comparing 3D model lines (Micusik and Wildenauer, 2015b, Zhang and Koch,2014) with image lines using the chamfer distance. Using any of these linematching approaches, the pose of the camera can be easily recovered (Ababsaand Mallem, 2008, Zhang et al., 2013, 2012). The main weakness of line-basedmethods is that the repeatability of line segment detection is low and theperformance decreases in cluttered scenes. In addition, using only geometricinformation makes it difficult to match and thus, texture data is required.Many authors try to overcome these limitations using more robust geometricfeatures such as conics. They are reliable features against illumination changes
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and they can provide rich information about the object location. Besides, manyman made objects include revolution elements such as circles and cylindricalholes that are projected into the image as ellipses. These are usually detectedin the image as contiguous set of edge segments that are joined together to fitcircles and ellipses (Fitzgibbon et al., 1999, Rosin, 1998). Ellifit (Prasad et al.,2013), EDCirles (Akinlar and Topal, 2013) and ELSD (Patraucean et al., 2012)are some of the most popular detectors. Ellis et al. (1992) propose a method forellipse matching considering that they are projected circles, viewed obliquely.They use this information to constraint the position, viewpoint and scale of themodel. In (Ayad et al., 2010), three coplanar ellipses are used to track a C-armusing homographies, while Usabiaga et al. (2009) work with multiple camerasfor hand pose estimation using two coplanar ellipses. Alternatively, since at leasttwo ellipses are needed to recover the location of the camera, some works havedeveloped new methods to fuse other features with ellipses. Wang et al. (2008)developed a method for estimating the pose from a single view of one circlewith two orthogonal lines. In Costa and Shapiro (2000), the authors recover thecamera location by estimating an initial location with ellipse and then, obtaina unique solution with points.Shape based methods have shown good performance. Their main drawbackis the large search space, as long as, they do not perform any previous matchingscheme. The registration is executed by brute force, which considerably slowsdown their performance. Dominant Orientation Templates (DOT) (Hinterstoisseret al., 2010) is a popular method. It measures the similarity between two imagesby comparing the orientation of the gradients. The method was extended tohandle depth sensors in (Hinterstoisser et al., 2012a) and color information in(Peng, 2015).Chamfer Matching is another popular method. It evaluates the similaritybetween two image edges. It can efficiently be computed using image DistanceTransform (DT) but it cannot handle cluttered backgrounds. For this reason,Liu et al. (2010) propose a new variation that takes into account edgedirections, increasing its robustness. In Choi and Christensen (2012), the FastDirectional Chamfer Matching (FDCM) approach is used to initialize a particlefilter tracking. More recently, some authors introduce the FDCM technique tobin-picking applications (Imperoli and Pretto, 2015, Liu et al., 2012). Liu et al.(2012) uses a multi-flash camera to extract robust image edges reducing theinfluence of reflections.
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All these methods perform well on their specific systems but they areunsuitable for industrial environments. Most of them reduce significantly theirrobustness under uncontrolled scenarios, such as illumination changes, clutteredbackgrounds or occlusions. Moreover, the majority of them require hard manualtraining phases which makes them unsuitable for a direct industry application.In this chapter, we propose a new method to improve the registration phaseof chamfer matching approaches using conic priors, which are obtained matchingmodel surface circles with image ellipses. In that way, we combine the robustnessof ellipse detection with the model shape, represented by the chamfer distance.Our method is able to recognize objects containing circles, such as holes, inindustrial environments improving the performance of the current state-of-the-artmethods as much in accuracy as in computational cost.
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4.2 Model based AR Pipeline

This section presents the complete AR pipeline based on the proposedrecognition method presented in Section 4.2.2. The workflow is separated intwo main parts:
1. An offline training phase where CAD model geometry features areextracted (Section 4.2.1). This step is executed only once per model andit is fully automatic. Therefore, it can be directly applied to the industrywithout requiring the participation of any technician.2. An online phase where the 3D pose of the object is detected and it istracked in real-time. First, the object is recognized and located using theproposed approach (Section 4.2.2) and, then, the position is tracked usingthe information from previous frames (Section 4.2.3). The same CAD modelgeometric features are used for recognition and tracking.
Tracking allows the operator to move the camera and the object freely inspace while virtual annotations remain anchored to the object. Whenever thetracking is lost, the recognition module is activated and the position of theobject is relocalized. Finally, using the relative position from the online phasevirtual guiding annotations are superimposed onto the image. An overview of theAR pipeline is shown in Fig. 4.3.

4.2.1 Offline training

CAD models contain rich geometric information that is used during therecognition and tracking modules. Before starting up the online AR application,we need to extract and store all the required information. This section presentsthe offline phase where visual geometric features and edge templates arecomputed. Fig. 4.4 shows the main ideas and overview of the CAD model training.Given the 3D CAD model of an object and its 3D triangle mesh, weextract high curvature edges measuring the angle between neighbor faces, andconsidering as straight edges the face boundaries with angles larger thana predefined threshold. We have found that curved surfaces usually containtriangles whose relative angle is smaller than 40 degrees. We also detect 3Dsurface circles. If at least n sharp straight edges turn to the same directionsmoothly, we fit them to a circle using a least-squares error minimization. If
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Figure 4.5: Training example for a possible camera location. The leftcolumn shows the CAD model with its coordinate system. The middlecolumn shows the visible straight edges (red) and circles arcs (blue).Finally, the last column shows the model edge template. Whereasgeometric features provide only real edges, templates allow us to workwith virtual edges which are generated by colour contrast with thebackground and do not belong to the model geometry itself.
the fit error stays under a threshold, those segments are replaced by the circleequation. We found that considering at least 10 straight edges achieves a goodperformance in circle detection. In this way, we obtain visible 3D straight edgesand circles from the CAD model. However, this method identifies both surfaceand interior features (i.e. hidden segments not actually visible from the exterior).To discard interior features, we render all features and detect the interior onesusing occlusion queries based on z-buffer tests. Some results are shown in Fig.4.5. We generate a set of virtual cameras around a sphere with the z-axis pointingtowards the model. For each camera, we detect the visible geometry featuresfor the current pose applying occlusion queries based on the z-buffer. Usingthe same buffer, we extract Laplacian edges to create the model templates. TheDouglas-Peucker algorithm (Douglas and Peucker, 2011) allows to representthe edge images as a collection of line segments, transforming edge imagesto line-based representation chains which permits applying integral image
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optimization techniques. Moreover, the algorithm allows us to simplify the edgemap filtering noise. In addition, it reduces the database memory requirements,since only line end-points are stored. We also compute the 2D direction of theedge segments and store the camera locations.After processing all cameras, we group all the visible edges, circle-arcs andtemplates in a one dimensional hash table using the information of the pose.We use the Euler angles of the rotation matrix as the key of the hash tableto index them. In this way, we acquire visible geometry features and templatesfor each position in an efficient manner. In addition, we also add the possibilityof rotating the camera z-axis (pointing towards the model) to create a morerealistic simulation (See Fig. 4.4). At the end of this algorithm, our databasecontains the following information:

• Indexed visible 3D model geometry (edge lines and circle arcs) for eachcamera,
• Indexed linear representation of 2D model templates for each camera.

4.2.2 Online Object Recognition

The first step during the online phase of the pipeline is the localization of thetarget objects in space without any previous information of its pose. Our methodcombines chamfer matching techniques (Liu et al., 2010) with conics based poseestimation (De Ma, 1993) to improve upon the weaknesses of each other.Template matching methods use a brute force approach during the searchstep which normally consists in a sliding window. Thus, it is computationallycostly to find possible candidates in the scene. Besides, working with complexshapes demands thousand of templates, which increases memory and computingrequirements. In addition, brute force matching techniques cause false positiveseven with sophisticated optimizations. This is why they are used under controlledillumination conditions, with accurate depth edges and planar objects such in(Liu et al., 2012).All these reasons makes them unsuitable for real-time applications inarbitrary environments. In order to sidestep these difficulties, we introduce a newmatching scheme using corresponding conics between model surface circles andimage ellipses. This allows reducing the search space and the number of outliers,specially in the case of cluttered backgrounds. At the same time, template based
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Figure 4.6: Object recognition pipeline. From left to right: theinpute camera image; ellipses (blue) and edges (green) detectedin the image; conic-based pose hypothesis computation; chamferdistance minimization and best candidate estimation by refinementand verification (represented by the green box).
optimization allows us to find a unique solution using a single circle. In this case,templates allow us to solve the camera location using the whole model shape,whereas points and lines contain only partial information. Besides, we includea refinement and verification steps which improve the accuracy and robustnessof the detection against challenging environments with cluttered backgrounds.
Candidates estimation based on model surface conics and edge templates

First of all, we obtain image ellipses using EDCircles (Akinlar and Topal, 2013)which is one of the most efficient and robust approaches to detect circles andellipses. It searches for edge segments in the input image and joins them toform circular arcs using heuristics. The ellipses are finally verified using an a
contrario validation step due to the Helmholtz principle, rejecting false positives.Our method only requires ellipse equations, so it can also work with partialelliptical arcs. In addition, we store the edges computed by EDCircles sincethey are required in further steps of the algorithm.
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Figure 4.7: Rigid-body transformations applied during the method.
Since we cannot guarantee which ellipse belongs to the model surface, wecompute a pose hypothesis Ti = [Ri | ti] for each ellipse-to-circle pair (G,Qi)as proposed in (De Ma, 1993) and described in App. B. As they prove, it isonly possible to recover the circle normal axis and center point using a singleellipse, since the in-plane axes (x and y) are not uniquely determined. Thus, weneed an additional step. We propose to rotate the object about the normal axisof the 3D circle (z axis). This new step guarantees that the non-symmetricalcharacteristics of the object are taken into account to obtain a unique solution(see Fig. 4.6).In the case of solids of revolution, Ti corresponds to a valid solution, sincethere are infinitely many solutions. Therefore, it is not possible to identify aunique pose and we select the initial estimation as the solution.There are infinitely many rotations around the 3D circle normal axis thatprovide the exact same 2D projection of the circle. We propose to discretizethe possible solutions in a finite number of rotations Rk = {R1,R2, · · · ,Rn},
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which are member of SO(3). For each pose hypothesis, we obtain n additionalhypothesis by right multiplication as:

Rj = Ri · Rk ,
tj = ti.

(4.1)
This camera locations correspond to local 3D circle coordinate systems.Before evaluating the hypothesis with templates, we transform it to the modelcoordinate system Tm = [Rm | tm] (see Fig. 4.7). We assume that the 3Drigid-body transformations Tmi from 3D circles to model coordinate system arealready known from the training phase. The camera location relative to the modelis estimated as Tm = Tmi · Tj :

Rm = Rmi · Rj ,
tm = Rmi · tj + tmi.

(4.2)
To evaluate each possible solution, edge templates provide a goodmeasurement of the similarity between image edges and model shape, sincethey contain rich information of the model geometry for each camera view. Wepropose to minimize the chamfer distance between the closest template andimage edges: arg min

Um
dCM (Um, V ) with Um ∈ U, (4.3)

with
dCM (Um, V ) = 1

n
∑

u∈Um

DTV (u), (4.4)
where Um is the closest model template in the space to the current locationhypothesis Tm and DTV is the Distance Transform of the input image edges
V . Since templates are indexed in a hash table using Euler angles, we onlyevaluate the spatially closest template. In that way, we can efficiently accesseach template and the method will only evaluate locations that have been trainedskipping the rest. This allows to significantly speed up the computation whileincreasing its robustness, since we are able to skip known unreal positions.This is good in practice since parts in an assembly are usually in the sameconfiguration. For instance, the cutting head in a horizontal lathe is always inthe same direction and, thus, vertical arrangements can be left behind.Before evaluating each selected template, we need to transform templateedges to the image plane correctly. This is, it is necessary to estimate the scale
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tx
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Figure 4.8: Affine transform between trained pose, Tt (left) andhypothesis pose, Tm (right). (tx , ty) correspond to the image planetranslation and s to the scale difference.
and translation between the scene location Tm and trained location Tt . To solvethis, we propose to work with predefined 3D model points transformed with Tmand estimate their affine transformation (see Fig. 4.8).During the chamfer matching evaluation (Eq. 4.4), we order lines by theirlength and start the summation from the largest one. During the summation, ifa template score exceeds a threshold, it is automatically discarded, in order toreduce further computations. Finally, candidates with an evaluated cost belowthe threshold are inserted in a list with a limited number of best candidates.
Candidate Refinement

The previous step extracts a list of the best hypothesis of the object locationsin the image. Since discretizing the rotation around the 3D circle normal axisgenerates small errors, a refinement step is essential to obtain a more accuratesolution. In addition, the accuracy of the candidates is not high enough to passa robust verification technique. Thus, each candidate must be refined with anefficient optimization approach.
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Figure 4.9: Candidate refinement minimizing the reprojection errorbetween model samples and image edge matches.
We propose a method similar to the one proposed by Drummond andCipolla (2002) where model features are matched to image edges minimizingthe reprojection error. We project the visible edges and circle arcs of the modelinto the image using the estimated pose and select a set of 2D samples m.For each sample mi, a local search is performed along the edge or arc normaldirection. Then, if an image edge pixel ui is detected in the vicinity of the sample,a positive correspondence is set. The current object position T is estimated byminimizing the distance between samples and image edge matches given by

T∗ = argmin
T

n∑
i
|| mi − ui ||2

= argmin
T

n∑
i
|| K · π(R · xi + t)− ui ||2,

(4.5)

where xi represents a sample 3D point from the model visible edges and circlearcs. These are selected to achieve an evenly distributed point-cloud.Fig. 4.9 shows an schematic representation of the matching step andthe reprojection error formulation. In addition, we use multiple matches persample to deal with cluttered backgrounds. Finally, the object pose is optimizedusing an iterative Levenberg-Marquardt algorithm, and all those multiplecorrespondences are managed with a Tukey loss function in order to removethe influence of outliers (see Sec. 3.5).
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Figure 4.10: Recognition example of a real industrial object (seeFig. 4.1). Note how the projection of the model edges (green) perfectlyaligns with the object in the image.

Candidate Verification

Some of the candidates may represent false positive object locations. For thisreason, we need a verification phase to distinguish outliers and choose the bestcandidate solution. We propose a verification step that detects situations wherethe candidate is superimposed onto a cluster of edges of other objects. This canresult in a low distance error even if those edges do not actually form part of thetarget object. The approach is based on the similarity between image gradientdirections and model geometry feature normals.Let mi be a model point projected on the image plane I , the similarity iscomputed measuring the difference between the image gradient direction θI andthe projected model feature normal θm. The points mi are discrete points selectedfrom visible model geometry features for the current candidate location. In thecase of circular arcs, the 2D projection normal is computed from its corresponding
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elliptical arc in the image. Thus, we define a similarity metric as:

τ = 1
n

n∑
i=1 |cos(θI − θm)|. (4.6)

Ideally, a perfect match has the same image gradient directions as modelfeature normals which gives a similarity of one. We have seen in our experimentsthat to obtain a robust performance the score threshold must vary depending onthe object shape. Working with complex objects demands less restrictive values.However, in general a threshold of 0.8 works relatively well with almost alltested models. In applications with heavily occluded objects, the value shouldbe lowered. Finally, the verified candidate with the lowest reprojection error istaken as the right object location (see Fig. 4.10).
4.2.3 Online Object Tracking

Once the object localization is estimated, we need to follow the object positionin time. To achieve this, we use the same technique as in the refinement stepin Section 4.2.2. However, in this case, we use the pose of the object from theprevious frame to start iterating. In this way, we refine the position of the objectfrom frame-to-frame assuming that the relative motion between consecutiveframes is low. This assumption is usually fulfilled in practice. Anyway, if thetechnician performs a fast camera movement and the tracking is lost, the 3Dobject recognition module is activated to recover the object location.Another possible tracking solution could be to use the object localizationas an initialization of the proposed visual SLAM approach of Chapter 5. Apartfrom obtaining a consistent 3D reconstruction it also works as a robust trackingmethod. However, this would only be possible for static scenes since the proposedvisual SLAM approach does not handle dynamic environments.
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4.3 ARgitu: Augmented Reality Guidance in Industry

The method is integrated in a complete framework, called ARgitu, that enablesthe creation of interactive guides for the assistance in maintenance of complexmachinery. The framework is composed of a set of software libraries and twomain application: an author tool that creates a database with information ofthe steps to perform, including several kinds of multimedia information (text,video, virtual reality animations and augmented reality) and a guiding tool thatpresents this information using a mobile device (see Fig. 4.2).Both tools have been designed to provide an easy to use interface based ona simple navigation paradigm. The user can access the process information of amachine and navigate through each step of a maintenance operation. Dependingon the type of the step, the user is presented with an interface that enablesthe creation of new contents (for the author tool) or its visualization (using theguiding tool). Currently, the contents are text (HTML including text and images),video (MP4 files), virtual and augmented reality visualizations.Virtual reality is used to present the user with 3D animations of the activitiesto be performed. Depending on the situation, the user can navigate freely in thescene or the point of view is fixed in a region of interest. There, the user ispresented with one or several animations that display the steps to accomplisha task including the tools required. Fig. 4.11 shows the creation of a virtualanimation to assist during the maintenance of a robot arm.Augmented reality is used to present the user with information in its actualcontext. ARgitu enables several approaches to AR, including using markers andimages as anchors. However the most powerful approach is the use of a realcomponent of a machine as target. In this case, the method described in Section4.2 is used for the detection and tracking of the object. The author tool containsa simple way to import a geometrical element and use it as anchor for AR. Oncethe anchor’s geometry is defined the user can use it as reference frame to addelements and create animations of components related to the target such as thetool required to complete a step. The author tool completes automatically thetraining phase of the detection and tracking algorithm. The information is storedwith other assets of the application. When a user uses the guiding applicationall the relevant information is loaded from disk and the detection algorithm willsearch for the location of the object of interest. Once found, the system triggersthe animation system that present the geometry and animations associated tothat task with their position and orientation correctly aligned with the detected
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Figure 4.11: ARgitu: using the author application a wrench is virtuallyanimated to assist during a maintenace task of a robot arm. The samevirtual annotation is used in the AR example task of Fig. 4.2.
position of the target part (see Fig. 4.12). Fig. 4.13 shows an example of theexperiments carried out to test the proposed tracking framework in real industrialconditions.The virtual animations for tasks presented using virtual or augmented realityare created using the same interface in the author tool. The only difference isrelated to the location of the virtual elements that in the case of augmentedreality are located in a position relative to the target object. Thus, the applicationenables presenting context-aware information about the task, such as the actionsto be performed with a tool.The creation of VR and AR based guides requires importing the modelgeometry. For example, as described above, the proposed object detectionalgorithm requires a surface representation of the target object. The frameworksupports using a number of 3D object formats. One of the formats supported isSTEP (ISO 10303), this enables an extremely simple way to import data fromCAD systems, since most of them are capable of exporting data in this format.Thus, it facilitates the use of the tool in small and medium size companies byremoving the need of modeling the geometry externally.
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(a)

(b)
Figure 4.12: Augmented reality taks: (a) the guiding application showsvirtual annotations anchored to an object to assist the technicianduring a maintenance task. (b) the tracking allows moving the objectwhile guiding annotations remain attached to the real object.
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(a)

(b)
Figure 4.13: Evaluation of the proposed tracking framework in realindustrial conditions: (a) experimental setup with a consumer laptopand a webcam. (b) close view of the tracking result where the modelvisible geometry (blue) is projected into the image (green).
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4.4 Experiments And Discussion

As stated above, one of the most critical components of an AR pipeline isthe object detection algorithm. Once the target component is detected severalapproaches can be used to track the camera in the scene. For this reason, thissection presents a validation of our object detection approach. We first estimatethe most appropriate system parameters, and then, we compare our approachto the most recent chamfer matching method, called Fast Directional ChamferMatching (Liu et al., 2010), and to the two-dimensional version of the IterativeClosest Point (ICP-2D) (Besl and McKay, 1992), which is one of the most popularmethods for registering a set of points.Our dataset is composed of 240 640 × 480 images that containdifferent objects1 placed in arbitrary 3D positions and configurations. Theseconfigurations include random camera locations showing a single object, groupedwith different objects, cluttered by a regular grid and occluded by other objects.Each image is provided with the ground truth position of the objects, obtainedmanually beforehand. Fig. 4.14 shows several examples of the recognitionsystems under different configurations.All experiments were executed using a standard PC with an Intel Corei7-860 CPU at 2.8GHz and 6 GB of RAM. All compared algorithms havebeen implemented by ourselves using C++ and OpenCV 3 without any strongoptimization. When possible, they share the same codebase and the sameparameters, enabling objective performance and timing comparisons.
4.4.1 Parameter Study

We evaluate the object detection rate varying several parameters. We use allimages in the database to obtain the most robust parametrization for a generalcase. The parameters tested are the number of rotations around the normal, thechamfer distance threshold and the number of maximum candidates. During theexperiments, we modify one of these parameters and fix the remaining two, witha value of 36 rotations around the axis (10 degrees), a maximum number of 20best candidates and a chamfer distance threshold of 20 pixels. Fig. 4.15 presentsthe results for both the detection rate and the computational time.
1Some of the objects used in the experiments can be found in the RoCKIn@Work competitions,

http://rockinrobotchallenge.eu

http://rockinrobotchallenge.eu
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Figure 4.14: Detection of different objects over diverse configurations.(1-row Bearing Box, 2-row Horsehoe, 3-row Motor, 4-row Plate) Thedetections are shown by superposing the projection of the visible 3Dmodel geometry for each camera location in green. The ground truthis presented in blue.
Evaluation of the number of rotations: We first evaluate the detection rateof each object respect to the number of rotations performed around the circlenormal axis (see Section 4.2.2). For a low number of rotations, the method isunstable and achieves low detection rates. This is expected, since non-symmetriccharacteristics of the object are not taken into account. Indeed, the Motor model(see Fig. 4.14) is almost not affected since it has a revolution symmetry. Asexpected, the total execution time increases linearly with the number of rotations.Establishing the number of rotations to 36 is a good trade-off between speedand detection robustness.
Evaluation of the chamfer distance threshold: As expected, the detection ratefor low thresholds (0-5 pixels) is close to zero. Increasing the threshold allowsevaluating more candidates and the detection rate grows until it stabilizes fora value of around 10 pixels. Above this value, the computation cost remainsconstant. We fix the threshold to 10 pixels since it is the value that stabilizesthe detection rate performance.
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Evaluation of the number of maximum candidates: The detection rateincreases with the number of candidates but stabilizes around a value of 20. Thisallows to evaluate more location hypothesis and, thus, estimate better solutions.However, the main drawback is the increment of the computation time, thatincreases linearly with the number of candidates. We conclude that setting themaximum number of candidates to 20 achieves a good balance.Overall we also observe that the computational time increases with thenumber of circles in the model. The Horseshoe is by far the most computationallydemanding object due to its large amount of holes and circular arcs in its surface.

4.4.2 Evaluation

With the parameters presented in the previous section, we compare our approachto Fast Directional Chamfer Matching (FDCM) (Liu et al., 2010), and to atwo-dimensional version of Iterative Closest Point (ICP-2D) (Besl and McKay,1992). We choose FDCM as the reference for chamfer matching techniques,which are mainly used for bin-picking vision based systems. Besides, we findICP-2D as the state-of-the-art registering approach. FDCM estimates the objectlocation minimizing both the edge proximity and their orientation similarity.ICP-2D aims to minimize iteratively the distance between a set of points by anearest neighbor search.For FDCM, we use our own implementation with the parameters proposedby the authors. Similar to our method, it is used as a candidate estimationtechnique in our recognition system. Since we do not have any prior informationabout the model location, we train the model for all possible camera locationsand set the scale search from 0.6 to 1 times the template size with a step of 0.1.The detection system is based on scanning the image using a sliding window.For ICP-2D, we also use our own implementation. In this case, the ICP-2Dtechnique is used as a variant to our method. Instead of using edge templatesfor evaluating location hypothesis, we use the ICP-2D algorithm for registeringthem. Both the image point samples and the model samples are selected toachieve a homogeneous point-cloud. The image samples are computed fromimage edges and model samples from the projection of visible 3D modelgeometry. Since ICP-2D corresponds to an iterative minimization algorithm, weskip the refinement step.
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Figure 4.15: Detection rate (left) and computational time (right) fordifferent parameter combinations. First row when changing the numberof rotations around the normal axis, second row when changing themaximum chamfer distance threshold, and third row when changingthe number of maximum candidates.
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Figure 4.16: Recognition rate comparison for each object. The resultsare shown in four different configurations: a single object, group clutter,grid clutter and occlusions.
For this experiment, we separate the database in four different categories.Each category represents particular model configurations. In addition, weanalyse each model separately to distinguish the method performance in eachcase. The four categories correspond to the configurations of: a single model,grouped objects, models with a regular grid background and occluded objects(see Fig. 4.14). Finally, we evaluate the average computation time of each stagein the recognition system.

Detection rate. The detection rate scores of the different methods is presentedin Fig. 4.16. For a single object configuration, our method achieves betterperformance than FDCM for all models. Only ICP-2D behaves better withcylindrical models. In the case of FDCM, the detection rate is drastically loweredwith very reflective objects, such as the Horseshoe. Only in the case of the PlateFDCM achieves the same recognition rate.When the models are grouped with other objects our method achieves higherrecognition rates, even if, in general, the scores are lower (see second column inFig. 4.16). However, in the case of FDCM the number of true positives increases
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for the Horseshoe and the Motor models. The ICP-2D technique starts to failsince the number of points in the neighbor increases, causing the failure of theoptimization.The robustness of our method to cluttered backgrounds is due to ellipses. Theuse of image ellipses allows the method to skip many wrong camera locationsby searching locally around them. This can be observed with the regular gridclutter (see third column in Fig. 4.16). It is an extreme configuration wherethe background is filled with small squares and man-made object projectionsfit well in many configuration due to their nature. In this case, only our conicbased approach is able to estimate the camera location. For all the objects, ourmethod performs better or similar to the ICP-2D variation. This is the expectedbehavior since FDCM takes only edges into account without any robust featureclassification.To evaluate our method against occlusions, we have tested overlapping thetarget objects with different degrees of occlusion (see fourth column in Fig.4.16). As expected, the number of correct detections decreases with the occlusionlevel. However, our method outperforms FDCM. For more complex objects, suchas the Horseshoe, FDCM fails, whereas our method achieves good results.This is an advantage since man-made systems are usually assembled frommany components, creating severe occlusions. For the ICP-2D-based variant, thedecrease is more pronounced due to the increment in the number of neighborpoints, but working with conics still allows to estimate the camera location inmany cases.After the detection rate validation, it is clear that the usage of conics togetherwith edge based approaches outperforms other alternatives. We manage to obtainhigher detection performance for all tested environments. The improvement isnoticeably larger with challenging situations such as occlusions and clutteredbackgrounds where the robustness of conics allows discarding many falsepositives that edge based approaches would take into account.
Processing time. Although our method and the ICP-2D variant work similarlyin terms of robustness in some cases, our method outperforms ICP-2D in termsof speed by several orders of magnitude. The mean computation times for all themethods are shown in Table 4.1.Our approach is about four times faster than FDCM. Fig. 4.17 shows a breakdown of the execution time for both methods. Our method clearly outperforms
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Table 4.1: Mean computation time for all the dataset. It includesthe ellipse detection, integral images computation, candidate search,refinement and verification steps.

Algorithm FDCM Our Method ICP-2D
Time (ms) 1642 405 31432

Time [ms]

0 200 400 600 800 1000 1200 1400 1600

FDCM

Our Method  
Ellipse detection

Integral Images

Candidate Search

Refinement

Verification

Figure 4.17: Comparison of the mean computation time for all thedataset between FDCM and Our Method. Our approach performs fourtimes faster and the searching is speeded-up by a factor of five.
the search step in term of speed. The usage of conics allows us to discretize theimage plane and, thus, significantly reduce the computational time in contrastto a brute force strategy using a sliding window. We reduce the searching byabout five times under unconstrained conditions. In addition, our method usesa simpler chamfer distance technique, which uses only the location of edges,and allows executing integral images faster. Moreover, our method introducesthe ellipse detection computation time but it is insignificant compared with theother steps. Both methods use similar time for the refinement and verificationsteps, since we set the same number of maximum candidates.
4.4.3 Examples

We present in Fig. 4.14 some examples of the response of the proposedrecognition method using the dataset models. All of them are untextured modelswith different shape and materials. It shows the robustness of the proposedsolutions against challenging situations, such as cluttered backgrounds andpartial occlusions. Note how our method is able to handle reflections ofmechanical pieces satisfactorily.In addition, we present in Fig. 4.18 and 4.19 some examples of the proposedmethod working in a mobile device under real industrial conditions.
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Figure 4.18: Recognition example of an industrial robot arm with amobile device. The model visible geometry is projected into the imagein green.

Figure 4.19: Recognition example of the Horseshoe model in anindustrial environment with a mobile device. The model visiblegeometry is projected into the image in green.
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4.4.4 Discussion

The proposed method requires the model to contain circles in its surface andthose to be visible in the image. Although the usage of conics is one of its mainstrengths, it is also one of its main limitations. The lack of ellipses in the imagemakes the proposed solution fail and this occurs due to two main reasons:when the model position does not allow perceiving ellipses in the image orwhen the ellipse detector fails. Thus, the proposed method relies on the ellipsedetector robustness which is usually degraded with severe occlusions. In thiscases, only small elliptical arcs are visible. Nonetheless, it does not requiretexture information and can handle untextured models. Additionally, this thesisis oriented to industrial environments where the presence of untextured objectswith revolution elements, such as holes or cylinders, is quite common.The following chapter presents a robust visual SLAM approach that does notrely on feature detectors but on raw image intensity values. As a result, it canwork in low textured environments without requiring specific features. Althoughit has been particularly developed for autonomous robot navigation, it could alsobe used as a tracking approach for AR applications in the industry due to itsrobustness in those conditions.



Chapter 5

Direct Sparse Mapping

Recovering the 3D geometry – camera location and scene structure – froma moving camera is still an open challenge in computer vision and robotics.In general, we can identify two different situations during robot navigation:the exploration that refers to the phase where the robot is traversing throughan unknown environment and the revisiting where the robot is returning toan already known location. Ideally, the goal is to obtain a new map duringthe exploration that is perfectly consistent with the old one when revisiting.However, drift during exploration is inevitable and, thus, one should obtain themost accurate estimates to keep the drift as small as possible during exploration.At the same time, it is very important to reuse existing map information to correctthe drift and maintain a consistent map during revisits. Otherwise, the systemwill be prone to duplicate map points and generate long-term motion drift andstructure inconsistencies. Normally, the exploration task is tackled as a visualodometry problem and the revisiting task as a mapping problem (see Chapter 2).During revisiting situations, we can additionally distinguish two cases. Small
scale cases where the accumulated drift is small enough to be detected andcorrected using the formulation of the model itself (i.e. reprojection error orphotometric error). For example, this case is very usual in indoor applications,such as the cleaning robot that traverses the same rooms and corridorsrepeatedly. Large scale cases where the robot has traveled long enoughdistances that the accumulated drift cannot be handled with the model. In thiscases, it is very common to use an appearance-based place recognition modulewhich identifies if the current scene is similar to an already visited place. Thissituations are more likely to happen in long term trajectories such as self-drivingcars. The latter is also known as the loop closure problem (Strasdat, 2012).This chapter tackles the problem of visual mapping with a direct formulation in
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small scale cases. As we will validate in the experiments, a direct formulationis sufficient to handle many situations without requiring a place recognitionmodule.Direct approaches have proven to be an effective method for estimatingscene geometry and camera motion in visual odometry (VO). Photometric bundleadjustment (PBA) minimizes the photometric error of map point observationsover a subset of selected frames, known as keyframes. Normally, the numberof keyframes in the PBA is limited to avoid large computations. We call activekeyframes and active points to those keyframes and map points selected to beoptimized in the PBA. A very common strategy to select active keyframes is touse a local sliding-window of most recent keyframes. Points are sampled acrossimage pixels with locally high gradient module, such as edges and weak intensityvariations. They are associated to only one keyframe where they are initialized.In the rest of keyframes, there is not an explicit and fixed data association,because the PBA recomputes the correspondences as a part of the optimization.Thus, direct methods do not rely on the repeatability of selected points and areable to operate in scenes with low texture but with contours.Current PBA based methods are only able to do VO, which builds atemporary map to precisely estimate the camera pose. They use a sliding-windowthat selects close in time active keyframes, marginalizing map points thatleave the field of view. The marginalization strategy reduces the computationcomplexity by removing old cameras and points while maintaining the systemconsistent to unobservable degrees of freedom, i.e. absolute pose and scale. Asa consequence, if the camera revisits already mapped areas, the PBA cannotreuse marginalized map points and it is forced to duplicate them. This is a severelimitation: the system cannot benefit from the highly informative reobservationsof map points, and this causes motion drift and structure inconsistencies.In contrast, VSLAM methods build a persistent map of the scene,and continuously process map point reobservations. Instead of using asliding-window and marginalization, they retain keyframes and map pointswith a fixed location in the model and select the active keyframes and mappoints according to covisibility criteria, i.e. they observe several map points incommon. This results in a network of keyframes where the connectivity is basedon whether they observe the same scene region, even if they are far in time.The fixation strategy maintains the system consistent to unobservable degreesof freedom and it enables the reuse of map points. Thus, VSLAM approaches
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Figure 5.1: Estimated map by DSM with (bottom) and without (top)point reobservations in the V2_01_easy sequence of the EuRoC MAVdataset. DSM can produce consistent maps without duplicates.
can extract the rich information of map point reobservations reducing the driftin the estimates.Transforming PBA based direct VO systems into VSLAM is notstraightforward because there are several open challenges to solve:

1. When the camera revisits already mapped areas, the system has to selectactive keyframes that include map point reobservations. They are difficultto obtain because there are not point correspondences between keyframes.At the same time, we have to guarantee accurate map expansion duringexploration. Therefore, we propose the Local Map Covisibility Window(LMCW) criteria to select active keyframes that observe the same sceneregion, even if they are not close in time, and the map point reobservations.It uses a combination of temporal and covisibility criteria to select theactive keyframes.
2. The PBA optimization includes map points and keyframes distant in timeand, hence, affected by the estimation drift. Normally, the photometricconvergence radius is around 1-2 pixels due to image linearization and,
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thus, a standard PBA cannot compensate the drift. We propose a multiscalePBA optimization to handle successfully these convergence difficulties.This strategy allows to exploit the rich geometrical information providedby point reobservations.

3. We have to ensure the robustness of the PBA against spuriousobservations. They result mainly from the widely separated activekeyframes –in contrast with the close keyframes of VO– which renderocclusions and scene reflections that violate the photo-consistencyassumption. We incorporate a robust influence function based on thet-distribution into the PBA that neutralizes the adverse effect of thespurious observations.
This chapter presents the proposed direct VSLAM system, DSM (DirectSparse Mapping). Up to our knowledge, this is the first fully direct monocularVSLAM method that is able not only to detect point reobservations but alsoto extract the rich information they provide (see Fig. 5.1). Sec. 5.1 provides anoverview of some related works. Then Sec. 5.2, 5.3, 5.4 and 5.5 present all thesteps that have been carried out to solve the problem of monocular VSLAM with afully direct formulation. Finally, Sec. 5.6 describes the experiments that validatethe performance of DSM in terms of both camera trajectory and reconstructionmap accuracy. The latter is usually not reported in VO/VSLAM methods.
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5.1 Related Work

The first real-time monocular VSLAM methods were indirect approaches, usingFAST (Rosten and Drummond, 2006) and Harris (Harris and Stephens, 1988)corners associated across images in the form of 2D fixed correspondences. The3D geometry was estimated minimizing the reprojection error. They rely on therepeatability of the corner detectors and required rich visual texture. Thanks tofeature descriptors, they associate distant images. Davison et al. (2007) presentMonoSLAM, which matches sparse keypoints and recovers the scene geometryin an EKF-based framework, later extended by Civera et al. (2008) to include aparametrization in inverse depth. Klein and Murray (2007) in PTAM propose forthe first time to parallelize the tracking and mapping tasks, demonstrating theviability of using a BA scheme to maintain a persistent map in small workspaces.Klein and Murray (2008) extend PTAM to handle edgelets in the map andimprove the robustness of the whole system to motion blur. Later, Strasdatet al. (2011) proposes a double window optimization to extend the potentialof feature-based VSLAM to long-term applications. It combines a local BA witha global pose-graph optimization using covisibility constraints based on pointmatches.Following these works, ORB-SLAM (Mur-Artal et al., 2015) presents thecurrent reference solution among indirect VSLAM approaches. It is a full VSLAMapproach that includes: a traditional BA with map reuse capabilities, loop closurecorrection and relocalization. Up to date, it is the most accurate monocularVSLAM method in many scenarios. The key aspects of its precision come from themanagement of map point reobservations in the BA using an appearance basedcovisibility graph. Later, Mur-Artal and Tardos (2016a,b) extend ORB-SLAMto stereo, RGB-D and visual-inertial systems. Similarly, DSM transfers themain ideas of feature-based VSLAM techniques to direct systems significantlyincreasing the accuracy of their estimates. As a direct approach DSM doesnot compute explicit point matches and, thus, cannot build an appearancebased covisibility graph. Instead, DSM relies on geometric constraints to buildcovisibility connections between far in time keyframes. In addition, it works with asmaller window of covisible keyframes than ORB-SLAM to control computationallimitations.Recently, VO approaches have shown impressive performance. SVO (Forsteret al., 2014) proposes an hybrid approach to build a semi-direct odometrysystem. They use direct techniques to track and triangulate points but they
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ultimately optimize the reprojection error of those points in the background. Later,Forster et al. (2017) extend SVO to multi-camera systems and to track edgelets.OKVIS (Leutenegger et al., 2015) presents a feature-based Visual-InertialOdometry (VIO) system that continuously optimizes the geometry of a local mapmarginalizing the rest. More recently, Engel et al. (2016a) made a breakthroughwith their DSO, the first fully direct VO approach that jointly optimizes motionand structure formulating a PBA and including a photometric calibration into themodel (Engel et al., 2016b). Inspired by OKVIS, DSO performs the optimizationover a sliding-window, where old keyframes as well as points that leave thefield of view of the camera are marginalized. It has shown impressive odometryperformance and it is the reference among direct VO methods. However, as apure VO approach DSO cannot reuse map points once they are marginalizedwhich causes camera localization drift and map inconsistencies. Similar to othersystems, DSO has been extended to stereo (Wang et al., 2017), omnidirectional(Matsuki et al., 2018), rolling shutter (Schubert et al., 2018) and visual-inertial(von Stumberg et al., 2018) systems. DSM uses the same photometric model ofDSO and goes one step further to build the first fully direct VSLAM solution witha persistent map. The experiments report that using a VSLAM scheme achievesa significant accuracy increase of the camera trajectory when compared to theVO of DSO.Many VO systems have been extended to cope with loop closures. Mostpropose to include a feature-based Bag of Binary Words (DBoW) to detectloop closures and estimate pose constraints between keyframes, followingGalvez-López and Tardos (2012). Then, a pose-graph optimization finds acorrection for the keyframe trayectory. VINS-mono (Qin et al., 2018) uses asimilar front-end to OKVIS but includes additional BRIEF features to performloop closure. LSD-SLAM (Engel et al., 2014) was the first direct monocularVO for large-scale environments. The method recovers semi-dense depth mapsusing small-baseline stereo comparisons and reduces accumulated drift with apose-graph optimization. Loop closures are detected using FAB-MAP (Cumminsand Newman, 2008), an appearance loop detection algorithm, which usesdifferent features to those of the direct odometry. LSD-SLAM was also extendedto many other visual systems such as stereo (Engel et al., 2015), omnidirectional(Caruso et al., 2015), visual-inertial (Usenko et al., 2016). LDSO (Gao et al.,2018) extends DSO with a conventional ORB-DBoW to detect loop closuresand reduces the trajectory drift by pose-graph optimization.All these methods have the next drawbacks:
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1. They use a different objective function and points to those of the odometry.
2. Loop closure detection relies on feature repeatability, missing manycorrections.
3. The error correction is distributed equally over keyframes, which may notbe the optimal solution.
4. Although the trajectory is spatially corrected, existing information frommap points is not reused and, thus, ignored during the optimization.
In contrast, full VSLAM systems like ORB-SLAM and DSM reuse the mapinformation thanks to its persistent map. The reobservations are processed withtheir standard BA (either geometric or photometric), resulting in more accurateestimates. Thanks to the improvement in accuracy the need of loop closuredetection and correction is postponed to trajectories longer than in their VOcounterparts.Moreover, DVO Kerl et al. (2013) proposes a probabilistic formulation fordirect image alignment techniques. Inspired by Lange et al. (1989), they showthe robustness of using a t-distribution to manage the influence of noise andoutliers. Furthermore, Babu et al. (2016) demonstrate that the t-distributionrepresents well photometric errors while not geometric errors. We incorporatethese ideas into the sparse photometric model together with a novel outliermanagement strategy. In this way, we make the non-linear PBA optimizationrobust to spurious point observations. They normally appear as a result of widelyseparated active keyframes and lack of explicit point matches.
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5.2 Direct Mapping

The proposed VSLAM system consists of a tracking front-end (Sec. 5.4) and anoptimization back-end (Sec. 5.3). The front-end is involved in tracking framesand points, and also provides the coarse initialization for the optimization. Theback-end determines which keyframes form the local window (Sec. 5.3.1) andjointly optimizes all the active keyframes and map point parameters in the PBA(Sec. 5.3.2). Fig. 5.2 shows an overview of the system structure.The main contributions of the proposed method are related with the back-endand, thus, we consider convenient to present it first. Later, we present thefront-end, which is comparable to other direct approaches and, finally, the systembootstrapping. Similarly to most VSLAM systems (Engel et al., 2016a, Klein andMurray, 2007, Mur-Artal et al., 2015) the front-end and the back-end run in twoparallel threads:
1. The tracking thread obtains the camera pose at frame rate (Sec. 5.4.1). Italso decides when the map needs to grow by marking tracked frames askeyframes (Sec. 5.4.2).2. The mapping thread processes all new frames to track points from activekeyframes (Sec. 5.4.3). Besides, if the new frame is marked as a keyframe,the local window is recalculated, new points are activated and the PBAoptimizes motion (keyframes) and structure (points) together using activekeyframes. Finally, it maintains the model globally consistent, i.e. removesoutliers, detects occlusions and avoids point duplications (Sec. 5.3.3).
The persistent map is composed of keyfames that are activated or deactivatedaccording to covisibility criteria with the latest keyframe. The absolute poseof a keyframe i is represented by the transformation matrix Ti ∈ SE (3). Foreach keyframe, we select as candidate points those with a locally high gradientmodule and spread over the image. Each map point p is created in a keyframe andits pose is coded as its inverse depth. Thus, for each keyframe we store the rawimage and the associated map points. We assume all images to be undistortedand use the pinhole model to project a point from 3D space to the image plane.Chapter 3 presents a more detailed explanation of the parameterization used forcameras and points.The Local Map Covisibility Window (LMCW) (Sec. 5.3.1) selects whichkeyframes are active and form the local window. Once a keyframe is active,
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Figure 5.2: Overview over the complete DSM algorithm. Each newframe is tracked using image alignment techniques with respect to thelatest keyframe. Then, each tracked frame is used to initialize newcandidate points from the LMCW. If the tracked frame is spawnedas keyframe, the LMCW is updated, new map points are activatedand the PBA jointly optimizes all the model parameters (camerasand points). Finally, we maintain a persistent map to select activekeyframes according to covisible criteria with the latest keyframe.
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Figure 5.3: The pattern structure used to evaluate a single point. Itis composed on Np = 8 spread pixels around the target point p.Engel et al. (2016a) showed that it achieves a good balance betweenprecision and computational time.
all its parameters (pose and affine light model) and associated points (inversedepth) are optimized by the PBA. Otherwise, they remain fixed to maintainthe system consistent to unobservable degrees of freedom (gauge freedom).During optimization, we will use ζ ∈ SE (3)n × R2n+m to represent the setof optimized parameters (n keyframes and m points) and δζ ∈ se(3)n × R2n+mto denote the increments. Moreover, we use the left-compositional convention forall optimization increments, i.e. ζ (t+1) = δζ (t) � ζ (t) (see Sec. 3.2.3 and 3.5.6).This direct VSLAM framework enables to build a persistent map and reuseexisting map information from old keyframes directly in the photometric bundleadjustment.
5.2.1 Photometric Model

The same photometric function proposed in (Engel et al., 2016a) is used inthe whole system, i.e. geometry initialization (camera and point tracking), localwindowed PBA and map reuse. For each point p, we evaluate the sum of squareintensity differences rk over a small pattern Np around it between the host Ii andtarget Ij images (see Fig. 5.3). We include an affine brightness transfer modelto handle the camera automatic gain control and changes in scene illumination.The observation of a point p in the keyframe Ij is coded by:
Ep = ∑

uk∈Np

wkr2k = ∑
uk∈Np

wk
((Ii[uk ]− bi)− eai

eaj (Ij [u′k ]− bj )
)2
, (5.1)

where uk is each of the pixels in the pattern; u′k is the projection of uk in thetarget frame with its inverse depth ρk , given by u′k = π(Tji · π−1(uk , ρk )) with
Tji = T−1

j Ti; ai, bi, aj , bj the affine brightness functions for each frame; and
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wk = wrkwgk a combination of the robust influence function wrk and a gradientdependent weight wgk :

wgk = c2
c2+ || ∇I ||22 , (5.2)

which works as a heuristic covariance in the Maximum Likelihood (ML)estimation, reducing the influence of high gradient pixels due to noise. To sumup, the photometric cost function (Eq. 5.1) depends on geometric (Ti,Tj , ρ) andphotometric parameters (ai, bi, aj , bj ).Note that since we are using the inverse depth, we need to use the linear 2Dpoint mapping function presented in Sec. 3.4.2, which exploits all the benefitsof the inverse depth parameterization. We use this formulation whenever weneed to transform a 2D point from one image to another and during jacobiancomputation (see App. C).
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5.3 Back-End

The back-end manages the persistent map, which includes all the keyframes andmap points. It consists in the following tasks:
• Determine the LMCW (local window) using the pose information from thelatest keyframe. This step selects the active keyframes that observe thesame scene region even if they are not close in time. This is crucial toguarantee that map point reobservations are inserted into the PBA whenrevisiting already mapped areas.
• Activate new points from the LMCW and avoid point duplications withexisting points in the persistent map.
• Jointly optimize for all the involved parameters using a multiscalephotometric bundle adjustment. This comprises all the active keyframesin the LMCW and its corresponding active points. Consequently the PBAincludes map points and keyframes distant in time and affected by theestimation drift.
• Decide which points are visible in which frames and maintain the modelglobally consistent. This is, identify which observations do not fulfill thephotometric consistency and, consequently, decide when a map pointshould be removed. This implies to remove outliers and detect occlusions.

5.3.1 LMCW: Local Map Covisibility Window

This section presents the LMCW and the strategy to select its active keyframesand active map points. It is a combination of temporal and covisibility criteriawith respect to the latest keyframe being created. Fig. 5.4 shows the LMCWselection strategy.The first part is composed of Nt temporally connected keyframes that form asliding-window like Engel et al. (2016a). This part is critical during explorationbecause it initializes new points (Sec. 5.4) and maintains the accuracy inodometry. Whenever a new keyframe is created, we insert it into the temporalpart and remove another one. Thus, we maintain fixed size temporal keyframes.The strategy that selects the removed keyframe from the temporal part issummarized as:



Section 5.3. Back-End 121

temporal 
keyframes Nt

covisible 
keyframes Nc

I0
I1

I2
I3

I4

I5

I6

I7

Figure 5.4: LMCW example with Nw = 7 and the latest keyframe. Itis composed of Nt = 4 temporal (blue) and Nc = 3 covisible (orange)active keyframes. The red camera represents the latest keyframe beingcreated.
1. Always keep the last two keyframes (I1 and I2). This ensures the odometryaccuracy during challenging exploratory motions, such as rotations.It avoids premature fixation of keyframes location, guaranteeing thatkeyframes are well optimized before fixing them.2. The remaining keyframes are evenly distributed in space. We drop thekeyframe Ii that maximizes:

s(Ii) = √d(I0, Ii) Nt∑
j=1
(
d
(
Ii, Ij
))−1 , (5.3)

where d(Ii, Ij ) is the L2 distance between keyframes Ii and Ij . This strategyfavors observations rendering high parallax into the PBA, which increasesthe accuracy.
The second part is composed of Nc covisible keyframes. We aim to selectkeyframes covisible with those in the temporal part. Additionally, we seek to fillthe latest keyframe I0 with reobserved map points, favoring map points imagedin depleted areas (image areas where no other map points are imaged). Ourstrategy to achieve this goal is summarized as:

1. Compute the distance map to identify the depleted areas. All the mappoints from the temporal part are projected into the latest keyframe, then



122 Chapter 5. Direct Sparse Mapping
the distance map registers, for every pixel, the L2 distance to its closestmap point projection.

2. Select a keyframe among the list of old keyframes, the one that maximizesthe number of projected points in the depleted areas using the distancemap. We discard points that form a viewing angle above a threshold todetect and remove potential occluded points as early as possible.
3. Update the distance map to identify the new depleted areas.
4. Iterate from (2) until Nc covisible keyframes are selected or no moresuitable keyframes are found.
The covisible part incorporates already mapped areas in the LMCW beforeactivating new map points. The proposed strategy avoids map point duplicationsensuring the map consistency. The values of Nt and Nc are tuned experimentallyin Sec. 5.6.

5.3.2 Photometric Bundle Adjustment (PBA)

Every time a new keyframe is created, all model parameters are optimized byminimizing the error from Eq. (5.1) over the LMCW of active keyframes K. Thetotal error is given by:
E = ∑

Ii∈K

∑
p∈Pi

∑
j∈obs(p)

∑
uk∈Np

wkr2k (ζ), (5.4)
where Pi is the set of points in Ii and obs(p) the set of observations for p. Notethat the LMCW reuses map point observations for which the initial solution isnot inside the convergence radius and, thus, the PBA is not able to correct. Wepropose to use a coarse-to-fine optimization scheme over all active keyframes.In each level, we iterate until convergence and use the estimated geometry asan initialization for the next level. The same points are used across all levelsand each level is treated independently, i.e. neither the influence function noroutlier decisions are propagated across the levels (Sec. 5.3.3). In this way, weare able to handle larger camera and point increments δζ with the photometricmodel.We minimize Eq. (5.4) using the iteratively re-weightedLevenberg-Marquardt algorithm (see Sec. 3.5.3). From an initial estimate
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ζ (0), each iteration t computes weights wk and photometric errors rk to estimatean increment δζ (t) by solving for the minimum of a second order approximationof Eq. (5.4), with fixed weights:

δζ (t) = −H−1b, (5.5)
with H = JTWJ + λdiag(JTWJ), b = JTWr and W ∈ Rm×m is a diagonal matrixwith the weights wk , r is the error vector and J ∈ Rm×d is the Jacobian of theerror vector with respect to a left-composed increment given by:

Jk = ∂rk (δζ � ζ (t))
∂δζ

∣∣∣∣
δζ=0. (5.6)

The main difference of the PBA with the traditional geometric BA is thateach residual rk depends on two keyframes instead of one. This is due to thefact that each point is associated to a keyframe and relatively represented to it.However, this does not affect the sparsity structure of the problem and we takeadvantage of the Schur complement trick to solve the reduced problem (see Sec.3.5.5). Besides, we use variable scaling techniques (see Sec. 3.5.5) to take intoaccount the different magnitudes between the model parameters and acceleratethe optimization. The gauge freedoms are controlled fixing all other keyframesthat are covisible with the active ones.The PBA is implemented using the Ceres optimization library (Agarwalet al.) with analytic derivatives. We provide the analytical expressions of thejacobians Jk in the Appendix C, which can be efficiently computed using theadjoint theory. Image gradients are computed using central pixel differencesat integer values. For subpixel intensity and gradient evaluation, bilinearinterpolation is applied.
5.3.3 Robust Non-linear PBA

The LMCW selects widely separated active keyframes according to geometriccriteria without any consideration about the actual photo-consistency betweenthe images of the map points in the selected keyframes. Hence, it is possiblethat some of the points do not render photo-consistent images, because theysuffer, for example, from occlusions or scene reflections (see Fig. 5.5).To make our PBA robust with respect to this lack of photo-consitency,we propose an outliers management strategy based on the photometric error
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Figure 5.5: Probabilistic error modeling. The top row shows the casewhere most of the map points are photo-consistent, then both normaland t-distribution models fit well the photometric errors. The bottomrow shows a challenging situation where covisible reobservationsintroduce many outliers due to occlusions, the t-distribution fits theobserved errors better than the normal. On the left, the keyframe alongwith the point depth map after outlier removal.
distribution, from which we derive the appropriate weights for Eq. 5.4. Accordingto the probabilistic approach, optimizing the Eq. 5.4 is equivalent to minimizingthe negative log-likelihood of model parameters ζ given independent andequally distributed errors rk ,

ζ∗ = argmin
ζ
−

n∑
k

log p(rk | ζ). (5.7)
The minimum of Eq. 5.7 is computed equating its derivatives to zero givenby

−
n∑
k

∂ log p(rk | ζ)
∂ζ = − n∑

k

(∂ log p(rk )
∂rk

· ∂rk∂ζ

) = 0. (5.8)
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Figure 5.6: Comparison of different influence functions. Huber isplotted with k = 1.345 and Tukey with k = 4.685 assuming aGaussian distribution N (0, 1). The t-distribution is plotted with ν = 5and σt = 1.
This is equivalent to minimizing the re-weighted least-squares Eq. 5.4:

∂rk
∂ζ · w(rk ) · rk = 0, (5.9)

with the weights defined as
w(rk ) = −∂ log p(rk )

∂rk
· 1
rk
. (5.10)

Therefore, the solution is directly affected by the photometric errordistribution p(rk ) (see Kerl et al. (2013) for further details). Fig 5.6 shows theinfluence of different weight distributions in a least squares optimization. Nextwe describe them with more detail.
Gaussian distribution If errors are assumed to be normally distributed aroundzero N (0, σ 2

n ), the model of error distribution is p(rk ) ∝ exp(r2k /σ 2
n ). This modelleads to a constant distribution of weights which is a standard least squaresminimization. Thus, it treats all points equally and outliers cannot be neutralized:

wn(rk ) = 1
σ 2
n
. (5.11)
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Student’s t-distribution Recently, Kerl et al. (2013) has analyzed thedistribution of dense photometric errors for RGB-D odometry. It showed that thet-distribution explains dense photometric errors better than a normal distribution,providing a suitable weight function:

wt(rk ) = ν + 1
ν + ( rkσt )2 , when µ = 0. (5.12)

We have experimentally studied the sparse photometric errors and weconclude that the t-distribution also explains the sparse model properly (Fig.5.5). In contrast to the normal distribution, the t-distribution quickly drops theweights as errors move to the tails, assigning a lower weight to outliers. Besides,instead of fixing the value of the degrees of freedom ν = 5 as in Kerl et al. (2013),we study the behavior of the model when ν is fitted together with the scale σt(see Sec. 5.6). To fit the t-distribution, we minimize the negative log-likelihoodof the probability density function with respect to ν and σt using the gradientfree iterative Nelder-Mead method (Lagarias, Jeffrey et al., 1998). Besides, wefilter out the gross outliers before fitting the t-distribution. We approximate thescale value σ̂ using the Median Absolute Deviation (MAD) as σ̂ = 1.4826 MADand reject errors that rk > 3σ̂ .
M-estimators Whether the distribution of errors is hard to know or it isassumed to be normally distributed, using M-estimators is a popular solution.We have previously presented the two most popular alternatives, Huber andTukey, in Sec. 3.5.4. The Huber estimator gives linear influence to the outlier,whereas the Tukey estimator removes the influence of the outliers by settingthe weight to zero (see Fig. 5.6). Between these two alternatives, Huber is themost used one since it does not totally remove high error measurements but itdecreases their influence, which is crucial for reobservation processing. Note inFig. 5.6 how the t-distribution achieves a balance between Huber and Tukey.It is more aggressive with outliers than Huber but, in contrast to Tukey, it doesnot explicitly remove them.
Implementation of the probabilistic model into the PBA

We have studied the error distribution in each keyframe and concluded thatthere are differences between them. These variations might come from motionblur, occlusions or noise (see Fig. 5.5). Hence, we fit the error distribution for
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each keyframe separately using all the observations from active points in thatkeyframe. This allows to adapt the PBA to different situations, e.g. certain errorvalues might be considered as an outlier in a regular keyframe but inlier in achallenging one due to motion blur.Computing the error distribution and, thus, the weight distribution eachiteration changes the objective function (Eq. 5.7) and the performance of theoptimization might degrade. We propose to compute the error distribution onlyat the beginning of each pyramid level and to maintain it fixed during all theoptimization steps. At the end of the PBA, the error distribution is recomputedagain using the photometric errors obtained from the best geometry solution ζ∗.
Outlier management

It is crucial to detect and remove outlier observations as soon as possible tomaintain the PBA stability. To achieve this, we will exploit the information fromeach observation, which includes measurements from eight different pixels. Wepropose to build a mask for each point and mark each pixel measurement rk asinlier or outlier. To consider a pixel measurement as inlier, the photometric errorhas to be lower than the 95% percentile of the error distribution of the targetkeyframe. For challenging keyframes the threshold will be higher, being morepermissive, whereas for regular ones it will be lower, being more restrictive.When the current local PBA is finished, we count the number of inlier pixels inthe mask. Whenever an observation contains a number of outlier pixels largerthan a 30%, the observation is marked as an outlier and removed from the listof observations of the point. Besides, during the optimization, if the number ofoutlier pixels is larger than a 60%, the observation is directly discarded from thecurrent optimization step, i.e. w(r) = 0.We also detect and remove outlier points from the map. We propose to controlthe number of observations in each point to decide if it is retained. To retain anew point, it must be observed in all the new keyframes after its creation. Whenit has been observed in three keyframes it is considered a mature point. Maturepoints are removed if the number of observations falls below three.



128 Chapter 5. Direct Sparse Mapping
5.4 Front-End

The front-end is in charge of tracking each new input frame and point candidatesfrom the LMCW. It also decides when the map needs to be expanded with anew keyframe. As a result, it provides the coarse initialization of all the newparameters involved in the PBA, i.e. camera pose, camera affine light and pointinverse depth.
5.4.1 Frame Tracking

Each new frame is tracked against a local map, which is updated after everynew keyframe decision. The local map is formed with active points from theLMCW referenced to the latest keyframe. The frame pose and its affine brightnesstransfer model are computed by minimizing Eq. 5.1 in which the map points andthe latest keyframe remain fixed. The initial estimation is provided by a velocitymodel. We use a coarse-to-fine optimization, as proposed in the PBA, to handleinitial guesses with large errors. We use the same robust influence function ofSec. 5.3.3 to reduce the impact of high photometric errors.Regarding the implementation, we use the inverse compositional approach(Baker and Matthews, 2004) to avoid re-evaluating Jacobians each iterationand reduce the computational cost. This is achieved changing the roles of thelatest keyframe and the new frame: as we are estimating the relative motionbetween two cameras, it does not matter if we estimate the new frame motionor the keyframe motion. Thus, we can estimate the motion of the keyframe withrespect to the frame and update the frame pose parameters using the inverse ofthe computed motion. The jacobians are estimated with respect to the keyframe,which is kept fixed with respect to the points, and remain constant during all theoptimization. As a result, the jacobians can be precomputed and are required tobe re-evaluated only at the beginning of each pyramid level.
5.4.2 New Keyframe Decision

Whenever we move towards unexplored areas, the map is expanded with a newkeyframe. We use three different criteria with respect to the latest keyframe todecide if the tracked frame becomes a keyframe:
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1. The map point visibility ratio between the latest keyframe and the trackedframe, i.e. su = N−1∑min(pz/p′z , 1), where N is the total number ofvisible points in the latest keyframe, pz the point inverse depth in thelatest keyframe and p′z the point inverse depth in the tracked frame. Thescore is formulated to create more keyframes if the camera moves closer.
2. The tracked frame parallax with respect to the latest keyframe, defined asthe ratio between the frame translation t and the mean inverse depth ofthe tracking local map ρ̄: st =|| tρ̄ ||2.
3. The illumination change, measured as the relative brightness transferfunction between the tracked frame and the latest keyframe, i.e. sa =
|ak − ai|.

A heuristic score based on the weighted combination of these criteriadetermines if the tracked frame is selected as a new keyframe: wusu + wtst +
wasa > 1.
5.4.3 New Map Point Tracking

During exploration, the system requires to create new map points. Each keyframecontains a list of candidate points that are initialized and activated if so decided.We initialize the inverse depth of these candidate points using consecutivenew tracked frames. To do so, we search along the epipolar line to find thecorrespondence with minimum photometric error (Eq. 5.1). Only distinctive pointswith low uncertainty will be activated and inserted into the PBA.We follow a scheme similar to the one proposed in Engel et al. (2013). Theinverse depth of each candidate point ui is modelled by a Gaussian probabilitydistribution N (ρi, σ 2
ρi), which is updated with every new tracked frame. Weperform an exhaustive search along the epipolar line to find the best matchingpair. If we already have an inverse depth hypothesis, the disparity search rangeis limited to ρmax = ρi+2σρi and ρmin = ρi−2σρi. Otherwise, we search alongthe full disparity range. Fig. 5.7 illustrates the constrained search procedure.The uncertainty of the disparity is estimated measuring the angle differencebetween the epipolar line direction and the point gradient direction. This is,a point with a gradient direction similar to the epipolar line will have highuncertainty and vice-versa. For example, if a point belongs to an horizontaledge and we are searching along the same edge, we will obtain many similar
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Figure 5.7: Epipolar constrained search of a candidate point given aprior inverse depth distribution.
matches without a clear winner. The uncertainty of the disparity is given by

σ 2
d = σ 2

l(g · l)2 , (5.13)
where g is the point gradient, l the epipolar line direction and σl the uncertaintyof the epipolar line computation. The value of the epipolar line uncertaintyhas been experimentally set to σl = 0.5. Additionally, we skip searches withhigh disparity uncertainty as we know that they would not provide reliablemeasurements.During the epipolar search, we estimate the inverse depth for eachcorresponding pair (see Sec. 3.4) and map each pixel in the pattern Np tothe target frame using the estimated geometry. We also keep track of all theevaluated pairs and retain the best match only if the ratio of the residual withthe second best match is bigger than 2. In this case, we obtain a distinctive pointmatch uj , we propagate the uncertainty of the disparity σd to the uncertaintyin the inverse depth σρ . To do so, we obtain the inverse depth at the matchedpoint and at disparity uncertainty extremes, and form the new inverse depthhypothesis N (ρj , σ 2

ρj ) as
ρj = Tρ(uj ),
σρj = max(|Tρ(uj + σd)− ρj |, |Tρ(uj − σd)− ρj |), (5.14)
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where Tρ(u∗) is the inverse depth of the triangulated point for the correspondingpair (ui, u∗). In addition, we only keep the hypothesis of the match with thelargest baseline as it provides the most accurate estimate.Note that this delayed strategy requires several correspondences to obtaina good initialization as we are working with small baselines that render lowparallax. To guarantee that we have enough initialized candidates to activate,we maintain candidate points from a keyframe until this is dropped from thetemporal part of the LMCW. We only activate points that belong to image areasdepleted from points (Sec. 5.3.1). Thus, when revisiting already mapped sceneregions, only a few new points will be activated, as we will reuse existing mappoints.
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5.5 Initialization

The estimation of the 3D geometry using a monocular system is achicken-and-egg problem where the structure is required to estimate the motionand vice-versa (see Sec. 3.4). Thus, it is required to decouple the structure andmotion problems. This section presents an automatic initialization algorithm toobtain the relative pose between two frames and triangulate an initial set of mappoints. The proposed method is similar to other indirect solutions (Mur-Artalet al., 2015, Schönberger and Frahm, 2016) but it uses the same points of thephotometric model without requiring any specific feature detection and matchingstrategies. This allows to bootstrap the system in many difficult situations such asuntextured scenes and motion blur. In addition, the initialization is independentof the scene structure (planar or not) and does not require the intervention ofthe user.The automatic initialization algorithm follows these steps:
1. Set the first frame as the reference keyframe and select point candidatesin the image as proposed in Sec. 5.2.2. For each new input frame, track the position of point candidates in thenew image using a pyramidal implementation of the Lucas-Kanade featuretracker (Bouguet, 1999), also known as optical flow. Fig. 5.8 shows someexamples of this step. If not enough point matches are found, start againfrom step 1.3. Using the previous matches, compute two geometrical models: ahomography matrix assuming a planar scene and an essential matrixassuming a non-planar scene. We use a RANSAC scheme to remove theinfluence of outliers and obtain a more robust estimate. For each modelcount the number of inliers (NH and NE ) using the reprojection error.4. Select the most appropriate model using the heuristic inlier ratio givenby

r = NH
NE

. (5.15)If the ratio is larger than r > 0.8 select the planar case (homographymatrix), otherwise select the non-planar case (essential matrix).5. Recover the motion from the selected geometrical model. To do so, weestimate all the possible solutions (due to projective ambiguities) and
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Figure 5.8: Examples of optical flow tracking of candidate pointsduring system initialization. Green lines represent the motion of thecandidate points in the image.
select the motion with the highest number of points in front of both cameraswith a minimum number of points seen with parallax. If we find a clearwinner, initialize the inverse depth of the point candidates in the firstkeyframe as proposed in Sec. 5.4.3. Otherwise, do not initialize points andcontinue from step 2.

6. Select the latest frame as a new keyframe and perform PBA to refine thegeometry of the initial pair of keyframes and map points.
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5.6 Experiments And Discussion

The experimental validation of the proposed system uses the publicly availableEuRoC MAV dataset (Burri et al., 2015). This dataset presents two mainadvantages: first, it has three scenarios, two rooms (V1, V2) and a machinehall (MH), with very challenging motions and changes in illumination; second,it includes the 3D reconstruction ground-truth, which we also evaluate. Westudy the benefits of the VSLAM scheme of DSM with a version, DSM-SW(sliding-window), which only uses temporally connected keyframes as in Engelet al. (2016a). We compare our approach against state-of-the-art algorithmssuch as ORB-SLAM (Mur-Artal et al., 2015), DSO (Engel et al., 2016a) andLDSO (Gao et al., 2018). We evaluate the RMS Absolute Trajectory Error (ATE)and the Point to Surface Error (PSE). The ATE is computed using the keyframetrajectory for each sequence after Sim(3) alignment with the ground-truth. ThePSE is estimated measuring the distance of the reconstructed model to theground-truth surface after the trajectory alignment. The results are shown usingnormalized cumulative error plots, which provide the percentage of runs/pointswith an error below a certain threshold. These graphics provide both informationabout the accuracy and robustness of the evaluated method. All experiments areexecuted using a standard PC with an Intel Core i7-7700K CPU and 32 GB ofRAM.
5.6.1 Parameter analysis and tuning

This section presents an experimental analysis of the main parameters andoptions defining the DSM performance. We also propose the tuning for the finalsystem. To cover more cases, we run different experiments for the left and the rightcameras of the stereo rig, and both in the forward and in the backward direction.We run each experiment 5 times. In total, we have made 220 experiments.
Coarse-to-fine PBA

We evaluate the effect of changing the number of pyramid levels Np duringthe PBA. Fig. 5.9 shows the results for DSM-SW and DSM. Without thecoarse-to-fine scheme DSM-SW performs better than DSM. Here, DSM is notable to benefit from point reobservations due to the accumulated drift. However,DSM is able to reuse map points for higher number of pyramid levels and
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Figure 5.9: Number of pyramid levels Np. RMS ATE (left) andprocessing times (right) compared with the RT (real-time) for different
Np.

it clearly achieves better accuracy. While a coarse-to-fine strategy certainlyincreases the accuracy of DSM, there is significantly less improvement forDSM-SW. This is the expected behavior since DSM requires larger convergenceradius to process reobservations while DSM-SW does not (see Sec. 5.3.2). Notehow DSM is able to process approximately the 80% of runs with a RMS ATEbelow 0.1m while DSM-SW only gets 40% of runs. Moreover, we see that using
Np = 1 with a sliding-window increases the performance. We also observethat increasing the number of levels after Np = 2 for DSM does not increaseaccuracy but increases the runtime significantly.Including reobservations in the PBA has little effect on the processing time.In contrast, the number of pyramids approximately increases the runtime by 50%for each level. Thus, we use Np = 2 as default which achieves the best balancebetween efficiency and accuracy.
Number of PBA iterations

We also study the influence of the number of iterations in each pyramid levelduring the PBA. Fig. 5.10 presents the accuracy and processing time resultsfor DSM. We observe that increasing the number of iterations after 3 has littleimpact in the accuracy. Apparently, it makes no sense to iterate until convergenceeach time if we are going to incrementally introduce new measurements to the
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Figure 5.10: Number of PBA iterations. RMS ATE (left) and processingtimes (right) compared with the RT (real-time) for different number ofiterations.
system that continuously change the local minimum. Moreover, the computationaltime increases linearly with the number of iterations. In general, we see that thePBA does not perform more than 6− 7 iterations. Regarding the map accuracy,we have observed a similar behaviour to the localization with relatively lowimpact in the precision after 3 iterations.We believe that the number of iterations should be selected according to theapplication specifications. In the case, we want to find the maximum precisionwithout time requirements it should be increased, otherwise 3 iterations providessufficient accuracy with a computational performance closer to real-time. For therest of the experiments, we will not limit the number of iterations to evaluatethe maximum accuracy performance of the method.
Robust Influence Function

We study the effect of the selected model of weight distribution. Fig. 5.11 showsthe results for the t-distrution and Huber models. In contrast to Kerl et al.(2013), we evaluate the influence of the model when the degrees of freedom νare estimated together with the scale σ . For Huber, we study when the constantis fixed to λ = 9 and when it is dynamically changed with the MAD value.Interestingly, there is not significant difference between using fixed or dynamicvalues on both distribution models. However, the t-distribution performs betterin challenging situations providing higher robustness than Huber. This comes
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Figure 5.11: Robust influence function. Comparison of the RMS ATEbetween a Gaussian based M-estimator (Huber) and the t-distribution.

Figure 5.12: LMCW Nw = Nt + Nc . RMS ATE when changing thenumber of temporal Nt and covisible Nc keyframes.
from the fact that the t-distribution quickly drops the weights as errors move tothe tails while the Huber model does not. We use the complete t-distributionmodel as default settings due to its flexibility handling challenging situations.
Number of covisible keyframes in the LMCW

We observe that increasing the number of covisible keyframes Nc increasesthe trajectory accuracy (Fig. 5.12.) With those covisible keyframes the PBAis able to handle point reobservations and to reduce the drift. However, thesystem requires temporally connected keyframes Nt to guarantee the odometry
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robustness. Taking few temporal keyframes drastically reduces the accuracy.This is due to the fact that the temporal part ensures that new keyframes arewell optimized and that enough new points are initialized during exploration.Thus, we use the combination of Nt = 4 and Nc = 3 as default settings, whichachieves the best balance between precision and robustness.
5.6.2 Quantitative evaluation

This section presents a comparison of DSM against ORB-SLAM (Mur-Artalet al., 2015), DSO (Engel et al., 2016a) and LDSO (Gao et al., 2018). We reportthe results published in (Mur-Artal and Tardos, 2016b) for ORB-SLAM, in (Engelet al., 2016a) for DSO and we use the open-source implementation for LDSO.All the results are obtained using a sequential implementation without enforcingreal-time operation using Nw = 7 active keyframes for all direct methods. Werun on default settings all sequences both forward and backward, 10 times each,using left and right videos separately for a total of 440 runs.
Trajectory error

Table 5.1 reports the median errors for each forward sequence. Overall, we seethat DSM-SW performs similarly to DSO. This is expected since both methodsare based on the same sliding-window approach without a multiscale PBA.However, DSM-SW successfully executes all MH sequences, while DSO failsin MH_03_medium. This is probably due to the use of a more robust influencefunction in DSM-SW. DSM achieves higher accuracy in almost all sequencescompared to the rest of direct approaches, DSO, LDSO and DSM-SW. DSO andLDSO only achieve slightly higher accuracy in a few sequences. In addition,ORB-SLAM obtains better results in V1 and V2, but DSM achieves the bestperformance for the MH sequences. Note that in contrast to ORB-SLAM, we donot incorporate any place recognition, pose-graph or relocalization modules.This shows the high precision of DSM due to point reobservations. In thesequence V1_03_difficult, DSM achieves an RMS ATE of only 7.1cm, whichis by far the best performance among all the approaches tested. This sequencecontains very rapid motions and illumination changes, which demonstrates therobustness of the proposed method. In addition, we successfully manage tocomplete all sequences and obtain an RMS ATE below 0.1m for all of them,except V2_03_difficult, where all of the compared approaches fail.
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Table 5.1: RMS ATE [m] using forward videos for left (l) and right (r)sequences. (×) means failure and (-) no available data.
Seq. ORB-SLAM DSO LDSO DSM-SW DSMMH1_l 0.070 0.046 0.053 0.054 0.038MH2_l 0.066 0.046 0.062 0.041 0.036MH3_l 0.071 0.172 0.114 0.123 0.053MH4_l 0.081 3.810 0.152 0.179 0.060MH5_l 0.060 0.110 0.085 0.139 0.067V11_l 0.015 0.089 0.099 0.099 0.094V12_l 0.020 0.107 0.087 0.124 0.058V13_l × 0.903 0.536 0.888 0.071V21_l 0.015 0.044 0.066 0.061 0.058V22_l 0.017 0.132 0.078 0.123 0.058V23_l × 1.152 × 1.081 0.669MH1_r - 0.037 0.050 0.054 0.042MH2_r - 0.041 0.051 0.039 0.037MH3_r - 0.159 0.095 0.187 0.049MH4_r - 3.045 0.129 0.188 0.059MH5_r - 0.092 0.087 0.131 0.064V11_r - 0.047 0.662 0.031 0.014V12_r - 0.080 0.208 0.118 0.048V13_r - 1.270 0.642 1.313 0.047V21_r - 0.027 0.040 0.032 0.035V22_r - 0.059 0.068 0.314 0.056V23_r - 0.540 0.171 0.889 0.484

Mapping vs Pose-Graph

Comparing LDSO and DSM shows the differences in using a VO scheme witha pose-graph in contrast to a VSLAM scheme. Fig. 5.13 shows the RMS ATEfor all the evaluated sequences for LDSO and DSM. Overall, we observe thatDSM achieves better accuracy. We also see that reusing existing map pointsallows completing successfully a higher percentage of sequences. We build apersistent map and reuse map points to support the odometry estimation insteadof permanently marginalizing all points that leave the local window. This canalso be observed in Fig. 5.14. While DSM is able to process 80% of sequences
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Figure 5.13: Full evaluation results. For each sequence (X-axis) weplot the RMS ATE [m] in each iteration (Y-axis), with a total of 440runs.

Figure 5.14: RMS ATE for LDSO and DSM.
with an RMS ATE below 0.1m, LDSO can only handle 50% of runs under thislimit.Moreover, we have observed that in some sequences LDSO misses manyavailable loop closures due to a lack of feature matches. This makes the odometrydrift until a larger correction loop is detected, causing a temporally inconsistenttrajectory and structure estimations. Fig. 5.15 shows the evolution of the RMSATE along the trajectory. It can be seen the effect of missing loop closures
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Figure 5.15: VSLAM vs VO + Pose-Graph. RMS ATE after processingeach keyframe in the trayectory. It shows the time evolution of theerror. While a feature-based pose-graph strategy may miss many loopclosures, a VSLAM scheme continuously reuses existing informationto provide more accurate and reliable estimates in time.
with a feature-based pose-graph strategy. In contrast, building a persistentmap enables reusing existing map information continuously, which maintains thetrajectory accuracy stable in time. Although the final RMS ATE is similar in bothsystems, the navigation estimation using a VSLAM approach is more accurateand, thus, more reliable. This clearly shows that using a VSLAM scheme providesbetter accuracy performance compared to a VO scheme with a pose-graph.

Map error

Fig. 5.16 shows the distance between the reconstructed points and theground-truth surface. We compare all the sequences against LDSO exceptin V2_03_difficult where LDSO fails. Clearly, incorporating map pointreobservations into the PBA increases not only the trajectory accuracy but thereconstruction precision too. Although the final trajectory RMS ATE is similarin some sequences, such as in V1_01_easy, the map is without a doubt moreaccurate in DSM. Besides, we have observed that LDSO creates ten times morepoints than DSM for these sequences, due to the fact that DSM reuses existingmap points avoiding duplications.
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Figure 5.16: Map error. For each scene we show the accumulatedPSE distribution using all the reconstructed 3D points for all runs.Solid lines (—) present easy sequences, dashed lines (---) mediumand dotted lines (· · ·) difficult ones for each scene.
Table 5.2: Processing time and keyframe frecuency.

Operation Median [ms] Mean [ms] St.D. [ms]Frame & Point Tracking 7.44 7.45 0.31Local PBA 888.77 908.53 121.10Keyframe Period 396.28 397.22 177.51

Processing time

Table 5.2 reports the processing time required for each part of the method, as wellas the used keyframe period time. In our current initial implementation, PBA isthe bottleneck of the processing cost. We observe that it should be twice faster toobtain the required keyframe creation rate. It is possible to improve the runtimesignificantly using SIMD instructions to process each patch. Besides, many ofthe operations can be parallelized as they are independent for each point. Webelieve using these upgrades could make DSM run in real-time applicationssince the mapping thread is not required to run at frame rate but at keyframerate.
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Figure 5.17: Memory usage comparison. In blue the memory usagefor each sequence in normal conditions and in red when the memorypool is applied. Note how the memory requirement is reduced for allthe sequences when we use the memory pool. In general, less than1500−2000 MB is required, which is a reasonable number for currentcomputers.
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Memory requirements

An important concern regarding mapping approaches is the memory usage asthey continuously store past information. To handle this situation, we haveimplemented a memory pool that allows reusing already reserved memory. Thisis, when a keyframe is deactivated, all its pyramidal image buffers are returnedto the pool and reused by active keyframes. As a result, fixed keyframes storejust a single image, the one provided by the camera.Fig. 5.17 presents the memory requirements for all the sequences. As canbe observed, the memory pool significantly reduces the memory usage for allthe sequences. This is the expected behavior since we are reusing image buffersinstead of reserving new memory blocks each time. However, we see that thememory usage continuously grows in time. This is due to the fact that we alwayscreate new keyframes even if we are in an already mapped area. It would beinteresting to add map maintenance strategies such as removal of redundantkeyframes (Mur-Artal et al., 2015) to ensure long-term operation efficiency.
5.6.3 Qualitative evaluation

Fig. 5.18 shows examples of estimated trajectories compared to the ground-truth.See how well the estimated trajectory fits the ground-truth, even in sequenceswhere the drone is navigating in large loops as in sequences MH_04_difficultand MH_05_difficult.Fig. 5.1 and Fig. 5.19 show some 3D maps obtained with DSM. In contrast tosliding-window based approaches, incorporating covisibility constraints avoidsduplicating points and builds a consistent map. DSM estimates a precise cameratrajectory and 3D reconstruction even in the most difficult sequences such asV1_03_difficult and MH_05_difficult. Note in Fig. 5.19 how there are manydifferent objects that are easily recognizable, such as the chessboard, the ladderor the cupboard.In addition, we also evaluate DSM in custom videos. Fig. 5.20 shows the 3Dreconstruction of an office desk. It is able to recover the structure of untexturedelements such as the contours of the screens, the keyboard keys, speakers andeven cables. Fig. 5.21 presents some details of the same reconstruction whereit is possible to easily recognize many different objects. Finally, 5.22 showsthe estimated reconstruction under industrial conditions, including low textureand reflections. In this case, the boundaries of the inspection module and the
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Figure 5.18: Trajectory examples by DSM (red) and ground-truth(black).
robot arm are easily identifiable which can be used to detect collisions betweendifferent mobile robotics in a production line.
5.6.4 Discussion

We have demonstrated the benefits of building a persistent map instead of justestimating the camera odometry with a temporary map. Both the accuracy ofthe trajectory and the reconstructed map improve by reusing map informationin the photometric model. DSM manages to process scene reobservations andsuccessfully completes 10 out of 11 sequences with an RMS ATE below 0.1min the challenging EuRoC dataset without requiring any loop closure detectionand correction.During long-term sequences in the same environment DSM provides reliableestimates as long as point reobservations are successfully processed. Aspreviously discussed it would be interesting to add map maintenance strategies,
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Figure 5.19: Qualitative examples. V1_03_difficult (top) andMH_05_difficult (bottom) sequences. The trajectory is displayed inred.
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Figure 5.20: Example of the reconstruction of an office desk. Notehow the objects are reconstructed with detail, such as the screens, thekeyboard, the mouse and even cables.
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Figure 5.21: Example of reconstructed objects that are easilyidentifiable.
such as removal of redundant keyframes and points, for two reasons: (1) tomaintain the memory requirements to the minimum; (2) to relax the covisibilitygraph of keyframes. The latter is very important as the number of fixed covisiblekeyframes increases, the graph becomes more rigid and the PBA hardly improvesthe estimate of active keyframes and points.Even with a persistent map, it is not possible to handle all reobservationsin all situations. In large trajectory scenarios, the accumulated drift makes itimpossible to detect map point reobservations with geometric techniques alone.Sometimes map point reobservations do not even fall in the camera field of viewdue to the large drift, e.g. in a highway loop. In these cases, a place recognitionmodule, which exploits the image appearance, would be useful to detect loop
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Figure 5.22: Example of the reconstruction of an industrial inspectionmodule using a robot arm.
closures. Then, a pose-graph optimization will serve as an initialization for thePBA. Therefore, we believe that combining map reuse capabilities with a placerecognition module, such as previously done with indirect techniques in (Strasdatet al., 2011) and (Mur-Artal et al., 2015), is the best alternative. In any case, wethink that a pose-graph should only be used as a coarse initialization techniquefor the PBA, which is the optimization technique that actually exploits all theavailable geometric information in a VSLAM system.
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Chapter 6

Conclusions and Future Work

This thesis has studied several perception techniques for augmented reality inindustrial environments and mobile robotics. This chapter presents the mainconclusions reached during the course of this work, as well as a number offuture research lines in which this work can be extended.
6.1 Conclusions

In this thesis, we have presented two novel approaches for visual perceptionin two different situations. Chapter 4 has presented an object recognition andtracking method for robust pose estimation when dealing with untextured scenesof industrial environments. We have also integrated the proposed approach intoa complete AR assistance tool, called ARgitu, for maintenance in industrialsettings. Chapter 5 has presented a direct visual SLAM method, denoted asDirect Sparse Mapping (DSM), for estimating the camera motion and scenestructure from a video stream. We have focused on developing a robust andaccurate solution using direct techniques that provides reliable estimates whenan autonomous mobile robot navigates continuously in the same environment.The main contributions of each of the proposed approaches are summarizedbelow.
Untextured object recognition for industrial environments

Markerless object recognition approaches make use of visual features in theimage that are naturally in the scene. Industrial environments lack texture and
153
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contain non-Lambertian surfaces that make texture-based approaches fail. Wehave proposed a new 3D object recognition method based on geometric featuresin order to detect and localize 3D models using a single image. More precisely,our method uses a combination of model circles and edge templates, to improveupon the weaknesses of each other.The method improves the registration step of chamfer matching approachesusing corresponding conics. Normally, the registration is performed scanning allthe image by brute force. In contrast, the proposed correlation between modelcircles and image ellipses reduces significantly the computational cost. At thesame time, it sidesteps the problem of estimating the camera location using asingle circle. Instead of using just points and lines, we use the whole modeshape to solve the revolution symmetry ambiguity. Moreover, the experimentalvalidation has demonstrated that the proposed approach is also more robust inchallenging situations such as cluttered background and occlusions. This is dueto the fact that image ellipses allow skipping many wrong camera location bysearching just locally around them. This is an important property in industrialenvironments since machinery is composed of many different parts that areoccluded between them.Regarding computational time, the method can detect many kind of objectsin a few hundred of milliseconds, achieving close to real-time performance inmany cases and running four times faster that current state-of-the-art techniquesin a standard PC. As a result, we obtain faster and more robust camera poseestimates, which is a determining factor for AR applications in order to give acorrect visual feedback in a smooth manner.In addition, we have developed an fully automatic training stage that extractsall the required geometric features from the 3D model: edges, circles andedge templates. Thus, it is possible to add new models easily in just a fewminutes, which allows its direct application in the industry without requiringthe participation of technicians.Finally, the proposed method has been integrated in a complete pipeline foraugmented reality applications. We present a framework to generate and presentvirtual and augmented information for the development of AR assistance toolsin industrial settings. It includes all the tools required for the development andvisualization of contents. Firstly an author tool enables users to create assistanceguides for maintenance processes using different annotation types, such as text,video, virtual reality based animations and augmented reality. These guides arepresented to the user using a simple to use guiding application. The framework
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uses the proposed approach for recognition and localization of non-lambertianobjects in industrial environments. Both applications leverage the capabilitiesof the proposed method, such as the simple training process, to detect and trackobjects in industrial environments in real-time.
Direct visual SLAM for mobile robotics

One of the core properties of a VSLAM approach is to detect when a mobile robotis traversing an already known location. To obtain this, it is required to correlateimages of the same scene independently of the time and viewpoint at whichthe images were captured (covisibility). We have proposed DSM, a new directVSLAM system. Up to our knowledge, DSM is the first fully direct monocularVSLAM approach that is able to detect and handle point reobservations whenrevisiting already mapped areas.The system uses the same objective function and map points for all the tasks:tracking front-end, optimization back-end and map reuse. We build a persistentmap by reusing map points from already visited scene regions. To obtain this,we have presented a new local window selection strategy using covisibilitycriteria, which enables to include map point reobservations into the photometricbundle adjustment. Instead of using feature matches as indirect approaches,the covisibility is obtained from geometric and photometric constraints. Wehave demonstrated that a coarse-to-fine strategy is required to process pointreobservations with the photometric model due to its narrow convergence basin.The result is a system that builds a persistent map that can be reused, obtainingmore accurate localization and structure estimates. In consequence, the need ofloop closure detection and correction is postponed to trajectories longer thantheir visual odometry counterparts.As a pure direct system, DSM does not rely on the repeatability of selectedpoints that have been sampled across pixels with high gradient module. Asa result, the system is able to work in challenging situations with a lack oftextured surfaces and motion blur. At the same time, the system is able torecover the 3D geometry of contours in the scene and reuse map points avoidingduplications. The result is a more consistent, complete and dense reconstruction,which provides a rich description of the environment. This is a very importantcapacity for autonomous mobile robotics which allows them to understand bettertheir surroundings in order to take the right decisions.
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The exhaustive evaluation of the system in the challenging EuRoC MAVdataset has demonstrated that DSM is able to provide very accurate estimatesof both the camera trajectory and map reconstruction. For the first time, we havealso measured the precision of the map which is usually neglected. Our solutionprovides more accurate and robust localization and reconstruction estimatescompared to the state-of-the-art direct VO implementations. While VO withpose-graph approaches miss many available loop closures, we continuouslyreuse existing map point information to provide stable estimates in time. Tostrengthen the proposed method, we have published the code as open-source.
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6.2 Limitations and Future Research Lines

During the development of this work, we have identified a number of limitationsand interesting future research lines. In the following, we present some of themto guide future studies.
1. Object RecognitionThe proposed method uses the 3D geometric properties of the model torecognize the target object in the image. However, it has been developedto work only with model circles and edge templates. As a consequence,it requires the target object to contain circles in its surface and relies onthe performance of the ellipse detector.It would be interesting to incorporate a learning-based formulation toautomatically extract the most useful geometric properties from eachmodel during the training. One possible solution could be to realisticallyrender the model in many different situations and positions (includingillumination, material, texture, backgrounds, occlusions, etc.), and useConvolutional Neural Networks (CNN) to automatically learn the bestmodel parameters for each case. Such approach would provide a coarsepose of the object that could be further refined using more traditionaloptimization methods. As well as the proposed approach, the result willcontain an automatic training from the 3D model without the technicianparticipation. In this way, we would obtain a more flexible algorithm thatwould allow to incorporate this technology in a wider range of practicalapplications.Finally, the proposed AR framework guides technicians duringmaintenance tasks, but it does not verify if the task has been properlyexecuted. It would be appropriate to extend the framework with anadditional module to determine the correctness of the task and providethe corresponding feedback to the worker.
2. Visual SLAMIn the current implementation, the photometric bundle adjustment (PBA)is the bottleneck of the processing cost. A possible improvement could beto use SIMD instructions that permit processing the eight pixels in thepatch in two steps. Moreover, there are many operation in the system
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that are independent for each point and, thus, can be parallelized takingadvantage of modern CPUs or even GPUs.The system creates keyframes everytime the tracking requires newreference points, even if there are many keyframes that observe the samescene region. This is due to the fact that the tracking is performed againstthe latest keyframe and not against the persistent map. It would beinteresting to check beforehand if there are keyframes in the map thatcould serve as reference for the tracking. Thus, the system would reusekeyframes and avoid creating unnecessary new ones. Another possiblealternative could be to track directly against the persistent map usingpoint observations from many different keyframes. The resulting systemwill be more efficient with respect to long-term operations.Regarding with the previous limitation, it would be also interesting to addmap maintenance strategies such as removal of redundant keyframes andpoints. The benefits of implementing this capacity will be twofold: reducethe memory footprint and reduce the stiffness of the covisibility graph.Consequently, the optimization graph will be more flexible and the PBAwill have more capacity to improve the camera and point estimates. Thisis a very important aspect that should be taken into account, speciallyto achieve drift-free performance in long-term operations in the sameenvironment.Moreover, DSM uses geometry constraints to build the covisibility graphinstead of place recognition. Thus, we cannot handle large scale loopclosures nor relocalization, as we need the initial optimization seedmust be near the solution. One possible alternative could be to make ahybrid solutions combining the strengths of indirect and direct approaches.However, a more interesting option could be to integrate learning-basedfeatures as an input for the direct VSLAM. Recently, von Stumberg et al.(2019) has proposed a network to train features with a large convergencebasin for direct VSLAM. This extends the possibilities of developingplace recognition modules using a direct formulation, which currently aredominated by indirect approaches.It would also be interesting to extend DSM to another kind of cameras –omnidirectional or stereo – or even integrate it with other sensors suchas inertial measurement units (IMU). We believe this could further boostthe performance of DSM for real applications where, for example, the realscale of the scene is required.
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Finally, there is still the open challenge of performing VSLAM in dynamicscenes. In fact, the real world is composed of moving objects and theassumption of large static environments is hard to be fulfilled. One possiblesolutions could be to recognize each of the objects so they could be trackedand reconstructed independently. At the same time, non-rigid VSLAM isalso a promising technology, specially for medical applications, such asendoscopy, where human tissues come into play.
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Appendix A

Camera Models

The following sections present a review of several camera projection modelsproviding the projection and unprojection functions when defined (see Sec. 3.3.1).We follow the works of (Devernay and Faugeras, 2001, Kannala and Brandt,2006, Szeliski, 2010, Usenko et al., 2018).
A.1 Radial-Tangential Model

This is one of the most popular alternatives to model lense non-linear distortionsand its implementation can be found in OpenCV library. It approximates thelense distortion using a polynomial of n degrees with two terms: the radial andtangential distortion. Higher degree coefficients approximate better lenses withlarge distortion but may become numerically unstable at the same time. Theprojection function with a polynomial of degree two is given by
πr(x) =  x

z (1 + k1r2 + k2r4) + 2ρ1 xyz2 + ρ2(r2 + 2 x2
z2 )

y
z (1 + k1r2 + k2r4) + ρ1(r2 + 2y2

z2 ) + 2ρ2 xyz2

 , (A.1)
r = √x2

z2 + y2
z2 , (A.2)where k1, k2 are the radial distortion coefficients and ρ1, ρ2 the tangentialdistortion coefficients. The projection function is defined for Θ = {x ∈ R3 | z >0} since it is implemented as a distortion function for pinhole-based projectedpoints.This model does not have a closed-form inverse. The unprojection functionrequires to find the root of the polynomial to recover r . It can be iteratively
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obtained using the Newton’s method. Alternatively, one can directly obtain thevalues of x/z and y/z by solving the system of equations with an iterativeoptimization, e.g. Gauss-Newton method. However, the latter requires to obtainthe jacobians with respect to x/z and y/z which is more complex to implement.The radial-tangenial model is well suited for cameras with low radialdistortion, such as consumer cameras. In practice it has been demonstrated thatthe model is not suitable for wide-angle or fisheye cameras with large distortionsand a field-of-view larger than a 120◦.
A.2 FOV Model

The FOV model was specifically developed for fisheye cameras that are designedto include some kind of non-linear distortion. It assumes a radially symmetricdistortion: the distance of an image point to the principal point is proportionalto the angle between the corresponding 3D point, the optical center and theoptical axis (see Fig. A.1). The corresponding projection function is given by
πf (x) = [ rdru xrd

ruy

]
, (A.3)

ru = √x2 + y2, (A.4)
rd = atan2(2ru tan w2 , z)

w , (A.5)
where w 6= 0 is the unique model parameter and represents the field-of-view ofan ideal fisheye lens. The FOV model is defined for Θ = {x ∈ R3 \ [0, 0, 0]T }.
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Figure A.1: Geometric representation of the FOV camera model.
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The FOV model has a closed-form solution for the unprojection functiondefined as

π−1
f (m) =


tan(rdw)2rd tan w2 mutan(rdw)2rd tan w2 mv1

 , (A.6)
rd = √m2

u +m2
v . (A.7)

A.3 Equidistant Model

The equidistant model is a generic camera model and has been demonstratedto fit well regular, wide-angle and fisheye lenses. It assumes that the distancefrom the optical center of the image to the projected point is proportional to apolynomial of the angle between the point and the principal axis (see Fig. A.2).The projection function with a polynomial of four parameters is given by
πe(x) = [ d(θ)

r x
d(θ)
r y

]
, (A.8)

r = √x2 + y2, (A.9)
θ = atan2(r, z), (A.10)

d(θ) = θ + k1θ3 + k2θ5 + k3θ7 + k4θ9, (A.11)where k1, k2, k3, k4 are the model parameters. The function is defined for Θ =
{x ∈ R3 \ [0, 0, 0]T }.
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Figure A.2: Geometric representation of the Equidistant camera model.
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The equidistant model does not have a closed-form inverse. The unprojectionfunction requires an iterative optimization to solve the inverse of the polynomial,such as the ones proposed in the radial-tangential model. Moreover, this modelcan be found as a distortion model for the pinhole camera, e.g. the fisheyecamera model in OpenCV. However, as explained before, implemented in thismanner it has a singularity at z = 0, which makes it unsuitable for lenses witha field-of-view close to 180◦.

A.4 Extended Unified Model

The extended unified camera model (EUCM) is a generalization of the unifiedcamera model (UCM) that is widely used with catadioptric cameras. Thismodel first projects the 3D point onto a symmetric ellipsoid around the zaxis and then onto the image plane using the pinhole model shifted by α1−α(see Fig. A.3). A major advantage over the previous models is that the EUCMhas a closed-form solution for projection and unprojection functions, and doesnot require computationally expensive trigonometric operations. The projectionfunction is defined as
πu(x) = [ x

αd+(1−α)z
y

αd+(1−α)z
]
, (A.12)

d = √β(x2 + y2) + z2, (A.13)where α ∈ [0, 1], β > 0 are the model parameters. Note that for α = 0 and
β = 1 the model degrades to the pinhole model. The EUCM is defined for:

Θ = {x ∈ R3 | z > −wd}, (A.14)
w =

 α1−α if α ≤ 0.5,
1−α
α otherwise. (A.15)

The EUCM has a closed-form inverse function defined as
π−1
u (m) = 1√

m2
u +m2

v + λ2
mu
mv
λ

 , (A.16)
λ = 1− βα2r2

α
√1− (2α − 1)βr2 + (1− α) , (A.17)
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r2 = m2

u +m2
v . (A.18)
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Figure A.3: Geometric representation of the EUCM.
A.5 Double Sphere Model

The double sphere (DS) model was developed to fit fisheye lenses. The DSmodel first projects the 3D point onto two consecutive spheres, which are shiftedby ξ . Then, the point is projected onto the image plane using the pinholemodel shifted by α1−α (see Fig. A.4). Similar to the EUCM, the DS modelhas a closed-form solution for projection and unprojection functions, and doesnot require computationally expensive trigonometric operations. The projectionfunction is given by
πd(x) = [ x

αd2+(1−α)(ξd1+z)
y

αd2+(1−α)(ξd1+z)
]
, (A.19)

d1 = √x2 + y2 + z2, (A.20)
d2 = √x2 + y2 + (ξd1 + z)2, (A.21)where ξ , α are the model parameters. The projection function is defined for:Θ = {x ∈ R3 | z > −w2d1}, (A.22)
w2 = w1 + ξ√2w1ξ + ξ2 + 1 (A.23)
w1 =

 α1−α if α ≤ 0.5,
1−α
α otherwise. (A.24)
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The unprojection function is defined as

π−1
f (m) = λξ +√λ2 + (1− ξ2)r2

λ2 + r2
mu
mv
λ

− 00
ξ

 , (A.25)
λ = 1− α2r2

α
√1− (2α − 1)r2 + (1− α) , (A.26)
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u +m2

v . (A.27)
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Figure A.4: Geometric representation of the DS camera model.



Appendix B

Conic Based Pose Estimation

This appendix presents how to estimate the pose of a camera using conics. Wefollow the method proposed in (De Ma, 1993), which shows that at least twoconics are required to estimate the pose of a 3D object. First, we present thegeneral geometric constraint that is obtained when projecting a 3D conic intoan image. Then, we show how to obtain the camera pose in two cases: whenthe conic is an ellipse and a circle. We assume the image to be undistorted anduse the pinhole camera projection model (see Sec. 3.3).
B.1 The Basic Geometric Constraint

Let Q be a conic that lies on a plane with a local coordinate system attachedto it, in which the x-axis and y-axis lie on the plane and z-axis is normal. Anypoint x in the conic is projected into an image pixel u as
u = K · π(R · x + t), (B.1)

where T = [R | t] corresponds to the camera pose. Fig. B.1 shows an schematicrepresentation of the problem.At the same time, any projected point u is also part of a conic in the imageand, thus, it can be represented in matrix form using the Eq. 3.9 as
ūT · G · ū = 0. (B.2)

Without loss of generality, the pose of an ellipse lying in the object surfacecan be simplified using only the first two columns of the rotation matrix R and
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Figure B.1: 3D conic and camera representation in space. Any pointin the local coordinates of a conic can be represented in cameracoordinates using the transformation T. The projection of a conic Q inthe space is expressed as the matrix G in image pixels.
the translation vector t as P = (r1, r2, t). Using P and substituting the Eq. B.1into the Eq. B.2 we get

ūT · G · ū = xT · PT · KT · G · K · P · x = 0, (B.3)
which is the same conic representation as in Eq. 3.9. Both expressions are equalup to a scale factor, k :

PT · KT · G · K · P = PT · A · P = k ·Q, (B.4)
where A = KT · G · K.The Eq. B.4 is the basic geometric constraint of a conic and its projection. Inthe following sections, the pose estimation from corresponding conics is solvedusing this constraint. We study first the case of a single ellipse and then thecase of a single circle.



Section B.2. Pose from a single ellipse 171
B.2 Pose from a single ellipse

The problem is to determine the pose of a 3D object knowing the correspondencebetween an ellipse in the surface of the object and its projection in an image.As we will see, it is not possible to determine a unique pose from only onecorrespondence and more information is required, such as points (Costa andShapiro, 2000), lines (Wang et al., 2008) or as in our proposed method, edgetemplates (see Chapter 4).The translation vector can be expressed using the rotation coefficients as
t = R · c where c = (c1, c2, c3). Therefore, the pose matrix P can be rewrittenintroducing the new vector c as

P = (r1, r2, t) = R · C = R

1 0 c10 1 c20 0 c3
 . (B.5)

Introducing the new expression of the pose to the equation B.4 we get:
RT · A · R = k · B, (B.6)

where B = (CT )−1 · Q · C−1. From the above expression, we observe that thematrices A and B are similar and, therefore, they have the same eigenvalues.Then, using the invariants of a 3×3 symmetric tensor we obtain three equationsin terms of the ellipse parameters:
det(kB) = λ1λ2λ3 = −k3

c23a2b2 , (B.7)
12 [tr(kB)2 − tr(kB2)] = λ1λ2 + λ1λ3 + λ2λ3

= k2(d2 − a2 − b2)
c23a2b2 ,

(B.8)
tr(kB) = λ1 + λ2 + λ3

= k (d2a2 + c21b2 − c1a2 + c23b2 − a2b2)
c23a2b2 ,

(B.9)
where λ1,λ2 and λ3 are the three eigenvalues of A and d is the absolute distancebetween the center of the ellipse and the origin of the camera coordinate system,
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d2 = c21 + c22 + c23 . Notice that it is a three equation system with four unknowns(c1, c2, c3, k ) so we require additional information to solve it. One possiblesolution is to know the absolute distance d and solve the system to obtainthe values of (c1, c2, c3, k ). Now we can solve for R and t.Substituting the parameter values in the Eq. B.6, we rewrite the expressionas

RT · U ·D · U−1 · R = V ·D · V−1, (B.10)where U and V are the matrices whose columns contain the eigenvectors of Aand B respectively, and D is a diagonal matrix with the eigenvalues of A.Now denoting W = U−1 · R · V and using the Eq. B.10, we conclude that
W has eight possible solutions give by

W = ±1 0 00 ±1 00 0 ±1
 . (B.11)

If we consider that det(U) = 1 and det(V) = 1, W has only four solutionssince det(W) = 1, in the case of a dextrorotation solution. However, in generalwe cannot guarantee that the determinants of the eigenmatrices are equal toone. Thus, we must evaluate all possible values of the W matrix (dextrorotationand levorotation cases) and discard the levorotation solutions (det(R) = −1) .Finally, we can determine R and t with
R = U ·W · V−1,
t = R · c.

(B.12)
There are 8 possible combinations for the signs of c1, c2 and c3. A total of4 solutions for R depending on the signs of the matrix W. This yields to a totalof 32 possible solutions. However, we know that the model is in front of thecamera which reduces the number to 16. Finally, setting the z axis normal tothe ellipse and the x axis aligned with the major semi-axis correspond to only4 different poses (see Fig. B.2). Thus, as we have previously mentioned, in orderto estimate a unique pose further information is required.
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Figure B.2: Four equivalent solutions of a conic
B.3 Pose from a single circle

When the conic on the surface of the model corresponds to a circle the valuesof the major and minor semi-axes are equal, this is, a = b = r . Reasoning inthe same way as the previous section, we obtain these three equations:
det(kB) = λ1λ2λ3 = −k3

c23r4 , (B.13)
12 [T r(kB)2 − Tr(kB2)] = λ1λ2 + λ1λ3 + λ2λ3

= k2(d2 − 2r2)
c23r4 ,

(B.14)
T r(kB) = λ1 + λ2 + λ3 = k (d2 + c23 − r2)

c23r4 . (B.15)
In this case, we only have three unknowns d, c3 and k and we can obtain asolution without any extra information. Therefore, c1 and c2 can have any valuethat verifies the equation of the absolute distance d. Once the unknowns aresolved, we can obtain R and t as in the previous case. Furthermore, this methodhas also 4 possible poses (see Fig. B.2) and for each one the x-axis and y-axisaxes are not uniquely determined (depending on the values of c1 and c2). Thisis due to the fact that circles do not contain major and minor axes, which createsan ambiguity.





Appendix C

Jacobians

This appendix presents the analytical derivatives of the photometric model usedin Chapter 5. Many of the expressions are elaborated in a general mannerso they can be used in many other computer vision and robotics applications.We first estimate the partial derivatives with respect to individual parts of thephotometric equation: projection and geometric parameters. Then we use thechain rule to obtain the final jacobians for the photometric bundle adjustment.The photometric residual is defined in the Eq. 5.2.1 as
r = (Ii[ui]− bi)− eai

eaj (Ij [uj ]− bj ), (C.1)
where Ii, Ij represent the images, ui, uj the evaluated pixels in eachcorresponding image and ai, bi, aj , bj the brightness transfer functionparameters. The transformation of the pixel ui with a known inverse depth ρifrom the image Ii to the image Ij is given by the Eq. 3.52 as

uj = K · π(x′j ) (C.2)
with

x′j = ρi · xj = R · K−1ui + ρi · t, (C.3)that represents the scaled point transformation with the linear inverse depthmapping function of Sec. 3.4.2.
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C.1 Projection Function

The jacobian of the projection function (Eq. C.2) on a pinhole camera (Eq. 3.38and 3.42),
u = Kπ(x′) =

fu x
′

z′ + cu
fv y

′

z′ + cv1
 , (C.4)

is given by
∂u
∂x′ = 1

z′ ·
[
fu 0 −fu x

′

z′0 fv −fv y
′

z′

]
. (C.5)

C.2 Camera Pose

Following the Eq. C.3, we can rewrite the scaled transformation of a point as
x̄′j = [R t0 1] · [K−1ui

ρi

] = Tji ·
[
K−1ui
ρi

] = Tji · x̄′i, (C.6)
which depends on the world position of each of the cameras Tji = T−1

j Ti.As discussed in Sec. 3.2.3, the jacobian with respect to a pose is calculatedusing a small increment ξ . The partial derivatives of x′j with respect to Ti aroundzero are calculated employing the Eq. 3.36. In this case, we are working withthe scaled case so the final expression is also scaled as
∂x′j
∂ξ i

∣∣∣∣
ξ i=0 = ∂(ρi · xj )

∂ξ i

∣∣∣∣
ξ i=0

= ρi ·
∂(T−1

j · exp(ξ i) · Ti · x̄i)
∂ξ i

∣∣∣∣
ξ i=0

= ρi ·
∂(exp(AdjT−1

j
· ξ i) · T−1

j · Ti · x̄i)
∂ξ i

∣∣∣∣
ξ i=0

= ρi ·
∂(exp(ξ ′i) · Tji · x̄i)

∂ξ ′i

∣∣∣∣
ξ ′i=0

∂exp(AdjT−1
j
· ξ i)

∂ξ i

∣∣∣∣
ξ i=0= ρi ·

[
I3 −x̂j

]
· AdjT−1

j
.

(C.7)
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Similarly, the partial derivatives with respect to Tj around zero are givenby
∂x′j
∂ξ j

∣∣∣∣
ξ j=0 = ρi ·

∂((exp(ξ j ) · Tj )−1 · Ti · x̄i)
∂ξ j

∣∣∣∣
ξ j=0

= ρi ·
∂(T−1

j · exp(−ξ j ) · Ti · x̄i)
∂ξ j

∣∣∣∣
ξ j=0

= ρi ·
∂(exp(−AdjT−1

j
· ξ j ) · T−1

j · Ti · x̄i)
∂ξ j

∣∣∣∣
ξ j=0

= ρi ·
∂(exp(ξ ′j ) · Tji · x̄i)

∂ξ ′j

∣∣∣∣
ξ ′j=0

∂exp(−AdjT−1
j
· ξ j )

∂ξ j

∣∣∣∣
ξ j=0= −ρi · [ I3 −x̂j

]
· AdjT−1

j
.

(C.8)

Note that the partial derivatives with respect to one camera are the oppositeto the other camera. Consequently, during numerical optimizations we onlyrequire to compute just one jacobian, greatly reducing the computational load.
C.3 Point Inverse Depth

The jacobian of the scaled point transformation with respect to the point inversedepth is given by
∂x′j
∂ρi

= ∂(R · K−1ui + ρi · t)
∂ρi

= t. (C.9)
C.4 Photometric Bundle Adjustment

This section presents all the required analytic derivatives to implement thephotometric bundle adjustment of Chapter 5. To obtain them, we will use theexpressions of the partial derivatives obtained in previous sections and use thechain rule to estimate the complete jacobians.
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C.4.1 Geometric parameters

The jacobians of the photometric residual with respect to the geometricparameters are given by:
Host camera pose

∂r
∂ξ i

= −eaieaj ·
∂Ij
∂uj
·
∂uj
∂x′j
·
∂x′j
∂ξ i

= −eaieaj ·
[
gx
gy

]
· ρiz′ ·

[
fu 0 −fu x

′

z′0 fv −fv y
′

z′

]
·
[

I3 −x̂j
]
· AdjT−1

j

= −eaieaj ·
[
gx
gy

]
·
[
fuρj 0 −fu x

′

z′ρj −fu x
′y′
z′2 fu(1 + x ′2

z′2 ) −fu y′z′0 fvρj −fv y
′

z′ ρj −fv (1 + y′2
z′2 ) −fv x ′y′z′2 fv x

′

z′

]
· AdjT−1

j(C.10)
Target camera pose

∂r
∂ξ j

= −eaieaj ·
∂Ij
∂uj
·
∂uj
∂x′j
·
∂x′j
∂ξ j

= eai
eaj ·

∂Ij
∂uj
·
∂uj
∂x′j
·
∂x′j
∂ξ i

= − ∂r
∂ξ i

(C.11)

Point inverse depth

∂r
∂ρi

= −eaieaj ·
∂Ij
∂uj
·
∂uj
∂x′j
·
∂x′j
∂ρi

= −eaieaj ·
[
gx
gy

]
· 1
z′ ·
[
fu 0 −fu x

′

z′0 fv −fv y
′

z′

]
· t

= −eaieaj ·
[
gx
gy

]
· 1
z′ ·
[
fu(tx − x ′

z′ tz)
fv (ty − y′

z′ tz)
] (C.12)
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C.4.2 Photometric parameters

The partial derivatives of the photometric residual (Eq. C.1) with respect to thebrightness transfer function parameters are:
Host camera affine light

∂r
∂ai

= −eaieaj (Ij [uj ]− bj )
∂r
∂bi

= −1 (C.13)
Target camera affine light

∂r
∂aj

= eai
eaj (Ij [uj ]− bj )

∂r
∂bj

= eai
eaj

(C.14)





Appendix D

Student’s t-distribution

The Student’s t-distribution is a continuous probability distribution. It iswidely used in applied statistics and maximum likelihood estimation. It canbe represented using 3 parameters: location µ, scale σ and degrees of freedom
ν . The probability density function is given by

P(x) = Γ( ν+12 )Γ( ν2 )√πνσ
(1 + 1

ν

(x − µ
σ

)2)− ν+12 (D.1)
where Γ(x) = (x − 1)! is the gamma function.
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Figure D.1: Student’s t-distribution. The probability density functionon the left and the cumulative distribution function on the right fordifferent values of degrees of freedom. The normal distribution is alsorepresented for comparison.
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The Student’s t-distribution is symmetric and bell-shaped. It is similar tothe normal distribution with heavier tails. This means that it models behavioursthat tend to produce values far from the mean. Fig. D.1 shows the probabilitydensity and the cumulative distribution functions for different values of degreesof freedom. As can be observed, the Student’s t-distribution becomes closer tothe normal distribution as ν increases.The parameters for a given distribution of values can be obtained by theirmaximum likelihood estimators (Liu and Rubin, 1995). Alternatively, one canminimize the negative log-likelihood of the probability density function (Eq. D.1)using a gradient free optimizer, such as the Nelder-Mead method (Gao and Han,2012, Lagarias, Jeffrey et al., 1998, Singer and Singer, 2004). In both situations,the parameters are iteratively obtained starting from an initial guess. However,we found that minimizing the negative log-likelihood achieves better parametersestimates, specially when the degrees of freedom are jointly estimated.
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