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Abstract

The current advances in communication and computing technologies are having
a large impact in industry, leading to what's known as the fourth industrial
revolution or Industry 4.0. One of the challenges being addressed is to augment
machines with the intelligence to mimic the cognitive functions of the human
mind. In this context, machine perception is one of the core capacities to interpret
data related to the world around us. For this purpose, computer vision (CV) is a
commonly used solutions due its versatility and low cost implementation of the
optical sensors.

This thesis studies two different visual perception problems: object
recognition and simultaneous localization and mapping (SLAM). The proposed
solutions focus on single camera (monocular) approaches in industrial
environments. This is specially challenging due to the lack of textured surfaces
of objects typical in industry, uncontrolled illumination changes, non-Lambertian
materials — that render many reflections — and cluttered scenes. Both problems
consist in understanding the scene and determining the camera motion as
accurately as possible. Object recognition sets its focus on identifying target
3D objects in the scene, whereas SLAM aims to recover the 3D structure of the
scene.

The first part of this thesis proposes a novel model-based object recognition
method which uses geometric properties. It combines model surface conics and
edge templates to reduce the image search space increasing the localization
robustness and saving computational time. In addition, the proposed method is
integrated into a complete augmented reality (AR) framework for guidance in
maintenance in industry, called ARgitu. It generates and presents virtual and
augmented information, including the tools required for the development of new
contents and adapt AR technology applications into the advanced manufacturing
industry.
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The second part of this thesis presents a direct monocular SLAM system,
called Direct Sparse Mapping (DSM). It uses a direct formulation within a
mapping framework to locate the position of the camera in the scene and build
a consistent global map. Up to our knowledge, this is the first fully direct SLAM
approach to reuse map point reobservations. As a direct method, it does not rely
on point matches and it can work with points sampled across image edges —
instead of only corners — and obtain a more descriptive reconstruction despite
the sparse geometry representation. The system is robust inmscenes with low
texture and motion blur. The extensive experimental validation demonstrates that
the proposed direct mapping framework outperforms current direct odometry
approaches — even with loop closure — both in the estimated trajectory and map
accuracy.



Resumen

Los avances actuales en las tecnologlas de comunicacién y computacién estén
teniendo un gran impacto en la industria, conduciendo a la que se conoce como
la cuarta revolucidn industrial o Industria 4.0. Uno de los principales retos es
proporcionar a las mdquinas la inteligencia necesaria para imitar las funciones
cognitivas de la mente humana. En este contexto, la percepcidn e interpretacidn
del mundo que nos rodea es una de las capacidades principales. Para este
propdsito, la visién por computador es una solucién muy usada debido a su
versatilidad y bajo coste de implementacién de los sensores dpticos.

Esta tesis estudia dos técnicas de percepcion visual diferentes:
reconocimiento de objetos y localizacién y mapeo simultdneos (SLAM por
sus siglas en inglés). Las soluciones propuestas se centran en una unica
cdmara (monocular) en entornos industriales. Esto es un desaflo debido a
la falta de superficies con textura en la escena, cambios de iluminacién no
controlados, materiales no-Lambertianos — que producen muchos reflejos — y
escenas abarrotadas. Ambos problemas consisten en comprender la escena y
determinar el movimiento de la cdmara con la mayor precisién posible. El
reconocimiento de objetos se enfoca en identificar objetos objetivo en la escena,
mientras que el SLAM pretende recuperar la estructura tridimensional de la
escena.

La primera parte de esta tesis propone un nuevo método de reconocimiento
de objetos basado en modelos que utiliza propiedades geométricas de los
mismos. Combina cénicas de la superficie del modelo y plantillas de aristas
para reducir el espacio de bisqueda en la imagen, aumentando la solidez de la
localizacién y reduciendo el tiempo de célculo. Ademas, el método propuesto
se integra en un sistema industrial completo de realidad aumentada (RA),
lamado ARgitu, empleado para el guiado en el mantenimiento. ELl sistema
genera y presenta informacién virtual y aumentada, incluyendo las herramientas
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necesarias para el desarrollo de nuevos contenidos y adaptar las aplicaciones
de tecnologia RA en la industria de fabricacidon avanzada.

La segunda parte de esta tesis presenta un sistema de SLAM monocular
directo, llamado Direct Sparse Mapping (DSM). El método utiliza una
formulacion directa dentro de una infraestructura de mapeo para localizar la
posicion de la cdmara en la escena y construir un mapa global consistente. Hasta
donde sabemos, es el primer enfoque de SLAM totalmente directo que reutilice
reobservaciones de los puntos del mapa. Como método directo, no depende de
emparejamientos entre puntos y puede trabajar con puntos muestreados a través
de las aristas en una imagen — en lugar de esquinas Unicamente — y obtener
una reconstruccidn mas descriptiva a pesar de utilizar una representacion
de puntos dispersa. Ademds, el sistema es robusto contra escenas con poca
textura y desenfoques debido al movimiento. La extensa validacién experimental
demuestra que la infraestructura de mapeo directa que se propone supera a los
enfoques de odometri{a directa actuales — incluso con cierre de bucle — tanto en
la trayectoria estimada como en la precision del mapa.
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Chapter 1

Introduction

1.1 Introduction to Visual Perception

We, as human beings, perceive the world that surrounds us using our senses.
This allows us to interact with physical objects and, even, explore the world
around us. For example, we are able to localize ourselves in an arbitrary room
or recognize many different objects. To do so, we use our senses to receive
different physical signals which are interpreted by our brain. Among all our
senses, sight is the most important. It captures the 3D world observed by our
eyes.

Computer vision is the scientific field that tries to mimic human sight
using computers. In computer vision, human eyes and brain are substituted
by cameras and computers respectively. Cameras capture and process light to
form a computer-friendly representation of the world using digital images. As
human eyes, cameras include optical sensors and lenses to help capturing light.
Researchers in computer vision study different image processing techniques to
extract information from them. The ultimate goal is to obtain an artificial sight
sense applicable to many different fields, such as industrial robotics, augmented
reality, medicine, cars or even space exploration. Fig. 1.1 presents some real
examples of these applications.

Nowadays, digital cameras are in general small, low-power and easy to
use. Computer vision applications usually rely only on one or several cameras,
a processing unit and their power supply. Many vision applications rely
on the light reflected by the environment. Thus, computer vision provides a
non-invasive perception solutions which can be adapted to many environments
and applications with an affordable and readily available hardware. For instance,
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4 Chapter 1. Introduction

(c) Mobile augmented reality. ©lkea

Figure 1.1: Examples of different computer vision applications. (a)
illustrates the NASA rover developed to explore Mars. It includes
cameras for obstacle avoidance and autonomous navigation. (b) shows
an autonomous vehicle developed by Uber. (c) presents an augmented
reality application for interior decoration by lkea.

mobile devices and mobile robots benefit from the previous properties allowing
to build more efficient devices with smaller sizes and longer life operations.

Computer vision applications can be built using many different configurations
of cameras obtaining information from different parts of the electromagnetic
spectrum. One of the most common types of camera are RGB matricial cameras.
These cameras capture color information from the visible spectrum. A chip
collects photons in discrete elements, or pixels, forming a 2D matrix. These
cameras can be configured for different applications in different configurations:
single-camera configurations are also called monocular systems; two-cameras
can form a stereo-vision system capable of capturing both the color of each
pixel, and its depth as well (the distance of each pixel to the camera set).
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RGB-D cameras have the same capabilities, but they usually emit a patterned
infrared light or use time-of-flight technology to measure the distance to each
pixel. Other systems such as LIDAR, emit an infrared laser light to measure the
distance to points very accurately. Nowadays, they are still quite expensive and
cumbersome to use due to the high density of information captured.

The specific hardware configuration for a computer vision application should
be selected depending on its specific requirements. In this thesis, we focus
on monocular RGB systems, as they are one of the most basic configurations
and usually all the technology developed for them can be extended to other
alternatives.

We focus on how a computer vision system can be used to interpret its
surrounding environment from three different points of view:

1. Camera motion: refers to the ability to estimate how a camera is moving
through the environment. This means to estimate the 6 DoF (3 DoF for
position and 3 DoF for orientation) of the camera, also known as camera
pose. If the camera pose is estimated each new frame, we talk about camera
tracking with respect to a either a global or local reference. In this case,
the focus is set on camera motion neglecting the elements that compose
the scene.

2. Object recognition: refers to the ability to detect and localize the position
of a 3D target object with respect to the camer from a single image. In this
case, the focus is set on specific elements of the scene and their relative
pose to the camera.

3. Scene reconstruction: refers to the ability to estimate a 3D representation
of the environment from 2D images, also known as 3D map. The map can
be represented in many different ways such as a point cloud or a triangular
mesh. In any case, its construction requires to estimate the 3D location
of the components of the map (points in the case of a point cloud). In
this case, the focus is set on the structure of the scene even if the objects
contained in the environment are not identified.

In many applications, such as in the case of a robot moving in a room, we
need both the camera motion (to locate the robot) and the scene reconstruction
(to locate obstacles) simultaneously. In this case, we are discussing about the
visual simultaneous localization and mapping problem (VSLAM). In contrast to
stereo systems or RGB-D cameras, monocular systems cannot perceive the 3D
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structure of the environment using a single image without any prior knowledge of
the scene. In this case, the stereo image pair needed to reconstruct the scene is
obtained from inter-frame motion, which allows to recover the 3D geometry using
triangulation. As we will see later, monocular cameras have other difficulties that
will have to be addressed.

In summary, this thesis deals with the problem of object recognition and
VSLAM using a monocular camera. We address these problems in real-time
which requires to be estimated at camera frame rate (usually around 30Hz). In
this context, there are two main applications which are directly related with both
these technologies: augmented reality and mobile robotics.

1.1.1  Augmented Reality

Augmented Reality (AR) is the technology that aims to integrate virtual objects
within a real image to create the feeling that virtual and real objects coexist
in the same world. AR systems require to perceive the environment and its
components to properly align virtual elements in the image. One crucial aspect
in AR systems is to trick the human brain into thinking that virtual objects
belong to the real world while the camera is moving through the environment.
This requires to precisely estimate the position and orientation of the camera
with respect to the environment in real-time, which we previously labelled as
camera motion or object recognition. Once we know the camera pose, we can
realistically render virtual object with the appropriate perspective projection.

AR technology can be applied in many applications, such as games and
films. The following sections present some of the industrial fields in which AR
has spread.

Assembly and Maintenance

AR holds an important promise by helping workers in an evermore challenging
workplace. Regarding advanced manufacturing, many authors (Palmarini et al,
2018) have demonstrated the benefits of AR-based solutions for guidance in
maintenance and assembly tasks in industry. The use of AR systems allows a
technician to visualize the spatial layout of all the objects that compose a task
and any relevant information about them. Virtual annotations assist during the
whole process, e.g. the maintenance of complex machinery (see Fig. 1.2a). For
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(a) AR with a robot arm (b) Mixed reality glasses. ©Hololens

Figure 1.2: On the left an example of AR maintenance task and on the
right the Hololens head-mounted display.

now, the prototype systems use mobile devices or head-mounted displays such
as the Hololens of Microsoft (see Fig. 1.2b).

Medicine

Medicine is another promising field for AR technology. In this case, virtual
annotations assist the surgeon during an operation, e.g. to reduce the number
of incisions. In contrast to assembly and maintenance tasks, these applications
require to handle with deformable environments and achieve higher accuracy
levels. For example, during an engine assembly task the accurate location of a
screw could not be so important but during a surgical procedure the location of
an specific tissue could be crucial for the success of the procedure (see Fig. 1.3).
Currently, there are some works that allow tracking the camera position (Lamarca
and Montiel, 2018) and obtaining real-time reconstructions of the tissue during
its deformation (Leizea et al, 2017).

1.1.2 Mobile Robotics

Mobile robotics refers to a robot with locomotion capacities (see Fig. 1.4).
This type of robots includes many kinds of autonomous systems such as AGV
(Autonomous Guided Vehicles) that transport materials, tools or other robots in
industry, autonomous cars and drones.
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Figure 1.3: Augmented reality based surgery (Plantefeve et al., 2016).

In contrast to most industrial robots, the base is not anchored to an specific
space location and, thus, they have the ability to move through the environment.
When we say that a mobile robotic is autonomous we mean that it has the
ability to navigate in an arbitrary and unknown environment without requiring
any additional external input. An autonomous mobile robot needs the capability
of locating itself and understand the 3D structure of its surrounding environment
in order to take the right decisions, such as obstacle avoidance or path planning.
Thus, autonomous mobile robots are highly dependant on SLAM. Ultimately, a
mobile robot could interact with humans and physical objects in the environment,
which would require to understand the elements contained in the world.

One of the most common examples is the cleaning robot. Initially, a cleaning
robot was designed to arbitrary change its direction when it collided with an
obstacle. Currently, however, they build a 3D model of the environment and
they plan the most efficient path to optimally clean all the area. This implies
exploring unknown areas, path planning, obstacle avoidance, etc. Consequently,
it is very important to accurately localize the mobile robot and obtain the best
representation of the structure so it can take the most optimal decisions. It is also
important to take into consideration the computational time so the estimations
are updated throughout the operation without delay.

Finally, autonomous vehicles are also a promising field where SLAM plays
an important role. An autonomous car should be able to navigate from an
unknown environment without colliding with external objects, other vehicles
and, more importantly, persons. At the same time, it should understand the 3D
structure of the road and its components, such as other vehicles, traffic signs or
pedestrians. Similar to medical applications, in the case of autonomous vehicles
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Figure 1.4: Left: an autonomous mobile robot equipped with an RGB-D

camera and a laser scan. Right: an autonomous flying drone equipped
with an RGB camera ©D]I.

the visual system must provide reliable estimates because it could lead to serious
consequences otherwise. There are some works related to this field (Usenko

et al,, 2015) but they are still far from being robust and complete solutions with
all the required capacities.
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1.2  Motivation

Nowadays, many companies see AR and autonomous mobile robotics as
two important tools to provide new services related to their products and
manufacturing processes. Indeed, the so called Industry 4.0 includes AR and
autonomous mobile devices as part of their main components. The idea is
to create factories in which machines are improved with new sensors and
connectivity capacities, connected to a central system that can control, visualize
and take decisions of the whole production line on its own.

In this context, AR works as a novel interface between people and machines
to provide communication and cooperation capabilities in real-time. For example,
the factory itself could inform a technician about an expected failure and AR
would assist the technician during the whole maintenance process with virtual
information in situ. Consequently, the impact of the failure in the production
line would be reduced saving production errors and cost. On the other hand,
autonomous mobile robotics can improve the flexibility of the factories with
automatic and modular structures. In this way, the system would be able to make
decisions on its own and adapt the production to each situation as autonomously
as possible.

As we have already seen, AR and autonomous mobile robotics match
perfectly with computer vision. Consequently, there is no doubt that any of
these technologies should include cameras in their assemblies. Besides, both
augmented reality and autonomous mobile robotics have the same problem in
common: establishing the pose of a moving device, such as a headset or a robot,
and understanding the world around it. For instance, the quality of the user
experience in an AR application is directly related with the stability of the
virtual annotations anchored in the image.

Despite many recent technological advances, several challenges remain that
limit the wide adoption of these technologies in industrial applications:

e AR-based systems require suitable authoring tools for the development of
new contents, such as virtual annotations and their animations. Current
frameworks usually require the use of complex animations and design
tools that in many cases require advanced programming. While this is a
minor issue in some applications, such as games, it limits the adoption
of AR in small and medium size companies that may lack personnel
with the required skills. In addition, there are also limitations in the
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available hardware for AR. Many devices such as head-mounted displays
are, in many cases, intrusive and not suitable for a long use in ergonomic
conditions or in situations that require safety.

e Autonomous mobile robots require suitable algorithms to understand their
surroundings and take decisions on their own. Current mobile robotics are
designed to follow a predefined path to complete a task. This requires to
re-program the robot each time the task is modified which needs qualified
personnel with the required qualifications.

The following presents a more detailed explanation of the technical
challenges — regarding visual perception technologies — that limit the
establishment of AR and autonomous mobile robotics in the industry.

Object recognition for AR in industry

Object recognition enables to understand the elements contained in the
environment using just a single image. It does not require to adapt the
environment and allows artificial devices, such as mobile robots, to interact with
the environment. A very common solution is to use visual landmarks (features)
detected in the image that come from textured surfaces in the scene. The object
position is established by matching those features with a preprocessed database
of images of the object. However, these alternatives are optimized for objects with
patterned surfaces which are not usual in industrial environments. Besides, the
large amount of highly structured data required during the training phase makes
them unsuitable for a direct industry application.

Industrial environments are characterized by cluttered scenes with
uncontrolled illumination changes (see Fig. 1.5). They usually contain objects
with non-Lambertian surfaces (for example metallic). In this case, the brightness
of a point of the surface varies with respect to the viewing angle. These surfaces
are not well suited to most common object detection algorithms. However, in this
context, it is very common to know the CAD model of the objects of interest of
the scene. CAD model are a rich source of distinctive elements such as edges
and corners that can help overcome the challenges of detection due to reflexions.
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Figure 1.5: Example of a real industrial environment. Image provided
by Ekin S. Coop.

Visual SLAM for autonomous mobile robotics in industry

The nature of an autonomous mobile robot is to explore unknown environments.
This implies to perceive the world around the robot and take decisions based
on the structure of the 3D world around it, such as path planning. Besides,
an autonomous mobile robot usually ignores any prior information regarding
the elements of the scene and, thus, object recognition technologies are not a
suitable solution. In this context, visual SLAM provides a straight solution where
the structure is estimated from the robot motion and vice versa.

In contrast to object recognition that works with a single image, visual SLAM
exploits video streams which nowadays are easily obtainable with consumer
cameras. They take advantage of the temporal coherence and assume small
camera motions between consecutive frames. They are able to apply predictive
algorithms to reduce the computational budget while maximizing the information
gain. However, using only temporal constraints leads to very inaccurate results.
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It is very common to apply non-linear optimizations taking into consideration
past information too. As a result, current approaches to visual SLAM can be
referred as online methods where the estimates are incrementally corrected as
new information is obtained.

Like other computer vision algorithms, visual SLAM algorithms have
traditionally reduced the image data to a sparse set of feature observations
correlated across different images. Although this framework provides enough
information to accurately estimate the camera motion, the resulting
reconstructions are rather poor. The estimated map is usually composed of a
very sparse set of features which limits its applicability to real problem. For
instance, an autonomous vehicle could estimate its position precisely, but it
would not be able to identify if there are any obstacles along its trajectory.
This is a severe limitation for many applications and it must be dealt with. In
addition, this framework relies on feature repeatability and, thus, it requires
enough textured surfaces in the environment.
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1.3 Obijectives

The main objective of this thesis is the development of new computer vision based
perception algorithms using monocular systems that enable new augmented
reality and robotics — especially mobile robotics — applications in industrial
settings. As discussed above, two main problems have been identified and
addressed in this work:

1. Regarding object recognition, industrial settings usually contain objects
whose characteristics are not easily handled with state-of-the-art
methods. They lack textured surfaces, their appearance can change due
to dirt, illumination changes or the presence of non-Lambertian surfaces,
and are usually placed in occluded positions with cluttered backgrounds.
We propose the following sub-objectives for this problem:

e Development of a monocular solution for the detection of objects in
the industry based on the CAD model and without the requirement
of complex training phases or costly capturing data processes.

e Integration of the detection algorithm in a complete tracking
framework for the development of AR applications.

e Development of a full industrial AR application for guidance in
matntenance operations.

2. Regarding visual SLAM methods, current approaches recover a low point
density 3D map with a limited capability to describe the structure of the
environment.

In general, they are focused on estimating the camera location as
accurately as possible, but they neglect the quality of the map. We propose
the following sub-objectives for this problem:

e Development of a robust and accurate monocular visual SLAM
solution capable of handling challenging industrial situations such
as motion blur and untextured scenes.

e Development of a mapping solution with the ability to generate
more descriptive, accurate and consistent reconstructions of the
environment for practical applications.

e FEvaluation of the proposed solution with respect to both the camera
localization and accuracy of the reconstructed map.
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1.4 Contributions

On the basis of the previous objectives, this thesis focuses on researching
solutions for object recognition and visual SLAM in industrial environments.
The main contributions for each of the research developments of this thesis are
detailed below.

1. Review of 3D computer vision techniques

We present a complete and lightweight summary of different 3D computer
vision techniques, including the results provided by the community during
many years of research that led to the most influential algorithms in
computer vision. Normally, these works appear spread over the massive
literature, but we have gathered them up in a chapter. We start from the
most basic concepts to the most complex ones, giving in each case the
required details to make a straightforward implementation. We believe
it can serve as a guide for both new and experienced researchers, and
contribute to the wide adoption of advanced techniques, such as direct
methods, in real world computer vision applications.

2. Model-based object recognition for quidance in industrial
maintenance

We propose a novel model-based object recognition method that uses
geometric properties of the CAD model. More precisely, it uses a
combination of model circles and edge templates which are automatically
extracted during a pre-processing stage. Thus, it does not require user
intervention. The method uses correspondences between model circles
and image ellipses to reduce the search space and estimate an initial
object location hypothesis. Then, it uses the model shape in the form of
edge templates to solve the revolution symmetry ambiqguity. The resulting
method does not rely on the texture of the scene and it is able to handle the
challenging conditions found in industrial environments. We additionally
integrate the proposed approach into a tracking framework that exploits
the temporal coherence using the same geometric features. Finally, we
present a full AR application for guidance in maintenance, called ARgitu.
It generates and presents virtual and augmented information, including
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the tools required for the development of new contents. ARgitu uses the
proposed recognition and tracking pipeline to align virtual elements in the
tmage.

. Direct Sparse Mapping (DSM)

We propose DSM, a novel direct monocular SLAM systems. As a
direct formulation, it does not rely on traditional feature matches (with
descriptors) and works directly with pixel intensity values of images. In
contrast, points are associated to only one frame and correspondences are
recomputed as part of the optimization. Thus, it does not require points
to be recognizable on their own and can work with points with a locally
high gradient module, such as edges and weak intensity variations. As a
result, DSM can handle strong motion blur and low textured environments
compared to traditional indirect approaches.

In contrast to current state-of-the-art direct approaches that are only able
to perform visual odometry with a temporary map, DSM uses a mapping
framework to build a consistent global map. It uses the same objective
function and map points for all the tasks: initialization, tracking and
mapping. Up to our knowledge, it is the first fully direct SLAM approach
to reuse map point reobservations. To obtain this, DSM builds a persistent
map and combines photometric bundle adjustment (PBA) with covisibility
constraints to handle map point reobservations from already visited
scene regions. Instead of using feature matches as indirect approaches,
the covisibility is obtained from a novel combination of geometric and
photometric constraints. The result is a more consistent, complete and
dense reconstruction with provides a richer description of the environment.

We have extensively evaluated the solution in a public available dataset
achieving the most accurate results up to date for a direct method. For the
first time, we have measured both the precision of the camera trajectory
and map reconstruction. Finally, we have published our implementation
as open-source code.
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1.5 Dissemination

1.5.1 Publications

The research carried out in this thesis has generated the following peer-reviewed
publications:

e /ubizarreta, J., Aguinaga, |, Amundarain, A. A framework for augmented

reality guidance in industry. In The International Journal of Advanced
Manutacturing Technology (2019) doit:10.1007/s00170-019-03527-2

e /ubizarreta, J,, Aquinaga, |, Montiel, JM.M,, Direct Sparse Mapping. In
arXiv:1904.06577 (submitted to IEEE Transactions on Robotics, 2019).

1.5.2 Open-Source Software

We have released the following open-source software:

e DSM  (https://github.com/jzubizarreta/dsm),
Direct Sparse Mapping

1.5.3 Videos

Demonstrating videos of DSM:

e FuRoC MAYV dataset: https://youtu.be/sjlGIF-7BYo


https://github.com/jzubizarreta/dsm
https://youtu.be/sj1GIF-7BYo
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1.6 Thesis Outline

This thesis is divided into 6 chapters. Chapter 1 has introduced the situation
of visual perception technologies and the research fields in which this thesis
is focused. We have also presented the factors that have motivated this work
together with the main objectives and the application fields. As this thesis is
based on object recognition and visual SLAM technologies, Chapter 2 presents
a more in-depth classification of the approaches currently in the state of the art.
Chapter 3 presents an overview of the technical foundations which are relevant
for the remainder of the thesis. In particular, we describe the intrinsic geometry
involved in computer vision problems as well as different representations for
cameras and 3D structure. Furthermore, we provide the required optimization
tools to solve the proposed problems. Chapter 4 deals with the problem of
object recognition in industrial environments and presents a complete framework
for AR quidance in industry. Afterwards, Chapter 5 presents a fully direct
SLAM approach with map reuse capabilities. Finally, Chapter 6 presents the
conclusions of this work and a number of interesting future research directions.

Some additional technical concepts are presented in detail in the appendices
at the end of this document. They have been excluded from the main body of the
document to facilitate the reading flow of the work.



Chapter 2

Background

In the last decades the popularity of computer vision has grown considerably
due to its large range of possibilities. For instance, almost any mobile device
includes one or multiple cameras and integrates computer vision algorithms to
increase its capacities, such as screen unlock using face recognition. Another
example are filming drones which are able to identify and follow a target actor
enabling impressive recordings with very difficult shoots.

This has lead to an increase of the research effort with the development of
many different techniques. In this chapter we provide a classification of different
computer vision techniques focused on the two main research areas of this thesis:
object recognition and visual SLAM. As many of the techniques can be applied
to many different visual sensors, we maintain the classification independent of
the selected sensor.

2.1 Object Recognition

The main goal of object recognition is to locate the camera position and
orientation, also known as camera pose, with respect to target objects in the
scene using a single image. This requires to distinguish the elements that
compose the scene and estimate their position and orientation in the 3D space.
In general, it is very common to previously have some kind of information about
the object of interest, such as specific patterns or 3D shape. This knowledge
is exploited beforehand to extract information about the object (training) and
obtain the most descriptive representation to recognize the object in an image.
Thus, it is important to evaluate not only the recognition performance but the
whole process, including the training. For instance, the training could become
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Figure 2.1: Marker example formed of black and white squares.

impractical for real applications due to the amount of user experience required
for its implementation in industry. Finally, this section deals only with rigid
objects which implies that the size and shape of the object do not change over
time, even when external forces are applied. However, the camera, the object or
both can move freely in space.

2.1.1 Marker-based

Marker-based systems work with easily identifiable patterns (see Fig. 2.1) that
are artificially added to the scene. The idea behind markers is to add predefined
visual features to the world so they facilitate the recognition task. They have
been widely used in industry and AR applications due to their simplicity, low
cost and good performance. The main drawback of marker-based systems is that
they require to adapt the environment which is not always possible. Besides,
marker-based systems cannot handle occlusions and they fail when the marker
is not completely visible.

The marker pattern is normally composed of simple geometries, such as
squares and circles, printed in black and white stickers (Pagani et al, 2011).
The configuration of the geometric elements inside the marker codify a unique
identifier that allows to distinguish one marker from the others. In order to
obtain the position of the camera with respect a maker it is common to perform
the following steps: (1) threshold the input grayscale image to segment the
marker from the rest of the image; (2) match the maker with respect to a
pre-compiled dataset comparing the unique identifier; (3) estimate the camera
location knowing the correspondences between 2D-3D vertices in the marker.
As we know the marker is planar, it is easy to obtain the camera location using
an homography (Hartley and Zisserman, 2004).
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Figure 2.2: ORB feature matching (Rublee et al.,, 2011).

2.1.2 Textured-based vs. Geometry-based

Textured-based methods rely on the object's own surface pattern. In this case,
the surface must contain distinctive appearance features in order to make it
possible to recognize the object in the image. These methods proceed in two
steps: First, the input image is processed to extract salient visual features (Rosten
and Drummond, 2006, Shi and Tomasi, 1994) which are locally represented using
an appearance vector called descriptor, such as SIFT (Lowe, 2004), SURF (Bay
et al., 2006) or ORB (Rublee et al, 2011). Descriptors are used to distinguish
each visual feature from the others by measuring the distance between the
vectors. Second, the extracted visual features are matched against a pre-compiled
dataset comparing the descriptors (see Fig. 2.2) and the camera pose is estimated
from the 2D-3D correspondences (Lepetit et al, 2009). During the last step, it
is very common to use an outlier removal strategy such as RANSAC (Szeliski,
2010). The main drawback of feature-based approaches is that they rely on the
repeatability of the selected features and, thus, fail in low textured scenarios,
such as industrial environments.

Geometry-based methods do not rely on the texture of the surface of
the object but on its shape. In general, they work with edges of the object
which are easily identifiable using image gradients (Canny, 1986, KVairalkar
and S.UNimbhorkar, 2012, Topal and Akinlar, 2012). In this approaches, it
is very common to compare the input image with a pre-compiled dataset of
images of the object in different positions, also called templates. Dominant
Orientation Templates (DOT) is a popular method (Hinterstoisser et al., 2010). It
measures the similarity between two images by comparing the orientation of the
gradients. This method was extended to handle depth sensors in (Hinterstoisser
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Figure 2.3: Pose estimation of different objects using chamfer matching
techniques (Liu et al, 2010). In green the object templates.

et al, 2012b) and color information in (Peng, 2015). Chamfer Matching is
another popular method which evaluates the distance between image edges
(see Fig. 2.3). It can be efficiently computed using image Distance Transform
(DT) (Felzenszwalb and Huttenlocher, 2004). Later, Liu et al. (2010) extended
the chamfer matching formulation to include edge orientations which increases
its robustness. The main drawback of these approaches is that their performance
degrades significantly with cluttered backgrounds and their large search space.
As they do not perform any previous matching scheme, the registration is
executed by brute force, which considerably slows down their performance.
However, geometry-based approaches are more suitable for untextured objects.

2.1.3 Model-based vs. Image-based

As we have already seen, most approaches work against a pre-computed dataset,
which is the training step that we have mentioned before. Thus, we can classify
the recognition approaches depending on how the training is performed.

Model-based approaches use a 3D virtual model of the object of interest. The
model is available beforehand and contains information about the 3D geometry
of the model. Sometimes it also contains information about the object surface,
such as its texture or material. The model is usually represented as a trianqular
mesh, which is normally obtained using a computer-aided design software or
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Figure 2.4: Sphere training of a virtual model using an sphere path
Bratani¢ et al. (2015). Each arrow represents a virtual camera from
which rich information about the model is extracted.

a 3D scanner. These approaches normally generate a set of virtual cameras
around a sphere centered in the object (see Fig. 2.4) (Alvarez and Borro, 2013,
Bratani¢ et al,, 2015, Imperoli and Pretto, 2015). For each virtual camera, the
required information is extracted, e.g. visual features, 3D visible geometry, edge
templates, etc. In this way, the pre-computed dataset will contain a detailed

description of the object from many different points of view.

Instead of using virtual cameras, image-based approaches work with real
images of the object of interest. Thus, these approaches require the intervention

Figure 2.5: Image-based training where a marker is used to estimate
the camera pose (Hinterstoisser et al.,, 2010).
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Figure 2.6: Image-based training where the 3D geometry is estimated
from SfM techniques. Top row shows the final reconstruction with all
the cameras. Bottom row shows some of the images captured by the
user and used for the reconstruction.

of the user to capture images of the object from different points of view. In order
to obtain the camera location for each view, it is common to use the following two
alternatives: (1) use a marker with a predefined configuration with respect the
object (see Fig. 2.5) (Hinterstoisser et al,, 2010); (2) use Structure from Motion
(StM) techniques (see Sec. 3.4) to reconstruct the 3D model from the images (see
Fig. 2.6) (Pillai and Leonard, 2015, Wang et al.,, 2018). For the latter, it is very
usual to use features with descriptors to obtain 2D correspondences between
the images and triangulate the 3D position of each feature. Consequently, this
kind of solutions are typically oriented to rich textured objects. However, it is
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Figure 2.7: PoseCNN for 6D pose estimation. The output of the
network is trained to provide semantic labeling, 3D translation
estimation and 3D rotation regression (Xiang et al.,, 2017).

also possible, for example, to extract edge templates from the images and use
geometric-based solutions.

2.1.4 Machine Learning-based

Nowadays, there is a large amount of data and computational power at our
disposal. Machine learning approaches take advantage of this situation to
develop algorithms based on statistical models that provide artificial systems
the ability to automatically learn and improve from experience, without being
explicitly programmed. Automatically learn means that the algorithm is able to
find the optimal parameters that fit the model without the user intervention, and
experience refers to the large amount of data (examples) that feeds the algorithm.
As a results, machine learning approaches are highly dependant on very large
datasets that are required to train the statistical model and are crucial to obtain
a general solution.

One of the most popular approaches inside machine learning is Deep
Learning due to its impressive results. These are more complex techniques that
use multiple layers with the aim of analyzing different characteristics in the data.
Regarding computer vision, we can talk about Convolutional Neural Networks
(CNN) which apply different convolutions in each layer to analyze the images
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(Garon and Lalonde, 2017, Li et al,, 2018, Tekin et al,, 2017, Xiang et al, 2017).
For instance, lower layers could identify edges in the image while higher layers
could detect human faces. Fig. 2.7 shows an schematic diagram of a 6D pose
estimation network. Currently, however, it has been demonstrated (Garon and
Lalonde, 2017) that these approaches fail when an object is occluded more than
20%. Besides, the large amount of highly structured data required during the
training phase makes them unsuitable for a direct industry application.
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2.2 Visual SLAM

The goal of Visual SLAM (VSLAM) is twofold: reconstruct the 3D world and
obtain the camera pose within the reconstruction. In general, VSLAM is an
incremental process in which new data — in the form of frames — arrives
sequentially in time while the camera is moving freely in the space. The problem
is stated as a probabilistic model that takes the camera noisy measurements
and estimates the 3D geometry (camera pose and structure) without any
prior knowledge of the scene. This section presents a classification of VSLAM
approaches depending on how the above problem is formulated and solved.
Besides, if we want to classify and evaluate VSLAM approaches, we should
take both the localization and mapping performance into account. The core of
the following classification is inspired by Engel (2016).

2.2.1 Direct vs. Indirect

Indirect approaches work with an intermediate representation of the image,
normally in the form of a sparse set of features. These features are matched
across images to establish 2D correspondences. In this case, image features
are treated as noisy measurements and inserted into a probabilistic model to
estimate the 3D geometry (Gomez-Ojeda et al, 2019, Mur-Artal et al,, 2015).
In contrast to the textured-based methods presented above, VSLAM indirect
approaches can also use other kind of matching strategies that exploit the video
stream such as optical flow techniques (Buczko and Willert, 2016). Then, the 3D
camera motion and feature positions are optimally estimated from the 2D feature
correspondences. During optimization, indirect approaches optimize a geometric
error, i.e. the reprojection error, which has good convergence properties. The
main limitation of these approaches is that they rely on feature repeatability. As
a result, lack of texture or motion blur degrade considerably their performance.

In contrast, direct approaches work directly with pixel intensities and
skip the pre-processing step (see Fig. 2.8). Thus, they do not rely on feature
repeatability and tend to be more accurate and robust when the scene contains
little texture and with motion blur. This property allows direct approaches to
sample across all available data, such as edges and weak intensity variations,
which generates a more complete representation of the 3D scene structure (Engel
et al, 2016a). During optimization they optimize a photometric error, Le. the
intensity error, following the Lukas-Kanade framework (Baker and Matthews,
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Figure 2.8: Comparison between feature-based (indirect) and direct
approaches (Schops et al, 2014). Direct approaches skip the feature
extraction and matching steps.

2004). They do not work with explicit correspondences and use image gradients
to guide the optimization in the right direction. As a result, the main limitation of
direct approaches is their small convergence radius due to the high non-linearity
of image data. In this case, it is very common to use a framework where only
consistent data is used, e.g. close in time estimates that are almost not affected
by accumulated error (drift).

2.2.2 Dense vs. Sparse

Dense methods use all the available pixels in the image. They obtain a very
representative reconstruction at the cost of high computational and memory
demands. As a result, they require GPU's to run the algorithms in real-time.
It is very common to see this kind of approaches together with direct techniques
(Stihmer et al., 2010). In contrast, sparse methods use only a small percentage of
pixels in the image which allow using CPU'’s only. However, they obtain a very
poor representation of the scene. Traditionally, sparse approaches have been
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Figure 2.9: Density comparison. From left to right: sparse (Mur-Artal
et al,, 2015), semi-dense (Engel et al,, 2014) and dense (Pizzoli et al,
2014).

used together with indirect techniques using corners as image features (Klein
and Murray, 2007). Recently, semi-dense approaches have been presented which
use all pixels with high gradient magnitudes. These are not so computationally
demanding and estimate a fairly complete reconstruction. Similar to dense
approaches, it is usual to combine semi-dense methods with direct techniques
(Engel et al,, 2014). Fig. 2.9 shows a comparison of the obtained reconstruction
for different density techniques.

When working with dense approaches, there are usually many pixels without
texture information, such as points in a white wall. In this case, it is very common
to add a geometric prior into the formulation which connects pixels around a local
region. Typically, a planar or an smooth surface condition is applied (Concha
and Civera, 2015, Newcombe et al,, 2011).

2.2.3 Filtering vs. Bundle Adjustment

The solution to a VSLAM problem involves finding the full maximum likelihood
which estimates the model parameters that maximize the probability of obtaining
the actual measurements. This framework grows every new frame and, thus,
becomes quickly intractable in real-time. Typically, there are two possibilities
to overcome this issue, filtering and bundle adjustment, that can be distinguished
in how they manage the problem structure internally. Fig. 2.10 illustrates the
overall problem and these two alternatives in the form of a graph. A more in-depth
analysis of these two techniques can be found in Strasdat et al. (2010), in which
this section is inspired.

Filtering methods continuously update a joint probability distribution over
all the selected parameters following the Kalman filter (Welch and Bishop, 2006).
New measurements are inserted into the distribution with high uncertainty and
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Figure 2.10: Optimization comparison in the form of a graph. The
nodes T; and y; represent the camera poses and the 3D position
of each feature respectively. Edges between nodes represent the 2D
image measurements. Left: full VSLAM problem where all cameras
and features are inserted into the optimization. Middle: sequential
filtering where only the latest camera is retained. Since old cameras
are removed, an statistical correlation is set between 3D features to
avoid losing information. Right: windowed bundle adjustment where

only a set of cameras and features are inserted into the optimization.
(Strasdat et al,, 2010)

contribute to reduce the uncertainty of the whole model. All cameras other than
the current one are marginalized and removed from the state vector. This creates
an statistical correlation between world features to avoid losing past information
and requires to fix their linearization (i.e. Jacobians are not re-evaluated). In this
way a compact representation is achieved that does not grow over time but the
graph quickly becomes fully interconnected. Consequently, filtering approaches
scale poorly with the number of feature variables (O(m + n)*> where m is the
number of cameras and n the number of features) as they require to store
and update a joint distribution over all the interconnected variables. Thus, the
efficiency of filtering approaches is limited by the number of features in the map
(Davison et al.,, 2007).

Bundle adjustment approaches retain all the information in the form of a
non-linear objective function (Triggs et al, 2000). To handle the optimization in
real-time, only a small set of past cameras is retained (keyframes), typically in
the form of a sliding window of most recent cameras. The rest of cameras are kept
fixed and do not contribute to estimates. In contrast to filtering, the resulting
optimization remains relatively efficient even if the number of features grows
(O(m3+m?n)). However, bundle adjustment methods require to re-evaluate each
observation whenever they are updated, which limits the number of observations
that can be inserted into the model (Klein and Murray, 2007). Strasdat et al.
(2010) concluded that bundle adjustment approaches achieve higher accuracy
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than filtering ones, specially for large problems where significantly more features
are used.

More recently, several works have been presented that mix both alternatives
(Engel et al., 20164, Leutenegger et al.,, 2015, Qin et al,, 2018). These approaches
use a sliding window, where the bundle adjustment is performed, and marginalize
all the rest of parameters that leave the optimization window. In this way, they
have the ability to summarize and take into account all the old information in the
marginalized term while continuously updating a large number of parameters
in the windowed optimization. As we show in the following section, using a
marginalization strategy has further disadvantages that makes it unsuitable for
maintaining a global map.

2.2.4 Odometry vs. Mapping

Odometry methods are only interested in estimating the camera location as
accurately as possible each time step. Although both localization and mapping
go hand in hand, odometry approaches neglect the quality of the map. This
means that they do not care about the map accuracy or its usage in real world
applications, e.g. obstacle avoidance during navigation. Typically, odometry
approaches build a local map to precisely estimate the camera pose. To obtain
this, they use a sliding window with a marginalization strategy as presented in
the previous section, which maintains a lightweight optimization (Engel et al,
20164, Leutenegger et al., 2015, Qin et al., 2018). The main drawback of odometry
approaches is that if the camera revisits already mapped areas, they cannot reuse
map features as they are included in the marginalization term and they are
forced to duplicate them. This causes motion drift and structure inconsistencies.
However, in some applications, such as autonomous driving in a highway, this
may not be an issue as it is probable that we will not traverse two times the
same area and other sensors, such as GPS, could complement this task.

Mapping approaches on the other hand aim to estimate both the camera
location and the structure as accurately as possible. They build a persistent map
and continuously process map feature re-observations. As a result, they reduce
the drift in the estimates. Instead of using a sliding-window and marginalization,
they retain old parameters fixed in the windowed bundle adjustment and
select active parameters according to covisibility criteria, i.e. cameras that
observe several map features in common. This strategy allows Jacobians to be
re-evaluated and, thus, they are able to reuse existing map information. Typically,
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mapping methods have been used together with indirect approaches since they
can correlate far away images and easily correct the accumulated drift due to
their good convergence properties (Klein and Murray, 2007, Mur-Artal et al,
2015, Strasdat et al,, 2011).
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2.3 Discussion

Despite recent advances in this two kind of technologies, it is still challenging
to adapt them to real applications. This section presents the main advantages
and drawbacks of the above technologies and provides the reasons why we have
selected or discarded each of them for this thesis.

Object recognition. This work is focused on object recognition in industrial
environments. These are characterized by cluttered scenes with uncontrolled
illumination changes and they usually contain objects with non-Lambertian
surfaces. Thus, it is very important to evaluate each technology in this situation.

Markers provides a simple and accurate solution in real-time. However,
these solutions require to adapt the environment. Besides, they are sensitive to
dirt and occlusions: they only work well when the markers are totally visible
by the camera. In fact, this is @ common scenario in manufacturing, considering
that hands and tools can easily occlude the working space.

Texture-based methods are optimized for objects with patterned surfaces
which are not usual in industrial environments. In contrast, geometry-based
approaches provide a more robust solution but they fail with cluttered
backgrounds and require higher computational times. In our opinion, fusing
geometry-based approaches with a previous matching scheme could be the best
solution. The matching step would provide an initial quess of the object location
and limit the search space only to its vicinity. As a result, the system would be
able to skip many wrong object locations by searching locally around the initial
guess using geometric-based techniques. It also would reduce the computational
time due to the reduced search space. Note that the matching approach should
also be developed with geometric-based techniques in order to guarantee a
robust performance under untextured environments.

Regarding the training, it is very common to have access to the CAD model
of the target object and these are a rich source of distinctive geometric elements
such as edges and corners that can help overcome the challenges of detection
due to reflections. For example, a large number of man-made objects contain
revolution elements such as holes or cylinders, which are easily identifiable in
this kind of environments and that are stable under changes of illumination.
For these reasons, a model-based training would be more appropriate than an
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image-based one that requires the intervention of the user and usually relies
on image features with descriptors.

Finally, learning-based methods require very large datasets and cannot
handle severe occlusions. They are very sensible to the training data which
currently Llimits their applicability out of controlled laboratory conditions.
Although their results are impressive in many areas, their framework is still a
limitation for a direct application in the industry, specially in small and medium
size compantes.

Visual SLAM. This thesis is also about developing VSLAM techniques to
obtain not only an accurate localization of the camera but a useful 3D
representation of the environment too. From our point of view, this would
extend the possibilities of VSLAM approaches to new applications, such as full
autonomous navigation with path planning, obstacle avoidance and collaborative
capacities.

Direct techniques have proven to be an effective formulation for estimating
the scene geometry and camera motion. They avoid all intermediate steps of
feature detection and matching, and produce accurate geometry estimates even
in poorly textured scenes where indirect methods fail. Besides, since they do not
rely on feature repeatability they can work with all image pixels that contain
meaningful information such as edges and textured surfaces. As a result, direct
approaches use higher density of features even with sparse algorithms and
obtain a more complete representation of the 3D structure where the shape of
the elements contained in the scene are more easily identifiable.

In this context, bundle adjustment is a very efficient scheme to accurately
estimate all the involved parameters and allows working with higher number of
features than filtering techniques. Currently, the photometric bundle adjustment
(PBA), i.e. bundle adjustment with direct techniques, has only been developed
for visual odometry. This is due to the fact that using a mapping scheme
would include cameras and features distant in time and, hence, affected by
the estimation drift. As a result, PBA would not compensate the drift because of
the small convergence radius of direct techniques. In this cases, a very common
alternative is to use a multiscale framework that may overcome this kind of issues.
In addition, the lack of explicit feature matches makes it even more difficult to
select which cameras and features should be included in the photometric bundle
adjustment as far in time cameras are not visually correlated in any way. Despite
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all these drawbacks, we believe in the potential of using a PBA with a mapping
scheme to build an accurate and consistent global map.
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Chapter 3

Technical Foundations

A critical step in any computer vision application is understanding how the 3D
world maps into the 2D image captured by a camera. Thus, before we start
exploiting image data, we need to understand how 2D image pixels are related
to the 3D world.

In this thesis, a camera is represented as a 3D coordinate system in space
and its corresponding image a 2D plane as defined in Fig. 3.1.

image
coordinate
system V

camera
coordinate
system

image
plane

Figure 3.1: Definition of coordinates systems involved in a camera

sensor1 .
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This chapter presents the notation and basic 3D computer vision concepts
used throughout this thesis. First, Sec. 3.1 and 3.2 establish the mathematical
tools used to represent the 3D scene geometry. Later, Sec. 3.3 explains how
camera sensors capture information from the 3D world and Sec. 3.4 presents
how the 3D geometry relates in different images. Finally, Sec. 3.5 introduces
the required optimization tools to accurately estimate all the involved geometry
parameters.

3.1 3D Geometric Primitives

The real world contains elements with many different and complex shapes. In the
context of computer vision, it is very common to simplify scene elements using
a more basic geometric representation. This section presents some of the most
common geometric primitives used in 3D computer vision.

3.1.1 Points

A point is the basic geometric entity representing a dimensionless object whose
only attribute is its position in space. 2D points u € R? can be represented
with two coordinates u, v and we will use them to define pixel locations in the

image as
u
u= [v] . (3.1

A very common option to represent a point in a 3D space x € R? is to use
Cartesian coordinates as

(3.2)

x
[
N @ x

In principle, the capturing range of a camera sensor is not limited in depth
and it is able to capture 3D points at infinity (points in the horizon). The
Cartesian representation of points contains a discontinuity at z = oo which
makes handling points close to the horizon more complex. As an alternative,

"Buda model obtained from http://graphics.stanford.edu/data/3Dscanrep/
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(Civera et al., 2008) propose to use the inverse depth, p = 1/z, given by

my

1
X=—|m|, (3.3)
Pl

where m = [m,, mV}T represents the projected coordinates of a 3D point (see
Sec. 3.3.1). The inverse depth has the following useful properties:

e The inverse depth is continuous at z = oo. This enables handling far
points, i.e. point close to the horizon, which in some cases can provide
very rich information about camera orientation.

e The inverse depth contains a discontinuity at z = 0O, but this is a rare
situation since those point should not be seen by a camera (see Fig. 3.1).

e The inverse depth representation produces a more linear observation
model (Sec. 3.4.2). Thus, it suits optimization problems better (Sec. 3.5.5)
provinding faster convergence rates.

e If we fix the location of a pixel, the inverse depth allows to represent
a 3D point with just one parameter which reduces the dimension of the
optimization problem.

If we use the last property and fix the pixel location, this representation
requires to associate each point to a reference frame (usually the first one in
which it was observed). As a result, using an inverse depth representation of
points limits the management of points and cameras separately. If we want to
treat points and cameras independently, we need to transform points back to
Cartesian coordinates.

Besides, note that the Eq. 3.3 contains a discontinuity at p = 0, which
could make the reader think that, after all, we will still have the same issue as
with Cartesian coordinates. However, Sec. 3.4.2 presents an elegant solution to
obtain a linear mapping function between two camera views using the inverse
depth and exploit all the positive characteristics described above. The inverse
depth parameterization will be used in the proposed visual SLAM method of
Chapter 5.
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Finally, we define the () operator to express a point in homogeneous
coordinates given by

(34)

o]
I
<

and

dl
I
- N & X

which is going to be useful for many operations such as rigid body
transformations.

3.1.2 Lines

2D lines can be represented using a normal vector perpendicular to the line
n = (n,,n,)" and the distance d to the origin. Any point u in the line is given
by

u'n+d=n,u+nyv+d=0 (3.5)

The normal vector can also be expressed using polar coordinates as n =
(cos B, sin )7 where 0 is the angle with respect to x-axis.

3D lines can be represented using two auxiliary points p, q that belong to

the line. Any point in the line can be obtained as a linear combination of these
two points as

[=(1—=2A)p+ Aq. (3.6)

Note that this representation has six DoF (three for each point), while lines
in 3D space only have four. To overcome this problem many other alternatives
have been proposed. However, their presentation is out of the scope of this thesis.
The interested reader can find further about them in chapter 3 of Hartley and
Zisserman (2004).

3.1.3 Planes

3D planes can be represented using the normal vector to the plane n =
(nX,ny,nZ)T and the distance d to the origin. Any point x in the plane must
follow:

xTn+d=nXx+nyy+nZz+d=O. (37)
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yl

&

Figure 3.2: Ellipse definition: @ and b are the major and minor
semi-axis lengths, O the ellipse orientation relative to the x axis and
(X0, Yo) the coordinates of the ellipse center.

Similar to 2D lines, the normal vector can be expressed relative to two
angles 6, ¢ using spherical coordinates.

3.1.4 Conic Sections

Conics result from the intersection of the surface of a cone with a plane. A conic
section can be represented using a quadratic equation as

Ax? + Bxy + Cy* + Dxz + Eyz+ Fz> =0 (3.8)

or in matrix form as

A B2 D2 |x
[x y Z] B2 C E2] |y =xTQx=O. (3.9)
D2 E]2 F z

Conic sections can be classified in three different types depending on the
value B? — 4AC:

e if <0 is a hyperbola,

e if =0 is a parabola, and
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e if >0 is a ellipse,

Circles are a special case of an ellipse when A = C and B = 0. In this
thesis, ellipses and circles are used as robust geometric features for object
recognition and pose estimation in Chapter 4. For a ellipse defined as in Fig.
3.2, the coefficient values are given by

A = b%cos’ 6 + a’sin’ 0,

B = 2(b* — a®)sin O cos 6,

C = b%sin? 6 + a’ cos’ 6,

D = —2Axy — Byo,

E = —-2Cyg — Bx,

F = Ax + Bxoyo + Cyg — a

(3.10)

2p?.
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3.2 Rigid Transformations

In this work, we consider the case of a camera moving in space. In this
case, the same 3D elements can be observed from different viewpoints. After
presenting how 3D world elements are represented mathematically, we can
proceed to establish the geometric transformations of those elements between
different camera views (see Fig. 3.3). This section presents how the position and
orientation of world elements can be established relative to each viewpoint. For
simplicity, we will use points but the formulation can be easily extendable to
other geometric primitive forms (Hartley and Zisserman, 2004).

T

ji

Figure 3.3: Relative representation of 3D geometry.

Given two cameras, the 3D coordinate transformation from camera i to j can
be expressed using a 4 x 4 matrix representation as

.- ROt (3.11)

0 0 0 |1

where R € R is the relative rotation matrix from the special orthogonal
group SO(3) and t € R? is the relative translation vector. As a result, the relative
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transformation T;; is from the the special Euclidean group SE(3) with an overall
of 6 DoF (3 for rotation and 3 for translation). The inverse transformation T;; is
defined as

T R’
T[j = T_1 = R Rt . (3/1 2)

000 | 1

In this thesis we will solve different numerical problems that involve
estimating the parameters of SE(3) transformations, such as the pose of 3D
objects or a moving camera. In the case of using a matrix representation, it
means that we have to estimate 12 parameters (9 for the rotation and 3 for
translation) with only 6 DoF, which is a clear over parameterization. In the rest
of this section, we will present different parameterization solutions that simplify
optimization problems with a better representation (less parameters).

RS

Tki

Figure 3.4: Rigid transformations between different poses of a moving
camera.

Finally, we define the composition operator H which transforms the relative
coordinates of a given 3D point x or concatenates two transformations as (see

Fig. 3.4)
X; =Tj[BHX[, (313)
T/'L' = T/k H Tk,‘.
Using the matrix representation of the Eq. 3.11, the composition is directly
achieved as a matrix-vector multiplication or matrix-matrix multiplication as

XjZTj[~X[ — Xj:R'Xi+t, (3.15)
Ti=Ti Tk (3.16)
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3.2.1 Euler Angles

A 6D pose can be represented using Euler angles and a translation vector.
These angles are the minimal representation of a pose orientation with only
3 parameter: yaw a, pitch B and roll y. The geometrical representation of the
angles is shown in Fig. 3.5. Thus, the full pose is defined with only 6 parameters
as

E=[a. By tutyt] (3.17)

A . roll y

/
/
/
/
/
\
B

Figure 3.5: A common convention for the Euler angles.

There are many alternatives on how these angles are sequentially
concatenated to form the final orientation R. One of the most common options
is to first apply yaw (around Z axis), then pitch (around Y axis) and finally roll
(around X axis). As a result, the rotation matrix is given by

R = Ru(¥)Ry(B) R.(a), (318)
with ) _
cosa —sina 0
R,(¢) = |sihna cosa O (3.19)
0 0 1]
[ cosBp 0 sinB]
R,B)=| 0 1 0 (3.20)
| —sinp 0 cosp|
[1 0 0
R¢(y) =10 cosy —siny (3.21)
|0 siny cosy
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One of the main drawbacks of the Euler angles is that they suffer from
singularities. In certain configurations, e.g. when pitch approaches £90°, the
representation looses a DoF (Gimbal Lock). This means that for some specific
configurations there is not a unique solution of a triplet of angles. This is
unsuitable for optimization since we may move along the set of degenerated
solutions and get stuck. Thus, the Euler angles representation requires to detect
and handle these situations individually. For this reason, this representation
has been discarded from this thesis since there are more suitable alternatives
described below.

3.2.2 Quaternions

As an alternative, a 6D pose can be expressed with a quaternion and a
translation vector. In contrast to Euler angles, quaternions do not suffer from
singularities but they are represented with 4 parameters, giving a 6D pose
representation with 7 parameters as

&= [0y, G2 qu. ity 1] (3.22)

where the quaternion is always normalized to unit length qf+q§+q§+q%v =1
Therefore, a quaternion has only three independent parameters and it can also be
represented with three parameters plus the unit length constraint. The rotation
matrix associated to a quaternion is given by

1— Z(Cli +q2) 2(9xqy — q-qw)  2(9xq9: + qyqw)
R=(2(g:qy + q.qw) 1-2(q2+q2) 2(qyq. ~ x| (3.23)
2(9x9z — qyqw)  2(qyqz + qxqw) 1 —2(q5 + qy)

The main drawback of quaternions arise during numerical optimizations. In
these situations, the representation may drift from the unit length constraint
and, consequently, a normalization is required each few iterations (or after
a relative big increment is estimated). In this thesis, 6D poses will be
internally represented as quaternions since it is a very compact and efficient
representations for pose composition (Eq. 3.13 and 3.14). However, other
parameterization based on Lie groups (Sec. 3.2.3) will be used to represent
rotations during optimizations.
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. se(3)

exp

o
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SE(3)

Figure 3.6: Lie group SE(3) and Lie algebra se(3) representation.

3.2.3 Lie Groups and Lie Algebra

As mentioned earlier, a 6D pose belongs to the special Euclidean group SE(3)
which is a Lie group. During numerical optimization problems is very common
to exploit the mathematical properties of Lie groups to represent 6D poses. This
section does not present Lie groups in detail but the required tools to apply their
theory to optimization problems. A more in-depth introduction to Lie groups can
be found in (Varadarajan, 1984).

A Lie group is a smooth manifold where the product and inverse operations
are smooth functions. Every Lie group has an associated Lie algebra, which is
the tangent space around the identity element of the group (see Fig. 3.6). Any
tangent vector is given by the linear combination of the basis elements of the
Lie algebra, which are called generators. In the case of the Lie group SE(3), its
corresponding Lie algebra se(3) is given by

se(3) = {(uXG1 + wsz + w,G3 + t,Gs + tyG5 + tZGﬁ}, (3.24)

where w = [wx, Wy, wz] "eRrs represent the rotation coordinates from so(3) and

T : . .
t= [tX, ty, tz] € R the translation coordinates, with a total of 6 parameters:

T

&= [a)x, Wy, Wy, b, ty, tz] (3.25)



50 Chapter 3. Technical Foundations

The generators are expressed as

00 0 O 0 010 0 -1 00
00 -1 0 0 0 0 0 1 0 00
G=101 0 of “@=| 5000 |0 0 00
00 0 0 0 0 0 0 0 0 00
000 1 0000 0000
0000 000 1 0000
Gi=10 00 0 G=1000 0 G=10 0 0 1
0000 0000 0000

In addition, we define the exponential map of a Lie group as the function
that converts elements from the algebra to the manifold. Its inverse, the logarithm
map, converts elements from the manifold to the algebra (see Fig. 3.6) as

exp : se(3) = SE(3) (3.26)

log : SE(3) — se(3) (3.27)

The closed-form expression for the exponential map is given by

e? Vit
exp(§) = [0 1 ]
A ' 11—
o — 1, sin@ , czos 9&)2
6 6 (3.28)
- o
Vel c059A+9 sm@a)z

92 w 63

6 = lwl,
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where the hat operator (T) corresponds to the skew-symmetric matrix of the
vector. The closed-form expression for the logarithm map is given by

log(T) = [:‘,’]

)

_ Vo R _pNV

©=0R" =555 R-R)

=Vt (3.29)

1 1 )

-1 _ o 7 - AD
Vi=b=30+3 [ 2tan(9/2))“’

0= arccos(iﬁ(R) .l )

where R and t are the rotation matrix and translation vector of the SE(3) pose,
and the vee operator (-)" is the inverse of the hat map.

Following the notation of Eq. 3.14 the composition of a rigid transformation
T € SE(3) with a tangent vector & € se(3) is directly estimated using the
exponential map as

EBT =exp(é) T, (3.30)

This representation provides the optimal space in which to represent
differential quantities on a rigid transformation, such as derivatives or
uncertainty. Thus, it is a very appropriate parameterization for numerical
optimizations. The most important properties of the tangent space are:

e The tangent space is a vector space with the same dimensions as the
number of DoF of the group, thus, providing a minimal representation.

e The exponential map exactly maps elements from the tangent space se(3)
to the group SE(3). Thus, we can estimate incremental updates that
maintain the final state in the manifold.

e The adjoint linearly and exactly maps elements from one tangent space
to another, which simplifies many operations.
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In this thesis the Lie algebra is used throughout all the rigid transformation
optimizations. The implementation in C++ of all the above functions are freely
available in the open-source library Sophus?, which is used in this thesis.

Adjoint

The adjoint transforms elements from one tangent space to another. The most
important property of the adjoint is that the transformation is linear and exact,
which guarantees that the tangent space has the same structure at all points
on the manifold. Given a transformation T and a tangent vector &, the adjoint
representation Ad|t is defined as

Adjr E=T & T (331)

Taking the exponential map on both sides of the Eq. 3.31 we get to the
expression:

T-exp(q) = exp(Adjr - &) - T, (3.32)
which is a direct application of the adjoint that transforms an algebra element
from the right tangent space to the left tangent space of T. The adjoint
representation of a SE(3) transformation is given by

~ _[R t-R 66
Ad/r—[o R]GR . (3.33)

In this thesis the adjoint is used to simplify the jacobian expressions in the
proposed visual SLAM approach (App. C), but it has many other uses such as
pose uncertainty propagation (Engel et al, 2014).

Jacobians

Another advantage of Lie representation is that jacobian expressions are
simplified. Following the Eq. 3.24, the Lie algebra is defined as the coefficients
of the linear combination of the group generators. Thus, the jacobian of a Lie
grop element with respect to its algebra around zero is directly given by the
group generators as

or _aexpm‘
ey 05 ey

’nttps://github.com/strasdat/Sophus

=[Gi| ... [Ge]. (3.34)
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where [-| ... |-] represents the complete jacobian with all the partial derivatives
stacked in matrix form.

This property allows us to easily obtain the partial derivatives of a point
transformation with respect to its algebra. This can be done by differentiating
the equation x; = T;; - x; (Eq. 3.13) with respect to a small increment composed
to T;; around zero as

d(exp(§) - Tji - xi)
FF: o

:[01)_(/" ‘G@)_(j]
(3.35)

=[5 =%] eRrR™.

Note that we have used the left-composition convention, but similarly the
right-composition could be used using the adjoint of T:

(T - exp(é) - %)) dlexp(Adjr, - &) - Tji i)

¢ o 0§

é=0

_ Alexpl&) %)
o&

dexp(Adjr; - E)‘
&-0 ¢ o (330)

=[Gix; | ... | Gex; | - Adjr,

=[5 —%x] Adjr, eR™
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3.3 Image Formation

The sensor of a camera captures the light energy coming from the surfaces of
the objects of the 3D world as a 2D discretized image, where each element, or
pixel, integrates the amount of energy during the exposure time. This process,
also known as image formation, explains the principle from which the irradiance
of a 3D surface point is mapped into a 2D image pixel intensity value.

The camera calibration is the pre-processing step by which the internal
parameters of a camera that take part in the image formation process
are estimated. We can distinguish two parts in the calibration process: (1)
the geometric calibration which estimates the parameters involved in the
transformation of a 3D point into a pixel location in the image plane; (2) the
photometric calibration which estimates the parameters that describe how the
emitted energy by scene surfaces is transformed into pixel intensity values. Fig.
3.7 shows an schematic representation of the different elements involved in the
image formation process.

Geometric Calibration Photometric Calibration

33% G . .
surface point image pixel
irradiance % ~/;t i > intensity

lens vignetting exposure response
time function

Figure 3.7: Image formation process. Inspired by (Newcombe, 2012)

3.3.1 Geometric Calibration

The geometric calibrations describes the model by which the 3D world is
projected onto the image plane. In this work, we will only discuss central camera
models, this is, models where all light rays intersect in a unique point, the
projection center. The perspective projection is one example of central camera
because all light rays intersect in the camera center.

Real cameras require sufficient light to capture the scene information. This
is obtained modifying the aperture of the optics, which is the opening area
through which the light travels. The non-zero aperture violates the central
camera assumption and, as a result, the central model is never completely
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Figure 3.8: Geometric projection involved during the image formation
process.

fulfilled in practice. However, the aperture value is usually very small and the
central model accurately models real cameras.

Generally, we define © C R? as the set of 3D points x with a valid projection
on a camera and Q C R? the image domain in pixels. Given a 3D point x =
(x,y,z)" € © in a camera coordinates, we define the central projection function
into the 2D image plane 7(x) : © — R? as

T(x) = [’”] —m, (337)

where the close-form expression depends on the selected camera model.

Once we project a 3D point onto the image plane, we must transform the
resulting coordinates to pixels and their relative position of the image plane to
the origin as shown in Fig. 3.8. This can be achieved by the intrinsic calibration
matrix K : R? — Q. Using homogeneous coordinates it is given by

fumy + ¢y u
t=Knx)=Km=|fm,+c, | =]|Vv], (3.38)
1 1
with
fu 0 ¢y
K=|(0 f o], (3.39)
0 0 1
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c »
z

z=1

y'v

Figure 3.9: Pinhole camera model.

where f = [f,, fV]T stands for the sensor focal lengths in pixels, ¢,, ¢, denote
the optical center projection in pixels, also known as principal point, and u =
(u,v)T € Q the projected point in pixels. The focal length transforms point
coordinates to pixel units and the principal point changes the origin to the
upper left corner.

Note that when projecting a point, we loose the z dimension. Thus, the 3D
coordinates of the point cannot be recovered directly. However, we can define
the inverse projection function (unprojection) 77— '(m) : R? — S? which defines
the ray by which all points are projected to these image coordiantes. The 3D
coordinates are back-estimated for points with known depth z as:

1
X=2z 71 '(m)= o a (K ), (3.40)
where K= is expressed as
/1, 0 —culfy
K'=1]0 1/ —olf]. (3.41)
0 0 1

Pinhole Model

The ideal perspective projection is modeled using the pinhole camera model. Fig.
3.9 shows a geometric representation of the pinhole projection. The projection
of @ 3D point onto the image plane can be obtained by dividing the point
coordinates by their z component as
X
, 342
] 542

TTp(X) =
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which is defined for © = {x € R?| z > 0}. Its inverse is given by

my

am)y=|m,|. (3.43)

This model assumes a linear projection function between the 3D world and
the 2D image plane. This implies that straight lines in the world remain as
straight lines in the image. However, real world lenses do not obey the linear
model and contain non-linear distortions, specially wide-angle and fisheye
lenses. The latter increase the field-of-view by introducing significant distortion
to the image, which is easily appreciable in the image by the curvature in the
projection of straight lines (see Fig. 3.10).

A frequent approach to solve this is to apply a non-linear function to the
pinhole-based projected point m and then multiply it by the camera intrinsic
matrix K. However, implemented in this manner it has a sinqularity at z = 0,
which makes it unsuitable for cameras with a field-of-view close or larger than
180°. In these cases, the non-linear distortion should be taken into account
inside the projection function, which implies an independent implementation to
the pinhole model. This reasoning is appreciable in the wide-angle and fisheye
models presented in the App. A.

3.3.2 Image Undistortion

In many computer vision applications it is convenient to remove the geometric
distortion from the input image and simplify subsequent operations using a
simpler model, such as the pinhole one. This is normally estimated in a
pre-processing step using image undistortion techniques, which find the warped
image that fits the new projection model. In the rest of this thesis, we will use the
pinhole model and, unless stated otherwise, assume all images to be undistorted.
Consequently, before we apply any of the proposed approaches, applying the
following undistortion technique to the input image will be required.

Given an input image [ with its geometric calibration K and m(x), the
rectified image /- is obtained finding for each pixel in the rectified image u,
the corresponding pixel location in the original one u. This can be efficiently
done unprojecting each pixel from /. with the output pinhole model and projecting
onto the input image / as

u=Kor(r (K u,)). (3.44)

r r
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Figure 3.10: Image undistortion. Top left: the original distorted image
where straight lines in the world are projected as curves. Top right: the
undistorted image will all the pixels from the original one. It contains
many invalid pixels shown in black but straight lines in the world
remain as straight lines in the image. Bottom: the undistorted image
cropped to fit the maximal square area with valid pixels.

Then the rectified image intensity values are estimated using an
interpolation function f(/, u) over the input image as follows:

I [u) = f(/, u), (3.45)

where usually a bilinear interpolation function is used.

The undistorted image may contain pixels that were outside of the
boundaries of the original image (see Fig. 3.10) and, thus, the output image
has to be cropped. Normally, the output projection function is selected such the
maximum valid image area is covered. Note that the output image might contain
interpolation artifacts, such as blurring and aliasing. Thus, it is essential to select
the most suitable projection and interpolation models for each case. Finally, it
is not advisable to apply undistortion techniques to wide-angle lenses since
the field-of-view is reduced significantly due to cropping. In theses cases, it is
recommended to include the projection model into the mathematical formulation
of the algorithm and preserve the advantages of using this kind of lenses.



Section 3.3. Image Formation 59

3.3.3 Photometric Calibration

The photometric calibration describes how the energy emitted by a surface point,
also known as irradiance, is mapped into the observed pixel intensity value. The
photometric capturing process makes the same surface point be observed with
different pixel intensity values, for example, due to the exposure time changes.

Indirect methods normally ignore the photometric model of the sensor since
feature detectors are usually invariant to variations in intensity. Consequently,
they do not require any photometric correction to associate points from
different images. On the contrary, direct approaches make use of the so called
photo-consistency assumption, which states that a surface point is observed
with the same color from different viewpoints. Thus, they require to transform
pixel intensity values to measurements independent of the photometric capturing
process.

Assuming a scene composed of Lambertian surfaces with a constant
illumination, we can consider the irradiance of each point consistent in time. For
this reason, the irradiance can be used as a direct measurement to associate
points over different frames. Given a projected surface point u, its irradiance B(u)
can be estimated from its pixel intensity value /[u] as

Iu] = G(tV/(u)B(u)), (3.46)

where:

e The exposure time t controls the amount of light that reaches the
image sensor. For example, when the scene ligh level is low, a longer
exposure time is required to guarantee enough information is captured,
and vice-versa. In many cameras this value is adaptable or even automatic.

e The lense vignetting V' is the brightness attenuation towards the image
periphery (Szeliski, 2010).

e The response function G is the non-linear physical response of the sensor
that maps irradiance values to intensity ones (Debevec and Malik, 1997).
It also models other user defined operations such as gamma correction.

In this thesis, we will only compensate the automatic exposure changes,
but the complete photometric model could also be included as a pre-processing
step. A more detailed explanation of the photometric calibration can be found in
(Engel et al, 2016b).
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3.4 Multiple View Geometry

This section presents the intrinsic geometry that is behind multiple camera
views. We will start from the simple two-view case and extend the formulation
to multiple cameras at the end of this section. Since the following techniques are
extensively used in computer vision problems, we will not provide an in-depth

explanation of their mathematical background which can be found in (Hartley
and Zisserman, 2004).

3.41 Epipolar Geometry

The epipolar geometry is the intrinsic projective geometry between two camera
views, which can be obtained from a stereo system or from a moving camera.
For simplicity, we will consider a monocular camera moving relative to a scene
with already calibrated intrinsic parameters.

Given two cameras with a known relative pose T;;, we define the epipolar
geometry as the intersection of the image planes with the set of planes with the
line that joins the camera centers (baseline) as axis. Consequently, the epipolar
geometry only depends on the relative pose (Sec. 3.2) and the projective model
(Sec. 3.3) between the two cameras. Fig. 3.11 shows an specific example where
a 3D point x constraints the epipolar plane. In the epipolar geometry we can
distinguish the following elements:

e The epipole, e, is the point of intersection of the line that joins the camera
centers with the image planes. It can also be seen as the projection of one
camera center in the image plane of the other camera.

e An epipolar plane is a plane from the family of planes containing the
baseline. If it is constrained with a 3D point, the plane is unique.

e An epipolar line is the line intersection of the epipolar plane with the
image planes. All the epipolar lines intersect in one point, the epipole.

It can be seen in Fig. 3.11 that for each pixel location u; in one image,
there is a corresponding epipolar line in the other image. As a consequence, if
we want to obtain the corresponding pixel u; we only need to search along the
epipolar line rather than the entire image. This is a very useful property of the
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Figure 3.11: Epipolar geometry

epipolar geometry that we will exploit in the proposed visual SLAM approach
of Chapter 5 to find pixel point correspondences between images.

The correlation that maps a point in one image to a corresponding epipolar
line in the other image is mathematically expressed as the fundamental matrix
F € R¥3. Given a pair of corresponding image pixels u; and uj, the mapping
condition is given by
o/ -F-a;=0. (3.47)

This is the most basic property of the fundamental matrix. Importantly, it
states that it is possible to relate pixel points from two camera views without
any knowledge of the cameras calibration and position, just the fundamental
matrix. As a result, it can be computed up to scale directly from pixel point
correspondences (in general at least 7). The details of the fundamental matrix
calculus can be found in the chapter 11 of (Hartley and Zisserman, 2004).

Another option is to use the essential matrix E when the calibration of the
cameras is already known. In this case, the relationship between the fundamental
matrix and the essential matrix is given by

E=K'" F-K. (3.48)

Similar to the fundamental matrix, the essential matrix can be estimated
from pixel point correspondences (in general at least 5) and the calibration
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matrix K. The essential matrix can be estimated up to scale using the five-point
algorithm in (Nistér, 2004). Once the essential matrix is known, we can recover
the relative pose between the two camera views up to scale and a four-fold
ambiguity. However, it is easy to decide the correct solution by selecting the
option with the largest number of points in front of both cameras. This test is
also known as cheirality test.

The fundamental and essential matrices are very useful when working
directly with pixel points. Thus, it is a very efficient way of obtaining the initial
relative pose (up to scale) between consecutive images in a monocular systems,
where we initially miss the 3D structure. Once we have recovered the 3D motion,
we can estimate the 3D structure by triangulation. In this thesis, we will use
the essential matrix to initialize the proposed monocular visual SLAM approach
of Chapter 5 from an input video sequence.

However, in this thesis we are interested in recovering the 3D structure of
the scene. Consequently, we will work with 3D primitives rather than 2D pixel
points in the image. The mapping function of a pixel point with known depth z
from one image to the other using Cartesian coordinates is given by

U/‘=K~]T(T/'[')_([)=K‘7T(R‘X[+t), (3.49)

with
xi=z -1 (K up). (3.50)

Apart from the definition given before, the epipolar line can also be
understood as the projection of the optical rays of one camera in the image
plane of the other camera. As a result, using the Eq. 3.49 it is possible to
traverse the epipolar line with a 1-dimensional search varying the values of the
point depth z.

3.4.2 Inverse Depth Mapping

Previously, in Sec. 3.1, we have discussed that using Cartesian coordinates
complicates the management of points at infinity. In contrast, the inverse depth
provides a better representation with continuous values for z > 0. Using the
inverse depth, the pixel mapping formulation of the Eq. 3.49 is transformed to:

u =K 7R~ 7 (K ) +1). (351)
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However, although p = 1/z is continuous for z > 0, the Eq. 3.57 contains a
discontinuity for p = 0 — z = 0. Thus, the question is: why are we using the
inverse depth? Luckily for us, we can scale the whole problem by p and obtain
a linear expression in inverse depth as

u =K 7(R-Ku+p-1), (352)

where the final pixel location u; is the same as in the original case. As a
result, the Eq. 3.52 maps pixels from one camera to another using a linear
transformation in inverse depth. This formulation allows to exploit all the benefits
of the inverse depth (Sec. 3.1) with a linear observation model which suits better
for optimization problems (Sec. 3.5.5). In this thesis, we will extensively use this
formulation in the proposed visual SLAM approach of Chapter 5.

3.4.3 Bundle Adjustment

We have already seen that the epipolar geometry from the two-view case is
enough to recover the structure and motion. However, the estimation of the
3D geometry is a chicken-and-egg problem where the structure is required to
estimate the motion and vice-versa. As a consequence, the two-view solution is
conditioned by projective geometry ambiguities which lead to inaccurate results.

The bundle adjustment (BA) provides a more accurate solution by jointly
estimating the structure and motion from multiple views. Its name refers to the
bundles of rays connecting camera centres to 3D features, which are adjusted
optimally with respect to both the structure and camera pose parameters (Triggs
et al,, 2000). Fig. 3.12 shows a scheme of a traditional BA problem with three
cameras and a single 3D point.

The BA problem is formulated as a non-linear least squares optimization.
Starting from and initial solution, which is commonly provided by the two-view
epipolar geometry, the BA iteratively refines the structure and motion parameters
by minimizing a certain cost function. Overall, the cost function quantifies
the error between the observed and predicted feature measurements. We can
distinguish two types of BA formulations: (1) the geometric BA (GBA) — the
most traditional one — that minimizes the reprojection error between the image
locations of observed and predicted image points; (2) the photometric BA (PBA)
that minimizes the intensity error between the image pixels of observed and
predicted image points. In the GBA when the predicted location gets closer to
the observed one, the error is reduced. However, in the PBA this may not happen
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Figure 3.12: Geometric bundle adjustment example with orange and
blue squares representing predicted and observed image locations
respectively. The minimized reprojection error is represented as a red
arrow in the image plane.

due to the fact that images are highly non-linear. As a result, the convergence
radius of the PBA is quite small, around 1-2 pixels (Engel et al., 2016a), meaning
that the initial parameters should be close to the solution.

In general, given a set of observations obs; and their corresponding predicted
values pred;({) with respect to motion and structure parameters ¢, the BA
objective function is formulated as

()= 25 (obsi — pred,(¢)Y”, 353

i=1

which can be solved using non-linear optimization techniques such as the
ones presented in Sec. 3.5. It is very common to use the Levenberg-Marquardt
algorithm presented in Sec. 3.5.3 with a robust influence function described in
Sec. 354 to take into account the presence of outliers.

Furthermore, the observations are usually independent from each other
and, thus, point parameters are not correlated. This property provides a sparse
structure of the problem, which can be exploited to solve the BA problem faster.
Fig. 3.13 shows the sparse structure of the hessian matrix when camera and
point parameters are ordered. As can be seen, the point block is diagonal and,
hence, easily invertible. The Schur complement (Sec. 3.5.5) takes advantage of
this sparsity, also called primary structure, to obtain a reduced problem with only
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Figure 3.13: Sparsity of the hessian structure in a bundle adjustment
problem. Camera pose blocks are represented in blue, point location
blocks in orange and camera-point blocks in green. The grey
colour indicates the fill-in that occurs when the structure points are
eliminated using the Schur complement trick.

the camera parameters. As a consequence, a fill-in occurs in the camera pose
block. However, the reduced problem is much faster to solve than the original
one, specially with large scale problems with thousands of points.

It is important to note that all the measurements in a BA problem are
relative. This means that if we move all cameras and points with the same rigid
transformation, we get exactly the same cost function value. Consequently, there
are six DoF that we cannot observe (gauge freedom), i.e. the absolute pose. To
handle this situation, it is very common to fix the pose of one camera, e.g. the
first camera pose. This trick allows us optimize the rest of camera and point
parameters while maintaining the absolute pose of the whole problem fixed.

Furthermore, if we are working with a monocular system there is still one
DoF that we cannot observe, i.e. the problem scale (absolute distance). This
is due to the fact that a camera is an anqular measuring sensor that does not
measure distances (see Fig. 3.14). One possible solution is to use a stereo system
where the baseline between both cameras is known and the absolute distance
could be observed. However, similar to the absolute pose, there is still an scale
ambiguity when we jointly estimate the motion and structure parameters. A
certain BA problem and its corresponding scaled counterpart give exactly the
same cost function value. As a result, the solution may drift in the scale direction
if we do not fix the gauge freedom. Another common solution, is to fix several
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Figure 3.14: A monocular camera measures angles and, thus, it is
impossible to distinquish if a camera has moved from black to green
position or from black to blue position. Consequently, the absolute
scale is unobservable. Inspired by (Strasdat, 2012)

cameras which defines a fixed relative scale during optimization, e.g. the first
two camera poses.

In this thesis, we will include a monocular PBA in the proposed visual SLAM
approach (Chapter 5) and we will show how to increase its convergence radius
with a multiscale formulation. Besides, we will increase the robustness of the
optimization to outliers using a probabilistic formulation. Finally, we will apply
all the described implementation tricks to efficiently solve the problem equations
and remove the gauge freedoms.
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3.5 Non-linear Least Squares

In many computer vision and robotics problems the solution is estimated as the
minimum of an objective function f({) with respect to some model parameters
¢. In this thesis, we extensively use non-linear least squares optimizations to
estimate different model parameters, such as camera poses, formulating both
geometric and photometric cost functions. This section presents the optimization
fundamentals required to solve non-linear least squares problems independently
of the cost function type since the same optimization techniques can be applied
in both cases.

In non-linear least squares problems, the objective function is of the form:
,] n
_ 2
NO—Zzﬁ@% (354)

where each r;({) is a non-linear cost function and ¢ the cost function arguments.
By minimizing this function f({), we estimate the values of the parameters { that
best fit the model of the data. The above expression can also be expressed in
vectorized form as

1
Q) =5 1@ 115 (355)
where r(¢) =[r1, ..., rp] is the stacked cost vector and || - ||, de L2 norm.

In general, we cannot guarantee to find a global minimum, so we are forced
to find a local minima in the vicinity of an initial quess ¢Y). In practice, estimating
a closed-form solution to the cost function is usually too complicated and most
often impossible, so it is locally approximated using the Taylor expansion around
the current model parameters {. As a consequence, we are usually not able
to estimate the exact minimum and we need to iteratively improve the initial
parameters until convergence:

¢t — 5l 4 ¢l (3.56)

where 55(” is the estimated increment that reduces the cost function.

The rest of this section presents various alternatives to solve the optimization
problem, which differ in the way they approximate the cost function (Hartley
and Zisserman, 2004). Besides, we also explain several mathematical tricks to
improve both the solution quality and the computational performance (Nocedal
and Stephe, 2006, Triggs et al,, 2000).
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3.5.1 Newton's Method

The Newton's method approximates the objective function f({) from the Eq. 3.55
using the second-order Taylor expansion as

FC+0Q) ~ Q) +q 6 + %MTHM, (357)

2
where g = %{Z) is the gradient vector and H = %(9 is the Hessian matrix. The

minimum of the quadratic function is calculated equating the derivatives to zero
as
6 = —H g, (3.58)

where 0¢ is the Newton step. The Newton's method is given by iterating the
Newton step. Assuming that H is positive definite, the solution can be estimated

using linear algebra, e.g. Cholesky decomposition. The graar((j(i)ent and the Hessian

of £(¢) can be expressed in term of the Jacobian J({) = 57" as
of
g= af) = 1(Q)"r(Q), (359)
P ’r(¢)
H= " =110 + 9= 5 (360)

If the function is quadratic, Newton's method converges in one iteration.
However, Newton's method requires the function to be twice differentiable, which
is not always possible. Besides, the derivative expressions of H could be very

complicated for complex cost functions and computationally inefficient. If the
8°r(g)
a¢’
Hessian can be simplified using an approximated value. The following methods
exploit this property from the Hessian matrix.

residuals are close to linear (Le. is small) or small (i.e. r(¢) is small) the

3.5.2 Gauss-Newton Method

The Gauss-Newton method is extensively used in computer vision due to
its simplicity. It takes the previous structural properties of the Hessian into
consideration and drops the second term. This gives the Gauss-Newton
approximation to the least squares Hessian

H ~1(¢)"1(Q), (361)
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which gives the following linear system, also known as normal equations:

10)71()8¢ = —1(Q)"r(Q). (3.62)

This equations are only an approximation of the second-order Taylor
expansion and can also be obtained linearizing the residual r({) instead of
f(¢) (Nocedal and Stephe, 2006):

(G +5¢) ~ 5 | Q) + Q)¢ |3 (363

Solving the normal equations gives the Gauss-Newton step as

6¢ =00 18)"1Q) Q). (3.64)

If the initial residuals are small (i.e. we are close to the solution) and
the problem is well parametrized (i.e. locally near linear) the method leads
to rapid local convergence. However, when the initial estimate is far from the
solution, it may converge to a saddle point rather than a minimum, and for
large steps the approximation may be inaccurate. In this cases, it is advisable
to use other alternatives that quarantee that the estimated step follows a local
descent direction, such as Levenberg-Marquardt, and that the objective cost will
certainly decrease.

3.5.3 Levenberg-Marquardt Method

Newton's and Gauss-Newton methods provide good convergence properties
when the initial guess ¢'” is near the solution. Otherwise, they tend to get
stucked in a saddle point or do not even converge. In this cases, it would be
useful to have an step control procedure to guarantee that the optimization
method chooses a descent direction.

One possible solution is to use the Gradient Descent method. It
approximates the Hessian with a multiple of the identity matrix, te. H =~ «al
and uses the gradient vector as the most rapid decrease of the cost function as

a6 = —)({) () = —q, (3.65)

where o controls the step size. However, the gradient descent method has slow
convergence since it tends to zigzag.
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The Levenberg-Marquardt method is a combination between a
Gauss-Newton and a gradient descent, where the step is adaptively controled
to move smoothly between both. For example, the Levenberg-Marquardt step
will move to a gradient descent step when the Gauss-Newton step fails. In this
case, the normal equations (Eq. 3.62) are replaced by a reqularized system
given by

((9)")(§) + AD)a¢ = —(¢)"r(¢), (3.66)
where A is the dampening parameter that controls the step and D is some
positive definite matrix. A very common option is to choose D = diag(}(¢)"J({)).

The value of A changes to guarantee that the estimated d{ gives a cost
decrease. When the obtained d¢ leads to an increase of the error, A is multiplied
by a factor and the normal equations (Eq. 3.66) are solved again. Otherwise, A
is divided by a factor and the increment is accepted. Note that when A is small,
the hessian matrix H ~ J(C)TJ(() and the computed step will be close to the
original Gauss-Newton step. On the other hand, when A is large, the Hessian
matrix H =~ AD and the computed step will be close to a gradient descent step.
In this way, the Levenberg-Marquardt ‘interpolates’ between a Gauss-Newton
iteration, which has a fast convergence in the local vicinity of the solution, and
a gradient descent iteration, which guarantees a decrease in the cost function.

3.5.4 Robustified Least Squares

Least squares problems are very sensitive to outliers, i.e. measurements that do
not fit the model and have high residual values. These measurements have a
high impact in the optimization and can corrupt the system. It is already known
that just one outlier measurement can ruin the whole optimization (Leys et al,
2013). One possible solution is to weight each residual differently and reduce the
influence of high residual measurements. The robustified least squares function
is of the form:

6= 3 (- 210), 367
i=1

where w; is the weight for each individual residual ri({). The corresponding
system of equations for the robustified Gauss-Newton model is given by

((Q)"WI(€))o¢ = —1(Q) " Wr(Q), (3.68)

where W is a diagonal matrix with the weights w;. The Eq. 3.68 is solved
equivalently to the normal equations by fixing the weights each iteration.
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Figure 3.15: Comparison of the weighted errors obtained from two
of the most common M-estimators: Tukey (k = 4.685) and Huber
(k =1.345).

Optimizing the Eq. 3.68 is equivalent to minimizing the negative
log-likelihood given independent measurements r({). If we assume CGaussian
distributed measurements, the weights w; can be approximated as the square root
of the inverse covariance of the measurements. However, if we assume equally
Gaussian distributed measurements, we will treat all measurements equally
and outliers cannot be neutralized. In this case, it is advisable to assume other
probability models for the measurements. In Chapter 5 we explain how to extend
the above formulation with a t-distribution model (see App. D) and improve the
performance of the proposed visual SLAM approach.

Sometimes, however, it is not possible to know how the measurements are
distributed or they are assumed to be Gaussian distributed. In this case, there
are different heuristic models, also known as M-estimators, that mitigate the
influence of outlier measurements (see Fig. 3.15):

e Huber: It is a hybrid between the L1 and the L2 norm. It gives linear
influence to outlier as

wlr) = 1 i<k (360)
ﬁ otherwise,

where k is usually fixed or dynamically changed with the value k =
1.3450 for N'(0, 0?).



72 Chapter 3. Technical Foundations

e Tukey: It is more aggressive than Huber and directly eliminates
measurements that exceed a certain residual threshold as

12 k
w(r) = (1=)" Ul < (3.70)
0 otherwise,

where k is usually fixed or dynamically changed with the value k =
4.6850 for N(0, 0?).

Importantly, any robust influence function w(r) has to be carefully
implemented. Measurements with high residual are actually the ones with rich
information about how should the model parameters { be corrected and they
may not be strictly outliers. If we totally remove them, we may drastically slow
the convergence or even not get a good solution. One possible implementation
is to start iterating with a large outlier threshold and reduce it each iteration.
In this way, we will systematically detect outliers measurements that do not fit
the model and mitigate their influence.

3.5.5 Implementation Strategies

The following sections describe some implementation strategies to speed up the
optimization progress. A more in-depth explanation of the presented strategies
together with additional useful approaches can be found in (Nocedal and Stephe,
2006, Triggs et al,, 2000).

The Schur Complement

All the optimization methods presented above are suitable for small number
of parameters. However, when optimizing a large scale problem, they become
extremely expensive. In this cases, solving the normal equations is the
computational bottleneck of the optimization. Luckily for us, there are many
problems, such as the Bundle Adjustment, where the normal equations have a
certain sparse block structure that can be exploited (see Fig. 3.13).

Given an optimization problem with two block of parameters, we can write
the normal equations (Eq. 3.62) as

Hiw Hiof [04]  [—9
[Hm sz] [552] B [92]' (3.71)
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If each individual cost function r({) depends on any number of parameters
block from {; but just one parameters block from {5, it is easy to see that Hy; is
a block diagonal matrix and, thus, easily invertible. For instance, in a standard
Bundle Adjustment problem, each cost function depends on one or more cameras
but just one 3D point. As a consequence, we can use the Schur complement to
eliminate the 0{, parameter blocks from the optimization and reduce the linear
system as

(Hi1 — HizHp'Hy1)0 gy = HizHy)lgr — g1 (372)

As a result, the system can be solved using a reduced system with just the
dimensions of 4. Once again, if we think in a Bundle Adjustment problem, it
is very common to have fewer cameras ({4) than points ({5). In this case, the
dim({;) < dim({5) and solving the reduced system is much faster.

Once the 0, increments are estimated, we can back-substitute the ¢,
increments as

H215(1 + szé(z = —(Q. (3.73)

Parameterization

In numerical optimization problems we can distinguish two types of variable
parameterizations:

e Global parameterization: it is the internally used parameterization
to store problem variables. It is preferable to choose a global
parameterization without singularities. In this thesis, for example, we will
use quaternions to store camera pose orientations and perform pose-point
and pose-pose compositions (see Sec. 3.2.2).

e Local parameterization: it is the parameterization used during
optimizations. It should be locally as nearly linear as possible to guarantee
that the cost function is locally nearly quadratic (see Sec. 3.5.2). At the
same time, it is desirable to avoid overparameterized representations
to remove null directions of the cost function. Similar to the global
parameterization, it should not contain singularities. All these properties
help to obtain a more stable optimization with faster convergence rates.
In this thesis, we will use Lie algebra to represent camera poses during
optimizations (see Sec. 3.2.3) because it provides a minimal representation
without singularities around zero.
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Preconditioning

It is possible to accelerate an optimization problem by transforming the linear
system to improve the eigenvalue distribution of H. Sometimes it is advisable to
use an ideal Hessian rather than the observed one. This section does not provide
a detailed explanation of the mathematical background around preconditioning
but presents some useful tools to be applied in real optimization problems.
Usually the problem is transformed applying as a linear change in the variables
via a non-singular matrix C as

Yy =C-¢. (3.74)
Consequently, the transformed linear system is given by
(C-"THC Moy = —C g, (3.75)

where the convergence rate will depend on the eigenvalues of the matrix
C~"HC™" rather than those of H.

The most simple form of preconditioning is a variable scaling. This is
useful when the objective function is highly sensitive to small changes in a
certain direction and relatively insensitive in another direction. Another possible
situation arises when the problem variables have different magnitudes. In this
case, the matrix C is a diagonal matrix in which the coefficients are selected to
equal the magnitudes of the variables. For instance, in this thesis we need
to estimate rigid transformations. In this case, it is important to scale the
transformation parameters to take into account the impact of the differences
between a unit change in rotation and translation parameters.

Another simple form of preconditioning is the Jacobi preconditioner. Similar
to the variable scaling, the Jacobi preconditioner uses a diagonal matrix using
the values of the hessian as C = diag(H)"?. In this case, the preconditioner
matrix sets the diagonal of the transformed hessian to one. As a result, it is a
very efficient solution for diagonal dominant hessian matrices, such as the ones
in a bundle adjustment problem.

3.5.6 Generalized Optimization on Manifolds

Gauss-Newton, Gradient Descent and Levenberg-Marquardt methods have been
explained in the context of Euclidean spaces. However, as presented in Sec. 3.5.5,
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the usage of an appropriate local parameterization during incremental estimation
is very important. Consequently, the local parameterization may not belong to
the Euclidean space. This section generalizes the above approaches to work on
non-Euclidean manifolds, such as Lie groups (see Sec. 3.2.3).

When optimizing in the Euclidean space, we want to solve the equation:

9f(¢ +6Q)

=0, 3.76

which is iteratively solved by updating the current parameters will small
increments, as proposed in the Eq. 3.56, using one of the above optimization
approaches.

Note that the composition of the current state vector with the estimated
increment is performed using the vector addition. In order to generalize the above
expressions, we will use the H operator defined in Sec. 3.2, which describes
the composition in a general form. As a result, the general expression for a
optimization is given by

of(6¢ @B Q)

=0, 3.77

with a general iterative update rule according to:

c(fH) — 5((0 3] ((ﬂ_ (3.78)

In the case of an optimization in the Euclidean space, it will be directly
the vector addition as defined in Eq. 3.56. In contrast, if the optimization is
performed on a non-Euclidean manifold, the composition must be defined. For
instance, the iterative update rule for a SE(3) pose optimization is performed
using the matrix multiplication together with the exponential map as define in
Eq. 3.30. Finally, mention that we have used the left-composition convention
during this section. However, the right-composition convention could also be
used, as they are linearly related by the Adjoint (see Sec. 3.2.3).
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Chapter 4

Object Recognition

The problem of object recognition aims to obtain the position and orientation
of 3D world elements using a single image. This is a very challenging task in
the case of industrial environments since these are characterized by cluttered
scenes, uncontrolled illumination changes, non-Lambertian untextured surfaces
and dynamic scenes (see Chapter 2). The popularity of object recognition
technologies is growing in the industry in conjunction with AR. Once a 3D
object has been recognized, its pose is used to initialize a tracking system that
allows superimposing virtual annotations properly aligned with the object. This
allows a technician to visualize any relevant information related with a task
associated to its context. For instance, Platonov et al. (2007) presents an AR
system used to maintain and repair a combustion engine. Hanson et al. (2017)
presents a system for quiding workers in a kit preparation tasks, while Makris
et al. (2016) presents an AR based interaction system for collaborative robotics.

As discussed in Chapter 2 there are still many open challenges to integrate
current state-of-the-art approaches into real industrial applications. Nowadays,
marker based solutions are still used in advance manufacturing due to their
reliability and accuracy in untextured environments. Ragni et al. (2018) propose
an augmented reality tool to guide an operator during the alignment of the raw
material with respect to the machine reference. Mendikute et al. (2017) propose
an efficient and accurate portable solution to measure and align large raw parts
before machining. These approaches require to adapt the environment and, thus,
the technician intervention. While this may be a minor issue in some applications,
it limits the widely integration of AR into real industrial applications. On the
other hand, learning-based methods have shown impressive results for some
datasets created in laboratory conditions. However, they still fail to obtain the
6D pose under uncontrolled industrial conditions, where the training settings are

79
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Figure 4.1: Example of some components of a real broaching machine.
Note how they contain many holes and cylinders that are easily
detectable in the image. The objects have been provided by Ekin S.
Coop.

usually far from the real operation ones. Besides, they usually require training
stages of many hour, days or even weeks with arduous capturing processes,
which is unsuitable for real advanced manufacturing processes.

One of the main goals of this thesis is the development of a robust object
recognition approach to handle real operations in real industrial conditions.
More precisely, we aim to develop an AR tracking framework for quiding
in maintenance for advanced manufacturing. This is a very specific practical
application and, thus, we will focus our research on this particular topic. For
all the previously mentioned reasons, we have centred the attention of our
research on traditional geometry-based solutions that have proven to be robust
in industrial environments (Alvarez et al,, 2011). In particular, we have observed
that many of the components in a manufacturing machine contain revolution
elements, such as holes or cylinders (see Fig. 4.1), which we will exploit in the
proposed solution. They are easily identifiable in this kind of environments and
are stable under changes of illumination. At the same time, we have created our
own dataset with real 3D industrial objects under many different configurations
— instead of a third-party dataset — to obtain laboratory simulations close to
real operating conditions.

This chapter addresses the challenge of object perception in industrial
environments and the integration of AR technologies into a real industrial
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Figure 4.2: ARgitu application applied to the maintenance of a robot
arm. The proposed AR pipeline estimates the 6-DOF of rigid parts of
a robot arm. This allows superimposing augmented information like
an animation of a ratchet attached to this body.

maintenance guidance tool as shown in Fig. 4.2. We present a novel model-based
3D object recognition method which combines model surface conics and edge
templates. This helps reducing the image search space, increasing localization
robustness and saving computational time. Additionally, we integrate the
proposed approach into a full AR pipeline including a feasible 3D object training,
recognition and tracking tasks. Finally, we present a full industrial framework for
guidance in maintenance, called ARgitu, which includes a general easy-to-use
authoring tool for the development of new contents and adapt AR technology
applications into the advanced manufacturing industry.

The chapter is organized as follows. We overview the related literature
in Section 4.1. We present the novel AR pipeline (Section 4.2) based on
the proposed 3D object recognition in Section 4.2.2. The full AR application
framework is described in Section 4.3. We report the experimental results of the
proposed approach and compare it with the state-of-the-art in Section 4.4.
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41 Related Work

AR systems are increasingly becoming an important tool to provide new services
to companies in advanced manufacturing. The adaptation of AR technologies to
industrial environments is currently, however, an open challenge. The quality
of the user experience is directly related with the stability of the annotations
anchored in the image. There has been an extensive progress in the development
of new vision based recognition methods in the last years. This section presents
a brief study of current recognition methods which are focused on detecting
non-lambertian objects due to their applicability in industrial settings.

Line segments are attractive for object recognition since many man-made
objects contain them (Akinlar and Topal, 2011, Brown et al, 2015, Rafael et al,
2012). In Bay et al. (2005), the authors use a color based histogram for line
matching, and geometric restrictions to reduce outliers and add new matches.
Wang et al. (2009a) and Zhang and Koch (2013) develop a SIFT-like line
descriptor (Wang et al, 2009b) dividing the line segments in subregions and
extracting gradient information from each one. Using a similar technique, Liu
and Marlet (2012) and Zhang and Koch (2012) introduce geometric consistency
in a graph matching-based scheme. Zhao et al. (2016) present a new geometric
descriptor to match images captured under different image conditions. In Lu
Wang et al. (2009) and Tombart et al. (2013), the geometric configuration of line
segment groups is used instead. They both develop a semi-local descriptor using
geometric information between edgelets and gradients. Later, Verhagen et al.
(2014) introduce a scale invariant approach for improving the descriptiveness
of line segments. Moreover, Damen et al. (2012) present a method for learning
and detecting rigid non-lambertian 3D objects by representing each object as a
clusters of edge segments. However, they show that the method lacks precision. In
Micusik and Wildenauer (2015a), line segments are used for indoor localization
by comparing 3D model lines (Micusik and Wildenauer, 2015b, Zhang and Koch,
2014) with image lines using the chamfer distance. Using any of these line
matching approaches, the pose of the camera can be easily recovered (Ababsa
and Mallem, 2008, Zhang et al., 2013, 2012). The main weakness of line-based
methods is that the repeatability of line segment detection is low and the
performance decreases in cluttered scenes. In addition, using only geometric
information makes it difficult to match and thus, texture data is required.

Many authors try to overcome these limitations using more robust geometric
features such as conics. They are reliable features against illumination changes
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and they can provide rich information about the object location. Besides, many
man made objects include revolution elements such as circles and cylindrical
holes that are projected into the image as ellipses. These are usually detected
in the image as contiguous set of edge segments that are joined together to fit
circles and ellipses (Fitzgibbon et al, 1999, Rosin, 1998). Ellifit (Prasad et al,
2013), EDCirles (Akinlar and Topal, 2013) and ELSD (Patraucean et al, 2012)
are some of the most popular detectors. Ellis et al. (1992) propose a method for
ellipse matching considering that they are projected circles, viewed obliquely.
They use this information to constraint the position, viewpoint and scale of the
model. In (Ayad et al, 2010), three coplanar ellipses are used to track a C-arm
using homographies, while Usabiaga et al. (2009) work with multiple cameras
for hand pose estimation using two coplanar ellipses. Alternatively, since at least
two ellipses are needed to recover the location of the camera, some works have
developed new methods to fuse other features with ellipses. Wang et al. (2008)
developed a method for estimating the pose from a single view of one circle
with two orthogonal lines. In Costa and Shapiro (2000), the authors recover the
camera location by estimating an initial location with ellipse and then, obtain
a unique solution with points.

Shape based methods have shown good performance. Their main drawback
is the large search space, as long as, they do not perform any previous matching
scheme. The registration is executed by brute force, which considerably slows
down their performance. Dominant Orientation Templates (DOT) (Hinterstoisser
et al,, 2010) is a popular method. It measures the similarity between two images
by comparing the orientation of the gradients. The method was extended to
handle depth sensors in (Hinterstoisser et al, 2012a) and color information in
(Peng, 2015).

Chamfer Matching is another popular method. It evaluates the similarity
between two image edges. It can efficiently be computed using image Distance
Transform (DT) but it cannot handle cluttered backgrounds. For this reason,
Liu et al. (2010) propose a new variation that takes into account edge
directions, increasing its robustness. In Choi and Christensen (2012), the Fast
Directional Chamfer Matching (FDCM) approach is used to initialize a particle
filter tracking. More recently, some authors introduce the FDCM technique to
bin-picking applications (Imperoli and Pretto, 2015, Liu et al, 2012). Liu et al.
(2012) uses a multi-flash camera to extract robust image edges reducing the
influence of reflections.



84 Chapter 4. Object Recognition

All these methods perform well on their specific systems but they are
unsuitable for industrial environments. Most of them reduce significantly their
robustness under uncontrolled scenarios, such as illumination changes, cluttered
backgrounds or occlusions. Moreover, the majority of them require hard manual
training phases which makes them unsuitable for a direct industry application.

In this chapter, we propose a new method to improve the registration phase
of chamfer matching approaches using conic priors, which are obtained matching
model surface circles with image ellipses. In that way, we combine the robustness
of ellipse detection with the model shape, represented by the chamfer distance.
Our method is able to recognize objects containing circles, such as holes, in
industrial environments improving the performance of the current state-of-the-art
methods as much in accuracy as in computational cost.
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4.2 Model based AR Pipeline

This section presents the complete AR pipeline based on the proposed
recognition method presented in Section 4.2.2. The workflow is separated in
two main parts:

1. An offline training phase where CAD model geometry features are
extracted (Section 4.2.1). This step is executed only once per model and
it is fully automatic. Therefore, it can be directly applied to the industry
without requiring the participation of any technician.

2. An online phase where the 3D pose of the object is detected and it is
tracked in real-time. First, the object is recognized and located using the
proposed approach (Section 4.2.2) and, then, the position is tracked using
the information from previous frames (Section 4.2.3). The same CAD model
geometric features are used for recognition and tracking.

Tracking allows the operator to move the camera and the object freely in
space while virtual annotations remain anchored to the object. Whenever the
tracking is lost, the recognition module is activated and the position of the
object is relocalized. Finally, using the relative position from the online phase
virtual guiding annotations are superimposed onto the image. An overview of the
AR pipeline is shown in Fig. 4.3.

4.2.1 Offline training

CAD models contain rich geometric information that is used during the
recognition and tracking modules. Before starting up the online AR application,
we need to extract and store all the required information. This section presents
the offline phase where visual geometric features and edge templates are
computed. Fig. 4.4 shows the main ideas and overview of the CAD model training.

Given the 3D CAD model of an object and its 3D triangle mesh, we
extract high curvature edges measuring the angle between neighbor faces, and
considering as straight edges the face boundaries with angles larger than
a predefined threshold. We have found that curved surfaces usually contain
triangles whose relative angle is smaller than 40 degrees. We also detect 3D
surface circles. If at least n sharp straight edges turn to the same direction
smoothly, we fit them to a circle using a least-squares error minimization. If
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Figure 4.4: Training of the CAD model. A set of virtual cameras is
generated on a sphere. For each camera, the visible geometry and
template edges are extracted. Finally, this information is indexed in a
hash table using the camera location information
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Figure 4.5: Training example for a possible camera location. The left
column shows the CAD model with its coordinate system. The middle
column shows the visible straight edges (red) and circles arcs (blue).
Finally, the last column shows the model edge template. Whereas
geometric features provide only real edges, templates allow us to work
with virtual edges which are generated by colour contrast with the
background and do not belong to the model geometry itself.

the fit error stays under a threshold, those segments are replaced by the circle
equation. We found that considering at least 10 straight edges achieves a good
performance in circle detection. In this way, we obtain visible 3D straight edges
and circles from the CAD model. However, this method identifies both surface
and interior features (i.e. hidden segments not actually visible from the exterior).
To discard interior features, we render all features and detect the interior ones
using occlusion queries based on z-buffer tests. Some results are shown in Fig.
45.

We generate a set of virtual cameras around a sphere with the z-axis pointing
towards the model. For each camera, we detect the visible geometry features
for the current pose applying occlusion queries based on the z-buffer. Using
the same buffer, we extract Laplacian edges to create the model templates. The
Douglas-Peucker algorithm (Douglas and Peucker, 2011) allows to represent
the edge images as a collection of line segments, transforming edge images
to line-based representation chains which permits applying integral image
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optimization techniques. Moreover, the algorithm allows us to simplify the edge
map filtering noise. In addition, it reduces the database memory requirements,
since only line end-points are stored. We also compute the 2D direction of the
edge segments and store the camera locations.

After processing all cameras, we group all the visible edges, circle-arcs and
templates in a one dimensional hash table using the information of the pose.
We use the Euler angles of the rotation matrix as the key of the hash table
to index them. In this way, we acquire visible geometry features and templates
for each position in an efficient manner. In addition, we also add the possibility
of rotating the camera z-axis (pointing towards the model) to create a more
realistic simulation (See Fig. 4.4). At the end of this algorithm, our database
contains the following information:

e Indexed visible 3D model geometry (edge lines and circle arcs) for each
camera,

e Indexed linear representation of 2D model templates for each camera.

4.2.2 Online Object Recognition

The first step during the online phase of the pipeline is the localization of the
target objects in space without any previous information of its pose. Our method
combines chamfer matching techniques (Liu et al., 2010) with conics based pose
estimation (De Ma, 1993) to improve upon the weaknesses of each other.

Template matching methods use a brute force approach during the search
step which normally consists in a sliding window. Thus, it is computationally
costly to find possible candidates in the scene. Besides, working with complex
shapes demands thousand of templates, which increases memory and computing
requirements. In addition, brute force matching techniques cause false positives
even with sophisticated optimizations. This is why they are used under controlled
illumination conditions, with accurate depth edges and planar objects such in
(Liu et al, 2012).

All these reasons makes them unsuitable for real-time applications in
arbitrary environments. In order to sidestep these difficulties, we introduce a new
matching scheme using corresponding conics between model surface circles and
image ellipses. This allows reducing the search space and the number of outliers,
specially in the case of cluttered backgrounds. At the same time, template based
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Figure 4.6: Object recognition pipeline. From left to right: the
inpute camera image; ellipses (blue) and edges (green) detected
in the image; conic-based pose hypothesis computation; chamfer
distance minimization and best candidate estimation by refinement
and verification (represented by the green box).

optimization allows us to find a unique solution using a single circle. In this case,
templates allow us to solve the camera location using the whole model shape,
whereas points and lines contain only partial information. Besides, we include
a refinement and verification steps which improve the accuracy and robustness
of the detection against challenging environments with cluttered backgrounds.

Candidates estimation based on model surface conics and edge templates

First of all, we obtain image ellipses using EDCircles (Akinlar and Topal, 2013)
which is one of the most efficient and robust approaches to detect circles and
ellipses. It searches for edge segments in the input image and joins them to
form circular arcs using heuristics. The ellipses are finally verified using an a
contrario validation step due to the Helmholtz principle, rejecting false positives.
Our method only requires ellipse equations, so it can also work with partial
elliptical arcs. In addition, we store the edges computed by EDCircles since
they are required in further steps of the algorithm.
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Figure 4.7: Rigid-body transformations applied during the method.

Since we cannot guarantee which ellipse belongs to the model surface, we
compute a pose hypothesis T; = [R; | t;] for each ellipse-to-circle pair (G, Q;)
as proposed in (De Ma, 1993) and described in App. B. As they prove, it is
only possible to recover the circle normal axis and center point using a single
ellipse, since the in-plane axes (x and y) are not uniquely determined. Thus, we
need an additional step. We propose to rotate the object about the normal axis
of the 3D circle (z axis). This new step guarantees that the non-symmetrical
characteristics of the object are taken into account to obtain a unique solution
(see Fig. 4.6).

In the case of solids of revolution, T; corresponds to a valid solution, since
there are infinitely many solutions. Therefore, it is not possible to identify a
unique pose and we select the initial estimation as the solution.

There are infinitely many rotations around the 3D circle normal axis that
provide the exact same 2D projection of the circle. We propose to discretize
the possible solutions in a finite number of rotations R¢ = {R1,Rz,--- R, },
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which are member of SO(3). For each pose hypothesis, we obtain n additional
hypothesis by right multiplication as:

R =Ri Ry, (41)
t =t

This camera locations correspond to local 3D circle coordinate systems.
Before evaluating the hypothesis with templates, we transform it to the model
coordinate system T, = [R, | tu] (see Fig. 47). We assume that the 3D
rigid-body transformations T,,; from 3D circles to model coordinate system are
already known from the training phase. The camera location relative to the model
is estimated as Tj, = Ty - Tj:

R =Ry R, (4.2)
ty = Rmi ’ tj + i
To evaluate each possible solution, edge templates provide a good
measurement of the similarity between image edges and model shape, since
they contain rich information of the model geometry for each camera view. We
propose to minimize the chamfer distance between the closest template and
image edges:

arg nzj'm dem(Up, V) with U, € U, (4.3)
with ’
dem(Up, V) = - UEZU DTy(u), (4.4)

where U, is the closest model template in the space to the current location
hypothesis T, and DTy is the Distance Transform of the input image edges
V. Since templates are indexed in a hash table using Euler angles, we only
evaluate the spatially closest template. In that way, we can efficiently access
each template and the method will only evaluate locations that have been trained
skipping the rest. This allows to significantly speed up the computation while
increasing its robustness, since we are able to skip known unreal positions.
This is good in practice since parts in an assembly are usually in the same
configuration. For instance, the cutting head in a horizontal lathe is always in
the same direction and, thus, vertical arrangements can be left behind.

Before evaluating each selected template, we need to transform template
edges to the image plane correctly. This is, it is necessary to estimate the scale
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Figure 4.8: Affine transform between trained pose, T; (left) and
hypothesis pose, T, (right). (¢, t,) correspond to the image plane
translation and s to the scale difference.

and translation between the scene location T,, and trained location T;. To solve
this, we propose to work with predefined 3D model points transformed with T,
and estimate their affine transformation (see Fig. 4.8).

During the chamfer matching evaluation (Eq. 4.4), we order lines by their
length and start the summation from the largest one. During the summation, if
a template score exceeds a threshold, it is automatically discarded, in order to
reduce further computations. Finally, candidates with an evaluated cost below
the threshold are inserted in a list with a limited number of best candidates.

Candidate Refinement

The previous step extracts a list of the best hypothesis of the object locations
in the image. Since discretizing the rotation around the 3D circle normal axis
generates small errors, a refinement step is essential to obtain a more accurate
solution. In addition, the accuracy of the candidates is not high enough to pass
a robust verification technique. Thus, each candidate must be refined with an
efficient optimization approach.
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Figure 4.9: Candidate refinement minimizing the reprojection error
between model samples and image edge matches.

We propose a method similar to the one proposed by Drummond and
Cipolla (2002) where model features are matched to image edges minimizing
the reprojection error. We project the visible edges and circle arcs of the model
into the image using the estimated pose and select a set of 2D samples m.
For each sample m;, a local search is performed along the edge or arc normal
direction. Then, if an image edge pixel u; is detected in the vicinity of the sample,
a positive correspondence is set. The current object position T is estimated by
minimizing the distance between samples and image edge matches given by

n
T = argmmZ || mi —u; ||
T i

= argm'mZ || K-m(R-x; +1t) —u; ||,
T i

where x; represents a sample 3D point from the model visible edges and circle
arcs. These are selected to achieve an evenly distributed point-cloud.

Fig. 49 shows an schematic representation of the matching step and
the reprojection error formulation. In addition, we use multiple matches per
sample to deal with cluttered backgrounds. Finally, the object pose is optimized
using an iterative Levenberg-Marquardt algorithm, and all those multiple
correspondences are managed with a Tukey loss function in order to remove
the influence of outliers (see Sec. 3.5).
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Figure 4.10: Recognition example of a real industrial object (see
Fig. 4.1). Note how the projection of the model edges (green) perfectly
aligns with the object in the image.

Candidate Verification

Some of the candidates may represent false positive object locations. For this
reason, we need a verification phase to distinguish outliers and choose the best
candidate solution. We propose a verification step that detects situations where
the candidate is superimposed onto a cluster of edges of other objects. This can
result in a low distance error even if those edges do not actually form part of the
target object. The approach is based on the similarity between image gradient
directions and model geometry feature normals.

Let m; be a model point projected on the image plane /, the similarity is
computed measuring the difference between the image gradient direction 6, and
the projected model feature normal 6,,. The points m; are discrete points selected
from visible model geometry features for the current candidate location. In the
case of circular arcs, the 2D projection normal is computed from its corresponding
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elliptical arc in the image. Thus, we define a similarity metric as:
,] n
= — 6, — 6,)|. 4.6
= L lcostor — ) (46)

Ideally, a perfect match has the same image gradient directions as model
feature normals which gives a similarity of one. We have seen in our experiments
that to obtain a robust performance the score threshold must vary depending on
the object shape. Working with complex objects demands less restrictive values.
However, in general a threshold of 0.8 works relatively well with almost all
tested models. In applications with heavily occluded objects, the value should
be lowered. Finally, the verified candidate with the lowest reprojection error is
taken as the right object location (see Fig. 4.10).

4.2.3 Online Object Tracking

Once the object localization is estimated, we need to follow the object position
in time. To achieve this, we use the same technique as in the refinement step
in Section 4.2.2. However, in this case, we use the pose of the object from the
previous frame to start iterating. In this way, we refine the position of the object
from frame-to-frame assuming that the relative motion between consecutive
frames is low. This assumption is usually fulfilled in practice. Anyway, if the
technician performs a fast camera movement and the tracking is lost, the 3D
object recognition module is activated to recover the object location.

Another possible tracking solution could be to use the object localization
as an initialization of the proposed visual SLAM approach of Chapter 5. Apart
from obtaining a consistent 3D reconstruction it also works as a robust tracking
method. However, this would only be possible for static scenes since the proposed
visual SLAM approach does not handle dynamic environments.
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4.3 ARgitu: Augmented Reality Guidance in Industry

The method is integrated in a complete framework, called ARgitu, that enables
the creation of interactive guides for the assistance in maintenance of complex
machinery. The framework is composed of a set of software libraries and two
main application: an author tool that creates a database with information of
the steps to perform, including several kinds of multimedia information (text,
video, virtual reality animations and augmented reality) and a guiding tool that
presents this information using a mobile device (see Fig. 4.2).

Both tools have been designed to provide an easy to use interface based on
a simple navigation paradigm. The user can access the process information of a
machine and navigate through each step of a maintenance operation. Depending
on the type of the step, the user is presented with an interface that enables
the creation of new contents (for the author tool) or its visualization (using the
guiding tool). Currently, the contents are text (HTML including text and images),
video (MP4 files), virtual and augmented reality visualizations.

Virtual reality is used to present the user with 3D animations of the activities
to be performed. Depending on the situation, the user can navigate freely in the
scene or the point of view is fixed in a region of interest. There, the user is
presented with one or several animations that display the steps to accomplish
a task including the tools required. Fig. 4.11 shows the creation of a virtual
animation to assist during the maintenance of a robot arm.

Augmented reality is used to present the user with information in its actual
context. ARgitu enables several approaches to AR, including using markers and
images as anchors. However the most powerful approach is the use of a real
component of a machine as target. In this case, the method described in Section
4.2 is used for the detection and tracking of the object. The author tool contains
a simple way to import a geometrical element and use it as anchor for AR. Once
the anchor’s geometry is defined the user can use it as reference frame to add
elements and create animations of components related to the target such as the
tool required to complete a step. The author tool completes automatically the
training phase of the detection and tracking algorithm. The information is stored
with other assets of the application. When a user uses the guiding application
all the relevant information is loaded from disk and the detection algorithm will
search for the location of the object of interest. Once found, the system triggers
the animation system that present the geometry and animations associated to
that task with their position and orientation correctly aligned with the detected
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 ARgity

Figure 4.11: ARgitu: using the author application a wrench is virtually
animated to assist during a maintenace task of a robot arm. The same
virtual annotation is used in the AR example task of Fig. 4.2.

position of the target part (see Fig. 4.12). Fig. 413 shows an example of the
experiments carried out to test the proposed tracking framework in real industrial
conditions.

The virtual animations for tasks presented using virtual or augmented reality
are created using the same interface in the author tool. The only difference is
related to the location of the virtual elements that in the case of augmented
reality are located in a position relative to the target object. Thus, the application
enables presenting context-aware information about the task, such as the actions
to be performed with a tool.

The creation of VR and AR based quides requires importing the model
geometry. For example, as described above, the proposed object detection
algorithm requires a surface representation of the target object. The framework
supports using a number of 3D object formats. One of the formats supported is
STEP (ISO 10303), this enables an extremely simple way to import data from
CAD systems, since most of them are capable of exporting data in this format.
Thus, it facilitates the use of the tool in small and medium size companies by
removing the need of modeling the geometry externally.
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o ARgity

Figure 4.12: Augmented reality taks: (a) the quiding application shows
virtual annotations anchored to an object to assist the technician
during a maintenance task. (b) the tracking allows moving the object
while guiding annotations remain attached to the real object.
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Figure 4.13: Evaluation of the proposed tracking framework in real
industrial conditions: (a) experimental setup with a consumer laptop
and a webcam. (b) close view of the tracking result where the model
visible geometry (blue) is projected into the image (green).



100 Chapter 4. Object Recognition

4.4 Experiments And Discussion

As stated above, one of the most critical components of an AR pipeline is
the object detection algorithm. Once the target component is detected several
approaches can be used to track the camera in the scene. For this reason, this
section presents a validation of our object detection approach. We first estimate
the most appropriate system parameters, and then, we compare our approach
to the most recent chamfer matching method, called Fast Directional Chamfer
Matching (Liu et al, 2010), and to the two-dimensional version of the lterative
Closest Point (ICP-2D) (Besl and McKay, 1992), which is one of the most popular
methods for registering a set of points.

Our dataset is composed of 240 640 x 480 images that contain
different objects' placed in arbitrary 3D positions and configurations. These
configurations include random camera locations showing a single object, grouped
with different objects, cluttered by a regular grid and occluded by other objects.
Each image is provided with the ground truth position of the objects, obtained
manually beforehand. Fig. 4.14 shows several examples of the recognition
systems under different configurations.

All experiments were executed using a standard PC with an Intel Core
i/-860 CPU at 28GHz and 6 GB of RAM. All compared algorithms have
been implemented by ourselves using C++ and OpenCV 3 without any strong
optimization. When possible, they share the same codebase and the same
parameters, enabling objective performance and timing comparisons.

441 Parameter Study

We evaluate the object detection rate varying several parameters. We use all
images in the database to obtain the most robust parametrization for a general
case. The parameters tested are the number of rotations around the normal, the
chamfer distance threshold and the number of maximum candidates. During the
experiments, we modify one of these parameters and fix the remaining two, with
a value of 36 rotations around the axis (10 degrees), a maximum number of 20
best candidates and a chamfer distance threshold of 20 pixels. Fig. 4.15 presents
the results for both the detection rate and the computational time.

TSome of the objects used in the experiments can be found in the RoCKIn@Work competitions,
http://rockinrobotchallenge.eu
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Figure 4.14: Detection of different objects over diverse configurations.
(1-row Bearing Box, 2-row Horsehoe, 3-row Motor, 4-row Plate) The
detections are shown by superposing the projection of the visible 3D
model geometry for each camera location in green. The ground truth
is presented in blue.

Evaluation of the number of rotations: We first evaluate the detection rate
of each object respect to the number of rotations performed around the circle
normal axis (see Section 4.2.2). For a low number of rotations, the method is
unstable and achieves low detection rates. This is expected, since non-symmetric
characteristics of the object are not taken into account. Indeed, the Motor model
(see Fig. 4.14) is almost not affected since it has a revolution symmetry. As
expected, the total execution time increases linearly with the number of rotations.
Establishing the number of rotations to 36 is a good trade-off between speed
and detection robustness.

Evaluation of the chamfer distance threshold: As expected, the detection rate
for low thresholds (0-5 pixels) is close to zero. Increasing the threshold allows
evaluating more candidates and the detection rate grows until it stabilizes for
a value of around 10 pixels. Above this value, the computation cost remains
constant. We fix the threshold to 10 pixels since it is the value that stabilizes
the detection rate performance.
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Evaluation of the number of maximum candidates: The detection rate
increases with the number of candidates but stabilizes around a value of 20. This
allows to evaluate more location hypothesis and, thus, estimate better solutions.
However, the main drawback is the increment of the computation time, that
increases linearly with the number of candidates. We conclude that setting the
maximum number of candidates to 20 achieves a good balance.

Overall we also observe that the computational time increases with the
number of circles in the model. The Horseshoe is by far the most computationally
demanding object due to its large amount of holes and circular arcs in its surface.

4.4.2 Evaluation

With the parameters presented in the previous section, we compare our approach
to Fast Directional Chamfer Matching (FDCM) (Liu et al, 2010), and to a
two-dimensional version of Iterative Closest Point (ICP-2D) (Besl and McKay,
1992). We choose FDCM as the reference for chamfer matching techniques,
which are mainly used for bin-picking vision based systems. Besides, we find
ICP-2D as the state-of-the-art registering approach. FDCM estimates the object
location minimizing both the edge proximity and their orientation similarity.
ICP-2D aims to minimize iteratively the distance between a set of points by a
nearest neighbor search.

For FDCM, we use our own implementation with the parameters proposed
by the authors. Similar to our method, it is used as a candidate estimation
technique in our recognition system. Since we do not have any prior information
about the model location, we train the model for all possible camera locations
and set the scale search from 0.6 to 1 times the template size with a step of 0.1.
The detection system is based on scanning the image using a sliding window.

For ICP-2D, we also use our own implementation. In this case, the ICP-2D
technique is used as a variant to our method. Instead of using edge templates
for evaluating location hypothesis, we use the ICP-2D algorithm for registering
them. Both the image point samples and the model samples are selected to
achieve a homogeneous point-cloud. The image samples are computed from
image edges and model samples from the projection of visible 3D model
geometry. Since ICP-2D corresponds to an iterative minimization algorithm, we
skip the refinement step.
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the number of maximum candidates.
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Figure 4.16: Recognition rate comparison for each object. The results
are shown in four different configurations: a single object, group clutter,
grid clutter and occlusions.

For this experiment, we separate the database in four different categories.
Each category represents particular model configurations. In addition, we
analyse each model separately to distinguish the method performance in each
case. The four categories correspond to the configurations of: a single model,
grouped objects, models with a reqular grid background and occluded objects
(see Fig. 4.14). Finally, we evaluate the average computation time of each stage
in the recognition system.

Detection rate. The detection rate scores of the different methods is presented
in Fig. 4.16. For a single object configuration, our method achieves better
performance than FDCM for all models. Only ICP-2D behaves better with
cylindrical models. In the case of FDCM, the detection rate is drastically lowered
with very reflective objects, such as the Horseshoe. Only in the case of the Plate
FDCM achieves the same recognition rate.

When the models are grouped with other objects our method achieves higher
recognition rates, even if, in general, the scores are lower (see second column in
Fig. 4.16). However, in the case of FDCM the number of true positives increases
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for the Horseshoe and the Motor models. The ICP-2D technique starts to fail
since the number of points in the neighbor increases, causing the failure of the
optimization.

The robustness of our method to cluttered backgrounds is due to ellipses. The
use of image ellipses allows the method to skip many wrong camera locations
by searching locally around them. This can be observed with the reqular grid
clutter (see third column in Fig. 4.16). It is an extreme configuration where
the background is filled with small squares and man-made object projections
fit well in many configuration due to their nature. In this case, only our conic
based approach is able to estimate the camera location. For all the objects, our
method performs better or similar to the ICP-2D variation. This is the expected
behavior since FDCM takes only edges into account without any robust feature
classification.

To evaluate our method against occlusions, we have tested overlapping the
target objects with different degrees of occlusion (see fourth column in Fig.
4.16). As expected, the number of correct detections decreases with the occlusion
level. However, our method outperforms FDCM. For more complex objects, such
as the Horseshoe, FDCM fails, whereas our method achieves good results.
This is an advantage since man-made systems are usually assembled from
many components, creating severe occlusions. For the ICP-2D-based variant, the
decrease is more pronounced due to the increment in the number of neighbor
points, but working with conics still allows to estimate the camera location in
many cases.

After the detection rate validation, it is clear that the usage of conics together
with edge based approaches outperforms other alternatives. We manage to obtain
higher detection performance for all tested environments. The improvement is
noticeably larger with challenging situations such as occlusions and cluttered
backgrounds where the robustness of conics allows discarding many false
positives that edge based approaches would take into account.

Processing time. Although our method and the ICP-2D variant work similarly
in terms of robustness in some cases, our method outperforms ICP-2D in terms
of speed by several orders of magnitude. The mean computation times for all the
methods are shown in Table 4.1.

Our approach is about four times faster than FDCM. Fig. 417 shows a break
down of the execution time for both methods. Our method clearly outperforms
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Table 4.1: Mean computation time for all the dataset. It includes
the ellipse detection, integral images computation, candidate search,
refinement and verification steps.

Algorithm  FDCM  Our Method  ICP-2D

Time (ms) 1642 405 31432

Il Elipse detection
-Integral Images
-Candidate Search
4 I:lRefinement
I:lVeriﬂcation

Our Method

FDCM

0 200 400 600 800 1000 1200 1400 1600
Time [ms]

Figure 4.17: Comparison of the mean computation time for all the
dataset between FDCM and Our Method. Our approach performs four
times faster and the searching is speeded-up by a factor of five.

the search step in term of speed. The usage of conics allows us to discretize the
image plane and, thus, significantly reduce the computational time in contrast
to a brute force strategy using a sliding window. We reduce the searching by
about five times under unconstrained conditions. In addition, our method uses
a simpler chamfer distance technique, which uses only the location of edges,
and allows executing integral images faster. Moreover, our method introduces
the ellipse detection computation time but it is insignificant compared with the
other steps. Both methods use similar time for the refinement and verification
steps, since we set the same number of maximum candidates.

4.43 Examples

We present in Fig. 414 some examples of the response of the proposed
recognition method using the dataset models. All of them are untextured models
with different shape and materials. It shows the robustness of the proposed
solutions against challenging situations, such as cluttered backgrounds and
partial occlusions. Note how our method is able to handle reflections of
mechanical pieces satisfactorily.

In addition, we present in Fig. 418 and 4.19 some examples of the proposed
method working in a mobile device under real industrial conditions.
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Figure 4.18: Recognition example of an industrial robot arm with a
mobile device. The model visible geometry is projected into the image
tn green.

Figure 4.19: Recognition example of the Horseshoe model in an
industrial environment with a mobile device. The model visible
geometry is projected into the image in green.
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4.4.4 Discussion

The proposed method requires the model to contain circles in its surface and
those to be visible in the image. Although the usage of conics is one of its main
strengths, it is also one of its main limitations. The lack of ellipses in the image
makes the proposed solution fail and this occurs due to two main reasons:
when the model position does not allow perceiving ellipses in the image or
when the ellipse detector fails. Thus, the proposed method relies on the ellipse
detector robustness which is usually degraded with severe occlusions. In this
cases, only small elliptical arcs are visible. Nonetheless, it does not require
texture information and can handle untextured models. Additionally, this thesis
is oriented to industrial environments where the presence of untextured objects
with revolution elements, such as holes or cylinders, is quite common.

The following chapter presents a robust visual SLAM approach that does not
rely on feature detectors but on raw image intensity values. As a result, it can
work in low textured environments without requiring specific features. Although
it has been particularly developed for autonomous robot navigation, it could also
be used as a tracking approach for AR applications in the industry due to its
robustness in those conditions.



Chapter 5

Direct Sparse Mapping

Recovering the 3D geometry — camera location and scene structure — from
a moving camera is still an open challenge in computer vision and robotics.
In general, we can identify two different situations during robot navigation:
the exploration that refers to the phase where the robot is traversing through
an unknown environment and the revisiting where the robot is returning to
an already known location. Ideally, the goal is to obtain a new map during
the exploration that is perfectly consistent with the old one when revisiting.
However, drift during exploration is inevitable and, thus, one should obtain the
most accurate estimates to keep the drift as small as possible during exploration.
At the same time, it is very important to reuse existing map information to correct
the drift and maintain a consistent map during revisits. Otherwise, the system
will be prone to duplicate map points and generate long-term motion drift and
structure inconsistencies. Normally, the exploration task is tackled as a visual
odometry problem and the revisiting task as a mapping problem (see Chapter 2).

During revisiting situations, we can additionally distinguish two cases. Small
scale cases where the accumulated drift is small enough to be detected and
corrected using the formulation of the model itself (i.e. reprojection error or
photometric error). For example, this case is very usual in indoor applications,
such as the cleaning robot that traverses the same rooms and corridors
repeatedly. Large scale cases where the robot has traveled long enough
distances that the accumulated drift cannot be handled with the model. In this
cases, it is very common to use an appearance-based place recognition module
which identifies if the current scene is similar to an already visited place. This
situations are more likely to happen in long term trajectories such as self-driving
cars. The latter is also known as the loop closure problem (Strasdat, 2012).
This chapter tackles the problem of visual mapping with a direct formulation in
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small scale cases. As we will validate in the experiments, a direct formulation
is sufficient to handle many situations without requiring a place recognition
module.

Direct approaches have proven to be an effective method for estimating
scene geometry and camera motion in visual odometry (VO). Photometric bundle
adjustment (PBA) minimizes the photometric error of map point observations
over a subset of selected frames, known as keyframes. Normally, the number
of keyframes in the PBA is limited to avoid large computations. We call active
keyframes and active points to those keyframes and map points selected to be
optimized in the PBA. A very common strategy to select active keyframes is to
use a local sliding-window of most recent keyframes. Points are sampled across
image pixels with locally high gradient module, such as edges and weak intensity
variations. They are associated to only one keyframe where they are initialized.
In the rest of keyframes, there is not an explicit and fixed data association,
because the PBA recomputes the correspondences as a part of the optimization.
Thus, direct methods do not rely on the repeatability of selected points and are
able to operate in scenes with low texture but with contours.

Current PBA based methods are only able to do VO, which builds a
temporary map to precisely estimate the camera pose. They use a sliding-window
that selects close in time active keyframes, marginalizing map points that
leave the field of view. The marginalization strategy reduces the computation
complexity by removing old cameras and points while maintaining the system
consistent to unobservable degrees of freedom, L.e. absolute pose and scale. As
a consequence, if the camera revisits already mapped areas, the PBA cannot
reuse marginalized map points and it is forced to duplicate them. This is a severe
limitation: the system cannot benefit from the highly informative reobservations
of map points, and this causes motion drift and structure inconsistencies.

In contrast, VSLAM methods build a persistent map of the scene,
and continuously process map point reobservations. Instead of using a
sliding-window and marginalization, they retain keyframes and map points
with a fixed location in the model and select the active keyframes and map
points according to covisibility criteria, i.e. they observe several map points in
common. This results in a network of keyframes where the connectivity is based
on whether they observe the same scene region, even if they are far in time.
The fixation strategy maintains the system consistent to unobservable degrees
of freedom and it enables the reuse of map points. Thus, VSLAM approaches
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Figure 5.1: Estimated map by DSM with (bottom) and without (top)
point reobservations in the V2_01_easy sequence of the EuRoC MAV
dataset. DSM can produce consistent maps without duplicates.

can extract the rich information of map point reobservations reducing the drift
in the estimates.

Transforming PBA based direct VO systems into VSLAM is not
straightforward because there are several open challenges to solve:

1. When the camera revisits already mapped areas, the system has to select
active keyframes that include map point reobservations. They are difficult
to obtain because there are not point correspondences between keyframes.
At the same time, we have to guarantee accurate map expansion during
exploration. Therefore, we propose the Local Map Covisibility Window
(LMCW) criteria to select active keyframes that observe the same scene
region, even if they are not close in time, and the map point reobservations.
It uses a combination of temporal and covisibility criteria to select the
active keyframes.

2. The PBA optimization includes map points and keyframes distant in time
and, hence, affected by the estimation drift. Normally, the photometric
convergence radius is around 1-2 pixels due to image linearization and,
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thus, a standard PBA cannot compensate the drift. We propose a multiscale
PBA optimization to handle successfully these convergence difficulties.
This strateqgy allows to exploit the rich geometrical information provided
by point reobservations.

3. We have to ensure the robustness of the PBA against spurious
observations. They result mainly from the widely separated active
keyframes —in contrast with the close keyframes of VO— which render
occlusions and scene reflections that violate the photo-consistency
assumption. We incorporate a robust influence function based on the
t-distribution into the PBA that neutralizes the adverse effect of the
spurious observations.

This chapter presents the proposed direct VSLAM system, DSM (Direct
Sparse Mapping). Up to our knowledge, this is the first fully direct monocular
VSLAM method that is able not only to detect point reobservations but also
to extract the rich information they provide (see Fig.5.1). Sec. 5.1 provides an
overview of some related works. Then Sec. 5.2, 5.3, 5.4 and 5.5 present all the
steps that have been carried out to solve the problem of monocular VSLAM with a
fully direct formulation. Finally, Sec. 5.6 describes the experiments that validate
the performance of DSM in terms of both camera trajectory and reconstruction
map accuracy. The latter is usually not reported in VO/VSLAM methods.
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5.1 Related Work

The first real-time monocular VSLAM methods were indirect approaches, using
FAST (Rosten and Drummond, 2006) and Harris (Harris and Stephens, 1988)
corners associated across images in the form of 2D fixed correspondences. The
3D geometry was estimated minimizing the reprojection error. They rely on the
repeatability of the corner detectors and required rich visual texture. Thanks to
feature descriptors, they associate distant images. Davison et al. (2007) present
MonoSLAM, which matches sparse keypoints and recovers the scene geometry
in an EKF-based framework, later extended by Civera et al. (2008) to include a
parametrization in inverse depth. Klein and Murray (2007) in PTAM propose for
the first time to parallelize the tracking and mapping tasks, demonstrating the
viability of using a BA scheme to maintain a persistent map in small workspaces.
Klein and Murray (2008) extend PTAM to handle edgelets in the map and
improve the robustness of the whole system to motion blur. Later, Strasdat
et al. (2011) proposes a double window optimization to extend the potential
of feature-based VSLAM to long-term applications. It combines a local BA with
a global pose-graph optimization using covisibility constraints based on point
matches.

Following these works, ORB-SLAM (Mur-Artal et al,, 2015) presents the
current reference solution among indirect VSLAM approaches. It is a full VSLAM
approach that includes: a traditional BA with map reuse capabilities, loop closure
correction and relocalization. Up to date, it is the most accurate monocular
VSLAM method in many scenarios. The key aspects of its precision come from the
management of map point reobservations in the BA using an appearance based
covisibility graph. Later, Mur-Artal and Tardos (2016a,b) extend ORB-SLAM
to stereo, RGB-D and visual-inertial systems. Similarly, DSM transfers the
main ideas of feature-based VSLAM techniques to direct systems significantly
increasing the accuracy of their estimates. As a direct approach DSM does
not compute explicit point matches and, thus, cannot build an appearance
based covisibility graph. Instead, DSM relies on geometric constraints to build
covisibility connections between far in time keyframes. In addition, it works with a
smaller window of covisible keyframes than ORB-SLAM to control computational
limitations.

Recently, VO approaches have shown impressive performance. SVO (Forster
et al, 2014) proposes an hybrid approach to build a semi-direct odometry
system. They use direct techniques to track and triangulate points but they
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ultimately optimize the reprojection error of those points in the background. Later,
Forster et al. (2017) extend SVO to multi-camera systems and to track edgelets.
OKVIS (Leutenegger et al, 2015) presents a feature-based Visual-Inertial
Odometry (VIO) system that continuously optimizes the geometry of a local map
marginalizing the rest. More recently, Engel et al. (2016a) made a breakthrough
with their DSO, the first fully direct VO approach that jointly optimizes motion
and structure formulating a PBA and including a photometric calibration into the
model (Engel et al, 2016b). Inspired by OKVIS, DSO performs the optimization
over a sliding-window, where old keyframes as well as points that leave the
fleld of view of the camera are marginalized. It has shown impressive odometry
performance and it is the reference among direct VO methods. However, as a
pure VO approach DSO cannot reuse map points once they are marginalized
which causes camera localization drift and map inconsistencies. Similar to other
systems, DSO has been extended to stereo (Wang et al,, 2017), omnidirectional
(Matsuki et al,, 2018), rolling shutter (Schubert et al, 2018) and visual-inertial
(von Stumberg et al., 2018) systems. DSM uses the same photometric model of
DSO and goes one step further to build the first fully direct VSLAM solution with
a persistent map. The experiments report that using a VSLAM scheme achieves
a significant accuracy increase of the camera trajectory when compared to the
VO of DSO.

Many VO systems have been extended to cope with loop closures. Most
propose to include a feature-based Bag of Binary Words (DBoW) to detect
loop closures and estimate pose constraints between keyframes, following
Galvez-Lépez and Tardos (2012). Then, a pose-graph optimization finds a
correction for the keyframe trayectory. VINS-mono (Qin et al, 2018) uses a
similar front-end to OKVIS but includes additional BRIEF features to perform
loop closure. LSD-SLAM (Engel et al, 2014) was the first direct monocular
VO for large-scale environments. The method recovers semi-dense depth maps
using small-baseline stereo comparisons and reduces accumulated drift with a
pose-graph optimization. Loop closures are detected using FAB-MAP (Cummins
and Newman, 2008), an appearance loop detection algorithm, which uses
different features to those of the direct odometry. LSD-SLAM was also extended
to many other visual systems such as stereo (Engel et al., 2015), omnidirectional
(Caruso et al, 2015), visual-inertial (Usenko et al, 2016). LDSO (Gao et al,
2018) extends DSO with a conventional ORB-DBoW to detect loop closures
and reduces the trajectory drift by pose-graph optimization.

All these methods have the next drawbacks:
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1. They use a different objective function and points to those of the odometry.

2. Loop closure detection relies on feature repeatability, missing many
corrections.

3. The error correction is distributed equally over keyframes, which may not
be the optimal solution.

4. Although the trajectory is spatially corrected, existing information from
map points is not reused and, thus, ignored during the optimization.

In contrast, full VSLAM systems like ORB-SLAM and DSM reuse the map
information thanks to its persistent map. The reobservations are processed with
their standard BA (either geometric or photometric), resulting in more accurate
estimates. Thanks to the improvement in accuracy the need of loop closure
detection and correction is postponed to trajectories longer than in their VO
counterparts.

Moreover, DVO Kerl et al. (2013) proposes a probabilistic formulation for
direct image alignment techniques. Inspired by Lange et al. (1989), they show
the robustness of using a t-distribution to manage the influence of noise and
outliers. Furthermore, Babu et al. (2016) demonstrate that the t-distribution
represents well photometric errors while not geometric errors. We incorporate
these ideas into the sparse photometric model together with a novel outlier
management strategy. In this way, we make the non-linear PBA optimization
robust to spurious point observations. They normally appear as a result of widely
separated active keyframes and lack of explicit point matches.
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5.2 Direct Mapping

The proposed VSLAM system consists of a tracking front-end (Sec. 5.4) and an
optimization back-end (Sec. 5.3). The front-end is involved in tracking frames
and points, and also provides the coarse initialization for the optimization. The
back-end determines which keyframes form the local window (Sec. 5.3.1) and
jointly optimizes all the active keyframes and map point parameters in the PBA
(Sec. 5.3.2). Fig. 5.2 shows an overview of the system structure.

The main contributions of the proposed method are related with the back-end
and, thus, we consider convenient to present it first. Later, we present the
front-end, which is comparable to other direct approaches and, finally, the system
bootstrapping. Similarly to most VSLAM systems (Engel et al,, 20164, Klein and
Murray, 2007, Mur-Artal et al,, 2015) the front-end and the back-end run in two
parallel threads:

1. The tracking thread obtains the camera pose at frame rate (Sec. 5.4.1). It
also decides when the map needs to grow by marking tracked frames as
keyframes (Sec. 5.4.2).

2. The mapping thread processes all new frames to track points from active
keyframes (Sec. 5.4.3). Besides, if the new frame is marked as a keyframe,
the local window is recalculated, new points are activated and the PBA
optimizes motion (keyframes) and structure (points) together using active
keyframes. Finally, it maintains the model globally consistent, i.e. removes
outliers, detects occlusions and avoids point duplications (Sec. 5.3.3).

The persistent map is composed of keyfames that are activated or deactivated
according to covisibility criteria with the latest keyframe. The absolute pose
of a keyframe i is represented by the transformation matrix T; € SE(3). For
each keyframe, we select as candidate points those with a locally high gradient
module and spread over the image. Each map point p is created in a keyframe and
its pose is coded as its inverse depth. Thus, for each keyframe we store the raw
image and the associated map points. We assume all images to be undistorted
and use the pinhole model to project a point from 3D space to the image plane.
Chapter 3 presents a more detailed explanation of the parameterization used for
cameras and points.

The Local Map Covisibility Window (LMCW) (Sec. 5.3.1) selects which
keyframes are active and form the local window. Once a keyframe is active,
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Figure 5.2: Overview over the complete DSM algorithm. Each new
frame is tracked using image alignment techniques with respect to the
latest keyframe. Then, each tracked frame is used to initialize new
candidate points from the LMCW. If the tracked frame is spawned
as keyframe, the LMCW is updated, new map points are activated
and the PBA jointly optimizes all the model parameters (cameras
and points). Finally, we maintain a persistent map to select active
keyframes according to covisible criteria with the latest keyframe.
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Figure 53: The pattern structure used to evaluate a single point. It
is composed on N, = 8 spread pixels around the target point p.
Engel et al. (2016a) showed that it achieves a good balance between
precision and computational time.

all its parameters (pose and affine light model) and associated points (inverse
depth) are optimized by the PBA. Otherwise, they remain fixed to maintain
the system consistent to unobservable degrees of freedom (gauge freedom).
During optimization, we will use { € SE(3)" x R?"*™ to represent the set
of optimized parameters (n keyframes and m points) and 8¢ € se(3)" x R+
to denote the increments. Moreover, we use the left-compositional convention for
all optimization increments, ie. {1 = 6¢ @ {1 (see Sec. 323 and 356).
This direct VSLAM framework enables to build a persistent map and reuse
existing map information from old keyframes directly in the photometric bundle
adjustment.

5.2.1 Photometric Model

The same photometric function proposed in (Engel et al, 2016a) is used in
the whole system, i.e. geometry initialization (camera and point tracking), local
windowed PBA and map reuse. For each point p, we evaluate the sum of square
intensity differences r¢ over a small pattern Np around it between the host /; and
target /; images (see Fig. 5.3). We include an affine brightness transfer model
to handle the camera automatic gain control and changes in scene illumination.
The observation of a point p in the keyframe /; is coded by:

a; 2
Ep= > wiri= ) Wk((/t[Uk]—bi)— %U/[U/k}—b/) , (5.1)

ukENp U/\,VENP

where uy is each of the pixels in the pattern; u’y is the projection of uy in the
target frame with its inverse depth py, given by u’y = 7(T;; - 7 (ug, pi)) with
Tj[ = T/-_1Tl~; a;, b[,aj,bj the affine brightness functions for each frame; and
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Wi = wy, Wg, a combination of the robust influence function w;, and a gradient
dependent weight wy,:

2

REINTETN .
which works as a heuristic covariance in the Maximum Likelihood (ML)
estimation, reducing the influence of high gradient pixels due to noise. To sum
up, the photometric cost function (Eq. 5.1) depends on geometric (T;, T;, p) and
photometric parameters (a;, b;, a;, b)).

Note that since we are using the inverse depth, we need to use the linear 2D
point mapping function presented in Sec. 3.4.2, which exploits all the benefits
of the inverse depth parameterization. We use this formulation whenever we
need to transform a 2D point from one image to another and during jacobian
computation (see App. C).
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5.3 Back-End

The back-end manages the persistent map, which includes all the keyframes and
map points. It consists in the following tasks:

e Determine the LMCW (local window) using the pose information from the
latest keyframe. This step selects the active keyframes that observe the
same scene region even if they are not close in time. This is crucial to
guarantee that map point reobservations are inserted into the PBA when
revisiting already mapped areas.

e Activate new points from the LMCW and avoid point duplications with
existing points in the persistent map.

e Jointly optimize for all the involved parameters using a multiscale
photometric bundle adjustment. This comprises all the active keyframes
in the LMCW and its corresponding active points. Consequently the PBA
includes map points and keyframes distant in time and affected by the
estimation drift.

e Decide which points are visible in which frames and maintain the model
globally consistent. This is, identify which observations do not fulfill the
photometric consistency and, consequently, decide when a map point
should be removed. This implies to remove outliers and detect occlusions.

5.3.1 LMCW: Local Map Covisibility Window

This section presents the LMCW and the strategy to select its active keyframes
and active map points. It is a combination of temporal and covisibility criteria
with respect to the latest keyframe being created. Fig. 5.4 shows the LMCW
selection strategy.

The first part is composed of N; temporally connected keyframes that form a
sliding-window like Engel et al. (2016a). This part is critical during exploration
because it initializes new points (Sec. 5.4) and maintains the accuracy in
odometry. Whenever a new keyframe is created, we insert it into the temporal
part and remove another one. Thus, we maintain fixed size temporal keyframes.
The strategy that selects the removed keyframe from the temporal part is
summarized as:
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Figure 5.4: LMCW example with N,, = 7 and the latest keyframe. It
is composed of N; = 4 temporal (blue) and N, = 3 covisible (orange)
active keyframes. The red camera represents the latest keyframe being
created.

1. Always keep the last two keyframes (/1 and h). This ensures the odometry
accuracy during challenging exploratory motions, such as rotations.
It avoids premature fixation of keyframes location, guaranteeing that
keyframes are well optimized before fixing them.

2. The remaining keyframes are evenly distributed in space. We drop the
keyframe /; that maximizes:

Ni
—1
sth) =~/dllo.h) Y (d (1)) (5.3)
j=1
where d(/;, /;) is the L7 distance between keyframes /; and /;. This strategy
favors observations rendering high parallax into the PBA, which increases
the accuracy.

The second part is composed of N, covisible keyframes. We aim to select
keyframes covisible with those in the temporal part. Additionally, we seek to fill
the latest keyframe [y with reobserved map points, favoring map points imaged
in depleted areas (image areas where no other map points are imaged). Our
strategy to achieve this goal is summarized as:

1. Compute the distance map to identify the depleted areas. All the map
points from the temporal part are projected into the latest keyframe, then
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the distance map registers, for every pixel, the L, distance to its closest
map point projection.

2. Select a keyframe among the list of old keyframes, the one that maximizes
the number of projected points in the depleted areas using the distance
map. We discard points that form a viewing angle above a threshold to
detect and remove potential occluded points as early as possible.

3. Update the distance map to identify the new depleted areas.

4. Iterate from (2) until N, covisible keyframes are selected or no more
suitable keyframes are found.

The covisible part incorporates already mapped areas in the LMCW before
activating new map points. The proposed strategy avoids map point duplications

ensuring the map consistency. The values of N; and N, are tuned experimentally
in Sec. 5.6.

5.3.2 Photometric Bundle Adjustment (PBA)

Every time a new keyframe is created, all model parameters are optimized by
minimizing the error from Eq. (5.1) over the LMCW of active keyframes K. The
total error is given by:

E=) ) ) ) wrl) (54)

LeK pEPi j€obs(p) ureN,

where P; is the set of points in /; and obs(p) the set of observations for p. Note
that the LMCW reuses map point observations for which the initial solution is
not inside the convergence radius and, thus, the PBA is not able to correct. We
propose to use a coarse-to-fine optimization scheme over all active keyframes.
In each level, we iterate until convergence and use the estimated geometry as
an initialization for the next level. The same points are used across all levels
and each level is treated independently, i.e. neither the influence function nor
outlier decisions are propagated across the levels (Sec. 5.3.3). In this way, we
are able to handle larger camera and point increments 8¢ with the photometric
model.

We  minimize Eq.  (54) using the iteratively re-weighted
Levenberg-Marquardt algorithm (see Sec. 3.5.3). From an initial estimate
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C(O), each iteration t computes weights wy and photometric errors r¢ to estimate
an increment 6¢!" by solving for the minimum of a second order approximation
of Eq. (5.4), with fixed weights:

6¢" = —H b, (5.5)

with H = JTWJ + Adiag()"WIJ), b = }"Wr and W € R™*" is a diagonal matrix
with the weights wy, r is the error vector and ] € R™*9 is the Jacobian of the
error vector with respect to a left-composed increment given by:

_ an(6¢B )

] .
k 95¢ 520

(5.6)

The main difference of the PBA with the traditional geometric BA is that
each residual ry depends on two keyframes instead of one. This is due to the
fact that each point is associated to a keyframe and relatively represented to it.
However, this does not affect the sparsity structure of the problem and we take
advantage of the Schur complement trick to solve the reduced problem (see Sec.
3.5.5). Besides, we use variable scaling techniques (see Sec. 35.5) to take into
account the different magnitudes between the model parameters and accelerate
the optimization. The gauge freedoms are controlled fixing all other keyframes
that are covisible with the active ones.

The PBA is implemented using the Ceres optimization library (Agarwal
et al.) with analytic derivatives. We provide the analytical expressions of the
jacobians Ji in the Appendix C, which can be efficiently computed using the
adjoint theory. Image gradients are computed using central pixel differences
at integer values. For subpixel intensity and gradient evaluation, bilinear
interpolation is applied.

5.3.3 Robust Non-linear PBA

The LMCW selects widely separated active keyframes according to geometric
criteria without any consideration about the actual photo-consistency between
the images of the map points in the selected keyframes. Hence, it is possible
that some of the points do not render photo-consistent images, because they
suffer, for example, from occlusions or scene reflections (see Fig. 5.5).

To make our PBA robust with respect to this lack of photo-consitency,
we propose an outliers management strategy based on the photometric error
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Figure 5.5: Probabilistic error modeling. The top row shows the case
where most of the map points are photo-consistent, then both normal
and t-distribution models fit well the photometric errors. The bottom
row shows a challenging situation where covisible reobservations
introduce many outliers due to occlusions, the t-distribution fits the
observed errors better than the normal. On the left, the keyframe along
with the point depth map after outlier removal.

distribution, from which we derive the appropriate weights for Eq. 5.4. According
to the probabilistic approach, optimizing the Eq. 5.4 is equivalent to minimizing
the negative log-likelihood of model parameters ¢ given independent and
equally distributed errors rg,

n

= arg;n‘m — Z log p(rk | §). (5.7)

k

The minimum of Eq. 5.7 is computed equating its derivatives to zero given
by

Zatogpru( _i(alogri(rk)g_rckFO (5.8)
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Figure 56: Comparison of different influence functions. Huber is
plotted with k = 1.345 and Tukey with k = 4.685 assuming a
Gaussian distribution A/(0, 1). The t-distribution is plotted with v =5
and g; = 1.

This is equivalent to minimizing the re-weighted least-squares Eq. 5.4:

or

W'W(rk)'rk:()r (59)

with the weights defined as

dlogp(re) 1
wir) = — 22920~ (510)

Therefore, the solution is directly affected by the photometric error
distribution p(r) (see Kerl et al. (2013) for further details). Fig 5.6 shows the
influence of different weight distributions in a least squares optimization. Next
we describe them with more detail.

Gaussian distribution If errors are assumed to be normally distributed around
zero N'(0, 02), the model of error distribution is p(ry) ox exp(ri/aﬁ). This model
leads to a constant distribution of weights which is a standard least squares
minimization. Thus, it treats all points equally and outliers cannot be neutralized:

Wa(re) = % (5.11)
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Student’s t-distribution Recently, Kerl et al. (2013) has analyzed the
distribution of dense photometric errors for RGB-D odometry. It showed that the
t-distribution explains dense photometric errors better than a normal distribution,
providing a suitable weight function:

v+1
v+ (%)2

Ot

we(ry) = when = 0. (5.12)

We have experimentally studied the sparse photometric errors and we
conclude that the t-distribution also explains the sparse model properly (Fig.
5.5). In contrast to the normal distribution, the t-distribution quickly drops the
weights as errors move to the tails, assigning a lower weight to outliers. Besides,
instead of fixing the value of the degrees of freedom v = 5 as in Kerl et al. (2013),
we study the behavior of the model when v is fitted together with the scale o;
(see Sec. 5.6). To fit the t-distribution, we minimize the negative log-likelihood
of the probability density function with respect to v and o; using the gradient
free iterative Nelder-Mead method (Lagarias, Jeffrey et al, 1998). Besides, we
filter out the gross outliers before fitting the t-distribution. We approximate the
scale value ¢ using the Median Absolute Deviation (MAD) as 0 = 1.4826 MAD
and reject errors that ry > 30.

M-estimators Whether the distribution of errors is hard to know or it is
assumed to be normally distributed, using M-estimators is a popular solution.
We have previously presented the two most popular alternatives, Huber and
Tukey, in Sec. 35.4. The Huber estimator gives linear influence to the outlier,
whereas the Tukey estimator removes the influence of the outliers by setting
the weight to zero (see Fig. 5.6). Between these two alternatives, Huber is the
most used one since it does not totally remove high error measurements but it
decreases their influence, which is crucial for reobservation processing. Note in
Fig. 5.6 how the t-distribution achieves a balance between Huber and Tukey.
It is more aggressive with outliers than Huber but, in contrast to Tukey, it does
not explicitly remove them.

Implementation of the probabilistic model into the PBA

We have studied the error distribution in each keyframe and concluded that
there are differences between them. These variations might come from motion
blur, occlusions or noise (see Fig. 5.5). Hence, we fit the error distribution for
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each keyframe separately using all the observations from active points in that
keyframe. This allows to adapt the PBA to different situations, e.g. certain error
values might be considered as an outlier in a reqular keyframe but inlier in a
challenging one due to motion blur.

Computing the error distribution and, thus, the weight distribution each
iteration changes the objective function (Eq. 5.7) and the performance of the
optimization might degrade. We propose to compute the error distribution only
at the beginning of each pyramid level and to maintain it fixed during all the
optimization steps. At the end of the PBA, the error distribution is recomputed
again using the photometric errors obtained from the best geometry solution ¢*.

Outlier management

It is crucial to detect and remove outlier observations as soon as possible to
maintain the PBA stability. To achieve this, we will exploit the information from
each observation, which includes measurements from eight different pixels. We
propose to build a mask for each point and mark each pixel measurement ry as
inlier or outlier. To consider a pixel measurement as inlier, the photometric error
has to be lower than the 95% percentile of the error distribution of the target
keyframe. For challenging keyframes the threshold will be higher, being more
permissive, whereas for reqular ones it will be lower, being more restrictive.
When the current local PBA is finished, we count the number of inlier pixels in
the mask. Whenever an observation contains a number of outlier pixels larger
than a 30%, the observation is marked as an outlier and removed from the list
of observations of the point. Besides, during the optimization, if the number of
outlier pixels is larger than a 60%, the observation is directly discarded from the
current optimization step, t.e. w(r) = 0.

We also detect and remove outlier points from the map. We propose to control
the number of observations in each point to decide if it is retained. To retain a
new point, it must be observed in all the new keyframes after its creation. When
it has been observed in three keyframes it is considered a mature point. Mature
points are removed if the number of observations falls below three.
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5.4 Front-End

The front-end is in charge of tracking each new input frame and point candidates
from the LMCW. It also decides when the map needs to be expanded with a
new keyframe. As a result, it provides the coarse initialization of all the new
parameters involved in the PBA, i.e. camera pose, camera affine light and point
inverse depth.

5.41 Frame Tracking

Each new frame is tracked against a local map, which is updated after every
new keyframe decision. The local map is formed with active points from the
LMCW referenced to the latest keyframe. The frame pose and its affine brightness
transfer model are computed by minimizing Eq. 5.1 in which the map points and
the latest keyframe remain fixed. The initial estimation is provided by a velocity
model. We use a coarse-to-fine optimization, as proposed in the PBA, to handle
initial guesses with large errors. We use the same robust influence function of
Sec. 5.3.3 to reduce the impact of high photometric errors.

Regarding the implementation, we use the inverse compositional approach
(Baker and Matthews, 2004) to avoid re-evaluating Jacobians each iteration
and reduce the computational cost. This is achieved changing the roles of the
latest keyframe and the new frame: as we are estimating the relative motion
between two cameras, it does not matter if we estimate the new frame motion
or the keyframe motion. Thus, we can estimate the motion of the keyframe with
respect to the frame and update the frame pose parameters using the inverse of
the computed motion. The jacobians are estimated with respect to the keyframe,
which is kept fixed with respect to the points, and remain constant during all the
optimization. As a result, the jacobians can be precomputed and are required to
be re-evaluated only at the beginning of each pyramid level.

5.4.2 New Keyframe Decision

Whenever we move towards unexplored areas, the map is expanded with a new
keyframe. We use three different criteria with respect to the latest keyframe to
decide if the tracked frame becomes a keyframe:
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1. The map point visibility ratio between the latest keyframe and the tracked
frame, ie. s, = N='Y min(p,/p,, 1), where N is the total number of
visible points in the latest keyframe, p, the point inverse depth in the
latest keyframe and p’, the point inverse depth in the tracked frame. The
score is formulated to create more keyframes if the camera moves closer.

2. The tracked frame parallax with respect to the latest keyframe, defined as
the ratio between the frame translation t and the mean inverse depth of
the tracking local map p: s =|| tp ||

3. The illumination change, measured as the relative brightness transfer
function between the tracked frame and the latest keyframe, ie. s, =
lax — ay.

A heuristic score based on the weighted combination of these criteria
determines if the tracked frame is selected as a new keyframe: wy,s, + wssy +
WaSg > 1.

5.43 New Map Point Tracking

During exploration, the system requires to create new map points. Fach keyframe
contains a list of candidate points that are initialized and activated if so decided.
We initialize the inverse depth of these candidate points using consecutive
new tracked frames. To do so, we search along the epipolar line to find the
correspondence with minimum photometric error (Eq. 5.1). Only distinctive points
with low uncertainty will be activated and inserted into the PBA.

We follow a scheme similar to the one proposed in Engel et al. (2013). The
inverse depth of each candidate point u; is modelled by a Gaussian probability
distribution ./\/’(pi,agl-), which is updated with every new tracked frame. We
perform an exhaustive search along the epipolar line to find the best matching
pair. If we already have an inverse depth hypothesis, the disparity search range
is limited to ppax = pi + 20y and pmin = pi — 20,;. Otherwise, we search along
the full disparity range. Fig. 5.7 illustrates the constrained search procedure.

The uncertainty of the disparity is estimated measuring the angle difference
between the epipolar line direction and the point gradient direction. This is,
a point with a gradient direction similar to the epipolar line will have high
uncertainty and vice-versa. For example, if a point belongs to an horizontal
edge and we are searching along the same edge, we will obtain many similar
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Figure 5.7: Epipolar constrained search of a candidate point given a
prior inverse depth distribution.

matches without a clear winner. The uncertainty of the disparity is given by

2
2_ 9

%= (g )7

(5.13)

where g is the point gradient, | the epipolar line direction and o; the uncertainty
of the epipolar line computation. The value of the epipolar line uncertainty
has been experimentally set to g, = 0.5. Additionally, we skip searches with
high disparity uncertainty as we know that they would not provide reliable
measurements.

During the epipolar search, we estimate the inverse depth for each
corresponding pair (see Sec. 3.4) and map each pixel in the pattern N, to
the target frame using the estimated geometry. We also keep track of all the
evaluated pairs and retain the best match only if the ratio of the residual with
the second best match is bigger than 2. In this case, we obtain a distinctive point
match u;, we propagate the uncertainty of the disparity gy to the uncertainty
in the inverse depth g,. To do so, we obtain the inverse depth at the matched
point and at disparity uncertainty extremes, and form the new inverse depth
hypothesis N (p;, Ugj) as

pj = Tplup),

(5.14)
0 = max(|Z,(u; + ag) — pjl, [Tp(u; — ag) — pjl).
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where 7,(u*) is the inverse depth of the triangulated point for the corresponding
pair (u;, u*). In addition, we only keep the hypothesis of the match with the
largest baseline as it provides the most accurate estimate.

Note that this delayed strategy requires several correspondences to obtain
a good initialization as we are working with small baselines that render low
parallax. To guarantee that we have enough initialized candidates to activate,
we maintain candidate points from a keyframe until this is dropped from the
temporal part of the LMCW. We only activate points that belong to image areas
depleted from points (Sec. 5.3.1). Thus, when revisiting already mapped scene
regions, only a few new points will be activated, as we will reuse existing map
points.
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5.5 Initialization

The estimation of the 3D geometry using a monocular system is a
chicken-and-egg problem where the structure is required to estimate the motion
and vice-versa (see Sec. 3.4). Thus, it is required to decouple the structure and
motion problems. This section presents an automatic initialization algorithm to
obtain the relative pose between two frames and triangulate an initial set of map
points. The proposed method is similar to other indirect solutions (Mur-Artal
et al., 2015, Schonberger and Frahm, 2016) but it uses the same points of the
photometric model without requiring any specific feature detection and matching
strategies. This allows to bootstrap the system in many difficult situations such as
untextured scenes and motion blur. In addition, the initialization is independent
of the scene structure (planar or not) and does not require the intervention of
the user.

The automatic initialization algorithm follows these steps:

1. Set the first frame as the reference keyframe and select point candidates
in the image as proposed in Sec. 5.2.

2. For each new input frame, track the position of point candidates in the
new image using a pyramidal implementation of the Lucas-Kanade feature
tracker (Bouguet, 1999), also known as optical flow. Fig. 5.8 shows some
examples of this step. If not enough point matches are found, start again
from step 1.

3. Using the previous matches, compute two geometrical models: a
homography matrix assuming a planar scene and an essential matrix
assuming a non-planar scene. We use a RANSAC scheme to remove the
influence of outliers and obtain a more robust estimate. For each model
count the number of inliers (Ny and Ng) using the reprojection error.

4. Select the most appropriate model using the heuristic inlier ratio given
by
N
=N
If the ratio is larger than r > 0.8 select the planar case (homography
matrix), otherwise select the non-planar case (essential matrix).

r (5.15)

5. Recover the motion from the selected geometrical model. To do so, we
estimate all the possible solutions (due to projective ambiguities) and
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Figure 5.8: Examples of optical flow tracking of candidate points
during system initialization. Green lines represent the motion of the
candidate points in the image.

select the motion with the highest number of points in front of both cameras
with a minimum number of points seen with parallax. If we find a clear
winner, initialize the inverse depth of the point candidates in the first
keyframe as proposed in Sec. 5.4.3. Otherwise, do not initialize points and
continue from step 2.

6. Select the latest frame as a new keyframe and perform PBA to refine the
geometry of the initial pair of keyframes and map points.
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5.6 Experiments And Discussion

The experimental validation of the proposed system uses the publicly available
FuRoC MAV dataset (Burri et al, 2015). This dataset presents two main
advantages: first, it has three scenarios, two rooms (V1, V2) and a machine
hall (MH), with very challenging motions and changes in illumination; second,
it includes the 3D reconstruction ground-truth, which we also evaluate. We
study the benefits of the VSLAM scheme of DSM with a version, DSM-SW
(sliding-window), which only uses temporally connected keyframes as in Engel
et al. (2016a). We compare our approach against state-of-the-art algorithms
such as ORB-SLAM (Mur-Artal et al, 2015), DSO (Engel et al, 2016a) and
LDSO (Gao et al, 2018). We evaluate the RMS Absolute Trajectory Error (ATE)
and the Point to Surface Error (PSE). The ATE is computed using the keyframe
trajectory for each sequence after Sim(3) alignment with the ground-truth. The
PSE is estimated measuring the distance of the reconstructed model to the
ground-truth surface after the trajectory alignment. The results are shown using
normalized cumulative error plots, which provide the percentage of runs/points
with an error below a certain threshold. These graphics provide both information
about the accuracy and robustness of the evaluated method. All experiments are
executed using a standard PC with an Intel Core i7-7700K CPU and 32 GB of
RAM.

5.6.1 Parameter analysis and tuning

This section presents an experimental analysis of the main parameters and
options defining the DSM performance. We also propose the tuning for the final
system. To cover more cases, we run different experiments for the left and the right
cameras of the stereo rig, and both in the forward and in the backward direction.
We run each experiment 5 times. In total, we have made 220 experiments.

Coarse-to-fine PBA

We evaluate the effect of changing the number of pyramid levels N, during
the PBA. Fig. 5.9 shows the results for DSM-SW and DSM. Without the
coarse-to-fine scheme DSM-SW performs better than DSM. Here, DSM is not
able to benefit from point reobservations due to the accumulated drift. However,
DSM is able to reuse map points for higher number of pyramid levels and
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Figure 59: Number of pyramid levels N,. RMS ATE (left) and
processing times (right) compared with the RT (real-time) for different
N,.

it clearly achieves better accuracy. While a coarse-to-fine strategy certainly
increases the accuracy of DSM, there is significantly less improvement for
DSM-SW. This is the expected behavior since DSM requires larger convergence
radius to process reobservations while DSM-SW does not (see Sec. 5.3.2). Note
how DSM is able to process approximately the 80% of runs with a RMS ATE
below 0.1Tm while DSM-SW only gets 40% of runs. Moreover, we see that using
N, = 1 with a sliding-window increases the performance. We also observe
that increasing the number of levels after N, = 2 for DSM does not increase
accuracy but increases the runtime significantly.

Including reobservations in the PBA has little effect on the processing time.
In contrast, the number of pyramids approximately increases the runtime by 50%
for each level. Thus, we use N, =2 as default which achieves the best balance
between efficiency and accuracy.

Number of PBA iterations

We also study the influence of the number of iterations in each pyramid level
during the PBA. Fig. 5.10 presents the accuracy and processing time results
for DSM. We observe that increasing the number of iterations after 3 has little
impact in the accuracy. Apparently, it makes no sense to iterate until convergence
each time if we are going to incrementally introduce new measurements to the
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Figure 5.10: Number of PBA iterations. RMS ATE (left) and processing
times (right) compared with the RT (real-time) for different number of
iterations.

system that continuously change the local minimum. Moreover, the computational
time increases linearly with the number of iterations. In general, we see that the
PBA does not perform more than 6 — 7 iterations. Regarding the map accuracy,
we have observed a similar behaviour to the localization with relatively low
impact in the precision after 3 iterations.

We believe that the number of iterations should be selected according to the
application specifications. In the case, we want to find the maximum precision
without time requirements it should be increased, otherwise 3 iterations provides
sufficient accuracy with a computational performance closer to real-time. For the
rest of the experiments, we will not limit the number of iterations to evaluate
the maximum accuracy performance of the method.

Robust Influence Function

We study the effect of the selected model of weight distribution. Fig. 5.11 shows
the results for the t-distrution and Huber models. In contrast to Kerl et al.
(2013), we evaluate the influence of the model when the degrees of freedom v
are estimated together with the scale o. For Huber, we study when the constant
is fixed to A = 9 and when it is dynamically changed with the MAD value.
Interestingly, there is not significant difference between using fixed or dynamic
values on both distribution models. However, the t-distribution performs better
in challenging situations providing higher robustness than Huber. This comes
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Figure 5.11: Robust influence function. Comparison of the RMS ATE
between a Gaussian based M-estimator (Huber) and the t-distribution.
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Figure 512: LMCW N,, = N; + N.. RMS ATE when changing the
number of temporal N; and covisible N, keyframes.

from the fact that the t-distribution quickly drops the weights as errors move to
the tails while the Huber model does not. We use the complete t-distribution
model as default settings due to its flexibility handling challenging situations.

Number of covisible keyframes in the LMCW

We observe that increasing the number of covisible keyframes N, increases
the trajectory accuracy (Fig. 5.12.) With those covisible keyframes the PBA
is able to handle point reobservations and to reduce the drift. However, the
system requires temporally connected keyframes N; to quarantee the odometry



138 Chapter 5. Direct Sparse Mapping

robustness. Taking few temporal keyframes drastically reduces the accuracy.
This is due to the fact that the temporal part ensures that new keyframes are
well optimized and that enough new points are initialized during exploration.
Thus, we use the combination of Ny =4 and N, = 3 as default settings, which
achieves the best balance between precision and robustness.

5.6.2 Quantitative evaluation

This section presents a comparison of DSM against ORB-SLAM (Mur-Artal
et al,, 2015), DSO (Engel et al,, 2016a) and LDSO (Gao et al, 2018). We report
the results published in (Mur-Artal and Tardos, 2016b) for ORB-SLAM, in (Engel
et al, 2016a) for DSO and we use the open-source implementation for LDSO.
All the results are obtained using a sequential implementation without enforcing
real-time operation using N,, = 7 active keyframes for all direct methods. We
run on default settings all sequences both forward and backward, 10 times each,
using left and right videos separately for a total of 440 runs.

Trajectory error

Table 5.1 reports the median errors for each forward sequence. Overall, we see
that DSM-SW performs similarly to DSO. This is expected since both methods
are based on the same sliding-window approach without a multiscale PBA.
However, DSM-SW successfully executes all MH sequences, while DSO fails
in MH_03_medium. This is probably due to the use of a more robust influence
function in DSM-SW. DSM achieves higher accuracy in almost all sequences
compared to the rest of direct approaches, DSO, LDSO and DSM-SW. DSO and
LDSO only achieve slightly higher accuracy in a few sequences. In addition,
ORB-SLAM obtains better results in V1 and V2, but DSM achieves the best
performance for the MH sequences. Note that in contrast to ORB-SLAM, we do
not incorporate any place recognition, pose-graph or relocalization modules.
This shows the high precision of DSM due to point reobservations. In the
sequence V1_03_difficult, DSM achieves an RMS ATE of only 7.1cm, which
is by far the best performance among all the approaches tested. This sequence
contains very rapid motions and illumination changes, which demonstrates the
robustness of the proposed method. In addition, we successfully manage to
complete all sequences and obtain an RMS ATE below 0.1m for all of them,
except V2_03_difficult, where all of the compared approaches fail.
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Table 5.1: RMS ATE [m] using forward videos for left (1) and right (r)

sequences. (x) means failure and (-) no available data.

Seq. ORB-SLAM  DSO  LDSO DSM-SW  DSM
MH1_L 0.070 0.046  0.053 0.054 0.038
MH2_L 0.066 0.046  0.062 0.041 0.036
MH3_L 0.071 0172 0114 0123 0.053
MH4_L 0.081 3810 0152 0.179 0.060
MHb5_L 0.060 0110 0.085 0.139 0.067
VI1_L 0.015 0.089  0.099 0.099 0.094
V12_1 0.020 0.107  0.087 0.124 0.058
VI13_L X 0903 0536 0.888 0.071
V21_L 0.015 0.044  0.066 0.061 0.058
V221 0.017 0132 0.078 0.123 0.058
V23_1 X 1.152 X 1.081 0.669
MH1_r - 0.037 0.050 0.054 0.042
MH2_r - 0.041  0.051 0.039 0.037
MH3_r - 0159  0.095 0.187 0.049
MH4_r - 3.045 0129 0.188 0.059
MHb5_r - 0.092 0.087 0.131 0.064
V11 _r - 0.047 0662 0.031 0.014
VI12_r - 0.080  0.208 0.118 0.048
VA3 r - 1270 0642 1.313 0.047
V21_r - 0.027 0.040 0.032 0.035
V22_r - 0.059 0.068 0.314 0.056
V23_r - 0540 0471 0.889 0.484

Mapping vs Pose-Graph

Comparing LDSO and DSM shows the differences in using a VO scheme with
a pose-graph in contrast to a VSLAM scheme. Fig. 5.13 shows the RMS ATE
for all the evaluated sequences for LDSO and DSM. Overall, we observe that
DSM achieves better accuracy. We also see that reusing existing map points
allows completing successfully a higher percentage of sequences. We build a
persistent map and reuse map points to support the odometry estimation instead
of permanently marginalizing all points that leave the local window. This can
also be observed in Fig. 5.14. While DSM is able to process 80% of sequences
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Figure 5.13: Full evaluation results. For each sequence (X-axis) we
plot the RMS ATE [m] in each iteration (Y-axis), with a total of 440

runs.
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Figure 5.14: RMS ATE for LDSO and DSM.

with an RMS ATE below 0.1m, LDSO can only handle 50% of runs under this
limit.

Moreover, we have observed that in some sequences LDSO misses many
available loop closures due to a lack of feature matches. This makes the odometry
drift until a larger correction loop is detected, causing a temporally inconsistent

trajectory and structure estimations. Fig. 5.15 shows the evolution of the RMS
ATE along the trajectory. It can be seen the effect of missing loop closures
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Figure 5.15: VSLAM vs VO + Pose-Graph. RMS ATE after processing
each keyframe in the trayectory. It shows the time evolution of the
error. While a feature-based pose-graph strategy may miss many loop
closures, a VSLAM scheme continuously reuses existing information
to provide more accurate and reliable estimates in time.

with a feature-based pose-graph strategy. In contrast, building a persistent
map enables reusing existing map information continuously, which maintains the
trajectory accuracy stable in time. Although the final RMS ATE is similar in both
systems, the navigation estimation using a VSLAM approach is more accurate
and, thus, more reliable. This clearly shows that using a VSLAM scheme provides
better accuracy performance compared to a VO scheme with a pose-graph.

Map error

Fig. 516 shows the distance between the reconstructed points and the
ground-truth surface. We compare all the sequences against LDSO except
in V2_03_difficult where LDSO fails. Clearly, incorporating map point
reobservations into the PBA increases not only the trajectory accuracy but the
reconstruction precision too. Although the final trajectory RMS ATE is similar
in some sequences, such as in V1_01_easy, the map is without a doubt more
accurate in DSM. Besides, we have observed that LDSO creates ten times more
points than DSM for these sequences, due to the fact that DSM reuses existing
map points avoiding duplications.
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Figure 5.16: Map error. For each scene we show the accumulated
PSE distribution using all the reconstructed 3D points for all runs.
Solid lines (—) present easy sequences, dashed lines (---) medium
and dotted lines (- - -) difficult ones for each scene.

Table 5.2: Processing time and keyframe frecuency.

Operation Median [ms] Mean [ms] St.D. [ms]
Frame & Point Tracking 7.44 7.45 0.31
Local PBA 888.77 908.53 121.10
Keyframe Period 396.28 397.22 17751

Processing time

Table 5.2 reports the processing time required for each part of the method, as well
as the used keyframe period time. In our current initial implementation, PBA is
the bottleneck of the processing cost. We observe that it should be twice faster to
obtain the required keyframe creation rate. It is possible to improve the runtime
significantly using SIMD instructions to process each patch. Besides, many of
the operations can be parallelized as they are independent for each point. We
believe using these upgrades could make DSM run in real-time applications
since the mapping thread is not required to run at frame rate but at keyframe
rate.
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Figure 5.17: Memory usage comparison. In blue the memory usage
for each sequence in normal conditions and in red when the memory
pool is applied. Note how the memory requirement is reduced for all
the sequences when we use the memory pool. In general, less than
1500 — 2000 MB is required, which is a reasonable number for current

computers.
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Memory requirements

An important concern regarding mapping approaches is the memory usage as
they continuously store past information. To handle this situation, we have
implemented a memory pool that allows reusing already reserved memory. This
is, when a keyframe is deactivated, all its pyramidal image buffers are returned
to the pool and reused by active keyframes. As a result, fixed keyframes store
just a single image, the one provided by the camera.

Fig. 5.17 presents the memory requirements for all the sequences. As can
be observed, the memory pool significantly reduces the memory usage for all
the sequences. This is the expected behavior since we are reusing image buffers
instead of reserving new memory blocks each time. However, we see that the
memory usage continuously grows in time. This is due to the fact that we always
create new keyframes even if we are in an already mapped area. It would be
interesting to add map maintenance strategies such as removal of redundant
keyframes (Mur-Artal et al,, 2015) to ensure long-term operation efficiency.

5.6.3 Qualitative evaluation

Fig. 5.18 shows examples of estimated trajectories compared to the ground-truth.
See how well the estimated trajectory fits the ground-truth, even in sequences
where the drone is navigating in large loops as in sequences MH_04_difficult
and MH_05_difficult.

Fig. 5.1 and Fig. 5.19 show some 3D maps obtained with DSM. In contrast to
sliding-window based approaches, incorporating covisibility constraints avoids
duplicating points and builds a consistent map. DSM estimates a precise camera
trajectory and 3D reconstruction even in the most difficult sequences such as
V1_03_difficult and MH_05_difficult. Note in Fig. 519 how there are many
different objects that are easily recognizable, such as the chessboard, the ladder
or the cupboard.

In addition, we also evaluate DSM in custom videos. Fig. 5.20 shows the 3D
reconstruction of an office desk. It is able to recover the structure of untextured
elements such as the contours of the screens, the keyboard keys, speakers and
even cables. Fig. 521 presents some details of the same reconstruction where
it is possible to easily recognize many different objects. Finally, 5.22 shows
the estimated reconstruction under industrial conditions, including low texture
and reflections. In this case, the boundaries of the inspection module and the
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Figure 5.18: Trajectory examples by DSM (red) and ground-truth
(black).

robot arm are easily identifiable which can be used to detect collisions between
different mobile robotics in a production line.

5.6.4 Discussion

We have demonstrated the benefits of building a persistent map instead of just
estimating the camera odometry with a temporary map. Both the accuracy of
the trajectory and the reconstructed map improve by reusing map information
in the photometric model. DSM manages to process scene reobservations and
successfully completes 10 out of 11 sequences with an RMS ATE below 0.1m
in the challenging EuRoC dataset without requiring any loop closure detection
and correction.

During long-term sequences in the same environment DSM provides reliable
estimates as long as point reobservations are successfully processed. As
previously discussed it would be interesting to add map maintenance strategies,
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Figure 5.19: Qualitative examples. V1_03_difficult (top) and
MH_05_difficult (bottom) sequences. The trajectory is displayed in
red.
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Figure 520: Example of the reconstruction of an office desk. Note
how the objects are reconstructed with detail, such as the screens, the
keyboard, the mouse and even cables.
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Figure 521. Example of reconstructed objects that are easily
identifiable.

such as removal of redundant keyframes and points, for two reasons: (1) to
maintain the memory requirements to the minimum; (2) to relax the covisibility
graph of keyframes. The latter is very important as the number of fixed covisible
keyframes increases, the graph becomes more rigid and the PBA hardly improves
the estimate of active keyframes and points.

Even with a persistent map, it is not possible to handle all reobservations
in all situations. In large trajectory scenarios, the accumulated drift makes it
impossible to detect map point reobservations with geometric techniques alone.
Sometimes map point reobservations do not even fall in the camera field of view
due to the large drift, e.g. in a highway loop. In these cases, a place recognition
module, which exploits the image appearance, would be useful to detect loop
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Figure 5.22: Example of the reconstruction of an industrial inspection
module using a robot arm.

closures. Then, a pose-graph optimization will serve as an initialization for the
PBA. Therefore, we believe that combining map reuse capabilities with a place
recognition module, such as previously done with indirect techniques in (Strasdat
et al, 2011) and (Mur-Artal et al, 2015), is the best alternative. In any case, we
think that a pose-graph should only be used as a coarse initialization technique
for the PBA, which is the optimization technique that actually exploits all the
available geometric information in a VSLAM system.
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Chapter 6

Conclusions and Future Work

This thesis has studied several perception techniques for augmented reality in
industrial environments and mobile robotics. This chapter presents the main
conclusions reached during the course of this work, as well as a number of
future research lines in which this work can be extended.

6.1 Conclusions

In this thesis, we have presented two novel approaches for visual perception
in two different situations. Chapter 4 has presented an object recognition and
tracking method for robust pose estimation when dealing with untextured scenes
of industrial environments. We have also integrated the proposed approach into
a complete AR assistance tool, called ARgitu, for maintenance in industrial
settings. Chapter 5 has presented a direct visual SLAM method, denoted as
Direct Sparse Mapping (DSM), for estimating the camera motion and scene
structure from a video stream. We have focused on developing a robust and
accurate solution using direct techniques that provides reliable estimates when
an autonomous mobile robot navigates continuously in the same environment.

The main contributions of each of the proposed approaches are summarized
below.

Untextured object recognition for industrial environments

Markerless object recognition approaches make use of visual features in the
image that are naturally in the scene. Industrial environments lack texture and
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contain non-Lambertian surfaces that make texture-based approaches fail. We
have proposed a new 3D object recognition method based on geometric features
in order to detect and localize 3D models using a single image. More precisely,
our method uses a combination of model circles and edge templates, to improve
upon the weaknesses of each other.

The method improves the registration step of chamfer matching approaches
using corresponding conics. Normally, the registration is performed scanning all
the image by brute force. In contrast, the proposed correlation between model
circles and image ellipses reduces significantly the computational cost. At the
same time, it sidesteps the problem of estimating the camera location using a
single circle. Instead of using just points and lines, we use the whole mode
shape to solve the revolution symmetry ambiquity. Moreover, the experimental
validation has demonstrated that the proposed approach is also more robust in
challenging situations such as cluttered background and occlusions. This is due
to the fact that image ellipses allow skipping many wrong camera location by
searching just locally around them. This is an important property in industrial
environments since machinery is composed of many different parts that are
occluded between them.

Regarding computational time, the method can detect many kind of objects
in a few hundred of milliseconds, achieving close to real-time performance in
many cases and running four times faster that current state-of-the-art techniques
in a standard PC. As a result, we obtain faster and more robust camera pose
estimates, which is a determining factor for AR applications in order to give a
correct visual feedback in a smooth manner.

In addition, we have developed an fully automatic training stage that extracts
all the required geometric features from the 3D model: edges, circles and
edge templates. Thus, it is possible to add new models easily in just a few
minutes, which allows its direct application in the industry without requiring
the participation of technicians.

Finally, the proposed method has been integrated in a complete pipeline for
augmented reality applications. We present a framework to generate and present
virtual and augmented information for the development of AR assistance tools
in industrial settings. It includes all the tools required for the development and
visualization of contents. Firstly an author tool enables users to create assistance
guides for maintenance processes using different annotation types, such as text,
video, virtual reality based animations and augmented reality. These guides are
presented to the user using a simple to use guiding application. The framework
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uses the proposed approach for recognition and localization of non-lambertian
objects in industrial environments. Both applications leverage the capabilities
of the proposed method, such as the simple training process, to detect and track
objects in industrial environments in real-time.

Direct visual SLAM for mobile robotics

One of the core properties of a VSLAM approach is to detect when a mobile robot
is traversing an already known location. To obtain this, it is required to correlate
images of the same scene independently of the time and viewpoint at which
the images were captured (covisibility). We have proposed DSM, a new direct
VSLAM system. Up to our knowledge, DSM is the first fully direct monocular
VSLAM approach that is able to detect and handle point reobservations when
revisiting already mapped areas.

The system uses the same objective function and map points for all the tasks:
tracking front-end, optimization back-end and map reuse. We build a persistent
map by reusing map points from already visited scene regions. To obtain this,
we have presented a new local window selection strategy using covisibility
criteria, which enables to include map point reobservations into the photometric
bundle adjustment. Instead of using feature matches as indirect approaches,
the covisibility is obtained from geometric and photometric constraints. We
have demonstrated that a coarse-to-fine strategy is required to process point
reobservations with the photometric model due to its narrow convergence basin.
The result is a system that builds a persistent map that can be reused, obtaining
more accurate localization and structure estimates. In consequence, the need of
loop closure detection and correction is postponed to trajectories longer than
their visual odometry counterparts.

As a pure direct system, DSM does not rely on the repeatability of selected
points that have been sampled across pixels with high gradient module. As
a result, the system is able to work in challenging situations with a lack of
textured surfaces and motion blur. At the same time, the system is able to
recover the 3D geometry of contours in the scene and reuse map points avoiding
duplications. The result is a more consistent, complete and dense reconstruction,
which provides a rich description of the environment. This is a very important
capacity for autonomous mobile robotics which allows them to understand better
their surroundings in order to take the right decisions.



156 Chapter 6. Conclusions and Future Work

The exhaustive evaluation of the system in the challenging EuRoC MAV
dataset has demonstrated that DSM is able to provide very accurate estimates
of both the camera trajectory and map reconstruction. For the first time, we have
also measured the precision of the map which is usually neglected. Our solution
provides more accurate and robust localization and reconstruction estimates
compared to the state-of-the-art direct VO implementations. While VO with
pose-graph approaches miss many available loop closures, we continuously
reuse existing map point information to provide stable estimates in time. To
strengthen the proposed method, we have published the code as open-source.
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6.2 Limitations and Future Research Lines

During the development of this work, we have identified a number of limitations
and interesting future research lines. In the following, we present some of them
to guide future studies.

1. Object Recognition

The proposed method uses the 3D geometric properties of the model to
recognize the target object in the image. However, it has been developed
to work only with model circles and edge templates. As a consequence,
it requires the target object to contain circles in its surface and relies on
the performance of the ellipse detector.

It would be interesting to incorporate a learning-based formulation to
automatically extract the most useful geometric properties from each
model during the training. One possible solution could be to realistically
render the model in many different situations and positions (including
illumination, material, texture, backgrounds, occlusions, etc), and use
Convolutional Neural Networks (CNN) to automatically learn the best
model parameters for each case. Such approach would provide a coarse
pose of the object that could be further refined using more traditional
optimization methods. As well as the proposed approach, the result will
contain an automatic training from the 3D model without the technician
participation. In this way, we would obtain a more flexible algorithm that
would allow to incorporate this technology in a wider range of practical
applications.

Finally, the proposed AR framework quides technicians during
maintenance tasks, but it does not verify if the task has been properly
executed. It would be appropriate to extend the framework with an
additional module to determine the correctness of the task and provide
the corresponding feedback to the worker.

2. Visual SLAM

In the current implementation, the photometric bundle adjustment (PBA)
is the bottleneck of the processing cost. A possible improvement could be
to use SIMD instructions that permit processing the eight pixels in the
patch in two steps. Moreover, there are many operation in the system
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that are independent for each point and, thus, can be parallelized taking
advantage of modern CPUs or even GPUs.

The system creates keyframes everytime the tracking requires new
reference points, even if there are many keyframes that observe the same
scene region. This is due to the fact that the tracking is performed against
the latest keyframe and not against the persistent map. It would be
interesting to check beforehand if there are keyframes in the map that
could serve as reference for the tracking. Thus, the system would reuse
keyframes and avoid creating unnecessary new ones. Another possible
alternative could be to track directly against the persistent map using
point observations from many different keyframes. The resulting system
will be more efficient with respect to long-term operations.

Regarding with the previous limitation, it would be also interesting to add
map maintenance strategies such as removal of redundant keyframes and
points. The benefits of implementing this capacity will be twofold: reduce
the memory footprint and reduce the stiffness of the covisibility graph.
Consequently, the optimization graph will be more flexible and the PBA
will have more capacity to improve the camera and point estimates. This
is a very important aspect that should be taken into account, specially
to achieve drift-free performance in long-term operations in the same
environment.

Moreover, DSM uses geometry constraints to build the covisibility graph
instead of place recognition. Thus, we cannot handle large scale loop
closures nor relocalization, as we need the initial optimization seed
must be near the solution. One possible alternative could be to make a
hybrid solutions combining the strengths of indirect and direct approaches.
However, a more interesting option could be to integrate learning-based
features as an input for the direct VSLAM. Recently, von Stumberg et al.
(2019) has proposed a network to train features with a large convergence
basin for direct VSLAM. This extends the possibilities of developing
place recognition modules using a direct formulation, which currently are
dominated by indirect approaches.

It would also be interesting to extend DSM to another kind of cameras —
omnidirectional or stereo — or even integrate it with other sensors such
as inertial measurement units (IMU). We believe this could further boost
the performance of DSM for real applications where, for example, the real
scale of the scene is required.



Section 6.2. Limitations and Future Research Lines 159

Finally, there is still the open challenge of performing VSLAM in dynamic
scenes. In fact, the real world is composed of moving objects and the
assumption of large static environments is hard to be fulfilled. One possible
solutions could be to recognize each of the objects so they could be tracked
and reconstructed independently. At the same time, non-rigid VSLAM is
also a promising technology, specially for medical applications, such as
endoscopy, where human tissues come into play.
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Appendix A

Camera Models

The following sections present a review of several camera projection models
providing the projection and unprojection functions when defined (see Sec. 3.3.1).
We follow the works of (Devernay and Faugeras, 2001, Kannala and Brandt,
2006, Szeliski, 2010, Usenko et al,, 2018).

A.1 Radial-Tangential Model

This is one of the most popular alternatives to model lense non-linear distortions
and its implementation can be found in OpenCV library. It approximates the
lense distortion using a polynomial of n degrees with two terms: the radial and
tangential distortion. Higher degree coefficients approximate better lenses with
large distortion but may become numerically unstable at the same time. The
projection function with a polynomial of degree two is given by

(14 kir? 4 kor') + 2p1Y + por? + 2)
i(x) = 2 oA
L0+ kir? + kor) + pi(r? + 2%) + 2p %4
2 2
S+ Z—Z (A2)
where ki, ky are the radial distortion coefficients and p1, p2 the tangential
distortion coefficients. The projection function is defined for © = {x € R} | z >
0} since it is implemented as a distortion function for pinhole-based projected
points.

I =

This model does not have a closed-form inverse. The unprojection function
requires to find the root of the polynomial to recover r. It can be iteratively
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obtained using the Newton's method. Alternatively, one can directly obtain the
values of x/z and y/z by solving the system of equations with an iterative
optimization, e.g. Gauss-Newton method. However, the latter requires to obtain
the jacobians with respect to x/z and y/z which is more complex to implement.

The radial-tangenial model is well suited for cameras with low radial
distortion, such as consumer cameras. In practice it has been demonstrated that
the model is not suitable for wide-angle or fisheye cameras with large distortions
and a field-of-view larger than a 120°.

A.2 FOV Model

The FOV model was specifically developed for fisheye cameras that are designed
to include some kind of non-linear distortion. It assumes a radially symmetric
distortion: the distance of an image point to the principal point is proportional
to the angle between the corresponding 3D point, the optical center and the
optical axis (see Fig. A.1). The corresponding projection function is given by

e (x) = [“’X] , (A3)

ry =\/x%+ y?, (A4)

atan2(2r, tan 5, z)
rg = , (AD)

w

where w = 0 is the unique model parameter and represents the field-of-view of
an ideal fisheye lens. The FOV model is defined for © = {x € R*\ [0,0,0]"}.

A~

yv

Figure A.1: Geometric representation of the FOV camera model.
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The FOV model has a closed-form solution for the unprojection function
defined as

tan(rgw)
2rgtan 5 U
—1 _ | tan(rgw)
e (m) = | S my | (A6)
1

rg =~/mi + ms. (A7)

A.3 Equidistant Model

The equidistant model is a generic camera model and has been demonstrated
to fit well reqular, wide-angle and fisheye lenses. It assumes that the distance
from the optical center of the image to the projected point is proportional to a
polynomial of the angle between the point and the principal axis (see Fig. A.2).
The projection function with a polynomial of four parameters is given by

@X
Te(X) = [ a0 ] : (A8)
- Y
r= \/)?gz (A9)
0 = atan2(r, z), (A10)
d(0) = 0+ k10’ + ko0 + k36 + ks6°, (A11)

where k1, k2, k3, k4 are the model parameters. The function is defined for © =
{xe R3 \ [0,0, O]T}.
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Figure A.2: Geometric representation of the Equidistant camera model.
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The equidistant model does not have a closed-form inverse. The unprojection
function requires an iterative optimization to solve the inverse of the polynomial,
such as the ones proposed in the radial-tangential model. Moreover, this model
can be found as a distortion model for the pinhole camera, e.g. the fisheye
camera model in OpenCV. However, as explained before, implemented in this
manner it has a singularity at z = 0, which makes it unsuitable for lenses with
a field-of-view close to 180°.

A.4 Extended Unified Model

The extended unified camera model (EUCM) is a generalization of the unified
camera model (UCM) that is widely used with catadioptric cameras. This
model first projects the 3D point onto a symmetric ellipsoid around the z
axis and then onto the image plane using the pinhole model shifted by %
(see Fig. A3). A major advantage over the previous models is that the EUCM
has a closed-form solution for projection and unprojection functions, and does
not require computationally expensive trigonometric operations. The projection
function is defined as

Tu(x) = ["d+(;_")Z] , (A12)
ad+(1—a)z
d=+/Bx2 + y?) + 22, (A13)

where a € [0,1], B > 0 are the model parameters. Note that for a = 0 and
B =1 the model degrades to the pinhole model. The EUCM is defined for:

0={xeR’|z>—-wd}, (A.14)
4 ifa<05,

w=4 ' (A15)
177“ otherwise.

The EUCM has a closed-form inverse function defined as

1 Mu
7, (m) = m, (A.16)
VmiEmi A2
_ p. 2.2
1—Ba‘r (A17)

4= a/1— 20 —NBr+(1—a)
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Figure A.3: Geometric representation of the EUCM.

A5 Double Sphere Model

The double sphere (DS) model was developed to fit fisheye lenses. The DS
model first projects the 3D point onto two consecutive spheres, which are shifted
by & Then, the point is projected onto the image plane using the pinhole
model shifted by %= (see Fig. A4). Similar to the EUCM, the DS model
has a closed-form solution for projection and unprojection functions, and does
not require computationally expensive trigonometric operations. The projection
function is given by

y
ady+(1—a)(Sd1+2)

di = /X2 + 2 + 22, (A.20)

dy =\/x* +y? + (&di + 2)2, (A21)

where &, a are the model parameters. The projection function is defined for:

JTC/(X) _ [adz+(1a)(5d1+z)] ’ (A,19)

O={xeR’|z>—-wd}, (A22)
Wy — —_MEe (A23)
V2w &+ & 41
ﬁ if a <0.5,
wi=1 (A24)
—a

- otherwise.
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The unprojection function is defined as

1y ASHA A2 (1= &)
i (m) = A+

1 — a?r?

a/1—Ra—Nr2+(1—a)

)=

2 _ 2 2
re=m; 4+ mj.

Figure A.4: Geometric representation of the DS camera model.

(A.25)

(A.26)

(A27)



Appendix B

Conic Based Pose Estimation

This appendix presents how to estimate the pose of a camera using conics. We
follow the method proposed in (De Ma, 1993), which shows that at least two
conics are required to estimate the pose of a 3D object. First, we present the
general geometric constraint that is obtained when projecting a 3D conic into
an image. Then, we show how to obtain the camera pose in two cases: when
the conic is an ellipse and a circle. We assume the image to be undistorted and
use the pinhole camera projection model (see Sec. 3.3).

B.1 The Basic Geometric Constraint

Let Q be a conic that lies on a plane with a local coordinate system attached
to it, in which the x-axis and y-axis lie on the plane and z-axis is normal. Any
point x in the conic is projected into an image pixel u as

u=K:7R-x+t), (B.1)

where T = [R | t] corresponds to the camera pose. Fig. B.1 shows an schematic
representation of the problem.

At the same time, any projected point u is also part of a conic in the image
and, thus, it can be represented in matrix form using the Eq. 3.9 as

' -G-a=0. (B.2)

Without loss of generality, the pose of an ellipse lying in the object surface
can be simplified using only the first two columns of the rotation matrix R and
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Conic coordinate
system

Q

Z,

Yq

Image coordinate
system

/ T=[R|t]
/

Camera coordinate —__
system

Figure B.1: 3D conic and camera representation in space. Any point
in the local coordinates of a conic can be represented in camera
coordinates using the transformation T. The projection of a conic Q in
the space is expressed as the matrix G in image pixels.

the translation vector t as P = (r1, r2,t). Using P and substituting the Eq. B.1
into the Eq. B.2 we get

o -G-a=x"-P.K'-G-K-P-x=0, (B.3)

which is the same conic representation as in Eq. 3.9. Both expressions are equal
up to a scale factor, k:

P K'-G-K-P=P'-A-P=kQ, (B.4)

where A=K’ .G K

The Eq. B.4 is the basic geometric constraint of a conic and its projection. In
the following sections, the pose estimation from corresponding conics is solved
using this constraint. We study first the case of a single ellipse and then the
case of a single circle.
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B.2 Pose from a single ellipse

The problem is to determine the pose of a 3D object knowing the correspondence
between an ellipse in the surface of the object and its projection in an image.
As we will see, it is not possible to determine a unique pose from only one
correspondence and more information is required, such as points (Costa and
Shapiro, 2000), lines (Wang et al, 2008) or as in our proposed method, edge
templates (see Chapter 4).

The translation vector can be expressed using the rotation coefficients as
t = R-c where ¢ = (¢1, ¢z, c3). Therefore, the pose matrix P can be rewritten
introducing the new vector ¢ as

10 1
P=(rrntt=R-C=R|0 1 of. (B.5)
00 c3

Introducing the new expression of the pose to the equation B.4 we get:
R"-A-R=k-B, (B.6)

where B = (C")™" - Q- C~". From the above expression, we observe that the
matrices A and B are similar and, therefore, they have the same eigenvalues.
Then, using the invariants of a 3 x 3 symmetric tensor we obtain three equations
in terms of the ellipse parameters:

3
1
§[tr(kB)Z — tr(kB?)] = MAs + M3 + Aoks
B kZ(dZ _ 02 _ bZ) (88)
c3ab?
tr(kB) = A1 + A2 + A3
B k(d?a’ + C12b2 —a? + c%b2 — a’b?) (B.9)
- csab? '

where A1,A2 and A3 are the three eigenvalues of A and d is the absolute distance
between the center of the ellipse and the origin of the camera coordinate system,
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> =c+c+ C%. Notice that it is a three equation system with four unknowns
(c1, 2,3, k) so we require additional information to solve it. One possible
solution is to know the absolute distance d and solve the system to obtain
the values of (¢q, ¢2, ¢3, k). Now we can solve for R and t.

Substituting the parameter values in the Eq. B.6, we rewrite the expression

as
R'-U-D-U'"R=V.-D-V, (B.10)

where U and V are the matrices whose columns contain the eigenvectors of A
and B respectively, and D is a diagonal matrix with the eigenvalues of A.

Now denoting W = U™ - R -V and using the Eq. B.10, we conclude that
W has eight possible solutions give by

+

0
0

—_

0
+1 0

0
W = (B.11)
0 +1

If we consider that det(U) = 1 and det(V) = 1, W has only four solutions
since det(W) =1, in the case of a dextrorotation solution. However, in general
we cannot guarantee that the determinants of the eigenmatrices are equal to
one. Thus, we must evaluate all possible values of the W matrix (dextrorotation
and levorotation cases) and discard the levorotation solutions (det(R) = —1) .
Finally, we can determine R and t with

R=U W VvV
(B.12)
t=R-c
There are 8 possible combinations for the signs of ¢y, c; and c3. A total of
4 solutions for R depending on the signs of the matrix W. This yields to a total
of 32 possible solutions. However, we know that the model is in front of the
camera which reduces the number to 16. Finally, setting the z axis normal to
the ellipse and the x axis aligned with the major semi-axis correspond to only
4 different poses (see Fig. B.2). Thus, as we have previously mentioned, in order
to estimate a unique pose further information is required.



Section B.3. Pose from a single circle 173

(B0
SRISS

Figure B.2: Four equivalent solutions of a conic

B.3 Pose from a single circle

When the conic on the surface of the model corresponds to a circle the values
of the major and minor semi-axes are equal, this is, @ = b = r. Reasoning in
the same way as the previous section, we obtain these three equations:

/<3
det(kB) = Mioks = 5, (B.13)
C3r
1
i[Tr(kB)Z — Tr(kB%)] = A + MiAs + Aoks
B kZ(dZ - ZFZ) (B/I 4)
C§r4
k d2 2 2
THKB) = A+ o 44y = NS0 (B.15)
C3I’

In this case, we only have three unknowns d, c¢3 and k and we can obtain a
solution without any extra information. Therefore, ¢1 and ¢; can have any value
that verifies the equation of the absolute distance d. Once the unknowns are
solved, we can obtain R and t as in the previous case. Furthermore, this method
has also 4 possible poses (see Fig. B.2) and for each one the x-axis and y-axis
axes are not uniquely determined (depending on the values of ¢1 and ¢). This
is due to the fact that circles do not contain major and minor axes, which creates
an ambiguity.






Appendix C

Jacobians

This appendix presents the analytical derivatives of the photometric model used
in Chapter 5. Many of the expressions are elaborated in a general manner
so they can be used in many other computer vision and robotics applications.
We first estimate the partial derivatives with respect to individual parts of the
photometric equation: projection and geometric parameters. Then we use the
chain rule to obtain the final jacobians for the photometric bundle adjustment.

The photometric residual is defined in the Eq. 5.2.1 as

r = (/[[U[] — b,) — eal (//-[u/-] — b/'), (C'])

where /[, /j represent the images, u;, u; the evaluated pixels in each
corresponding image and a; b;, a;, b; the brightness transfer function
parameters. The transformation of the pixel u; with a known inverse depth p;
from the image /; to the image /; is given by the Eq. 3.52 as

u; = K- (x)) (C2)

with
x}:/?z'-XJZR'K_1Ui+Pi-t, (C3)

that represents the scaled point transformation with the linear inverse depth
mapping function of Sec. 3.4.2.
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C.1  Projection Function

The jacobian of the projection function (Eq. C.2) on a pinhole camera (Eq. 3.38
and 3.42),

fuj—f + ¢y
u=Krn(x) = fvgf,/ +c | (C4)
1
is given by /
u_1 lf“ 0 _f] | (€5)
o' Zlo f, —f%

C.2 Camera Pose

Following the Eq. C.3, we can rewrite the scaled transformation of a point as

=1, =1,
= [Ig :] | [Kp[m] ~ i [Kpim] =T o

which depends on the world position of each of the cameras T;; = TJ*1T,-.

As discussed in Sec. 3.2.3, the jacobian with respect to a pose is calculated
using a small increment &. The partial derivatives of xj- with respect to T; around
zero are calculated employing the Eq. 3.36. In this case, we are working with
the scaled case so the final expression is also scaled as

x| _ dpix))
9<ilg~0 98 g0
_ ) AT epld) T x)
l ‘951 §;=0
dlexp(Adjr1- &) T Ti-x) (C7)
= pi-
dq; &=0
_,, dexpld) T %) Sidailn El)‘
l ag; &0 ¢, =0
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Similarly, the partial derivatives with respect to T, around zero are given

by
% =i a((exp(fj) 'T/')f1 'Ti . )_([)
0&;l¢ o 9¢; £-0
—1 B
=pi- a(Tf ' eXp(_Ej) T %)
9; &=0
Olexp(—Adjr1 &) T - Ti x) (C8)
= pi .
%, &=0
a(exp(f}) T x) aexP(*Ad/‘Tﬂ &)
a¢; &0 0 -

=—p;- [ I3 —)A(/-] ~Ad/'714.

Note that the partial derivatives with respect to one camera are the opposite
to the other camera. Consequently, during numerical optimizations we only
require to compute just one jacobian, greatly reducing the computational load.

C.3 Point Inverse Depth

The jacobian of the scaled point transformation with respect to the point inverse
depth is given by
ox;  AR-K u;+ p; - 1)

e % —t. (C.9)

C.4 Photometric Bundle Adjustment

This section presents all the required analytic derivatives to implement the
photometric bundle adjustment of Chapter 5. To obtain them, we will use the
expressions of the partial derivatives obtained in previous sections and use the
chain rule to estimate the complete jacobians.
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C.41 Geometric parameters
The jacobians of the photometric residual with respect to the geometric
parameters are given by:

Host camera pose

or B e’ dl; du; aX;-
o0&,

08, = e o

X

o o] p [to O —£,%
_ e |9 .'0‘.[“ “Z].[|3 —%;] - Adjy
]

- /
ea/ gy Z/ O fv _fvi/

L . z

!0 /

:_ea,.“gx“‘ fopj 0 —fuip,  —f% 0+ %) % Ad
edj _gg_ 0 fvp/- —fv%pj —fd’]—&—%) _fVXZ'g’ fvg l
(C10)
Target camera pose
or _ el 6/, aU/‘ ax;
651-_ e du; 0x; 0§
_em dl ou 9% (1)
~e% du; 0x) 08, '
__or
o0&,
Point inverse depth
or B edi 6/1 au/ 6xj
dp; €% du; OX dp
_ _E’a’ _gX_ l _fu 0 *fu)z(: ¢ 1
e’ 9y 7! 0 fv _fv%: ( )
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C.4.2 Photometric parameters

The partial derivatives of the photometric residual (Eq. C.1) with respect to the
brightness transfer function parameters are:

Host camera affine light

ar e’
da. _  e% (lflus] = by)
or (C13)
— =1
ob;
Target camera affine light
or e’
GTI/- = E(//’[UJ’] — b))
ar e’ (€14)

6bj e’






Appendix D
Student’s t-distribution

The Student's t-distribution is a continuous probability distribution. It is
widely used in applied statistics and maximum likelthood estimation. It can
be represented using 3 parameters: location p, scale o and degrees of freedom
v. The probability density function is given by

-

(&) Tx—m2|
P(X)ZW(HV( ) ) (D)

where ['(x) = (x — 1)! is the gamma function.

0.35 09
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07 F
—
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Figure D.1: Student's t-distribution. The probability density function
on the left and the cumulative distribution function on the right for
different values of degrees of freedom. The normal distribution is also
represented for comparison.
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The Student’s t-distribution is symmetric and bell-shaped. It is similar to
the normal distribution with heavier tails. This means that it models behaviours
that tend to produce values far from the mean. Fig. D.1 shows the probability
density and the cumulative distribution functions for different values of degrees
of freedom. As can be observed, the Student’s t-distribution becomes closer to
the normal distribution as v increases.

The parameters for a given distribution of values can be obtained by their
maximum likelihood estimators (Liu and Rubin, 1995). Alternatively, one can
minimize the negative log-likelihood of the probability density function (Eq. D.1)
using a gradient free optimizer, such as the Nelder-Mead method (Gao and Han,
2012, Lagarias, Jeffrey et al, 1998, Singer and Singer, 2004). In both situations,
the parameters are iteratively obtained starting from an initial quess. However,
we found that minimizing the negative log-likelihood achieves better parameters
estimates, specially when the degrees of freedom are jointly estimated.
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