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Correctly modelling the behaviour of power amplifiers to include the nonlinear aspects

of their response has been a matter of interest in the fields of electronic and wireless

communications for a considerable amount of time. Throughout the last decades, nu-

merous techniques that succeed in accurately representing these nonlinearities and that

provide ways to reduce their impact on system performance have been derived. An

essential application of these techniques is the construction of amplifier models that

can be used to obtain a deeper understanding of the phenomena that make these de-

vices more or less nonlinear. These models have been used in numerous scenarios to

comprehend and devise ways to mitigate the impact of nonlinearity in the response of

many amplifiers. However, ultra-broadband RF electronic drive amplifiers used in opti-

cal communications environments represent a small niche in which extensive derivation

of these amplifier models has not yet been accomplished. In this thesis, a device-specific

behavioural model for one such electronic drive amplifier will be constructed based on

existing modelling techniques and extensive lab measurements. In addition, changes in

the performance of a communications system when these behavioural models are inte-

grated within it will also be studied. Ultimately, this thesis will strive to determine

the specific phenomena that are linked to the nonlinearity present in the response of an

ultra-broadband RF electronic drive amplifier and how variation of these factors affects

the behaviour of this device.
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Chapter 1

Introduction

1.1 Background

The immense demand for mobile communication technologies capable of meeting the

constantly increasing data rate, capacity, flexibility, and reliability requirements of to-

day’s day and age is pushing system designers to efficiently optimize resource use more

than ever before. System transmit power and bandwidth stand out among those re-

sources whose use must be specifically controlled to fulfill the necessities of contemporary

wireless communications devices.

Amplifiers are an essential component of almost any communications system, wireless

technology being no exception, and they will directly affect the transmit power and

bandwidth of a system. Because of the defining role amplifiers play in wireless technol-

ogy, derivation of models that accurately represent the behaviour of these components

has been a matter of significant importance for the past decades. As do all system

components, real amplifiers deviate from their ideal behaviour depending on their oper-

ating conditions. In their specific case, this deviation manifests itself as the presence of

nonlinearity in the response of the device. Due to the fact that this nonlinear aspect of

an amplifiers behaviour has the potential to substantially impact the quality of the de-

signed system, a prime goal of this modelling research has been to design methodologies

that correctly emulate the nonlinearity displayed by these components. Through the

years, numerous generic nonlinearity modelling methodologies have been successfully

designed. Although degrees of accuracy vary slightly between these techniques, they

provide a highly precise manner to represent the behaviour of devices that are notorious

for presenting nonlinear responses under certain conditions.

Simultaneously within this same time frame, the main research interest in the closely

related field of optical communications has been to accurately describe the effects of
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transmitting data through a fiber channel. This medium induces nonlinear effects on

the signal, hence the study of nonlinearities has also been a matter of significant inter-

est in this field, albeit with a more intense focus on channel-induced nonlinear effects

instead of amplifier-induced phenomena. As a consequence of prioritizing the analysis

of channel-induced nonlinear effects, the behaviour of ultra-broadband RF electronic

drive amplifiers that are used in coherent optical communications systems has not been

extensively studied. Application of the extensive methods of amplifier nonlinearity mod-

elling that have been derived in the field of wireless technologies to characterize these

electronic drive amplifiers represents a relatively novel approach to a decade-old research

topic which may potentially provide some interesting insights.

1.2 Objective & Scope

The goal of this thesis is to characterize the behaviour of an ultra-broadband RF elec-

tronic drive amplifier to study the presence of nonlinearity in its response. This char-

acterization will aim to derive a model that can be used to determine which factors are

critical in morphing the response of this device to become more nonlinear. Overall, the

aim of the research is to design a comprehensive model for a specific drive amplifier to

obtain insight on what phenomena make the behaviour of this device nonlinear, as well

as to determine the subsequent effects of this nonlinear content of the device response

on the performance of a generic communications system.

1.3 Document Organization

The structure of the thesis is illustrated in Figure 1.1. The text can be divided into

three parts, where Chapter 2 is made up of the theoretical concepts on which the work

is based, Chapters 3-5 are compromised by the research and discussions that constitute

the bulk of the thesis, and Chapter 6 explains potentially interesting future research

avenues.

Chapter 2 describes the chosen nonlinearity modelling technique and the methodology

selected to build the amplifier behavioural model. Chapter 3 covers the design and

implementation of the software tools that are necessary to construct the model discussed

in the previous chapter. The setup and execution of the lab experiments, along with a

preliminary analysis of the results obtained from them, is also included in it. The focus

of this chapter is to explain the layout of how the data is extracted and processed, the

results are treated much more thoroughly later in the text.

2



Patricio Fuentes Ugartemendia

In Chapter 4, the design of a synthetic communications system, as well as the integration

of the model obtained in Chapter 3 within it, is explained. Theoretical concepts that

are useful when assessing the impact on system performance as a result of including the

nonlinear model within the implemented system are also discussed in this chapter, as is

a set of important analytic tools.

In Chapter 5, the results obtained from the experiments explained in Chapter 3 are

studied based on the analytic tools discussed in Chapters 4 and 5.

Chapter 6 provides an overview of possible improvements as well as suggestions for future

work. Finally, Chapter 7 presents the conclusions and Chapter 8 details the budget of

the thesis.

CHAPTER 1 
Introduction 

CHAPTER 2 
Nonlinear Model & Extraction Technique 

CHAPTER 3 
Simulation Implementation, Experiments, and

Preliminary Observations 

CHAPTER 4 
Assessment of Communications System

Performance when integrated with Nonlinear Model 

CHAPTER 5 
Experimental Data Analysis and Results 

CHAPTER 6 
Future Work 

CHAPTER 7 
Conclusion 

CHAPTER 8 
Budget 

Figure 1.1: Organization of the thesis.
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Chapter 2

Nonlinearity & Amplifiers

Nonlinear systems, devices, and phenomena can be found across many fields of scien-

tific interest. A nonlinear system is defined as any system that does not satisfy the

superposition principle. Conversely, linear systems are those that satisfy this principle.

The superposition principle states that for a system to be linear, the net system response

caused by two or more stimuli must equal the sum of the individual system responses

to each of those stimuli. This can be easily understood by providing an example: given

a system in which input X1 produces output Y1 and input X2 results in output Y2, if

said system is linear, an input compromised of the sum of both these inputs, X1 +X2,

will result in an output equal to the sum of the outputs obtained previously for each

individual input, Y1 + Y2.

Linear systems can be perfectly described using methods based on the superposition

principle. However, because nonlinear systems do not satisfy this principle, linear meth-

ods will not be suitable to represent them and different tools capable of accurately

mimicking their nonlinear effects must be employed. Fortunately, a wide variety of

techniques exists to perform nonlinear system identification1 and obtain appropriate be-

havioural models. Due to the complexity and large amount of existing approaches to

nonlinear system modelling, this chapter will begin by providing a simple overview of the

most significant among these techniques. Once the reader has been briefly introduced

to the discipline of nonlinear system identification, the focus shifts towards thoroughly

explaining the specific technique selected to construct the amplifier model.

1System identification is defined as the process of identifying or measuring the mathematical model
of a system from measurements of the system inputs and outputs.
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2.1 Nonlinear System Identification

Electronic drive amplifiers are known to behave nonlinearly under specific operating

conditions. As such, they can be classified as nonlinear systems and modelled using

the wide variety of techniques available for this purpose. All of these methods provide

different alternatives to perform nonlinear system identification, which is the method of

obtaining the mathematical model of the system in question by means of system input

and output measurements. It can be broken down into the following steps:

1. Data Extraction: The gathering of data sets is essential to construct nonlinear

system models. It involves the recording of different inputs and outputs of the

nonlinear system that is being identified. This information is later used to con-

struct the model. The extraction of sufficiently exhaustive and appropriate data

is paramount when building models for nonlinear systems.

2. Model Construction: The data obtained during the extraction process is applied

to adaptive algorithms which are able to build nonlinear system models based on

nonlinear modelling approaches. Selecting the modelling technique that is most

suitable to each particular scenario will be critical in determining how good the

model is.

3. Model Validation: The inputs recorded in the data extraction process are applied to

the derived nonlinear models and the subsequent “modelled” outputs are compared

to the previously gathered real outputs to determine the accuracy and validity of

the constructed model.

2.1.1 Nonlinear Modelling Methods

As has previously been mentioned, many techniques can be used to build nonlinear

models. The following list is a brief summary of the most relevant techniques used

during the model construction procedure.

• Volterra Series: Volterra Series were the first method used to construct models

for nonlinear systems. They provide a relatively simple way to mathematically

describe the behaviour of a nonlinear system and are widely used to this day,

remaining relevant in the field of nonlinear system identification. However, draw-

backs related to the processing requirements of the algorithms that construct the

Volterra series based models have recently been identified.
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• Block structured models (Hammerstein/Wiener Models): Block structured models

encompass a set of nonlinear modelling techniques that divide system behaviour

into two separate elements that represent its linear and nonlinear aspects. These

block structured models have been shown to have lower processing requirements

than the Volterra series based algorithms, making the identification procedure

more manageable.

• Neural networks: Artificial neural networks imitate the structure of neurons in

the human brain by segmenting complex computation into large numbers of sim-

ple processing elements. A typical neural network consists of a number of simple

processing units interconnected to form a complex system. These simple units

are arranged into different layers so that the system input data is entered at the

first layer and passed along through all the other layers before reaching the output

layer. Generally, these networks require “training”; they operate on the difference

between the real output data and the output of the network, changing the ar-

rangement of layers and processing nodes in an attempt to diminish this difference

until it is negligible, or in other words, until the real output and network output

are essentially identical. The principal drawback of neural networks is that the

models they produce are almost always impossible to describe mathematically and

analyze.

• NARMAX Models: NARMAX stands for Nonlinear Autoregressive Moving Av-

erage model with eXogenous inputs. It has quickly become the most popular

technique in the study of nonlinear systems, as it encompasses a large variety of

other techniques, including the three previously described ones.

As has just been shown, there are numerous manners to build a nonlinear model for a

specific system or device. Given that the focus of this thesis is to construct a model

for an electronic drive amplifier, which is not an overly complex example of a nonlinear

system, a technique that produces a relatively simple and accurate model which can be

mathematically described and numerically assessed is desirable.

In view of these requirements, Volterra series are the most appropriate choice to con-

struct the model for the amplifier studied in this thesis. Because they were the first

nonlinear modelling technique, a large body of work and research exists related to their

use in characterizing nonlinearities, which makes them an even better selection for our

purposes. Having briefly introduced the principles of nonlinear system identification, the

rest of this chapter will cover how Volterra series can be applied to derive a nonlinear

model for an electronic drive amplifier.
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2.2 Nonlinear Amplifier Model based on Truncated Volterra

Series

Volterra Series are a wide-spread tool when it comes to modeling practical nonlinear

systems. The generic discrete Volterra series of finite order and finite memory is given

by (2.1), where x(n) and y(n) are the system input and output signals, M is the memory

of the model, P represents the order of the nonlinear effects, and hp(m1, . . . ,mp) are the

respective Volterra kernels of each memory element.

y(n) = h0 +

P∑
p=1

M−1∑
m1=0

. . .

M−1∑
mP=0

hp(m1, . . . ,mp)

P∏
i=1

x(n−mi). (2.1)

This expression can be simplified by assuming that h0 = 0 and that the Volterra kernels

are symmetric2. The assumption of symmetry reduces the number of coefficients that

have to be calculated in half, as is reflected in the following expression,

y(n) =

P∑
p=1

M−1∑
m1=0

M−1∑
m2=m1

. . .

M−1∑
mP=mP−1

hp(m1, . . . ,mp)

P∏
i=1

x(n−mi).

Based on the existing literature, expanding the series to include nonlinear orders beyond

P = 3 results in small increases in modelling accuracy and much larger strains on

computing resources. Hence for our purpose, the drive amplifier will be modeled with a

truncated Volterra series where P = 2 or P = 3. The series expansion for a P = 3 model

is given in (2.2), where h1(m1) are the linear or first order Volterra kernels, h2(m1,m2)

are the cuadratic or second order Volterra kernels, and h3(m1,m2,m3) are the cubic or

third order Volterra kernels. Models with different values for M and P will be used

throughout the text. Their expanded expression can be obtained by substituting the

appropriate M value in (2.2) and disregarding the third order terms if P = 2. As an

example, a third order M = 5 model will entail the calculation of a total of 55 Volterra

Kernels, of which 5 are linear, 15 are quadratic and 35 are cubic.

y(n) =

M−1∑
m1=0

h1(m1)x(n−m1) + . . .

. . .+

M−1∑
m1=0

M−1∑
m2=m1

h2(m1,m2)x(n−m1)x(n−m2) + . . .

. . .+

M−1∑
m1=0

M−1∑
m2=m1

M−1∑
m3=m2

h3(m1,m2,m3)

x(n−m1)x(n−m2)x(n−m3).

(2.2)

2This symmetry implies that h(m1,m2, ...,mn) = h(m2,m1, ...,mn).
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2.3 Adaptive Algorithms

To compute the Volterra kernels necessary to construct the model, an algorithm capable

of calculating them from the input and output signals, x(n) and y(n), is needed. A wide

variety of such methods exists for the linear case, out of which the least mean squares

(LMS) algorithm and the recursive least squares (RLS) algorithm are some of the more

popular options.

2.3.1 Volterra LMS algorithm for the calculation of kernels

The application of a gradient-type LMS adaptive algorithm for the purpose of learning

a nonlinear model based on truncated Volterra series will require that a set of specific

modifications be applied to the linear version of the algorithm. The derivation of a VLMS

(Volterra LMS) algorithm by applying these modifications to the linear LMS algorithm

is valid due to the fact that the output of the Volterra series is a linear function with

regard to the kernels (the nonlinearity is introduced by means of the cross products of

the input signal).

The LMS algorithm for the linear case finds the set of filter coefficients that minimize

the instantaneous square of the error signal, which is defined as the difference between

the output signal and the estimated signal. This is shown in (2.3), where x(n) is the

input signal vector, e(n) is the error of the algorithm, d(n) is the desired signal, ĥ(n) is

the estimated set of filter coefficients, and µ is the step-size of the algorithm.

x(n) = [x(n), x(n− 1), . . . , x(n− (M − 1))]> (2.3a)

e(n) = d(n)− ĥ>(n)x(n) (2.3b)

ĥ(n+ 1) = ĥ(n) + µe(n)x(n) (2.3c)

The LMS algorithm extended to the nonlinear case differs in terms of the input vector

x(n), as it must now contain the linear terms (individual samples of the input signal)

along with the cross-product terms (cross-products of the input signal samples) that will

mimic the nonlinear behaviour of the system. For the third order truncated Volterra

series, it is useful to visualize this input vector as the concatenation of three input

vectors: x1(n) which contains the input signal samples present in the first sum of (2.2),

x2(n) which contains the products between two input signal samples present in the

8
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second sum of (2.2), and x3(n) which contains the products between three input signal

samples present in the third sum of (2.2). This is shown in (2.4a).

x(n) = [x1(n)> x2(n)> x3(n)>]> (2.4a)

x1(n) = [x(n) x(n− 1) . . . x(n− (M − 1))]>

x2(n) = [x2(n) x(n)x(n− 1) . . . x(n)x(n− (M − 1))

x2(n− 1) . . . x2(n− (M − 1)]>

x3(n) = [x3(n) x2(n)x(n− 1) . . .

x2(n)x(n− (M − 1)) x(n)x2(n− 1) . . .

x3(n− 1) . . . x3(n− (M − 1)]>

In addition, the set of estimated coefficients for the nonlinear case, usually referred to as

Volterra kernels, will be different. They are obtained in the form ĥ(n) = [ĥ1(n)>ĥ2(n)>ĥ3(n)>]>,

where each of the sub-indexed vectors contains the linear, quadratic and cubic kernels,

respectively. The update rules of the nonlinear LMS algorithm are given in (2.5), where

it is easy to see how the linear, quadratic and cubic coefficients are updated indepen-

dently.

ĥ1(m1;n+ 1) = ĥ1(m1;n) + µ1e(n)x1(n) (2.5a)

ĥ2(m1,m2;n+ 1) = ĥ2(m1,m2;n) + . . . (2.5b)

. . .+ µ2e(n)x2(n)

ĥ3(m1,m2,m3;n+ 1) = ĥ3(m1,m2,m3;n) + . . . (2.5c)

. . .+ µ3e(n)x3(n)

How good the coefficient estimates shown in (2.5) are, will depend on the chosen LMS

step-sizes, which play a significant role in the algorithms performance. It is well known

that the linear LMS algorithm will converge only when 0 < µ < 2
λmax

, where λmax denotes

the maximum eigenvalue of the auto-correlation matrix of the input vector x(n) defined

in (2.3). This bound can be extended to the Volterra LMS algorithm by substituting

the input vector shown in (2.3) by x(n) given in (2.4a). However, the use of a single step

size makes the convergence rate of the Volterra LMS algorithm depend on the eigenvalue

spread of the auto-correlation matrix of the input vector x(n), which, being much larger

than for the linear case often results in slow convergence [3]. Therefore, it is desirable to

update the equations shown in (2.5) using different step-sizes; µ1 for the linear kernels,

µ2 for the quadratic kernels, and µ3 for the cubic kernels.
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It can be difficult to derive bounds for these different step-sizes, since as is shown in [4],

the Volterra LMS algorithm does not lend itself well to mathematically tractable analysis

that produces concrete upper bounds for them. Step size upper bounds are much simpler

to obtain for a variant of the VLMS algorithm known as the partially decoupled VLMS

[4]. Regardless, it has been shown in [5] and [6] that despite the fact that no step-size

bounds are available for the general case of nonlinear filters, it is reasonable to expect

that second-order Volterra filters, due to their property of having an output that is linear

in the filter parameters, will share the same convergence condition as the linear case,

albeit after slight modifications. The extension of the linear step size LMS bound to the

nonlinear second order Volterra case is given by:

0 < µi <
2

λmax
, (2.6)

where λmax denotes the maximum eigenvalue of the auto-correlation matrix of the input

vectors xi(n) shown in (2.4a), where i = 1, 2. Although (2.6) has not been proven for

the cubic Volterra filter, we will assume its extension to the third order terms as a

guideline to select values for µ3. It has also been shown in [7] that setting a larger step

size for linear terms and smaller step sizes for nonlinear terms is beneficial for obtaining

more accurate kernel estimates. Therefore, the step sizes for the linear, cuadratic and

cubic Volterra kernels will be chosen to fulfill the bounds shown in (2.6) following the

recommendation given in [7].

2.3.2 Volterra RLS algorithm for the calculation of kernels

Another option for the estimation of the Volterra kernels is to employ the RLS algorithm.

Because it is not the primary algorithm choice in this thesis, the text merely provides a

summary of its functioning. Extensive analysis of the RLS algorithm is conducted in [8].

Maintaining conventional RLS algorithm notation, the computative aspects of the linear

RLS algorithm are shown in (2.7), where λ is known as the forgetting factor, R−1(n)

is an M ×M matrix, k(n) is an M -dimensional vector known as the Kalman gain, and

the rest of the parameters are identical to the LMS method. The last two expressions

given in (2.7) are the update rules of the algorithm.
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x(n) = [x(n), x(n− 1), . . . , x(n− (M − 1))]> (2.7a)

e(n) = d(n)− x>(n)ĥ(n) (2.7b)

k(n) =
R−1(n)x(n)

λ+ x>(n)R−1(n)x(n)
(2.7c)

R−1(n+ 1) =
1

λ
(R−1(n)− k(n)x>(n)R−1(n)) (2.7d)

ĥ(n+ 1) = ĥ(n) + e(n)k(n) (2.7e)

The linear RLS algorithm must also be adapted in order to be validly applied in the esti-

mation of nonlinear kernels. This procedure is straightforward given the LMS derivation

conducted in the previous section. For a third order Volterra truncated series, the input

vector x(n) is given by (2.4a), which leads to the following modifications to the linear

RLS update rules:

ki(n) =
R−1i (n)xi(n)

λ+ x>i (n)R−1i (n)xi(n)
,

R−1i (n+ 1) =
1

λ
(R−1i (n)− nki(n)x>i (n)R−1i (n),

ĥ(n+ 1) = ĥ(n) + e(n)


k1

k2

k3

 .

where i = 1, 2, 3.

For the RLS algorithm to run, it requires the setting of initial values for λ and R−1i (0).

In general, R−1i (0) = δiI, where I is the identity matrix of size MixMi and δi is a positive

scalar chosen to ensure that R−1i (n) is not singular for small values of n. This guarantees

convergence of the algorithm in its initial stages. The setting of these initialization

parameters is discussed in more detail in chapter 3.
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Chapter 3

Practical extraction of amplifier

behavioural models

In this chapter, we will discuss the methods, data, and tools that are employed to extract

the previously mentioned nonlinear Volterra models. In addition, the techniques that

are derived to study the extracted models will be explained. The chapter is closed with

a discussion regarding a set of preliminary results.

The correct derivation of the nonlinear behavioural models will require two distinct fac-

tors: a software framework and real amplifier measurements. The implemented software

must process the amplifier data so that it can be fed into the adaptive algorithm, also

software designed, that will generate the Volterra model. This software framework will

also include the necessary tools to study the learned amplifier models. The amplifier

measurements must provide the necessary input and output data that will allow the

adaptive algorithm to learn appropriate Volterra models of the device. As will be shown

throughout the rest of the text, a plethora of amplifier measurements will be required

to achieve this goal.

3.1 Software simulation framework

To learn the necessary Volterra models of the electronic drive amplifier, the software

framework must implement one of the kernel estimating algorithms explained in Chapter

2. The framework will be programmed using Matlab. Figure 3.1 provides a graphical

description of how the Matlab implementation of the estimating algorithm functions.
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Figure 3.1: Matlab framework overview.

As can be seen in the above figure, the estimating algorithm will require the input signal

of the drive amplifier, x(n), and its corresponding output signal (also referred to as

the desired signal), d(n). How these amplifier input and output signals are recorded

is discussed in section 3.2. The rest of this section explains the processing of this raw

amplifier data before it can be provided to the kernel estimating algorithm.

3.1.1 Signal Time Alignment

It is necessary for the adaptive algorithm to correctly estimate the Volterra kernels that

the drive amplifier input and output signals, x(n) and d(n), be aligned in time. This

means that for any given sample index n1, the output signal sample d(n1) was produced

when the drive amplifier received signal sample x(n1) at its input. Therefore, the first

step that is conducted in Matlab is to check the time alignment of the input and output

signals, since the way in which they where measured may have led to them being delayed

with regard to one another.

-1.5 -1 -0.5 0 0.5 1 1.5

n (sample index) 104

-200
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Figure 3.2: Cross correlation between x(n) and d(n). The input is a 32 Gb/s NRZ
signal with a 511 bit pattern length and a 450 mV peak-to-peak voltage. The equivalent

time sampling rate was 22 samples/symbol.
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The time alignment is ensured by calculating the cross-correlation between x(n) and

d(n), finding the location of it’s maximum, and then shifting the delayed signal forward

by the amount of samples that the cross-correlation maximum was located at. Figure

3.2 shows the cross-correlation of an experimentally measured input and output signal

pair. As is shown in the figure, one of the signals is delayed with regard to the other

(the cross-correlation maximum does not occur at 0) and will require sample shifting to

guarantee that x(n) and d(n) are aligned in time.

3.1.2 Signal Normalization

Once the input and output signals have been aligned in time, the next step is to normalize

their sample values. Two normalization methods are presented in this subsection. The

first one can be applied to restrict the signal sample values so that x(n), d(n) ∈ [−1, 1],

∀n. This is shown in (3.1), where x̃(n) and d̃(n) denote the normalized amplifier input

and output signals, respectively.

x̃(n) =
x(n)− Sx

Gx
∀n,

d̃(n) =
d(n)− Sd

Gd
∀n,

(3.1)

Sx =
max (x(n)) + min (x(n))

2
,

Gx =
max (x(n))−min (x(n))

2
,

Sd =
max (d(n)) + min (d(n))

2
,

Gd =
max (d(n))−min (d(n))

2
.

The second method of normalization is quite similar to the first, but instead of taking

the minimum and maximum values of each signal, the average values of the eye diagram

rails are taken. This normalization procedure is shown in (3.2), where x̂1, x̂−1 denote

the average values of the eye diagram rails of x(n) and d̂1, d̂−1 represent those average

values for d(n).

x̃(n) =
x(n)−Ax

Bx
∀n,

d̃(n) =
x(n)−Ad

Bd
∀n,

(3.2)

Ax =
x̂1 + x̂−1

2
,

Bx =
x̂1 − x̂−1

2
,

Ad =
d̂1 + d̂−1

2
,

Bd =
d̂1 − d̂−1

2
.

14



Patricio Fuentes Ugartemendia

Figure 3.3 depicts a close-up image of an eye diagram corresponding to one of the drive

amplifier output NRZ signals measured in the lab. It shows how the normalization

values for both methods are picked. These methods effectively decrease the dynamic

range of d(n) (amplified signal) and increase it for x(n) (input signal). The goal of this

normalization is to ensure that the Volterra models that are learned are not conditioned

by the signal level. This will allow us to draw comparisons between Volterra model

coefficients when the voltage swing of the signals for which these coefficients were learned

is different. The normalization will cast the amplifier in the framework of a unit gain

component. However, this is not an issue since our interest lies with modelling the

amplifier nonlinearities and not with analyzing the multiplicative factor that is its gain.

For the simulations and results shown in later parts of this thesis, the first normalization

method has been employed.

Figure 3.3: Eye diagram of a measured drive amplifier output NRZ signal. The blue
arrows show how the first normalization procedure picks its values while the white

arrows portray the way the second procedure does it.

3.1.3 Algorithm Initialization

At this point, the drive amplifier input and output signals have been successfully time

aligned and normalized. The final step before running the kernel estimating algorithm is

to define its corresponding initialization parameters to guarantee algorithm convergence.

For both the LMS and RLS Volterra algorithms, the kernel vector, ĥ(n), is initialized

with its entries set to 0.

For the Volterra LMS algorithm, the only other condition that must be fulfilled is given

by (2.6). Ideally, the steps of the VLMS algorithm would be defined by multiplying the

RHS of (2.6) by a factor σi < 1. This way, µi = σi
2

λmax
< 2

λmax
, which would ensure the
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convergence of the algorithm. In practice, to avoid the computational cost of constantly

calculating the auto-correlation matrices of the input vector, values small enough to

perpetually satisfy (2.6) are defined. The optimum step size values out of those that

fulfill the previous condition are determined by conducting simulations and comparing

which set of µi values produces the smallest mean square error. The MSE is calculated

as shown in (3.3), where N is the length of the sliding rectangular window used to time

average e2(n). The results of these simulations, as well as the specific µi values that

were chosen for the algorithm, are shown later in this section.

MSE(dB) = 10 log10
( 1

N

N∑
n=1

e2(n)
)

(3.3)

For the VRLS algorithm, the forgetting factor, λ, as well as R−1i (0) must be defined.

Typically 0� λ < 1, with lower values of λ leading to better tracking capabilities of the

algorithm (used in real-time applications) and higher values leading to better stability

and adjustment. In terms of R−1i (0), we know that R−1i (0) = δiI, where the δi values

must be chosen to guarantee that R−1i (n) does not become singular for small values of

n. The value for δi will be conditioned by the choice of λ, with [8] and [9] recommending

the choice of a large values for δi. A detailed analysis of how to optimally select this

parameter is provided in [10].

3.2 Lab Experiments

This section discusses the nature, structure, and characteristics of the lab experiments

conducted to obtain amplifier input and output signals. In section 3.3, these signal

measurements will be processed using the computational tools explained previously in

this chapter. Broadly speaking, these lab experiments come down to feeding an electronic

drive amplifier with different input signals, and recording both the input and amplifier

output signals.

Naturally, it is difficult to accurately determine which input signals will yield the data

necessary to completely characterize the amplifier on the first try. Therefore, two lab

experiments had to be performed throughout the duration of this thesis. The main ob-

jective of the first lab visit was to obtain data that would enable the development and

verification of specific computational tools. These tools could later be used to thoroughly

analyze posterior lab measurements. In addition, the data collected in this first experi-

ment was also meant to provide knowledge on which measurements to perform in later

lab visits so that the amplifier nonlinear behaviour could be completely characterized.
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Although not random, this first iteration of measurements was not exhaustive enough

to infer or deduce rigorous conclusions from the data regarding amplifier nonlinearity.

After working with the first set of measurements and once the necessary computational

and analytic tools were in place, a second lab experiment was conducted. The data

recorded during this second iteration of measurements was significantly more extensive

than in the previous iteration. Intuitively, we know that the Volterra models that are

learned by the adaptive algorithm will change according to the input signals fed to the

amplifier. In consequence, the aim of this second lab experiment was to record sufficient

and appropriate data to completely understand the effects on the learned Volterra model

of varying input signal characteristics, with the end goal of designing the most complete

behavioural amplifier model possible.

3.2.1 Experimental Setup

The lab setup employed to record the necessary signal measurements was identical for

both experiments.

In Table 3.1 all the equipment that was used during the experiments is listed, while in

figures 3.4 and 3.5, the equipment configuration used to record the signal measurements

is shown.

The functioning of the measurement setup is briefly described as follows:

1. The Anritsu SG generates the clock signal and provides it to the BPG.

2. The BPG will synthesize the desired data signal as well as relaying the clock signal

to the modules of the DCA.

3. The data signal generated by the BPG is fed into the amplifier if we are recording

output signals, or directly to the DCA if we are recording input signals.

4. The DCA stores the desired data.

Although relatively simple in principle, the equipment had to be configured following

careful and particular steps if it was to record the correct data. The following subsection

explains the details of appropriately deploying and connecting each piece of lab hardware

that was used during the experiment.
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Table 3.1: Equipment used in the lab experiments.

Equipment Brand Model

Signal Generator (SG) Anritsu MG3697C 67 GHz
Bit Pattern Generator (BPG) SHF 12103A

Digital Communications Analyzer (DCA) Agilent Tech. 86100D
Remote Sampling Module Agilent Tech. 86118A 60 GHz

Precision Timebase Module Agilent Tech. 86107A 10/20 GHz
Electronic Amplifier SHF 807 30397 30 GHz

6dB Attenuator - -
10 dB Attenuator - -

Remote Sampling Head - -

3.2.2 Equipment Configuration

The SG generates the clock signal and provides it to the BPG. The BPG has different

selectable signal channels. Therefore, the clock signal frequency must be adjusted ac-

cording to the selected channel on the BPG. In our experiments, we chose BPG channel

A×C, which is generated by multiplexing channels A and C. This means that the signal

frequency specified as the input to the SG has to be half of the desired signal frequency

as the final signal will be created by multiplexing two lower frequency channels of the

BPG. For example, if we want to produce a 50 Gbps data signal, we will need a 50

GHz clock. However, we must input a frequency of 25 GHz to the SG. This provides a

25 GHZ clock signal to the BPG, which will synthesize two independent 25 Gbps data

signals on channels A and C that will ultimately be multiplexed into a 50 Gbps signal

present at the output of channel A×C.

The BPG receives the clock signal from the SG and generates the input data signal for

our experiment. This data signal is a pseudo-random binary sequence (PRBS) with a

specific peak-to-peak voltage, data rate, and bit pattern length modulated using a non-

return to zero (NRZ) line code. In order for the DCA to be able to correctly capture this

data signal, we must reduce the high frequency clock signal by using the selectable clock

feature of the BPG and dividing the clock signal coming from the SG by an appropriate

factor. Recalling the previous example, the BPG sees a 25 GHz signal from the SG. We

select the Clk/4 setting of the BPG, which results in a 6,25 GHz clock signal.

At the output of the BPG, the clock signal is split into two different paths so that it

can be provided to the precision timebase module of the DCA, as well as its front panel

trigger. Using the precision timebase module enables the pattern lock function of the

DCA, which is capable of automatically acquiring transmitted bit patterns in the event

that they are periodic and recording the entire waveform in an excel file. This feature

is quite useful, but must be carefully set up as follows:
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1. Set the front panel trigger as the trigger source of the DCA.

2. In the Pattern Lock panel of the DCA, select the Clock/Divided (3 GHz - 13 GHz)

trigger bandwidth option. This will let the DCA know that the we are using the

selectable clock feature of the BPG.

3. Finish setting up Pattern Lock by manually introducing the pattern length of the

signal being transmitted by the BPG.

4. Allow the DCA to automatically acquire the data rate and trigger divide ratio of

the data. The trigger divide ratio seen by the DCA will be half of that selected

at the BPG because of the fact that it sees the multiplexed channel AxC as a

single channel. For our previous example, because the DCA sees a single 50 Gbps

channel and a 50 GHz clock signal, it would acquire a 1:8 trigger divide ratio, since
50
8 = 25

4 = 6, 25GHz.

5. Given that the Pattern Lock feature allows the DCA to perform automatic data

acquisition, the DCA will autoconfigure the Acquisition Setup.

6. The last step is to acquire waveforms that are as smooth as possible. This is

ensured by selecting the Average Smoothing feature of the DCA, which instead

of acquiring a single run of the desired waveform, will obtain a specific number of

runs and then average them. For our experiments, this feature was set to average

over 16 different waveform acquisitions.

We must now distinguish the parts of the setup that vary depending on whether input or

output signals are being measured. When amplifier output signals are being recorded,

the data signal generated by the BPG, which is essentially a bit pattern of a specific

length and data rate, is fed into a 6 dB attenuator. The attenuator is connected to the

electronic amplifier, whose output is fed to a 20 dB attenuator (created by connecting

two 10 dB attenuators in series). The output of this 20 dB attenuator is connected

to the remote sampling head, which is attached to the remote sampling module of the

DCA. The 6 dB and 20 dB attenuators are added to decrease the voltage swing of the

amplifier input and output signals so that, after the signals are amplified, the output

peak-to-peak swing does not become too large for the DCA. This is shown in figure 3.4.

The DCA interface must be told of the presence of these attenuators, as it can account

for them when performing data acquisition.

When recording input signals (amplifier is not connected), the data produced by the

BPG is fed to the remote sampling head after travelling through the 6 dB attenuator.

The 6 dB attenuator is maintained so that the same amplifier input signals can be
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recorded. As previously, the sampling head is connected to the DCA front panel trigger.

This is shown in figure 3.5.

Figure 3.4: Configuration used in the lab to record the amplifier output signal mea-
surements.

Figure 3.5: Configuration used in the lab to record the amplifier input signals.

The pairs of input and output waveforms are stored by the DCA after averaging the

signal samples over 16 acquisitions of that same signal. This DCA acquisition mode

averages the collected data on a point-by-point basis, improving the signal-to-noise ratio,

removing uncorrelated noise, and making the repetitive waveform smoother. The stored

signals are then introduced in the Matlab framework to learn the corresponding Volterra

models and develop further computational analytic tools.

3.2.3 Lab Experiment #1

As has been mentioned previously in this section, the goal of the first lab experiment

was to obtain input and output signal measurements that would provide initial insight
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and sufficient information to develop the necessary tools to analyze posterior lab mea-

surements. Table 3.2 shows the input and output signals that where stored in this first

measurement iteration. In both experiments, all of the input signals where NRZ1 signals.

Table 3.2: Characteristics of the signals used as the input of the electronic drive
amplifier in the first lab visit. The equivalent time sampling rate is discussed in later

in this chapter.

Modulation Rate Pattern Voltage Equivalent Time Waveform
(Gb/s) Length (mVpp) Sampling Rate Length

(bits) (Samples/symbol) (samples)

NRZ 32 29 − 1 450 22 11241
NRZ 32 29 − 1 675 22 11241
NRZ 32 29 − 1 900 22 11241
NRZ 32 215 − 1 450 22 720873
NRZ 32 215 − 1 675 22 720873
NRZ 32 215 − 1 900 22 720873
NRZ 50 29 − 1 525 29 14818
NRZ 50 29 − 1 650 29 14818
NRZ 50 215 − 1 525 29 950242
NRZ 50 215 − 1 650 29 950242

3.2.4 Lab Experiment #2

Because of the time spent working on the initial measurements, it was much easier to

determine which signals to use for the second batch of experiments. The aim of this

second lab visit was to record data that would allow us to determine the effects of

varying input signal amplitude, pattern length, and data rate on the learned Volterra

models. Because of this, this second measurement iteration is much more exhaustive

than the first, as it aims to completely characterize the impact caused by these input

signal parameters. Given that there are three input signal parameters of interest, hence

three degrees of freedom, the measurements are defined by repeating experiments in

which one degree of freedom is varied and the others are kept the same. This is shown

in Table 3.3, where the characteristics of the input signals used in the second visit to

the lab can be seen.

Later in this section, the measurements obtained in the first lab experiment are used to

obtain results and make preliminary observations. The second iteration of measurements

is discussed in Chapter 5.

1An NRZ line code is a simple binary coding scheme in which ones are typically represented by a
positive voltage V and zeros are represented by a negative voltage −V .
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Table 3.3: Characteristics of the signals used as the input of the electronic drive
amplifier in the second lab visit.

Modulation Rate Pattern Voltage Equivalent Time Waveform
(Gb/s) Length (mVpp) Sampling Rate Length

(bits) (Samples/symbol) (samples)

NRZ 50 29 − 1 650 15 7664
NRZ 50 211 − 1 650 15 30704
NRZ 50 215 − 1 650 15 491504
NRZ 38 215 − 1 650 19 622572
NRZ 44 215 − 1 650 16 524271
NRZ 56 215 − 1 650 15 425970
NRZ 56 215 − 1 600 13 425970
NRZ 56 215 − 1 500 13 425970
NRZ 56 215 − 1 400 13 425970
NRZ 50 215 − 1 600 15 491504
NRZ 50 215 − 1 500 15 491504
NRZ 50 215 − 1 400 15 491504

3.3 Processing the Initial Measurements

We will now discuss the processing of the drive amplifier data (input and output signals)

measured in the first lab experiment with the adaptive algorithms explained in Chapter

2. As has been shown at the beginning of this section, prior to applying the signals

recorded during the experiment to the Volterra adaptive algorithm, they are time aligned

and normalized to the bipolar range ([-1 1]) by means of the normalization method given

in 3.1. The algorithm chosen to learn the Volterra models is the VLMS algorithm. The

Matlab code which implements this algorithm is shown in Appendix A. The number of

iterations for which the VLMS algorithm is run is discussed in the following paragraph.

The memory and order of the learned model are set to the default values of M = 5 and

P = 3. The appropriate manner of selecting the values for M and P is discussed in a

later chapter of the thesis.

3.3.1 Application of the VLMS Algorithm

The VLMS Algorithm explained in Chapter 2 can be used to extract Volterra models

from the measurements conducted in the first lab experiment. Performing an objective

and unbiased study of these learned models will require that an appropriate way to

establish the values of VLMS iterations and VLMS step sizes be devised.
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3.3.1.1 VLMS Iterations

As is shown in Table 3.2, the number of samples of the input/output signal pairs varies

depending on the characteristics of the input signal. This implies that the VLMS algo-

rithm will require more or less iterations (total number of signal samples) to learn the

model depending on the type of amplifier input signal. Said variation in algorithm itera-

tions as a function of signal length will not permit an objective study of its convergence,

making the step-sizes of the VLMS algorithm dependant on the sample set length of the

input/output signal pairs.

To circumvent this issue, the number of algorithm iterations is decoupled from the length

of the discrete waveforms by periodically replicating them. The shorter sequence signals

are successively concatenated to construct a periodic ‘repetition’ waveform consisting of

as many symbols, ergo as many samples, as the longer sequence signals. This entails

concatenating the signals with shorter pattern length (29−1) enough times to guarantee

that the length of these extended sequences is approximately that of the signals with

longer pattern length (215−1), which results in the periodic ‘repetition’ waveform being

constructed by concatenating the 29−1 pattern length sequences 64 times (64 ≈ 215−1
29−1 ).

This way, the issue of adjusting algorithm step sizes in relation to signal sample set

length is effectively averted, allowing the study of algorithm convergence behaviour for

a common set of step sizes for all recorded signals.

Figure 3.6: Impulse response of a Hanning window of length L = 11242. It is shown
later in this chapter how such a window is an appropriate choice for tapering when

using the overlap and add method.

To soften the effects of sequence concatenation, a tapering window can be applied to

the successively concatenated waveform so that the extended periodic ‘repetition’ signal

does not exhibit strong discontinuities at the instances where the sequence endpoint and
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beginning meet. The falling taper at the end of the last concatenated sequence slowly

decreases to zero while the rising taper at the beginning of the sequence to be added

will gradually increase to one, which serves to ameliorate the effects of abrupt sequence

endpoints. The tapering window selected for this purpose has to satisfy a condition in

the time domain akin to the Nyquist zero ISI criterion. An example of a such a window

is the Hanning window defined according to the expression shown in 3.4. This topic is

will be further discussed in 3.4.1.

w(n) = 0.5
(
1− cos

(
2π

n

N

))
, 0 ≤ n ≤ N. (3.4)

where n represents the signal the window is being applied to and L = N + 1 is the

window length. Figure 3.6 shows the shape of an L = N + 1 (N = 11241) Hanning

window that could be applied to the short sequence signal prior to concatenation.

The concept of applying a tapering window was initially proposed due to a lack of knowl-

edge regarding the exact contents of the sequences being concatenated. Windowing alone

or in conjunction with overlap and add methods constitutes an effective way of softening

the addition of the sequence endpoints and beginnings. However, as will be shown in

3.4.1, the sequences that are being concatenated end and begin in approximately the

same point in time, hence, direct concatenation will be optimal and no softening of

endpoints will be required.

3.3.1.2 VLMS Step Size

The optimum step sizes for the VLMS algorithm were determined by conducting Matlab

simulations. Table 3.4 shows the different values of µi that where tested along with their

final MSE (MSE computed during the last 10 windowing events of (3.3)). Figure 3.7

portrays the algorithm convergence curves obtained for said µi combinations. The top

image of Figure 3.7 serves to discard two of the µi combinations, while the bottom one

shows how the curve obtained for µ1 = 0.01, µ2 = 0.001, µ3 = 0.001 yields the lowest

MSE.

The choice of setting µ2, µ3 < µ1 is based on observations made in [11], which show that

better estimates are made by Volterra equalizers when the nonlinear step-sizes are kept

smaller than the linear one. A principled way to select the step sizes for the nonlinear

coefficients is provided in [12].
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Figure 3.7: Evolution of the MSE as a function of the VLMS iterations. The top
image has been obtained by using a sliding rectangular window of length N = 400.

The bottom image has been obtained by using a rectangular window of length
N = 4000.

Table 3.4: Logarithmic MSE results for different values of µi.

µ1 µ2 µ3 MSE(dB)

0.01 0.001 0.001 -29.17
0.01 0.001 0.0001 -28.61
0.005 0.001 0.001 -29.01
0.001 0.0005 0.0005 -28.26
0.0001 0.00005 0.00005 -25.91
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3.3.2 Interpretation of the Volterra models

Using the Volterra kernels estimated by the VLMS algorithm, Volterra models for each

specific pair of measured input and output signals can be constructed by substituting

those estimates in (2.2) for M = 5. However, it will be complicated to compare models

and make observations based solely on the individual values of their Volterra kernels.

Ideally, we should find some kind of measure capable of providing information about the

amplifier response without having to study the entire kernel content of the associated

Volterra model.

3.3.2.1 Volterra Normalized Kernel Weights

An appropriate set of metrics to characterize the Volterra models is designed by com-

bining the kernels that make up the model in a relatively straightforward way. Given

a Volterra model of order P , there will be P metrics that completely characterize the

Volterra model: one metric will weigh the value of the linear Volterra kernels, another

will weigh the value of the quadratic Volterra kernels, a third one will weigh the value

of the cubic Volterra kernels, and so on until the final P -th metric, which will weigh the

value of the Volterra kernels of order P . These metrics represent the normalized square

sums of each subset of kernels of a specific nonlinear order and will be referred to from

this point onwards as the normalized kernel weights.

Calculation of these normalized kernel weights is achieved by processing the Volterra

kernels as shown in (3.5), where h̃1, h̃2, and h̃3 represent the normalized linear, quadratic,

and cubic kernel weights, respectively. Computing the expressions shown in (3.5) for

each of the learned Volterra models provides a quicker and more efficient way to study

and compare their behaviour. For instance, by looking at Figures 3.8 and 3.9 which

depict the normalized kernels of two Volterra models learned from the measurements

recorded in the first experiment, we can see how these metrics vary depending on the

characteristics of the input signals.
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h̃1 =

∑4
m=0 h

2
1(m)

ν
, (3.5a)

h̃2 =

∑4
m1=0

∑4
m2=m1

h22(m1,m2)

ν
, (3.5b)

h̃3 =

∑4
m1=0

∑4
m2=m1

∑4
m3=m2

h23(m1,m2,m3)

ν
, (3.5c)

ν =
4∑

m=0

h21(m) +
4∑

m1=0

4∑
m2=m1

h22(m1,m2) + . . .

. . .+

4∑
m1=0

4∑
m2=m1

4∑
m3=m2

h23(m1,m2,m3).

Table 3.5 provides the numerical values of the normalized kernel weights of four different

models learned from the measurements obtained during the first lab experiment. Once

more, variation in the normalized kernel weights is observed as input signal parameters

change. As will be explained in the following subsection, these results serve to provide

valuable insight which will be used to determine which specific measurements to record

in future lab work.

Table 3.5: Normalized Volterra kernel weights for various input signals.

Signal h̃1 h̃2 h̃3 h̃2 + h̃3

32 Gb/s
29 − 1 bits (pattern) 0.952 0.021 0.027 0.048

675 mVpp input
32 Gb/s

215 − 1 bits (pattern) 0.950 0.004 0.046 0.050
675 mVpp input

50 Gb/s
29 − 1 bits (pattern) 0.905 0.004 0.091 0.095

650 mVpp input
50 Gb/s

215 − 1 bits (pattern) 0.899 0.006 0.095 0.101
650 mVpp input

3.3.2.2 Preliminary Observations

Having come up with a way of effectively characterizing each learned Volterra model,

we can now use the normalized kernel weights to compare and study these models.

Prior to the experiment and simulation, one might have intuitively assumed that an

increase in amplifier nonlinearity would be observed when the input signal voltage was
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Figure 3.8: Normalized Volterra kernel weights learned for signals with a pattern
length of 511 bits and a data rate of 32 Gb/s.
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Figure 3.9: Normalized Volterra kernel weights learned for signals with a pattern
length of 32767 bits and a data rate of 32 Gb/s.

increased. In addition, a change in amplifier behaviour may also have been expected

if input signal data rate was varied. We can now verify both these hypotheses by

studying the normalized kernel weights of the Volterra models shown in Table 3.5 and

the multiple figures in this section. Figure 3.9 shows how the learned Volterra model

changes when varying the input signal voltage and keeping the data rate and bit pattern

length constant. Table 3.5, shows how the weight of h̃2 + h̃3 increases when the data

rate goes up and the input voltage2 and bit pattern length are kept constant. Curiously,

2The input voltage changes slightly from 675 mVpp at 32 Gb/s to 650 mVpp at 50 Gb/S, but this
variation is so small that it is assumed to play a negligible part in the change in nonlinear amplifier
content.
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the results in Table 3.5 reveal that the increase in the weight of the nonlinear kernels is

slightly larger for a pattern length of 215−1 bits than for a pattern length of 29−1 bits.

These preliminary trends serve to show that amplifier behaviour and it’s nonlinear con-

tent, ergo the learned Volterra models, are tied to three input signal parameters: the

peak-to-peak voltage, the data rate, and the bit pattern length. However, the data sets

derived from the first lab experiment are not sufficient to study and determine the role

each input signal parameter plays in modifying the amplifier response and so more lab

measurements will be required. In Chapter 5, the relationship between these parame-

ters and amplifier response is studied much more thoroughly based on the denser set of

measurements obtained during the second lab experiment.

3.3.3 Model Fidelity, Validity & Accuracy

Despite all of the work and insight that has been obtained up to this point of the thesis,

only a single way of determining the accuracy of the Volterra models has been shown.

This method was discussed in subsection 3.1.3, and it revolves around the computation

of the MSE, which represents a measure of the error that the adaptive algorithm commits

when modeling the output signal from the input. The lower the value of the MSE of the

model, the more accurate it will be.

Another possibility when analyzing how accurate a portrayal of the amplifier output the

Volterra models provide, is to study the eye diagrams of recorded lab output signals

and compare them to the eye diagrams of the corresponding Volterra modelled output

signals. Such comparisons can be seen in Figures 3.10 and 3.11, where the input, real

output, and modelled output signal eye diagrams for two different measurement sets are

shown. These measurement sets are the input and output signal pairs recorded for a

32 Gb/s NRZ input signal with 675 mVpp input voltage and for a 50 Gb/s NRZ signal

with 650 mVpp input Voltage. Both signals had a pattern length of 215 − 1 bits. All of

the characteristics of these measurements are shown in Table 3.2. Although difficult to

numerically quantify the fidelity of the models using this technique, the eye diagrams

provide a visual way of checking it.

A final and much more precise way of determining model accuracy and fidelity is dis-

cussed in Chapter 5. This method also represents an appropriate technique to select the

optimum values for Volterra model order and memory.
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Figure 3.10: Eye diagrams corresponding to the input and output signals, as well as
the modelled output. The input signal was a 32 Gb/s NRZ signal with a 650 mVpp
Voltage and a pattern length of 215 − 1 bits. The top image shows the eye diagram
corresponding to the input signal, the middle image shows the eye diagram of the
amplifier output signal, and the bottom image shows the eye diagram corresponding to

the modelled output signal.
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Figure 3.11: Eye diagrams corresponding to the input and output signals, as well as
the modelled output. The input signal was a 50 Gb/s NRZ signal with a 650 mVpp
Voltage and a pattern length of 215 − 1 bits. The top image shows the eye diagram
corresponding to the input signal, the middle image shows the eye diagram of the
amplifier output signal, and the bottom image shows the eye diagram corresponding to

the modelled output signal.
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3.4 Preliminary Observations

This section summarizes the main issues, ideas, and observations encountered while

processing the data obtained from the first lab experiment and the subsequent construc-

tion of the Volterra models. The aim is to provide insight on why certain techniques

mentioned throughout this chapter were not actually applied and to explain the results

obtained from this first set of measurements. These preliminary findings will later be

used to determine which measurements to record in the second lab experiment.

3.4.1 Sampling rate, content of recorded waveforms & considerations

for window selection

Earlier in this chapter, the concept of using a tapering window to extend shorter length

sequences was touched upon. In the end, because direct sequence concatenation could

be applied, this tool became unnecessary. The following discussion will explain how this

understanding was reached.

The results that have been shown up to this point have all been obtained assuming

that the waveforms recorded from the lab measurements represent a single run of the

corresponding symbol sequence. For example, this implies that all the recorded input

signals of rate 32 Gb/s and pattern length 29 − 1 bits contain 29 − 1 symbols3. This

can be verified by dividing the waveform length (in samples) of the captured waveform

by the equivalent time sampling rate (in samples/symbol), which for a 32 Gb/s signal

yields 11241
22 ≈ 29 − 1. However, if the true sampling rate of the oscilloscope is 22

samples/symbol, it means that it would have been operating at 32 × 22 = 704 GSa/s

during the experiment, which is a sampling rate well beyond the capabilities of any

modern day equipment. Naturally, the oscilloscope was not operating at such a high

sampling rate. The reason why we were able to capture that many samples/symbol

is because the scope was operated in an equivalent time sampling mode. This way the

oscilloscope acquires portions of the waveform during multiple trigger events and is able,

over time, to assemble these portions into a complete waveform. The true sampling rate

of the oscilloscope remains unchanged and is much lower than 704 GSa/s, which is why

in Tables 3.2 and 3.3 the parameter that gives us the samples/symbol has been defined

as the “equivalent time” sampling rate.

To further verify that the waveforms recorded with the oscilloscope do indeed represent

a single run of the corresponding sequences, their autocorrelation can be computed.

This operation is used to determine if the signal is periodic, in which case the recorded

3Because of the simplicity of an NRZ modulation scheme, each bit is represented by a single symbol.
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Figure 3.12: Autocorrelation of waveform recorded from the oscilloscope. It is a 32
Gb/s, 29 − 1 pattern length, 675 mVpp amplifier output signal.

waveforms will contain multiple runs of the same sequence. The autocorrelation of a

specific signal is shown in Figure 3.12, where it is easy to see by its single peak that the

waveform is not periodic.

Knowing that the recorded waveforms are not made up of shorter periodic sequences,

plotting the beginning and the end of each of the recorded waveforms will serve to finally

determine if they contain a single run of the corresponding bit sequence. In fact, these

plots are how we reached the conclusion that windowing shorter sequences to soften the

effects of their endpoints when concatenating them was actually unnecessary for our

purposes. Figure 3.13 shows the end and the beginning of a 32 Gb/s, 29 − 1 pattern

length amplifier output signal. It shows how the waveform ends in approximately the

same spot where it begins, which coupled with the fact that the waveform is not periodic,

justifies the idea that the captured waveforms represent a single run of each sequence.

In addition, Figure 3.13 depicts how smooth the transition between two copies of the

same signal is when applying direct concatenation.

Despite the fact that a tapering window ended up being unnecessary, it remains valuable

to document some of the conclusions that were reached in relation to the topic. In fact,

as is shown in the following paragraphs, had we applied the intended windowing and

overlap and add combination, the outcome would not have been what we intended.

It was mentioned earlier in this chapter that the window selected for the purposes of

tapering must satisfy a condition in the time domain that is similar to the Nyquist

zero ISI criterion in the frequency domain. This condition (3.6), which is known as the

constant-overlapp-add (COLA) constraint, is satisfied when successively R-time shifted

versions of a specific window always add up to one, where R represents the delay of each

window impulse response in samples.
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Figure 3.13: Direct concatenation of two copies of a waveform recorded from the
oscilloscope. It’s characteristics are: 32 Gb/s, 29 − 1 pattern length, 675 mVpp

amplifier output signal.∑
m∈Z

w(n−mR) = 1, ∀n ∈ Z. (3.6)

The Nyquist criterion for zero ISI, which states that for a channel impulse response to

be free of intersymbol interference, frequency shifted versions of its Fourier transform,

H(f − k
Ts

), must add up to a constant value, is given in (3.7). This serves to showcase

its similarity with the COLA constraint.

1

Ts

k=∞∑
k=−∞

H(f − k

Ts
) = 1, ∀f. (3.7)

Figure 3.14 shows how the Hanning window of length L = N + 1 and delay R = L/2

satisfies this condition and how the Tukey (tapered cosine) window with r = 0.1 does

not, where N is the length, in samples, of the signal to be windowed, and r is the ratio

of cosine-tapered section length to the entire window length. Figure 3.15 portrays the

effect of applying a Hanning window to taper the endpoint and beginning of a sequence,

as well as an example of using said window to perform 50% overlapp-add (50% comes

from setting R = N+1
2 in (3.6), where L = N + 1 is the window length). As can be seen

in the bottom image of Figure 3.15, the waveform that results when performing 50%

overlapp-add is corrupted and does not resemble the original signal shown in Figure 3.13.

Overlap-Add is generally employed to decompose a lengthy input signal into smaller,

easier to work with subsets called frames. These frames are processed individually and

can then be recombined using the overlap-add procedure to obtain the original signal.

Essentially, overlap-add constitutes a way of avoiding the cumbersome processing oper-

ations that large input signals usually entail. The reconstructed signal will be the same
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as the original because the falling taper and rising taper of the frames that overlap and

are then added, correspond to the same portion of the original signal. In our simulation

scenario, the falling and rising tapers are not applied to the same signal segments (they

are applied to the sequence endpoint and beginning), which results in a corrupted wave-

form that no longer resembles the original recorded signal. Therefore, even if applied,

this “makeshift” overlap-add procedure4 would not have achieved the desired results of

sequence endpoint softening for which it was originally intended.
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Figure 3.14: Verification of the COLA constraint for the Hanning window and the
Tukey window. The orange curve is obtained by adding the time shifted versions of the
window impulse responses. It shows how the Hanning window satisfies (3.6) and how

the Tukey window with r = 0.1 does not.

4The overlap-add procedure shown in Figure 3.15 is not identical to the widespread overlap-add
technique used in signal processing which is why it is referred to as a “makeshift” overlap-add procedure.
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Figure 3.15: 50 % Overlapp-add procedure: The top image shows the aftermath of
applying a Hanning window to taper the end and beginning of a sequence. The middle
image shows the windowed versions of the sequence shown in the top image with a
50 % overlap (R = N+1

2 in (3.6)). The bottom image shows the result of adding the
overlapped and windowed versions of the sequence shown in the middle image.
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3.4.2 Relationship between pattern length & amplifier nonlinearity

It was shown in a prior section of this chapter how the drive amplifier responds slightly

differently, in terms of the nonlinear content of the learned models, to signals with

different pattern lengths. This was reflected in Table 3.5. A possible explanation for the

variation between the normalized nonlinear Volterra kernel weights of these models may

be the difference in harmonic content between signals with different pattern lengths.

Let us look at the frequency spectrum of the signals recorded in the first lab experiment.

Figures 3.16 and 3.17 portray the signal spectrum of two input signals with pattern

lengths of 215 − 1 and 29 − 1 bits, respectively. As can be seen in these images, the

frequency spectrum associated to the longer length sequence appears to be denser and

has larger harmonic content than the spectrum of the shorter length signal. This makes

it plausible that differences in learned Volterra models for different bit patterns of an

input signal stem from variation in the harmonic content of these waveforms. In Chapter

5, when data related to more pattern lengths is available, a much better explanation

for the variability of the Volterra models as a function of the input signal spectrum is

provided.
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Figure 3.16: Power Spectral Density of a 32 Gb/s NRZ input signal with a pattern
length of 215 − 1 bits.
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Figure 3.17: Power Spectral Density of a 32 Gb/s NRZ input signal with a pattern
length of 29 − 1 bits.

3.4.3 Learning models via the VRLS algorithm

Recalling the final section of Chapter 2, we know that the VRLS algorithm can be

employed to learn the Volterra models, and that it might represent a superior option to

the VLMS algorithm. Thus, in order to determine the optimal algorithm, a practical

comparison between the two must be performed.

As has been done earlier for the VLMS algorithm, Figure 3.18 portrays the convergence

curves of the VRLS algorithm for different values of δi. Selecting the combination of

δi values that produce the lowest MSE curve (δ1 = 20, δ2 = 0.01, and δ3 = 0.01), and

choosing λ = 1 the VRLS algorithm is used to compute the normalized kernel weights

for the signals shown in Table 3.5. Table 3.6 compares the normalized kernel weights

obtained using the VRLS algorithm with the ones obtained using the VLMS algorithm.

As was foreseen in Chapter 2, both the VLMS and VRLS algorithms yield very similar

results and both embody viable adaptive algorithms to learn the Volterra models. In

terms of their differences, the VRLS algorithm converges to a steady state MSE value

quicker than the VLMS algorithm, but it requires the computation of larger matrices

and the definition of more initialization parameters than its counterpart.

Given that there are no significant advantages to using the VRLS algorithm, we will

continue to use the VLMS algorithm to learn the Volterra models.
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Table 3.6: Normalized Volterra kernel weights for various input signals computed
using the VLMS and VRLS algorithms. The superscripts indicate the adaptive
algorithm that has been used, where ‘r’ indicates VRLS and ‘l’ indicates VLMS.

Signal h̃l1 h̃l2 + h̃l3 h̃r1 h̃r2 + h̃r3

32 Gb/s
29 − 1 bits (pattern) 0.902 0.098 0.908 0.092

675 mVpp input
32 Gb/s

215 − 1 bits (pattern) 0.905 0.095 0.891 0.109
675 mVpp input

50 Gb/s
29 − 1 bits (pattern) 0.871 0.129 0.887 0.113

650 mVpp input
50 Gb/s

215 − 1 bits (pattern) 0.826 0.174 0.831 0.169
650 mVpp input
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Figure 3.18: Evolution of the MSE as a function of the VRLS iterations. The top
image has been obtained by using a sliding rectangular window of length N = 400.

The bottom image has been obtained by using a rectangular window of length
N = 4000.
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Chapter 4

Amplifier model impact on a

generic communications system

The primary goal of this thesis is to understand and characterize the nonlinear behaviour

of an amplifier based on mathematical models and simulation solutions. Studying the

impact amplifier nonlinearities have on a generic communications system will help in

achieving this objective. This chapter will explain the integration of the the truncated

Volterra amplifier models derived in the previous chapter with a communications system

operating in the presence of additive white Gaussian noise (AWGN). The simulation of

the entire synthesized system when including models learned in the first lab experiment

will also be discussed.

4.1 Inclusion of Volterra models into an AWGN Commu-

nications System

4.1.1 Communications System

The system and AWGN channel are constructed within a Matlab environment using a

simulation composed of a series of blocks. Each block performs a specific function in the

transmission, channel, or reception chain. This is shown in Figure 4.1, which provides

a graphical representation of the communications system and the channel. A thorough

description of each block is included in the following enumeration.

1. Block Encoder : The data is encoded using an LDPC code from the DVBS2 stan-

dard. The dimensions of the LDPC parity check matrix (PCM) will vary according
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Figure 4.1: Representation of the transmission of a single data block in the simulated
communications system and channel. Ns represents the number of samples/symbol.

to the chosen code rate. The simulations shown in this letter have been conducted

for a code rate of RLDPC = 3
4 , which results in a PCM, H, of size 16200× 64800.

The message length of the code is obtained by subtracting the columns and rows

of H, which for RLDPC = 3
4 is 48600 bits. In order to obtain reliable simula-

tion results, it is necessary to transmit sequences that are much longer than the

code message length. Therefore, the data sequence is fragmented into blocks of

48600 bits which are encoded separately. A random interleaver is introduced at

the output of the LDPC block encoder to reduce correlated error sensitivity.

2. M-QAM Modulator : Once the data is encoded, the code bits are mapped to the

appropriate constellation symbols. Since the amplifier models considered in this

letter have been learned from NRZ signals, binary modulation (BPSK/2PAM) is

employed.

3. Pulse Shaping : In the lab, the signals used to make the amplifier measurements

are NRZ signals. In Matlab, we create these NRZ signals by filtering the binary

symbols with a filter that has a rectangular impulse response. Although NRZ
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signals are oftentimes said to lack pulse shaping, we can consider them as signals

that have been pulse shaped using the most basic of pulse shapes: rectangles. The

objective of pulse shaping is to limit the effective bandwidth of the signal and

to control the channel induced intersymbol interference by changing the shape of

the transmitted signals. It should not affect the BER performance of the system

(unless ISI appears due to an incorrect combination of pulse shaping and matched

filtering). It may be interesting in future research to analyze if using different

pulse shaping, like root raised cosine filtering, changes the impact of the Volterra

models.

4. Volterra Model : To include the effects of the nonlinear device, after pulse shaping,

the waveform must be degraded in a manner befitting the drive amplifier. For

that purpose, the Volterra kernels learned previously are used to create a filter

that will affect the signal in a similar way to the real amplifier. Initially, the idea

of normalizing the coefficients of the Volterra model prior to synthesizing the filter

was conceived so that the sum of the kernel squares of the model would add up to

one.

This procedure, shown in (4.1), is no longer used, as it was increasing the weight of

the linear kernels and diminishing that of the nonlinear kernels, slightly modifying

the final simulation results. In (4.1), ĥi represents the Volterra kernel at position

i, i = 1 . . . α, were α represents the total number of kernels of the model (α varies

depending on model order and memory).

ĥi =
hi√∑α
j=1 h

2
j

(4.1)

5. AWGN Channel : After applying a specific Volterra model, white Gaussian noise is

added to the transmitted signal. Because the symbols of the selected modulation

format are real (they only have an in-phase component), the noise added in the

AWGN channel will only be included in the in-phase signal component.

6. Metric computation & Decoding : Once the waveform has traversed through the

Volterra model and the AWGN channel, the final steps in the simulation involve

performing matched filtering to correctly recover the corrupted symbols, demod-

ulating these symbols, and then decoding them into codebits. During different

stages of this reception process, prediction metrics can be calculated. The system

BER is computed at the end of the reception block. This is discussed at length in

the rest of this report.
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4.1.2 Applied Volterra Models

Simulating the communications system with the Volterra models learned from the first

set of lab measurements, especially the computation of the BER after FEC decoding,

takes up a considerable amount of time and computing resources. Longer memory and

higher order Volterra models increase the simulation requirements. However, although

it has not yet been proven, intuition suggests that simpler models will not provide as

accurate a portrayal of the amplifier behaviour. This means that there will be a trade-off

between model complexity and simulation time. It is thus a reasonable endeavour to

relearn different Volterra models and look at their accuracy and impact on the simula-

tions. Despite the fact that a third order M = 5 model has already been learned and

analyzed in Chapter 3, lower order and shorter memory models cannot be constructed by

simply selecting a subset of the kernels of this model. Due to the nature of the Volterra

series and the VLMS algorithm, the coefficient values will vary whenever P (order) or

M (memory) is changed, which means that every time a model with a different P or M

needs to be tested, it will have to be relearned by means of the adaptive algorithm for

the corresponding values of P and M .

The memory and order of the Volterra models stand out among a growing number of

parameters that play important roles in the BER simulations that are shown later in

this thesis. It is paramount in our endeavor of building an accurate behavioural ampli-

fier model to determine the relationship of these simulations with the aforementioned

parameters. Therefore, achieving a complete understanding of the BER results warrants

the relearning of Volterra models with the goal of asserting how the variation of P and

M affects the final results.

Lower memory and lower order Volterra models lack terms in the Volterra series to

reflect the complete nonlinear behaviour of the amplifier. This results in a more linear

than realistic portrayal of its behaviour, and so the BER simulation results will appear

“better” (less degraded), in terms of performance, than they really are. Models with

higher values of M and P include more terms of the Volterra series, resulting in larger

nonlinear kernel weights and a more accurate approximation of the amplifiers real-world

behaviour. Because these models contain more nonlinear terms, the expectation is that

the resulting AWGN simulations will be more degraded than for lower M and P models.

Another phenomenon worthy of inspection is simulation result behaviour as a function

of VLMS step sizes. In terms of the effects caused by changing these step sizes, we know

that variations between models learned with different step-sizes appear in the values of

their Volterra kernels. As it only makes sense to select those step-sizes that guarantee

algorithm convergence, and the difference between kernel values is negligible when said
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step-sizes are chosen, simulating models of same M and P but learned with different

VLMS step-sizes should result in almost identical outcomes.

The simulation results shown in the following chapter, which will be used to verify the

predictions that have just been made, have been obtained using a set of models with

different order and memory. The VLMS algorithm step-sizes used to learn these models

are µ1 = 0.01, µ2 = 0.001, and µ3 = 0.001 (in the case that P = 3). The normalization

variables calculated as shown in 3.1 are also included in Table 4.1. In addition, Table

4.2 provides the defining characteristics of the learned models, where h̃i for i = 1, 2, 3

is computed as shown in (3.5), and α represents the total number of kernels of each

model. The normalized kernel weights, h̃i, are used to measure the linear and nonlinear

content of the models. They provide a way of determining how linear/nonlinear the

learned model is. The series expansions of these models can be obtained from (2.2) by

setting the appropriate value of M , and disregarding or including the third order terms

depending on the order of the model in question.

Table 4.1: Values of the normalization parameters Gx, Sx, Gd, Sd, where x(n) and
d(n), are the input and output signals explained in Chapter 3.

Model Sx Gx Sd Gd

32 Gb/s
215 − 1 bits 0.0047 0.1907 0.0245 2.8979
675 mVpp
50 Gb/s

215 − 1bits -0.0091 0.2063 -0.0247 2.9819
650 mVpp

4.2 Simulation of the complete nonlinear AWGN system

Having explained how the Volterra models that have been learned are integrated with

the AWGN communications system, we are now in a position to discuss how relevant

information can be obtained from this setup. This section explains the different types of

simulations that the complete system can be put through to quantify the effects caused

by the addition of the nonlinear Volterra models to the AWGN communications system.

How the inclusion of these models reflects on the performance of the LDPC decoder

shown in Figure 4.1 is analyzed. Moreover, a prediction metric is proposed as a viable

way of studying the impact these nonlinearities have. Finally, a method to select Volterra

model memory and order, and to determine the models’ overall accuracy is proposed.
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Table 4.2: Characteristics of the models learned from the first set of lab
measurements.

Model P M α h̃1 h̃2 h̃3

32 Gb/s
215 − 1 bits 2 12 65 0.9910 0.0090 -
675 mVpp
32 Gb/s

215 − 1 bits 3 3 19 0.9706 0.0081 0.0213
675 mVpp
32 Gb/s

215 − 1 bits 3 4 34 0.9595 0.0089 0.0316
675 mVpp
32 Gb/s

215 − 1 bits 3 5 55 0.9501 0.0040 0.0459
650 mVpp
50 Gb/s

215 − 1 bits 2 12 65 0.9947 0.0053 -
650 mVpp
50 Gb/s

215 − 1 bits 3 3 19 0.9237 0.0027 0.0736
650 mVpp
50 Gb/s

215 − 1 bits 3 4 34 0.9068 0.0012 0.0.092
650 mVpp
50 Gb/s

215 − 1 bits 3 5 55 0.8998 0.0052 0.0950
650 mVpp

4.2.1 Theoretical baselines & the post-FEC BER

An analysis of the effects caused by adding the Volterra models to the communications

system will require the study of a variety of different scenarios. A good method to

begin with is to draw comparisons and seek similarities between established theoretical

baselines, linear AWGN waveforms1, and transmissions affected by both the nonlinear

Volterra models and AWGN. In terms of theoretical baselines for systems that use FEC,

the Shannon limit is extensively used. It provides the SNR value for a specific spectral

efficiency, denoted by ρ2 and measured in bits per 2 real dimensions (bits2D ), below which

reliable communication is not possible. In the Matlab simulations, depending on the

value selected for RLDPC, both the system spectral efficiency, ρs, and the specific theo-

retical limit for that spectral efficiency will vary. When the spectral efficiency approaches

zero (low rate LDPC codes), a final limit, known as the ultimate Shannon limit, can be

obtained. The Shannon limit for a given ρ is shown in (4.2), where Eb
N0

is known as the

1In this context, the term linear implies that the signal has not been subjected to amplifier nonlin-
earities during the simulation. This is accomplished by applying a Volterra model in which only the first
order kernels are present, the higher order kernels having been zeroed out. In other words, the signal
goes through a Volterra model in which the nonlinear components have been ‘shut off’.

2Throughout this letter, the spectral efficiency of an arbitrary communications system will be denoted
by ρ. The subscripted version of this notation, ρs, is used to refer to the spectral efficiency of the system
considered in the Matlab simulations.
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SNR per bit and is the de facto SNR measure in channel coding systems where ρ ≤ 2.
Eb
N0

is a normalized version of the conventional SNR3.

Eb
N0

>
2ρ − 1

ρ
(4.2)

The ultimate Shannon limit is obtained from (4.2) as shown in (4.3), where we have used

the fact that limρ→0 2ρ−1 ≈ ρ ln 2. From this point onwards in this letter, in accordance

with channel coding notation used for systems with ρ ≤ 2, the SNR per bit, Eb
N0

, will be

employed.

Eb
N0

ult

> lim
ρ→0

2ρ − 1

ρ
≈ ln 2 ≈ 0.69 (−1.59dB). (4.3)

The Shannon limit provides a way to measure the quality of FEC codes by defining

the theoretically lowest attainable SNR that guarantees error-free communication for a

specific value of ρ. Another comparison possibility is to look at the performance of an

uncoded system (one that does not use FEC) with a specific ρ and compare it to our

system with FEC. This will allow us to quantify how much is gained by introducing

FEC in the communications system. Because the simulations considered in this letter

use binary modulation, which without FEC coding and pulse shaped with Nyquist pulses

has ρ = 2, we will take the bit error probability of binary pulse modulation (2-PAM) for

baseband channels or 2×2-QAM for passband channels as our uncoded baseline.

The theoretical expression for the BER of an uncoded system with ρ = 2 working in the

presence of AWGN, which we will denote by Pb,2, is given in [13] and shown in (4.4),

where Q(x)4 is the Q-function and erfc() is the complementary error function.

Pb,2 = Q

(√
2
Eb
N0

)
=

1

2
erfc

(√
Eb
N0

)
. (4.4)

By evaluating the performance of the uncoded modulation scheme for ρ = 2 and com-

paring it to the Shannon limit, it is possible to determine how much is gained by using

FEC codes. The coding gain, defined as the difference in SNR values for a given error

probability between the uncoded BER and the FEC BER, is a measure of this improve-

ment. The spectral efficiency of the communications system that is simulated in this

letter is given by ρs = 2RLDPC[bits2D ], where RLDPC is the rate of the selected LDPC code.

Since RLDPC < 1, the gain obtained by using these LDPC codes must be compared to

the uncoded performance for ρ = 2 relative to their respective Shannon limits. This

3The relationship between Eb
N0

and the SNR is given by SNR = ρEb
N0

.
4The Q-function represents the probability that a Gaussian random variable will take a value larger

than x standard deviations. It is defined as Q(x) = 1
2π

∫∞
x

exp(−u
2

2
)du. It can be expressed in terms of

the complementary error function as Q(x) = 1
2
erfc( x√

2
).
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way, numerical comparisons between the simulation results, uncoded performance and

the Shannon limits will be possible, potentially enabling the study of how the Volterra

models affect the coding gain of the FEC scheme. For contextual purposes, although a

coding gain comparison is not conducted in the text, the results shown in this section

will include the Shannon limit for the spectral efficiency of the system ρs, the ultimate

Shannon limit, and the uncoded BER baseline for ρ = 2 bits
2D given in (4.4).

To be able to compare the aforementioned theoretical values to the simulated trans-

missions, a measure of their system BER is required. Such a measure can be obtained

by computing the bit error rate after FEC decoding, known as the post-FEC decoding

BER, and denoted by BERpost. A theoretical expression for BERpost is provided in [14].

In the simulations, BERpost is obtained by computing the number of decoded bits in

error for each transmitted waveform. This is performed by comparing the decoded data

block with the corresponding original transmitted data block. Since these simulations

do not include outer FEC coding and since the comparison of data blocks implies a

comparison between information bits, hard decision detection is performed on the soft

outputs produced by the SD-FEC LDPC decoder. This is shown in Figure 4.2.

Figure 4.2: Computation of BERpost.

An important factor to note when computing BERpost is the maximum number of itera-

tions the LDPC decoder is allowed to perform before producing data bit estimates. The

amount of bit errors the decoder makes will be conditioned by the number of decoding

iterations. To study the relationship between this variable and the simulation results,

the decoder is run for two separate maximum numbers of decoding iterations; 50 and

100. Looking at this factor might also be useful to determine if an increase in decoding

iterations mitigates the impact caused by the Volterra models5.

5It is well known that up to a certain number of iterations, increasing the time the decoder is allowed
to run results in improved bit estimates. In turn, this will lead to lower BERpost results.
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4.2.1.1 Post-FEC BER: Expected results

Before looking at the outcome of the simulations, predictions on what these results will

look like can be made according to the theory derived previously in this section.

The Matlab framework tests models learned for two different data rates: 32 and 50 Gb/s.

Based on the definition of the spectral efficiency given earlier, because the modulation

scheme remains the same for both data rates, their spectral efficiency will be identical,

being given by ρs = 2RLDPC. However, it seems reasonable that an increase in signal

data rate from 32 to 50 Gb/s should be accounted for somewhere in the theoretical

calculations. We have defined our SNR measure as the SNR per bit, Eb
N0

. The energy

per symbol, which is identical to the energy per bit in our case, can be expressed as

Eb = PTs, where P is the output power of the system and Ts is the symbol period of our

rectangular NRZ pulses. As shown in [15], we can re-express the SNR as a quotient of

powers by multiplying both the numerator and denominator of Eb
N0

by 1
Ts

. This is given

by

SNR =
Eb
N0

=
P

N0W
,

where N0W is the noise power and W = 1
Ts

is the bandwidth of the noise. It is now easy

to see how an increase in signal data rate will not be reflected in the value of the SNR per

bit. Increasing the data rate implies a shorter symbol period Ts which means an increase

in W . As a result, the ratio P
N0W

= Eb
N0

will remain unchanged. Therefore, the expected

outcome of the simulations is that linear AWGN transmissions (model nonlinearities are

turned off) at 32 Gb/s and 50 Gb/s produce the same post-FEC decoding curves. In

other words, that their bit error performance will be identical.

With regard to the nonlinear models, the expectation is that at 32 Gb/s, the applied

Volterra models cause a degradation in performance such that higher Eb
N0

values than

in the linear scenario are required for the same BERpost values. This effect should not

be significant, as all of the 32 Gb/s models shown in Table 4.2 have near negligible

nonlinear kernel weights. At 50 Gb/s, a heavier performance loss than at 32 Gb/s is

expected for the full nonlinear model. The deterioration of the BER curves should still

remain relatively modest, as the nonlinear weights of the 50 Gb/s models shown in Table

4.2 are a lot smaller than the linear kernel weights. The fact that the performance loss

should not be substantial is further supported by the eye diagrams shown in Figures 3.10

and 3.11, which show how there is an increase in nonlinear behaviour when going from

32 to 50 Gb/s transmissions but that the resulting eye pattern is not overly corrupted.
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4.2.1.2 Post-FEC BER: Simulation results

The results analyzed in this subsection have been obtained by running a simulation

that computes BERpost as a function of the SNR per bit for a variety of transmission

scenarios: linear AWGN signals (Volterra model without nonlinearities) at 32 and 50

Gb/s, and nonlinear AWGN signals (full Volterra model) at 32 and 50 Gb/s. The rate of

the LDPC code was set at RLDPC = 3
4 . The Volterra model was a P = 3 M = 5 model.

Its characteristics are shown in Table 4.2. Figure 4.3 portrays the post-FEC BER of

these transmission configurations. Each simulated transmission results in two BERpost

curves, where one denotes the result obtained when the LDPC decoder is run for 50

iterations and the other one denotes the result for 100 iterations. Table 4.3 is provided

to numerically ground the differences between the curves of Figure 4.3. The parameter

dnl denotes the distance between the linear AWGN curves and the nonlinear curves at a

specific data rate, in dB. It is obtained by subtracting Eb
N0

(NL-AWGN)− Eb
N0

(LN-AWGN)

when BER50
post(NL-AWGN) = BER50

post(LN-AWGN) = 10−2 for the 32 or 50 Gb/s curves.

Table 4.3: Data obtained from Figure 4.3. The signal type field identifies the curves
shown in the figure. LN stands for linear and NL stands for nonlinear. The

nonlinearities are simulated using the P = 3 and M = 3 models shown in Table 4.2.

Signal Signal Eb
N0

BER50
post BER100

post dnl
Type Rate (dB) (dB) (dB) (dB)

(Gb/s)

LN-AWGN 32 0.8159 0.0100 0.0085 -
LN-AWGN 50 0.8201 0.0100 0.0092 -
NL-AWGN 32 1.3200 0.0100 0.0098 0.5041
NL-AWGN 50 1.8110 0.0100 0.0083 0.9909

Prior to discussing the results portrayed by Figure 4.3, it is important to restate how

the 32 Gb/s and 50 Gb/s linear AWGN curves are obtained. These BERpost curves are

computed from signals that have gone through the corresponding P = 3 M = 5 linear

version of the nonlinear model from Table 4.2. The linear version of the nonlinear model

is obtained by simply “shutting off” (zeroing out) its nonlinear components. In other

words, the NRZ signal is solely subjected to the first order kernels (the higher order

terms have been zeroed out) of the respective Volterra models prior to the addition of

AWGN.

If we now analyze the curves shown in Figure 4.3, we will be able to verify if they match

the expected outcomes mentioned in the previous subsection. Based on the definition of

the spectral efficiency in bits per two real dimensions, one of the theoretical predictions

was that the linear AWGN transmissions at 32 and 50 Gb/s should result in identical

bit error performance. This can be seen in Figure 4.3, which shows how the linear
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Figure 4.3: BERpost curves for various transmitted signals and different LDPC
decoder iterations. The superscripts of the BERpost entries represent the number of
LDPC decoding iterations that were used. The Volterra model used to mimic the
amplifier nonlinearities is a third order M = 5 model. The acronyms LN and NL

represent the words “linear” and “nonlinear”, respectively.

BERpost curves for 32 and 50 Gb/s and for both decoder iteration scenarios are essentially

identical (the slight variation is attributed to simulation conditions). Moreover, Figure

4.3 also portrays how close the FEC system with ρs = 3
2 is to the Shannon limit for that

spectral efficiency (0.859dB).

Another theoretical assumption was that inclusion of the full nonlinear models would

result in a worsened bit error performance, and that this degradation would be higher at

50 Gb/s than at 32 Gb/s. This bit error performance deterioration can be assessed by

comparing the BERpost curves for the nonlinear Volterra models at a specific data rate

with their corresponding linear AWGN curves. We quantify the assessment based on the

parameter dnl given in Table 4.3, which measures the separation at a specific BER value

between the linear AWGN curve at a given data rate and its nonlinear counterpart at

that same rate. At a BERpost value of 10−2, for 32 Gb/s, dnl = 0.5041 dB. At that same

BERpost value, dnl = 0.9909 at 50 Gb/s. This means that, in the linear regime of the

amplifier (data rate of 32 Gb/s), the nonlinear components of the model cause an SNR

loss of about 0.5 dB. At 50 Gb/s, the SNR loss due to inclusion of the nonlinearities

doubles, embodied by dnl ≈ 1 dB. This verifies our previous theoretical assumption.

Although the SNR loss values of 0.5 dB at 32 Gb/s and 1 dB at 50 Gb/s seem to be

relatively small values, data for different transmissions will be necessary to determine

just how significant these losses are.
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We can also determine the effectiveness of increasing the LDPC decoder iterations as

a mitigation measure for the nonlinearities of the Volterra models by observing the

BER100
post curves of Figure 4.3. It seems quite clear from the simulation results that

increasing the decoder iterations does not lead to any improvements of relevance in terms

of the bit error performance. Despite the fact that there is a very slight enhancement

(BER100
post decreases more rapidly than BER50

post), it does not appear to be a plausible

way to bridge the gap between the linear AWGN curves and the respective nonlinear 32

Gb/s and 50 Gb/s curves.

Finally, upon further inspection of Figure 4.3, one may notice that the BERpost curves are

cut short after 10−4. This phenomenon is caused because of the fact that the number of

transmitted bits in the simulation is not sufficiently large. The simulation conducted to

obtain Figure 4.3 considered the transmission of 100 data frames of 48600 bits, resulting

in a total of 4860000 data bits and 6480000 code bits. Increasing the accuracy with

which BERpost values can be calculated, in other words, computing values below 10−4

for the curves shown in Figure 4.3, would require simulating the transmission of an even

larger quantity of data frames. In reality, BERpost values should be as low as 10−12 or

10−15. Since these values cannot be reliably estimated using Monte-Carlo simulations,

a different strategy will be required. The conventional design method adopted as the

substitute of BERpost computation involves simulating the system without FEC coding,

optimizing it for a much higher BER value, and assuming that said BER value can be

reduced to the desired BERpost values. This is discussed in the following subsection.

Nevertheless, the results shown in Figure 4.3 are useful to analyze the relationships

between the simulated transmissions, theoretical results, and other factors, such as the

impact of the maximum number of decoding iterations.

4.2.2 The pre-FEC BER

The computation of reliable and low enough values of BERpost by means of Monte-Carlo

simulations is impractical because of the heavy time and computational costs they entail.

The complexity of calculating the post-FEC BER by means of these simulations can be

circumvented by computing a set of prediction metrics that will also enable us to study

the impact of the nonlinear Volterra models on the system.

The most widely employed prediction metric is the pre-FEC decoding BER, denoted by

BERpre. It is used as a standard performance measure for uncoded systems. As is men-

tioned in the previous subsection, the design strategy revolves around the assumption

that below a certain sufficiently small value of BERpre, subsequent values of this un-

coded BER are guaranteed to be reducible to the desired BERpost values via previously
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verified FEC implementations. This assumption is known as the FEC limit paradigm,

and it has been extensively applied in the field of optical communications. The validity

of this paradigm is discussed in Chapter 6.

In [14], a mathematical expression for BERpre is given. In our Matlab simulations,

we compute the pre-FEC BER by comparing received and transmitted codebits in-

stead. The method is analogous to the computation of BERpost, albeit the comparison

is performed between code bits and not information bits. Figure 4.4 provides a visual

representation of how BERpre is calculated in the simulation. It requires the inclusion

of a hard decision detector at the output of the soft binary demodulator. This HD

detector will minimize BERpre by making hard decisions on the a posteriori logarithmic

likelihood ratios computed by the soft demodulator. These ratios are given by (4.5),

where k = 1, . . . , n, n is the total number of transmitted code bits, and PCk|Yk(1|yk)
and PCk|Yk(0|yk) are the probabilities that Ck = 1 or Ck = 0 given that yk was received,

respectively.

Lapo
k = log

PCk|Yk
(1|yk)

PCk|Yk
(0|yk)

(4.5)

Figure 4.4: Computation of BERpre.

We can now simulate the same transmission scenarios considered to obtain the BERpost

curves shown in Figure 4.3, but computing BERpre instead. The computation of BERpre

will be identical to that of BERpost, with the difference being that we will calculate code

bits in error instead of decoded bits in error. As previously, predictions on what the
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results should look like can be made based on theory. We predict, as we did for BERpost,

that the linear AWGN 32 Gb/s and 50 Gb/s transmissions should produce identical

BERpre curves. In addition, since FEC coding is no longer being used, and given that

ρs = 2, these linear AWGN curves should be very close to the theoretical uncoded limit

Pb,2.

As in the case with FEC coding, the nonlinear Volterra models for a specific data rate

should cause a deviation (increase in required Eb
N0

for same BERpre) from the correspond-

ing linear AWGN BERpre curve at that data rate. The deviation caused by the nonlinear

model at 50 Gb/s should be more severe than for 32 Gb/s.

Figure 4.5 shows the result of computing BERpre for signals that have traversed through

linear and nonlinear models for 32 and 50 Gb/s (extracted from measurements conducted

in the first lab experiment) and the AWGN channel. As was foreseen, the BERpre curves

exhibit the same behaviour shown by the BERpost results of Figure 4.3. The 32 Gb/s

and 50 Gb/s linear AWGN BERpre curves are almost identical, being slightly above the

theoretical BER limit. The nonlinear model at 32 Gb/s causes a slight detereoration

in the BERpre curve, reflected by the separation between the linear 32 Gb/s and the

nonlinear result at that data rate. At 50 Gb/s, applying the full nonlinear Volterra

model causes an even larger loss in performance.
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Figure 4.5: BERpre curves for 32 Gb/s and 50 Gb/s signals that have gone through
the linear and nonlinear versions of a P = 3 M = 5 Volterra model. The LDPC code

rate is RLDPC = 3
4 . Results for signals with the same data rate are plotted in the

same colour, while results for the same type of model (LN/NL) are pictured with the
same data marker.
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4.2.3 Volterra model accuracy

Earlier in this thesis, two different ways of verifying the accuracy of the learned Volterra

models have been explained. The first method utilizes the mean square error of the

adaptive algorithm as a measure of accuracy, while the second calls for the comparison

of measured output signal and modelled output signal eye diagrams. A variant of this

second method that has not yet been suggested could be to compare the output signal

waveform with the modelled output waveform. Although these techniques provide a

useful way of “eyeballing” how accurate the Volterra models are, a more precise way to

determine model fidelity is desirable.

Given that we have constructed a simulation that computes BERpre, we can look for

potential ways of using this metric to determine the accuracy of the learned Volterra

models. Considering that BERpre simulations do not require FEC coding, a simple

way of comparing lab output signals with Matlab modelled outputs could be to simply

transmit the recorded lab output signals and the Matlab Volterra model output signals

through the synthetic AWGN channel and computing the corresponding BERpre curves.

In the case of lab recorded signals, the computation of BERpre requires the comparison

of the codebits of the input signal with the codebits of the amplifier output signal after it

has gone through the synthetic AWGN channel. Gauging the similarities and differences

between the lab signal and modelled signal curves, how accurate a portrayal of the real

amplifier nonlinearities the models provide might be assessed. The computation of the

BERpre curves required for this comparison method is shown in Figure 4.6.

Based on the simulation infrastructure shown in the previous figure, a set of BERpre

curves related to lab measurements from the first experiment is computed. This is shown

in Figure 4.7. The set of BERpre curves is explained in the following enumeration:

1. The BERpre curve computed for a recorded lab amplifier input signal at 50 Gb/s,

450 mVpp voltage, and a pattern length of 215−1 bits after transmitting it through

an AWGN channel. Because we are only comparing code bits influenced by additive

white Gaussian noise, this curve should be extremely similar to the theoretical

curve for a BPSK constellation in an AWGN channel, Pb,2.

2. The BERpre curve computed for a recorded lab amplifier input and output signal

pair at 50 Gb/s, 450 mVpp voltage, and a pattern length of 215−1 bits after trans-

mitting it through an AWGN channel. As is shown in Figure 4.6, to compute this

BERpre curve, the comparison occurs between the input signal code bits recorded

in the lab and the amplifier output signal code bits recorded in the lab after they

have travelled through the AWGN channel in the simulation. This information
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Figure 4.6: Methodology devised to determine Volterra model accuracy. BERpre

values for the AWGN simulation results that include learned Volterra models (top
image) are compared to BERpre values for lab recorded signals solely influenced by

the synthetic AWGN channel (bottom image).
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should portray the real nonlinear effects of the amplifier for this specific input

signal.

3. The BERpre curves computed for the lab amplifier input signal at 50 Gb/s, 450

mVpp voltage, and a pattern length of 215 − 1 bits corrupted by two correspond-

ing Volterra models of different order prior to transmission through the AWGN

channel. These curves should portray the nonlinear effects of the amplifier that

each of the models can successfully mimic for this specific input signal.

4. The theoretical BERpre curve for a BPSK constellation in an AWGN channel, Pb,2.
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Figure 4.7: BERpre curves obtained from lab recorded signals as well as from
Volterra modelled signals. This comparison represents a viable way of assessing

Volterra model accuracy.

Upon inspection of Figure 4.7, a set of important observations can be made. To begin

with, the result of transmitting the amplifier input signal through the AWGN signal

results in an identical curve to Pb,2. This coincides with the expected result, as the

amplifier input signal has not been subjected to any nonlinearities and thus should not

exhibit a more degraded performance than the theoretical uncoded baseline. Differences

arise when we compare the modelled signal BERpre curves with the lab recorded signal

pair BERpre curve. By looking at the modelled signal BERpre curves, one can observe

how both of the applied Volterra models fail at capturing the full extent of the per-

formance degradation caused by the amplifier nonlinearity. This is represented by the

separation on the x-axis between the aforementioned curves and the BERpre curve for

the lab data. Interestingly, it seems as though the curve related to the higher order
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model (P = 3) provides a more accurate representation of the performance degradation

caused by the amplifier than the curve related to the lower order model (P = 2). This

means that the BERpre curves might also constitute an effective way of selecting Volterra

model order and memory.

In summary, the BERpre metric provides an accurate way of assessing the accuracy of

the learned Volterra models. Moreover, by previously accounting for model complexity,

BERpre may also be used to determine the optimum values for M and P of a Volterra

model.

4.2.3.1 Determining the optimum order and memory for a Volterra model

Expanding upon the use of BERpre to determine model accuracy, we can now study the

tradeoff between between model complexity and accuracy to find the optimum values

for M and P of each specific Volterra model.

Figure 4.8 shows the result of computing BERpre for the transmission of a 32 Gb/s,

450 mVpp voltage, and 215 − 1 bit pattern lab recorded input signal through different

order and memory nonlinear models and through the AWGN channel. It also includes

the BERpre result obtained for the corresponding input and output lab recorded signal

pair (as shown in the bottom image of Figure 4.6) to gauge the accuracy of the Volterra

models. The order of these models is either P = 2 or P = 3 and their memory is set at

M = 3, M = 4, and M = 5. The linear AWGN transmissions for each model have been

omitted to improve clarity of the graph6.

Analyzing the curves shown in Figure 4.8 the following can be observed. At 32 Gb/s,

neither increasing model memory nor model order seems to change model accuracy,

reflected by the fact that the BERpre curves for all three models are essentially identical

to each other and the curve associated to the recorded input and output signal pair.

Figure 4.9 shows the result of computing the same BERpre curves as in 4.8 but for signals

at a data rate of 50 Gb/s. It is easy to see how at this higher data rate, the narrative

differs with respect to 32 Gb/s. At 50 Gb/s, increasing the value of M results in BERpre

curves that are much closer to the result obtained for the lab recorded signal pairs.

The phenomena observed at 32 and 50 Gb/s can be explained by studying the char-

acteristics of the applied models. When model memory is increased, more nonlinear

terms are added to the Volterra series. At 32 Gb/s and an input voltage of 450 mVpp,

6When the nonlinear components of these models are “shut off” to obtain the linear versions of said
models, variation between the values of their first order kernels is minimal. As a result, the linear AWGN
curves for all the models are almost identical.
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Figure 4.8: Comparison between the nonlinear third order M = 3, M = 4, and M = 5
models learned from 32 Gb/s input signals. Colours identify the results obtained for a

specific model while data markers distinguish between signal data rates.
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Figure 4.9: Comparison between the nonlinear third order M = 3 and M = 5 models
learned from 50 Gb/s input signals. The M = 5 model achieves the most accurate

portrayal of the amplifier behaviour.
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the value of these nonlinear kernels is negligible. Therefore, although α goes from 19

at M = 3 to 55 at M = 5, this causes no noticeable differences on the BERpre curves

associated to each model. At 50 Gb/s and a voltage of 650 mVpp, the amplifier seems

to exhibit augmented nonlinear behaviour, which is reflected by nonlinear kernels that

are no longer negligible. At this data rate, adding more nonlinear terms to the Volterra

model, because of the added non-negligible kernels, results in a closer BERpre curve to

the lab recorded signal pair result. This means that the nonlinear terms learned for

higher M models have significantly larger values than they did at 32 Gb/s, as shown

by the separation between the 50 Gb/s M = 3 and M = 5 curves of Figure 4.9. These

observations prove the earlier prediction which stated that increasing model memory

should result in more accurate models.

An explanation as to why these phenomena are taking place might be found by relating

them to two factors: the input signal voltage and the amplifiers behaviour. The study

of the relationship between input signal amplitude and amplifier nonlinearity will be

discussed in Chapter 5, which works with the second lab measurements.

Part of the original hypothesis, which stated that model accuracy would increase with

model order, has not yet been verified. This can be checked by simulating Volterra

models with P = 2 and comparing the results to those obtained for the third order

models. Figure 4.10 shows the bit error curves shown in Figure 4.9 along with the

BERpre curve when using a P = 2 M = 3 model. Their characteristics can be seen in

Table 4.2.

Observing the results shown in Figure 4.10, it is easy to see how the second order model

is incapable of emulating the nonlinear behaviour of the amplifier at 50 Gb/s. This can

be explained by looking at the data shown in Table 4.2, specifically the magnitude of

the second order kernels, h̃2. For the P = 2 model, the value of h̃2 is almost negligible.

When P = 3, the same can be said for h̃2 but not for h̃3, whose value is two orders

of magnitude larger than h̃2. Therefore, the BER curve difference at 50 Gb/s when

P = 2 and P = 3 must surely be caused by the cubic kernels. In view of these results,

it is obvious that the hypothesis that increasing model order increases model accuracy

is correct.

Based on the above observations and the data shown in Table 4.2, the best way to select

the values for M and P for a given Volterra model comes down to minimizing Volterra

model complexity while maximizing Volterra model accuracy. This can be summarized

by the following phrase: Select the smallest possible values for M and P that yield BERpre

curves that are acceptably close to the lab recorded data. Determining what constitutes

an acceptably close BERpre curve will be conditioned by different requirements and will

be further explained in the following chapter.
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To close this subsection, after the variety of results shown within it, we can conclude

that the magnitude of h̃2 will remain constant and insignificant in comparison to h̃1 and

h̃3 regardless of how M and P are varied. This phenomenon might explain the reason

why in other papers, such as [16], [17], and [18], the quadratic kernels are not included

in Volterra series expressions.
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Figure 4.10: Comparison between the linear and nonlinear second order M = 12
model at 32 Gb/s and 50 Gb/s with the third order M = 5 model at those same data

rates. The second order model is unable to reflect the increased nonlinearity that
appears when the amplifier is fed with a 50 Gb/s signal.

4.2.4 Effects of varying the VLMS step size

It was mentioned earlier that BER results obtained when simulating models of same

M and P but learned with different VLMS step-sizes, if these step sizes guarantee

algorithm convergence, should result in almost identical outcomes. With the purpose of

maintaining a certain degree of rigour, the previous statement should be verified. Figure

4.11 shows the results obtained when running the same simulation used to obtain the

curves shown in Figure 4.5, but for an M = 3 P = 5 Volterra model relearned for

different VLMS step size combinations. As was expected, variation in the results is

negligible. This serves as a sanity check, proving the adaptive Volterra algorithm works
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as intended, and that the variation in the step sizes does not lead to drastically different

results.
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Figure 4.11: BERpre curves for 32 Gb/s and 50 Gb/s transmissions for an M = 3
P = 5 model learned for different values of the VLMS step-sizes, µ1, µ2, and µ3. The
linear AWGN curves at 32 Gb/s and 50 Gb/s are almost identical for all the tested

models which is why a single colour and curve format represents the linear results at a
given data rate. As in Figure 4.9, the colours of the curves distinguish results for each

model while markers differentiate between signal data rates.
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Chapter 5

Factors that critically affect the

content of nonlinearity in the

amplifier response

In this chapter, we will use the computational and analytic tools derived in the prior

contents of this thesis to process lab measurements recorded in the second experiment.

The aim is to achieve a complete understanding of the relationship between specific input

signal characteristics and the nonlinear content of the electronic amplifier response.

5.1 Model adjustment to input signal parameters

Throughout previous chapters of this thesis, characteristics of the amplifier input signals

that cause change in its behaviour and hence variation of the learned Volterra models

have been analyzed. The first set of lab measurements served to identify three specific

aspects of the input signals that can be associated with change in the learned Volterra

models. The first one is the data rate of the amplifier input signal, whose effects on

model variability have previously been discussed to some extent. The second one is

the pattern length of the amplifier input signal. In Chapter 3, a hypothesis for why

said parameter may account for learned Volterra model variations was ventured. The

third and final parameter related to changes in amplifier response is the peak-to-peak

voltage of the input signal. It’s impact on the learned Volterra models has not yet been

discussed.

In order to conduct an exhaustive analysis on how these parameters cause variation in

the learned Volterra models, precise lab recorded data sets are required. Although useful
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as a starting point, the measurements recorded in the first lab visit are not suitable for

such a task. This initial experiment was meant to obtain just enough data to develop

processing tools, so the input/output signal pairs that were recorded were not sufficient

to thoroughly study the effects of these input signal parameters on amplifier behaviour.

This is where the measurements conducted in the second lab visit come into play, as

they where exclusively designed to analyze the impact of the aforementioned parameters.

The input and output signal pairs recorded in the second lab experiment are shown in

Table 5.1 (repetition of Table 3.3).

Table 5.1: Characteristics of the signals used as the input of the electronic drive
amplifier in the second lab visit.

Modulation Rate Pattern Voltage Equivalent Time Waveform
(Gb/s) Length (mVpp) Sampling Rate Length

(bits) (Samples/symbol) (samples)

NRZ 50 29 − 1 650 15 7664
NRZ 50 211 − 1 650 15 30704
NRZ 50 215 − 1 650 15 491504
NRZ 38 215 − 1 650 19 622572
NRZ 44 215 − 1 650 16 524271
NRZ 56 215 − 1 650 15 425970
NRZ 56 215 − 1 600 13 425970
NRZ 56 215 − 1 500 13 425970
NRZ 56 215 − 1 400 13 425970
NRZ 50 215 − 1 600 15 491504
NRZ 50 215 − 1 500 15 491504
NRZ 50 215 − 1 400 15 491504

The aim of these measurements was to obtain data that would allow us to assess the

impact caused by varying each of the three input signal parameters individually. With

this goal in mind, numerous recordings of amplifier input/output signal pairs in which

only one input signal parameter is varied and the other two are kept constant were

extracted. By jointly analyzing these results, the relationship between the parameters

and the learned models can be established and the derivation of a complete behavioural

model might be achieved.

In summary, this chapter will study the impact of varying each of the three input signal

parameters independently. The goal is to completely understand how the amplifier and

the subsequent Volterra models will behave according to variations of these input signal

parameters.
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5.1.1 Analysis Guidelines

The data studied in this chapter will be analyzed based on the procedure summarized

by the following set of guidelines:

1. In order to run the adaptive algorithm an equal number of iterations for every

input/output signal measurement pair, shorter1 input/output signal pairs are ex-

tended by sequentially concatenating them. This technique is more thoroughly

explained previously in subsection 3.3.1.1.

2. All Volterra models extracted from the amplifier input/output signals recorded in

the second lab experiment are learned for the combination of VLMS step-sizes:

µ1 = 0.01, µ2 = 0.001, and µ3 = 0.001

3. All Volterra models extracted from the amplifier input/output signal pairs recorded

in the second lab experiment are learned for P = 3 and M = 5. As was shown in

chapter 8, these model memory and order values yield the most accurate nonlinear

Volterra models while simultaneously maintaining model and algorithm complexity

manageable. Higher values of M severely increase the time required by the VLMS

to learn the model while providing negligible improvements in accuracy. Higher

values of P have not been tested due to the augmented complexity of the adaptive

algorithm2.

4. Analysis of the signal measurements recorded in the second lab experiment and

their associated results will be based on the BERpre metric and the Matlab simula-

tion that computes it. This metric and simulation were introduced in the previous

chapter. The computation of BERpre is shown in Figure 4.4. When necessary, eye

diagrams will be included to provide additional information.

5. Throughout this chapter, different phenomena are said to cause an “SNR loss”,

“SNR degradation”, or loss in performance. These phrases constitute a simple way

of referring to an increase in the SNR required by a system in the presence of a

specific phenomenon to achieve the same BERpre values of that same system when

not in the presence of the phenomenon in question. This “SNR loss” is embodied

in the graphical results as the distance on the x-axis, at a given BERpre value,

between the BERpre curves that are being compared.

6. When an input signal parameter is varied, the response of the electronic amplifier

changes, which is the ultimate reason for variation of the learned Volterra models.

1In this context, shorter makes reference to signals that have a lower waveform length in samples.
2Increasing the nonlinear orders the adaptive algorithm is capable of learning represents an interesting

endeavor for future work.
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Although not mentioned explicitly at times throughout this chapter, when saying

that the input signal parameters cause change in the Volterra models, it is indi-

rectly implied that the reason for these variations in the models is the amplifier

response.

5.2 Data Rate

In earlier chapters of this document, changes in the data rate of the amplifier input

signal have been shown to cause variation in the learned Volterra models. Based on the

set of measurements shown in Table 5.2, we will now ascertain the complete extent of the

impact caused by varying the data rate of the input signal. The data shown in said table

is compromised of input and output amplifier signal pairs recorded for four different data

rates while keeping the pattern length and peak-to-peak voltage at constant values.

Table 5.2: Input signals used to study the relationship between the data rate and
learned Volterra models.

Modulation Rate Pattern Voltage
(Gb/s) Length (mVpp)

(bits)

NRZ 38 215 − 1 650
NRZ 44 215 − 1 650
NRZ 50 215 − 1 650
NRZ 56 215 − 1 650

Making use of the VLMS algorithm, the Volterra models corresponding to the data

shown in the above table are obtained. Their characteristics are shown in Table 5.3.

Based on these models, we employ the simulations introduced in Chapter 8 to compute

the corresponding BERpre curves. Figure 5.1 shows the BERpre curves obtained when

applying the models shown in Table 5.3 to the appropriate Matlab simulation. With

these results in hand, information on how the data rate changes the learned Volterra

models may be garnered.

Inspection of Figure 5.1 yields some interesting insights. The most notable fact is the

performance degradation (in terms of the SNR) that results from an increase in the signal

data rate. This phenomenon was foreshadowed by the results obtained after processing

the first lab measurements (see Figure 4.5), and these new results can now be employed

to reach a deeper understanding of its behaviour. If we simultaneously look at Table 5.3

as well as the above Figure, as the data rate of the signals increases and the resulting
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Table 5.3: Characteristics of the Volterra models learned from the data shown in
Table 5.2.

Model h̃1 h̃2 h̃3

38 Gb/s
215 − 1 bits 0.9296 0.0065 0.0639
650 mVpp
44 Gb/s

215 − 1 bits 0.9094 0.0061 0.0845
650 mVpp
50 Gb/s

215 − 1 bits 0.8985 0.0068 0.0947
650 mVpp
56 Gb/s

215 − 1 bits 0.8633 0.0059 0.1308
650 mVpp

2 3 4 5 6 7 8 9
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Figure 5.1: Computation of BERpre curves when applying the models shown in
Table 5.3. In the legend, NL stands for nonlinear, identifying the curves obtained

when the full nonlinear Volterra models are applied in the simulation. Although not
included in the legend to improve clarity, the curves obtained when applying linear

Volterra models are maintained as a sanity check. They can be seen clustered around
Pb,2.

BERpre curves deviate further from Pb,2, a slight decrease in h̃1 and an increase in h̃3 of

the learned Volterra models is observed.

Another factor to note is that all of the nonlinear BERpre curves shown in Figure 5.1

display a significant overall loss in performance, more severe than any of the results that
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have been encountered up to this point in the thesis. All of the BERpre curves related

to the different data rate signals shown in 5.1 are relatively close to each other and

the SNR degradation related to changing signal data rates does not seem too severe in

comparison to the overall loss exhibited by all of the curves. The separation between Pb,2

(the theoretical uncoded curve) and the 38 Gb/s curve is larger than the distance between

the 38 Gb/s and the 56 Gb/s curves. Because of this, the major loss in performance

must be due to one of the other input signal parameters studied in this chapter: the

input signal voltage or pattern length.

We will now continue by trying to relate the changes in normalized Volterra kernels that

occur as a consequence of modified input signal data rate with the respective BERpre

curves, leaving the discovery of the reason for the overall loss in performance for posterior

discussions in this chapter.

5.2.1 Relationship between input signal data rate related performance

losses and normalized Volterra model kernel weights

When the data rate of the amplifier input signal is higher, the system requires higher

signal SNRs to attain the same BER performance it achieves when using lower data rate

input signals. This has been shown by the BER results depicted in Figure 5.1. If this loss

in performance can somehow be related to changes in the normalized Volterra kernels of

the learned models, the effects of input signal data rate on the amplifier response may

potentially be characterized. Ideally, such a relationship would permit us to infer the

Volterra model and BERpre curve associated to an input signal to the amplifier of any

given data rate without requiring any lab measurements.

We begin with the mathematical characterization of the performance losses mentioned

earlier in this section. If we select a specific value of BERpre, a numerical comparison

between SNR losses can be conducted based on the curves of Figure 5.1. Figure 5.2

shows the same curves of the aforementioned image for the more specific SNR range of

8 to 10 dB.

For the purposes of the comparison, the following set of metrics is defined:

• dth: represents the distance, on the x-axis, between Pb,2 and the BERpre curve in

question.

• d38: represents the distance, on the x-axis, between the BERpre curve associated

to the 38 Gb/s measurements and the BERpre curve in question.
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Figure 5.2: Zoomed in capture of the BERpre curves of Figure 5.2.

• dr: represents the distance, on the x-axis, between the closest lower data rate

BERpre curve and the BERpre curve in question.

The values taken by these metrics based on the simulation results of Figure 5.2 are

shown in Table 5.4. The BERpre value for which the metrics have been computed is

10−3. The linear BERpre curves are excluded from this comparison as they are assumed

to be identical to Pb,2.

Table 5.4: Characterization of the SNR loss caused by increases in input signal data
rate for a BERpre = 10−3.

Signal Data Rate (Gb/s) dth d38 dr

38 Gb/s 1.65 0 0
44 Gb/s 1.95 0.3 0.3
50 Gb/s 2.1 0.45 0.15
56 Gb/s 2.65 1 0.55

The results shown in Table 5.4 are intriguing in a number of ways. To begin with, the

smallest value of dth is significantly larger than the biggest value of d38. The dth metric

provides a way of assessing the overall performance loss while d38 represents a method

of determining the loss specific to an increase in data rate. Therefore, as was stated

prior to this subsection, the increase in data rate is not the cause for the large loss in
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performance exhibited by all the nonlinear curves of Figures 5.1 and 5.2 and portrayed

by all the dth values.

To better understand the data in Table 5.4 we will now plot some of its contents. Figure

5.3 portrays the evolution of d38 as a function of the signal data rate. The increase in

data rate related SNR loss is quite apparent in said image. The dr metric, which serves

to measure the loss in performance relative to the closest lower data rate curve, will serve

to determine the step by step nature of the curve shown in Figure 5.3. The values of dr

in Table 5.4 are different for the same data rate increment of 6 Gb/s from measurement

to measurement, which means that the relationship between dr and the signal data rate

is not linear. This explains the jagged appearance of the curve in Figure 5.3.
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Figure 5.3: Evolution of d38 as a function of the input signal data rate.

The next step is to determine if the variations in d38 or dr can be related to the changes

observed in the normalized kernels of each model. In Table 5.3, the values of h̃2 are shown

to be various orders of magnitude smaller than the values of the other two normalized

kernels. Because of the negligible values of h̃2 and the fact that they remain essentially

the same from model to model3, we will ignore them for the purposes of the following

analysis. Our main concern will be to determine how the linear and cubic nonlinear

normalized kernels, h̃1 and h̃3, respectively, are related to the SNR loss observed when

varying input signal data rates.

Figure 5.4 is a graphical representation of h̃1 and h̃3 as functions of d38. The trend

mentioned earlier in this section: decrease in h̃1 and increase in h̃3 as the data rate

3This was already foreseen in section 4.2.3 of the chapter 8.
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goes up is now graphically visible, since d38 is an increasing function of the data rate.

Moreover, the appearance of the plots of this figure seem to suggest that the behaviour

of h̃1 and h̃3 as functions of d38 is, in a sense, linear.
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Figure 5.4: Evolution of h̃1 and h̃3 as functions of d38.

To better understand the evolution of h̃1 and h̃3 we define parameters ch̃1 and ch̃3 . They

serve to measure the change in h̃1 and h̃3 from one model to the next as the loss d38

increases. A negative value of ch̃1 or ch̃3 represents a decrease of the normalized kernel

in question while a positive value represents an increase. These metrics are included in

Table 5.5.

Table 5.5: Evolution of h̃1 and h̃3 as functions of the signal data rate and d38.

Signal Data Rate (Gb/s) h̃1 h̃3 d38 dr ch̃1
ch̃3

38 Gb/s 0.9296 0.0639 - - - -
44 Gb/s 0.9094 0.0845 0.3 0.3 -0.0202 0.0206
50 Gb/s 0.8985 0.0947 0.45 0.15 -0.0109 0.0102
56 Gb/s 0.8633 0.1308 1 0.55 -0.0352 0.0361

Based on the results shown in Table 5.5 and Figure 5.4, the following observations can

be made:

• The linear and cubic normalized kernels of the models learned for the different

tested data rates decrease and grow in a linear fashion as the data rate is increased.

If we look at the values of ch̃1 and ch̃3 , we can see that when we go from 38 to 44

Gb/s, the value of h̃1 decreases by essentially the same value by which h̃3 increases.
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This relationship holds when studying the rest of the data rates, so we can make

the claim that |ch̃1 | ≈ |ch̃3 |. This is an obvious observation, somewhat, as h̃2 is

negligible and thus being ignored.

• The values of ch̃1 and ch̃3 are linearly related to d38. We define ch̃ at a given data

rate R Gb/s as

ch̃ =

R∑
i=38

|ch̃1,i|+ |ch̃3,i|
2

, (5.1)

where the sum in 5.1 is computed over the discrete set of 6 Gb/s incrementing

data rate measurements we possess. If we then compute
ch̃
d38

, we obtain the results

shown below:

Table 5.6: Values of
ch̃
dr

.

Signal Data Rate (Gb/s) ch̃ d38
ch̃
d38

44 0.0204 0.3 0.0684
50 0.0309 0.45 0.0688
56 0.0665 1 0.0665

As can be seen above, the values for
ch̃
d38

remain very similar as the signal data rate

increases. This behaviour makes it plausible to obtain d38 from h̃1 and h̃3 based

on the quasi-linear curves of Figure 5.4.

• Although h̃1 and h̃3 might be linearly related to d38, the amount by which d38

varies for each 6 Gb/s increment of the measurements does not respond to a linear

law. This can be seen in Figure 5.3. It will later be shown to be related to the

value of the input signal voltage of the measurements: 650 mVpp.

Should our purpose be to devise an inference-based amplifier model, in light of these

observations, the conundrum revolves around the accurate prediction of d38 for a specific

data rate. One possibility would be to assume a linear relationship between d38 and the

input signal data rate, but based on Figure 5.3, this would be a very crude approxima-

tion, at best. All in all, although some enticing results have been obtained, the fact that

the change in d38 is different for each 6 Gb/s increment of our measurements renders

coming up with accurate predictions a somewhat pointless endeavour, as we have no

way of determining how to make these predictions.

The main takeaway from the analysis we have conducted in this section is that an

increase in data rate results in an increase in performance loss, and that the normalized

kernels appear to provide a way of determining the amount of nonlinearity exhibited by

the amplifier in each scenario. The larger the weight of the linear normalized kernel (or
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smaller the weight of the cubic normalized kernel) the more linear the system is and the

lower the SNR loss will be. The smaller the weight of the linear normalized kernel (or

larger the weight of the cubic normalized kernel) the more nonlinear the system is and

the larger the SNR loss will be. From there, it is easy to obtain an idea on what the

impact on the performance of the system will be under specific operating conditions.

If this behaviour is maintained for the other two input signal parameters, these normal-

ized kernels will become increasingly useful. For example, they might provide a way

to determine, depending on the amount of performance loss we want to tolerate, which

amplifier operating conditions (input signal parameter configurations) are acceptable

and which ones are not.

5.3 Bit Pattern Length

Another of the input signal parameters whose variation plays a role in the change of

the learned Volterra models is the length of the bit pattern that compromises the input

signal to the amplifier.

In chapter 3, we introduced the notion that there might be a relationship between the

variation in the normalized kernel weights of learned Volterra models and the harmonic

content of the input signal. This idea is grounded on the difference between the frequency

spectrums of signals with different PRBS pattern length.

The set of measurements obtained in the first lab experiment was compromised of only

two PRBS pattern lengths. Although these measurements provided some useful insight,

acquiring data related to more PRBS pattern lengths serves to solidify the claim that

longer sequences lead to the learning of models that better represent the amplifiers

behaviour. This is accomplished with the second batch of lab measurements, which

provides the necessary data to determine the validity of the proposition made in chapter

3.

The specific set of measurements from the second lab experiment that will be used to

assess the effects of varying input signal bit pattern lengths on the learned Volterra

models can be seen in Table 5.7. The data shown in said table is compromised of input

and output amplifier signal pairs recorded for 3 different PRBS pattern lengths. The

input signal data rate and peak-to-peak voltage were maintained at constant values.

As was done previously when studying the effects caused by the variation of the input

signal data rate, we compute the BERpre curves that result from applying the nonlinear

models shown in Table 5.8 to the simulations derived in chapter 8. The models contained
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Table 5.7: Characteristics of the electronic drive amplifier input signals used to study
the effects of signal data rate on learned Volterra models.

Modulation Rate Pattern Voltage
(Gb/s) Length (mVpp)

(bits)

NRZ 50 29 − 1 650
NRZ 50 211 − 1 650
NRZ 50 215 − 1 650

within said table are learned from the data shown in Table 5.7. Figure 5.5 shows the

BERpre curves obtained when applying the models shown in Table 5.8 to the appropriate

Matlab simulation (Figure 4.4).

Table 5.8: Characteristics of the Volterra models learned from the data shown in
Table 5.7.

Model h̃1 h̃2 h̃3

50 Gb/s
29 − 1 bits 0.9122 0.0090 0.0788
650 mVpp
50 Gb/s

211 − 1 bits 0.9036 0.0054 0.0910
650 mVpp
50 Gb/s

215 − 1 bits 0.8985 0.0068 0.0947
650 mVpp

The results shown in Figure 5.5 show an overall SNR degradation that is very similar

to what was observed when studying the BERpre curves in section 5.2. Once again, the

curves obtained for the full nonlinear Volterra models are relatively close together and

substantially far from the curves that result from applying the linear versions of said

models.

Considering that this phenomenon is observed both when varying the data rate (Figure

5.1) and the bit pattern length (Figure 5.5) of the input signal, and given that the only

input signal parameter that has remained constant during these simulations is the input

signal peak-to-peak voltage, it seems like the latter parameter is the root cause for the

overall performance loss present in all of the nonlinear BERpre curves we have analyzed

up to this point. This will be discussed in the next section of the chapter.

If we continue our inspection of Figure 5.5 by looking at the BERpre curves associated to

the full nonlinear models of each pattern length, very slight increases in SNR degradation

can be observed as the input signal pattern becomes longer. These increases are so small
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Figure 5.5: Computation of BERpre curves when applying the models shown in
Table 5.8. The curves obtained when applying linear Volterra models are maintained

as a sanity check.

that there is very little difference between the curves. The one sided frequency spectrums

of the three tested pattern lengths (measured during the second lab experiment by means

of a spectrum analyzer) can be seen in Figure 5.6. Although similar to each other, it is

possible to see how the data captured by the spectrum analyzer becomes more neat as

the tested sequences become longer. The following paragraph provides an explanation

for both these phenomena.

Pseudo-random binary sequences are approximations of infinitely long true random se-

quences typically used in simulation environments as substitutes of actual data signals.

Naturally, the longer the pseudo-random binary sequence, the better the approxima-

tion. In most simulations, data signals are constructed by serially concatenating the

same pseudo-random binary sequence. Apart from determining how good the approx-

imation to a true data signal is, the length of a pseudo-random binary sequence will

also determine the number of data bits that are transmitted before that same sequence

is repeated. If we take a signal constructed with a PRBS of length 29 − 1, the data

sequence will be composed of the serial time repetition of that same PRBS of length

29 − 1 bits. In the frequency domain, this serial repetition of a sequence that is an

approximation of a truly random signal results in a signal spectrum that exhibits void

or empty areas referred to as “spectral holes”. The number of these spectral holes is

larger for data signals constructed based on shorter PRBS’ because they represent worse

approximations of a real data signal.
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Figure 5.6: Measured one sided frequency spectrum for all the three different pseudo-
random bit sequences that were tested. From top to bottom: Measured frequency
spectrum for a PRBS of 29 − 1 bits. Measured frequency spectrum for a PRBS of

211 − 1 bits. Measured frequency spectrum for a PRBS of 215 − 1 bits.
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When applied as the input to the amplifier, these holes will fail to elicit a response from

the device at those frequencies, which means that for those specific frequencies, the

adaptive algorithm will be unable to map the behaviour of the amplifier to the Volterra

model. As PRBS length is increased, the approximation improves and the number of

spectral holes decreases, which means that more complete learning of amplifier behaviour

will take place when using longer sequence lengths. This explains why in Figure 5.5 more

SNR loss can be seen in the curves related to longer pattern lengths, as they are able

to learn a more complete amplifier response. However, as was mentioned earlier, this

accuracy improvement is not very substantial. This decrease in the quantity of spectral

holes as pattern length increases may also be the reason for the difference in the quality

and neatness of the measured signal spectrums shown in Figure 5.6.

Because the behaviour observed in the BERpre results shown in Figure 5.5 and the

above explanation are consistent with the prediction that was made in Chapter 3, we

can state with a high degree of certainty that signals that use longer pseudo-random

bit sequences allow the adaptive algorithm to produce more accurate Volterra models.

As was explained in the previous paragraph, the more complete frequency spectrum of

signals constructed using longer bit sequences will be able to elicit a behavioural response

from the amplifier closer to the one we would obtain if we had an infinitely long random

sequence. In short, the longer the selected bit sequence, the more accurate the learned

Volterra model.

However, there is an important caveat: working with lengthier PRBS sequences leads

to a significant increase in the experimental and memory requirements of the necessary

equipment. For instance, an attempt was made during the second lab experiment to

record data based on pseudo-random bit sequences of 223 − 1 bits, but the combination

of the time required by the DCA to obtain a good enough waveform capture of such

length and the size of the resulting file, made it an impractical endeavor.

Although we have no way of accurately determining the magnitude of the representation

error that occurs because of using shorter pattern lengths (we are physically limited

by our capability of generating longer sequences after all), it seems reasonable to try

and estimate it. The relative proximity of the nonlinear BER results shown in Figure

5.5 seems to suggest it is not too substantial, as there is little difference between the

nonlinear curves obtained for the different PRBS pattern lengths. As we will see in

the following section, this error will be negligible in comparison to the effects caused by

varying the data rate or input signal voltage.

Given the fact that the length of the longest PRBS sequence manageable by the equip-

ment at hand was 215 − 1 bits, we assume that sequences of said length will be capable
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of exciting an almost complete behavioural response from the amplifier and choose to

ignore the underlying PRBS length related representation error.

5.4 Peak-to-peak Voltage

The final input signal parameter that changes the learned Volterra models when it is

modified is the peak-to-peak voltage of the input signal. Previously in this chapter, this

parameter was proposed as the main reason for the recurring loss in SNR performance

observed in the BER results studied in sections 5.2 and 5.3. Assuming this is true,

changes in this parameter cause significant variations in BER performance and learned

Volterra models. By making use of the data obtained in the second lab experiment, we

will be able to verify this assumption and determine how significant these variations are

in comparison to the effects caused by varying the other two parameters analyzed in this

chapter.

The measurements used to analyze the effects of input signal voltage on the learned

Volterra models can be seen in Table 5.9. The data shown in said table is compromised

of input and output amplifier signal pairs recorded for four different peak-to-peak voltage

values. The selected input signal bit pattern was 215− 1, the longest possible PRBS the

available resources could work with4. Measurements for two different data rates were

recorded. The Volterra models learned for the data shown in said table can be seen in

Table 5.10.

Table 5.9: Characteristics of the electronic drive amplifier input signals used to study
the effects of signal peak-to-peak voltage on learned Volterra models.

Modulation Rate Pattern Voltage
(Gb/s) Length (mVpp)

(bits)

NRZ 50 215 − 1 400
NRZ 50 215 − 1 500
NRZ 50 215 − 1 600
NRZ 50 215 − 1 650
NRZ 56 215 − 1 400
NRZ 56 215 − 1 500
NRZ 56 215 − 1 600
NRZ 56 215 − 1 650

Figure 5.7 shows the BERpre curves obtained when applying the 50 Gb/s models shown

in Table 5.10 to the appropriate Matlab simulation.

4As was shown in section 5.3, the use of longer bit sequences results in the learning of more accurate
Volterra models but also increases the storage and processing requirements.
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Table 5.10: Characteristics of the Volterra models learned from the data shown in
Table 5.9.

Model h̃1 h̃2 h̃3

50 Gb/s
215 − 1 bits 0.9919 0.0071 0.0010
400 mVpp
50 Gb/s

215 − 1 bits 0.9612 0.0078 0.0310
500 mVpp
50 Gb/s

215 − 1 bits 0.9286 0.0063 0.0631
600 mVpp
50 Gb/s

215 − 1 bits 0.8985 0.0068 0.0947
650 mVpp
56 Gb/s

215 − 1 bits 0.9885 0.0090 0.0025
400 mVpp
56 Gb/s

215 − 1 bits 0.9582 0.0082 0.0336
500 mVpp
56 Gb/s

215 − 1 bits 0.9236 0.0042 0.0722
600 mVpp
56 Gb/s

215 − 1 bits 0.8633 0.0059 0.1308
650 mVpp

2 3 4 5 6 7 8 9
10 -4

10 -3

10 -2

10 -1

Figure 5.7: Computation of BERpre curves when applying the models shown in
Table 5.10.
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The first thing that stands out from the results shown in Figure 5.7 is the difference,

in terms of the curves associated to each input signal peak-to-peak voltage, of the SNR

degradation they portray. The larger the peak-to-peak voltage of the input signal, the

more the corresponding BERpre curve deviates from the curve associated to the linear

version of the corresponding Volterra model. This can also be seen in the eye diagrams

of the amplifier output signals obtained for the 50 Gb/s data of Table 5.9. They are

shown in Figure 5.8. In said diagrams, the loss in SNR can be seen as the progressive

closing of the eye as the input signal voltage is increased.

Both Figures 5.7 and 5.8 show that the largest SNR loss occurs at the highest input

signal voltage of 650 mVpp. Recalling the data and results that were studied in the

previous sections of this chapter, they were all obtained from measurements recorded

for an input signal voltage value of 650 mVpp. A large overall SNR loss was observed

in all the results associated to these data sets, and because it was the only parameter

that was kept constant in all of them, the input signal voltage was thought to be the

potential cause for it. The correlation between input signal voltage and SNR degradation

observed in Figures 5.7 and 5.8 serves to solidify this idea, providing proof for how the

main driving factor for the performance loss present in all the previously analyzed results

is indeed the voltage of the input signal to the amplifier.

Another matter of interest is the variation between the BERpre curves associated to

different input signal voltages. It is more significant than the variations that where

observed between curves associated to different data rates (Figure 5.1) and substantially

larger than the variations between curves associated to different PRBS pattern lengths

(Figure 5.5). In view of these results, we hypothesize that the input signal voltage will be

the factor (more so than the other two parameters) that most influences the presence,

or lack thereof, of nonlinearity in the amplifier behavioural response and subsequent

changes in the learned Volterra models.

This hypothesis can be explained by looking at the transfer function of a generic elec-

tronic amplifier. The transfer function of an electronic device is a tool used to express

the device’s output as a function of its input. For amplifiers, this is generally represented

by a graph of the voltage at the output as a function of the voltage applied to the in-

put. An example of an electronic amplifier transfer function is shown in 5.9. As can be

seen in said image, two different behavioural regions can be observed: the linear region

and the saturation or nonlinear region. The ideal characteristic curve of the amplifier

is provided for context. If we look at the actual response of the amplifier, even within

the linear region, as the input signal voltage is increased, the amplifier will behave in

an increasingly nonlinear manner. Beyond the saturation point, increasing input signal
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Figure 5.8: Eye diagrams corresponding to the output signals of the 50 Gb/s data
shown in Table 5.9. The peak-to-peak voltage of the input signals associated to each
eye diagram is, from top to bottom: 400 mVpp, 500 mVpp, 600 mVpp and 650 mVpp.
The voltage of the signals has been normalized to the bipolar range to permit visual

comparisons of the closing of the eye as voltage increases.

voltage will only lead to higher nonlinear content in the output signal and negligible

gain increase.

This theory explains the input signal voltage related change in Volterra models and

increase in performance loss as follows: As has just been shown, increases in input

signal voltage lead to augmented nonlinear content in the output, which the learned

Volterra model will theoretically reflect in the values of its normalized kernels (increases

in nonlinear kernels). Application of Volterra models learned for increasing input signal

voltages to the BERpre simulation will result in progressively higher SNR losses, as the
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Figure 5.9: Generic transfer function of an electronic drive amplifier. Original image
is obtained from [1].

nonlinear kernels of the Volterra models change in response to the incrementing input

signal voltages.

The next step is to determine the exact relationship between the normalized kernels of

the Volterra models and the SNR losses observed in Figure 5.7, as it will allow us to

understand the change in system performance related to change in input signal voltage.

Moreover, this would ideally allow the construction of an inference-based model for the

input signal voltage similar to the one we tried to derive in section 5.2 for the input

signal data rate.

Prior to doing so, let us study the 56 Gb/s data shown in Table 5.9. According to

the results and conclusions that were reached in section 5.2 of this chapter, these higher

data rate measurements should reflect an increased loss in performance for all four input

signal voltages in comparison to the 50 Gb/s results shown in Figure 5.7. Plotting the

400 mVpp and 650 mVpp measurements for both of these data rates will allow us to

verify these expected outcomes. These plots can be seen in Figure 5.10.

As was expected, both the 56 Gb/s 400 mVpp and 650 mVpp BERpre curves resulting

from the full nonlinear Volterra models of Table 5.10 show a higher performance degra-

dation than the same curves obtained for a data rate of 50 Gb/s. Interestingly, this

data rate related degradation is higher at 650 mVpp than at 400 mVpp. This might

mean that given two input signal voltages X,Y such that X > Y , increasing the data

rate for input signal voltage X will result in larger nonlinear content of the learned
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Figure 5.10: BERpre curves obtained when applying the 400 mVpp and 650 mVpp
models for 50 and 56 Gb/s data rates shown in Table 5.10.

Volterra models than that same data rate increase at input signal voltage Y . This will

be discussed in the following subsection.

5.4.1 Relationship between input signal voltage performance losses

and normalized Volterra model kernels

The results discussed previously in this section have proven that the learned Volterra

models change in response to the amplifier becoming more nonlinear as the input signal

voltage increases. This results in higher signal SNRs being needed by systems using

signals with an input voltage V1 to achieve the same BER values of systems with an

input signal voltage V2, if V1 > V2. Let us proceed by determining the nature of this

relationship between input signal voltage and system performance degradation.

5.4.1.1 Analysis of the performance losses due to variation in the peak-to-

peak voltage of the input signals

As we did previously, we begin by numerically characterizing the performance losses

shown in Figure 5.7. These results are portrayed in the more specific SNR range of 6 to

10 dB in Figure 5.11.

This analysis is conducted based on the set of metrics listed below, which are computed

for the generic BERpre value of 10−3.
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Figure 5.11: Zoomed in capture of the results shown in Figure 5.7.

• dth: represents the distance, on the x-axis, between Pb,2 and the BERpre curve in

question.

• d400: represents the distance, on the x-axis, between the BERpre curve for the 400

mVpp measurements and the BERpre curve in question.

• dv: represents the distance, on the x-axis, between the closest lower input voltage

BERpre curve and the BERpre curve in question.

These metrics will be denoted with a superscript representing the specific data rate of the

measurements from which they were computed. The notation without the superscript,

i.e d400, encompasses all the superscripted metrics. The superscript is a simple way of

indicating the measurements from which the values of the metrics were obtained, but

the metrics themselves are rate independent and specifically designed to compare results

that originate from different data rate measurements.

The values of these metrics for measurements at 50 Gb/s are shown in Table 5.11. The

large increase in the values of d50th as the signal input voltage grows (0.5 dB approximately

per measurement) are apparent in said table. Even though the signal data rate is 50

Gb/s (the amplifier had a bandwidth of 30 GHz), at an input voltage of 400 mVpp

d50th has a value of 0.55 dB, which would more than likely be an acceptable performance

loss in most scenarios. However, as the input voltage goes up, the loss in SNR grows

significantly, getting up to 2.1 dB at an input voltage of 650 mVpp. The variation in

d50th as a function of the input signal voltage also serves to, once again, prove how this
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parameter is responsible for the overall losses observed in all the previous results of this

chapter.

Table 5.11: Characterization of the SNR loss caused by increases in input signal
voltage for a BERpre = 10−3.

Signal Input Voltage (mVpp) Signal Data Rate (Gb/s) d50th d50400 d50v

400 50 Gb/s 0.55 0 0
500 50 Gb/s 0.95 0.45 0.45
600 50 Gb/s 1.55 1 0.6
650 50 Gb/s 2.1 1.55 0.55

Let us now look at how the SNR losses increase as functions of the input signal voltage.

Figure 5.12 shows the evolution of d50400 as the input signal voltage is increased. d50v is

implicit in this image, represented by the differences between each pair of consecutive

points in the curve.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
400

450

500

550

600

650

Figure 5.12: Evolution of d400 as a function of the input signal voltage.

The next step is to compute the same curve for the 56 Gb/s data in order to determine

if the behaviour of the metric d400 as a function of the input voltage is maintained at

a different data rate. Following the same procedure employed previously, the metrics

dth, d400, and dv are computed at a BERpre value of 10−3 for the results related to the

56 Gb/s measurements. They will be distinguished from the previous metrics by the

superscript indicating the higher data rate of the measurements. The values of these

metrics are shown in Table 5.12. Figure 5.13 shows the evolution of d56400 as a function of

the input signal voltage alongside the same curve obtained for the 50 Gb/s data, d50400.
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Table 5.12: Characterization of the SNR loss caused by increases in input signal
voltage for a BERpre = 10−3.

Signal Input Voltage (mVpp) Signal Data Rate (Gb/s) d56th d56400 d56v

400 56 Gb/s 0.75 0 0
500 56 Gb/s 1.15 0.4 0.4
600 56 Gb/s 1.75 1 0.6
650 56 Gb/s 2.65 1.9 0.9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
400

450
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550

600

650

Figure 5.13: Evolution of d400 as a function of the input signal voltage.

This last figure shows how for both the 50 and 56 Gb/s data sets, the evolution of d400

as a function of the increasing input voltage is almost identical up until the value of 650

mVpp. At the largest measured input voltage, the value of d56400 is 0.35 dB larger than

the value obtained for d50400.

Earlier in this section we mentioned that given input voltages X,Y , such that X > Y , an

increase in signal data rate within a system working at voltage X might lead to a larger

SNR loss than working at voltage Y . Seeking insight regarding this matter and the

discrepancy at 650 mVpp between d56400 and d50400 mentioned in the previous paragraph,

we proceed by plotting the values of dth obtained from the data rate measurements

given in Tables 5.11 and 5.12. This can be seen in Figure 5.14. Taking a closer look at

the curves depicted in the aforementioned figure, we observe that until a voltage of 600

mVpp (for the three smallest voltage measurements), d56th is merely a version of d50th that

has been shifted towards the right of the x-axis. However, as was just observed for d400,

at 650 mVpp d56th and d50th differ.

If we now take a numerical approach and consider the actual differences between d50th
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Figure 5.14: Computed dth values for two different data rates as a function of the
input signal voltage.

and d56th , it can be observed that for input voltages of 400, 500 and 600 mVpp, d56th − d50th
yields the same value of 0.2 dB. At 650 mVpp of input voltage, d56th − d50th = 0.55. An

explanation for this phenomenon might be that for signals with an input voltage of

650 mVpp the amplifier is close to being or already outside the linear operational range,

causing it to respond “worse”5 when said signals are of a higher data rate. It is currently

difficult to come up with a method to characterize this variation in amplifier response to

different data rates at 650 mVpp, more lab measurements will most likely be necessary.

Nevertheless, because for input voltages of 400, 500, and 600 mVpp, d50400 and d56400 are

very similar and d56th − d50th = 0.2, it seems reasonable to further analyze the 400-600

mVpp range.

5.4.1.2 General model for effects caused by input signal voltages

This section will be closed by determining the nature of the relationship between the

normalized Volterra kernels and the input signal peak-to-peak voltage. To do so, we

must recover the kernels of the corresponding models along with specific analytic tools

used in earlier sections of this chapter. All of this is provided in Tables 5.13 and 5.14.

The parameters ch̃1 and ch̃3 were defined when studying the effects of the signal data

rate. They served to measure the change in h̃1 and h̃3 from one model to the next as the

rate dependant loss measuring metric d38 increased. They will now be used to measure

those same changes but when the voltage dependant loss d400 increases. As previously,

5In this contest, the term “worse” implies that more SNR loss is observed.
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negative values of ch̃1 or ch̃3 represent a decrease of the normalized kernel in question

while positive values represents an increase.

Table 5.13: Metrics that define the evolution of h̃1 and h̃3 as functions of the input
signal voltage and a data rate of 50 Gb/s.

Input Voltage Signal Data Rate h̃1 h̃3 d50th d50400 ch̃1
ch̃3

(mVpp) (Gb/s)

400 50 0.9919 0.0010 0.55 0 0 0
500 50 0.9612 0.0310 0.95 0.45 -0.0307 0.03
600 50 0.9286 0.0631 1.55 1 -0.0326 0.0321
650 50 0.8985 0.0947 2.1 1.55 -0.0301 0.0316

Table 5.14: Metrics that define the evolution of h̃1 and h̃3 as functions of the input
signal voltage and a data rate of 56 Gb/s.

Input Voltage Signal Data Rate h̃1 h̃3 d56th d56400 ch̃1
ch̃3

(mVpp) (Gb/s)

400 56 0.9885 0.0025 0.75 0 -
500 56 0.9582 0.0336 1.15 0.4 -0.0303 0.0311
600 56 0.9236 0.0722 1.75 1 -0.0346 0.0386
650 56 0.8633 0.1308 2.65 1.9 -0.0603 0.0586

In our endeavor to better understand the data given in the above tables, we choose to

plot some of it, as is shown by Figures 5.15 and 5.16. Figure 5.15 shows, on the same

graph, how h̃1 and h̃3 evolve as functions of d400. To distinguish between the curves, the

notation h̃i(d
x
400) is used. This notation denotes the values of the kernel h̃i associated to

the losses dx400, where i = 1, 3 and x = 50, 56 represent the order of the kernel and the

data rate of the signal from which the model was learned. For example, h̃1(d
50
400) refers

to the values of h̃1 that correspond to the losses d50400, both parameters being given in

Table 5.13.

Figure 5.15 includes the results obtained for measurements at 650 mVpp. Although at

said voltage and for varying data rates, as was shown previously, the SNR losses behave

very differently than for the data below 600 mVpp, this figure reflects the similarity in the

behaviour of the normalized kernels from both data rate models as the rate independent

loss d400 increases.

Because we were unable to really identify what governs the data rate related loss varia-

tions that occur at 650 mVpp, we exclude those results from the current analysis. The

same plot of Figure 5.15 is shown in Figure 5.16 without the information derived from

650 mVpp input signal measurements. This figure reveals that h̃1(d
56
400) is essentially a

version of h̃1(d
50
400) downshifted along the y-axis . The same can be said for h̃3(d

56
400),

except it is a version of h̃3(d
50
400) upshifted along the y-axis. This is a relevant result

because it shows that varying the data rate of a signal within an input voltage range
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Figure 5.15: Behaviour of the normalized kernels h̃1 and h̃3 as functions of the loss
d400.

of 400-600 mVpp displaces the normalized kernel curves along the y-axis but it does

not change it’s slope. In other words, changing the signal data rate when operating in

an input voltage range of 400-600 mVpp causes changes that can be linearly predicted.

This means that the characteristics of a Volterra model for an input signal voltage X,

such that 400 ≥ X ≤ 600, and a signal data rate R, can easily be determined from an

expanded version of Figure 5.16 in two simple steps:

1. Select the value of d400 related to the input signal voltage in question from an

expanded version of Figure 5.13.

2. Find the appropriate h̃1 and h̃3 related to the specific value of d400 for that voltage

and the data rate in question from a complete version of Figure 5.16.

Because of the linear behaviour observed when changing the data rate in the input signal

voltage range of 400-600 mVpp, the complete versions of Figures 5.13 and 5.16 can be

obtained easily by simply shifting some of the curves upwards or downwards on the

respective axis depending on the value of the data rate. For example, the expanded

version of Figure 5.16 is obtained by shifting the h̃1(d
50
400) and h̃3(d

50
400) curves upwards

or downwards on the y-axis depending on the value of the data rate. These complete

figures are shown in the following section.
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Figure 5.16: Behaviour of the normalized kernels h̃1 and h̃3 as functions of the loss
d400. The data obtained from 650 mVpp input signal measurements has been

excluded.

5.5 Final considerations for model variability in relation

to amplifier input signal characteristics

This final section briefly summarizes the main topics that have been discussed in this

chapter, which primarily focused on the changes in amplifier behaviour and learned

Volterra models that occur when each input signal characteristic is varied independently.

In addition, it also explains an inference technique that can be used to obtain amplifier

behavioural Volterra models without performing additional lab measurements.

5.5.1 Impact of varying individual input signal characteristics:

1. Data rate: The data rate of the input signal to the amplifier directly affects the

response of the amplifier and the subsequent Volterra model that is learned. The

measurements and analysis conducted in this chapter have shown that changes in

the data rate of the signal will cause different effects depending on its peak-to-

peak voltage: If the input voltage is within the range of 400-600 mVpp, increases

or decreases in data rate will affect the amplifier response in a predictable manner.

Outside of this range (the specific measurement was conducted at 650 mVpp),

the amplifier responds differently to each data rate in a way that is unpredictable

given the measurementes at our disposal.
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2. Bit Pattern length: The length of the bit pattern that compromises the data se-

quence of the input signal will determine the accuracy with which a model of the

amplifiers behaviour can be learned. Longer length bit patterns will result in more

accurate models, while shorter length sequences have a larger representation error.

However, there is a trade-off between sequence length and analysis complexity, as

longer sequences become increasingly difficult to handle. All in all, the represen-

tation error has been shown to be small, and a pattern length of 215−1 bits seems

appropriate to achieve a good compromise between the representation penalty and

analysis complexity.

3. Peak-to-peak Voltage: The peak-to-peak voltage of the input signal is the most

influential input signal parameter with regard to the content of nonlinearity in

the amplifier response. Higher input signal peak-to-peak voltages result in an in-

creasingly nonlinear amplifier response, which results in considerable system per-

formance degradation. For example, changing the input voltage from 400 mVpp

to 600 mVpp increases the required SNR to maintain BER performance by around

1.5 dB, which is quite significant in comparison to the 0.4 dB loss caused by a 6

Gb/s increment of the data rate. If the input signal voltage is kept within the range

of 400 mVpp to 600 mVpp, the change in amplifier behaviour related to modifying

the data rate or the voltage itself, and the losses caused by these changes, occur in

a predictable manner. At 650 mVpp of input signal voltage, the amplifier responds

in a way that we have not been able to ascertain.

5.5.2 Regression tool to obtain amplifier behavioural Volterra models

for the input signal peak-to-peak voltage range of 400-600 mVpp

The goal of this thesis is to develop ways to model and study the nonlinear content of

an amplifier’s behavioural response to different input stimuli. The modelling of the am-

plifier has been accomplished using truncated Volterra series, but the models themselves

provide little information about the behaviour of the device. Throughout the text, two

main analysis tools have been derived to obtain information from these models. First off,

we have the normalized Volterra kernels given in (3.5). The second tool is compromised

by the metrics that measure the separation between the BERpre curves that have been

studied in this chapter.

The normalized Volterra kernels provide a quick and easy way of evaluating how nonlin-

ear the amplifier is under specific operating conditions by simply looking at the values

of the linear and cubic normalized kernels. The separation metrics, such as dth or d400,

determine the losses in performance in comparison to different benchmarks. By relating
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both of these tools and using measurement-based regression, we will be able to infer

models for amplifier behaviour within the 400-600 mVpp range for various data rates.

Moreover, we will be able to compute the system performance loss caused by said device

behaviour. Most importantly, this technique will allow us to obtain this information

without having to conduct any more lab measurements.

Before explaining this regressive methodology, it must be stated that this technique is

untested. It is in no way suggested that it may serve in a different scenario or for different

amplifier models, and it might not even work for different amplifiers of the same kind.

The sole purpose of including this method in the thesis is to document the first steps that

have been taken down the path of creating an inference-based nonlinear amplifier model

that could potentially characterize devices without the need for lab measurements.

The procedure works as follows:

1. Based on the specific input signal voltage V and data rate R, extract the corre-

sponding value of dth from Figure 5.17. The associated system peformance BERpre

curve is readily obtained by shifting Pb,2 along the right of the x-axis by the specific

value of dth.

2. Based on that same value of dth, obtain d400 = dRth(V ) − dRth(400) using Figure

5.17, where dRth(V ) and dRth(400) represent the values of dRth at voltages V and 400

mVpp for the data rate R, respectively. Based on the value extracted for d400,

obtain h̃1 and h̃3 from Figure 5.18 for the data rate R.

To close out this chapter we will show the validity of this prediction tool by estimating the

BERpre curve and normalized kernels for a set of specific operating conditions measured

during the first lab experiment and then comparing these estimations to the simulated

BERpre results obtained for those same measurements. As was mentioned previously, it

has only been tested based on the data that was recorded from the single amplifier we

measured. These estimations will be made for the measurements shown in Table 5.15.

The estimated normalized kernels, denoted by ḧi where i = 1, 3, are compared to the

learned normalized kernels in Table 5.16. The estimated and simulated BERpre results

are shown in Figure 5.19.

As can be seen by the almost negligible difference between the estimated and simulated

results shown in Table 5.16 and Figure 5.19, this method constitutes a valid way of

obtaining the normalized kernels and losses in performance caused by the amplifier

without the need for lab data.
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Figure 5.17: SNR loss represented by dth for various input signal data rates and the
input signal voltage range 400-600 mVpp.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 5.18: Behaviour of the normalized kernels h̃1 and h̃3 as functions of the loss
d400 for various input signal data rates. The superscript denotes the data rate

associated to each curve.
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Table 5.15: Measurements from the first experiment whose effects will be estimated.

Modulation Rate Pattern Voltage
(Gb/s) Length (mVpp)
(bits)

NRZ 32 215 − 1 450
NRZ 50 215 − 1 525

Table 5.16: Estimated and simulated normalized kernel values.

Rate Voltage h̃1 h̃3 ḧ1 ḧ3
(Gb/s) (mVpp)

32 450 0.9878 0.0011 0.9890 0.0010
50 525 0.9512 0.0425 0.9520 0.0400
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10 -1

Figure 5.19: Comparison between estimated and simulated BERpre curves.
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Chapter 6

Future Work: Alternate

Prediction Metrics

In Chapter 4, the concept of optimizing a communications system for a sufficiently

small value of the BER before FEC decoding was introduced. This idea operates based

on assuming that below said sufficiently small uncoded BER, subsequent values of the

BER before FEC decoding are guaranteed to be reducible to the desired BER after FEC

decoding values based on previously verified FEC implementations. This is known as

the FEC limit paradigm.

It has recently been shown in [14] and [19] that the FEC limit paradigm can lead to the

underestimation of the spectral efficiency, that it is not applicable to SD-FEC decoders,

and that better prediction metrics exist. The search for different prediction metrics

not based on this paradigm has been and continues to be an open research problem in

optical communications. A variety of methods to predict the post-FEC BER instead

of using BERpre have been derived by studying the achievable rates of systems that

use FEC coding. These prediction metrics might potentially allow to study the impact

caused by the nonlinear models on the FEC codecs of the communications system. This

chapter serves as an introduction to some of the post-FEC BER prediction methods

that have been derived in recent times based on the achievable rates of FEC optical

communications systems. Application of these measures to the research that has been

explained previously in this text presents an interesting approach for future work on the

topic of this thesis.
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6.1 Mutual Information: Basic Concepts

To design a successful FEC coding scheme for transmission through a communication

channel, we will require a codebook, an encoder, and a decoder. The encoder will

take an information sequence D and associate it to a codeword X by means of a one-

to-one mapping procedure. The decoder receives a random sequence Y that results

from X being corrupted by the channel, and will have to guess the sequence D using a

deterministic rule g : D̂ = g(Y ), that maps noisy channel observations onto information

sequences. The codebook C is the set of all possible codewords.

Figure 6.1: Discrete Memoryless Channel.

Let us now consider the discrete input discrete output memoryless communication chan-

nel shown in Figure 6.1, where p(y|x) is the probability mass function that represents

the transition probability of the channel (the probability of observing the output sym-

bol y when symbol x is sent), X is the channel input, and Y is the channel output.

The channel is said to be memoryless because the probability distribution of the output

depends only on the input at that time and is conditionally independent of previous

channel inputs or outputs. We define the metric known as the mutual information, de-

noted by I(X;Y ), as a measure of the amount of information that Y contains about

X. In other words, it quantifies the knowledge the channel output provides with regard

to the input. The generic expression for the mutual information is given in (6.1). It is

extensively used in many applications. For example, the capacity of the DMC shown in

Figure 6.1, CDMC, is expressed in terms of the mutual information as shown by (6.2).

The complete derivation of CDMC is provided in [20].

I(X;Y ) = EX,Y
[

log2
pY |X(y|x)

pY (y)

]
(6.1)

CDMC = max
px(x)

I(X;Y ) (6.2)

Shannon’s Capacity Theorem defines the capacity of a communication channel as the

maximum rate at which a system can send information over the channel and recover

the information at the output with a vanishing probability of error. Therefore, we can

say a rate Rs is achievable, if a system transmitting information at said rate across a
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given channel, can function with arbitrarily low probability of error. This can be stated

in a simple expression as Rs ≤ C, where C represents the capacity of the channel in

question and Rs represents the rate of the system. The rate of a system, in information

bits per symbol, is given by the combined rate of its FEC encoder and its modulator

as Rs = mRFEC, where m = log2M and M represents the cardinality of the chosen

discrete constellation, and RFEC is the rate of the chosen FEC code in information bits

per code symbol. For a communications system using FEC to achieve arbitrarily low

probability of error, the condition Rs ≤ C must be met in the limit of large FEC block

length. This can be written mathematically as

lim
n→∞

Pe = 0.

6.2 Mutual Information: Simulations

It has been shown in [21] that the MI is a superior metric, in comparison to the pre-FEC

BER, when it comes to predicting the post-FEC BER. As such, it is advantageous to

derive an expression for (6.1) particularized for our simulations so that its computation

can be included in the Matlab framework. Having provided the necessary definitions

in the previous subsection, we are in a position to derive such an expression for the

I(X;Y ).

We begin by summarizing the derivations shown in [14]. Let B = [B1, . . . , Bm] be

a random vector representing the transmitted bits [c1,l, . . . , cm,l] at any time instant

l, which are mapped to the corresponding symbol Xl ∈ X with l = 1, 2, . . . , n. The

symbols Xl belong to a discrete M -ary constellation X such that M = 2m. Assuming

a memoryless channel modeled by the transition probability fY |X(y|x), an FEC code

with codebook C, and equally likely codewords, we define the maximum-likelihood (ML)

receiver as the receiver that will choose the transmitted codeword based on an observed

sequence [y1, . . . , yn] according to the rule

cml = argmax
c∈C

n∑
l=1

log fY |B(yl|c1,l, . . . , cm,l). (6.3)

As per Shannon’s channel coding theorem, reliable transmission with the ML decoder

given in (6.3) is possible at arbitrarily low error probability if Rs = RFECm ≤ C, where

C is the capacity of the channel in consideration. The mutual information consitutes an

achievable rate Rs for a system using a discrete constellation X that transmits through a

channel with transition probability fY |X(y|x) and uses an ML decoder. The expression

for I(X;Y ) given in (6.1) can be expressed, based on this system, as
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I(X;Y ) =
∑
x∈X

PX(x)

∫
C
fY |X(y|x) log2

fY |X(y|x)

fY (y)
dy, (6.4)

where C denotes the set of complex numbers. The MI given in (6.4) can be approximated

by making use of Monte Carlo integration. Following the work conducted in [22], Monte-

Carlo integration can be used to approximate an integral via a finite sum [23], namely

∫
C
fR(r)g(r)dr ≈ 1

D

D∑
n=1

g(rn), (6.5)

where r is an arbitrary random variable defined over C. In (6.5), g(r) : C → R, where

R and C denote the set of real and complex numbers, respectively, is an arbitrary real-

valued function and rn with n = 1, . . . , N are samples from the distribution fR(r). In

light of (6.5), a Monte-Carlo approximation of (6.6) can be readily obtained. Considering

that log2(r) : R+ → R, having applied R+ ∈ C, where r is now defined as r =
fY |X(y|x)
fY (y) ,

we obtain a Monte-Carlo estimate of (6.6) as,

I(X;Y ) ≈
∑
x∈X

PX(x)

[
1

n

n∑
l=1

log2 rl

]
, (6.6)

where rl with l = 1, 2, . . . , n are samples of the random variable r distributed according

to fR(r). If we now substitute rl =
fY |X(yl|x)
fY (yl)

into (6.6), we obtain

I(X;Y ) ≈ 1

n

∑
x∈X

PX(x)

n∑
l=1

log2
fY |X(yl|x)

fY (yl)
, (6.7)

where yl with l = 1, 2, . . . , n are samples of the random variable Y conditioned on the

transmitted bits X. We can rewrite the above expression as

I(X;Y ) ≈ 1

n

M∑
i=1

PX(xi)

n∑
l=1

log2
fY |X(y

(i)
l |xi)

fY (y
(i)
l )

, (6.8)

with y
(i)
l with l = 1, 2, . . . , n are samples of the random variable Y conditioned on

X = xi, where i = 1, . . . ,M . Knowing that in our present framework M = 2, (6.7) can

be specifically tailored to the simulations considered in this text1 as

1This particularization is performed under the assumption that our system uses an ML decoder. As
will be shown in the next subsection, because binary modulation is used, said assumption is correct.
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I(X;Y ) ≈ 1

n

2∑
i=1

PX(xi)
n∑
l=1

log2
fY |X(y

(i)
l |xi)

fY (y
(i)
l )

=
1

n

[
PX(x1)

n∑
l=1

log2
fY |X(y

(1)
l |x1)

fY (y
(1)
l )

+ . . .

. . .+ PX(x2)

n∑
l=1

log2
fY |X(y

(2)
l |x2)

fY (y
(2)
l )

]
,

(6.9)

where x1 and x2 represent the symbols of a 2-PAM constellation (binary modulation).

Figure 6.2 shows how (6.9) would be computed in the Matlab simulation. The probability

density functions fY |X(yl|xi) and fY (yl) are obtained by estimating their respective

mean and variance from the simulated data, and then, based on the Gaussian nature

of the channel, combining them with the probability density function of the normal

distribution2 to create the corresponding probability density functions.

Figure 6.2: Computation of I(X;Y ).

6.2.1 The BW receiver & the GMI

Figure 4.1 shows the functioning of the communications system that is implemented in

Matlab. Initially, the receiver performs soft demodulation by computing log-likelihood

ratios, following it with binary SD decoding. This detection architecture is known as

2The Gaussian distribution, also referred to as the normal distribution, has a probability density

function that is given by fX(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
, where µ and σ are the mean and variance of

X, respectively, and X is a normally distributed random variable. When working with multiple variables;
considering both quadratures instead of just the in-phase component for example, the univariate normal
pdf must be generalized to include multiple variables. Such a distribution is known as the multivariate

normal distribution and is given by fX(x) = 1√
(2π)d|ω|

exp

(
− 1

2
(x− µ)>ω−1(x− µ)

)
, where X is a

1 × d random vector, µ is the 1 × d mean vector of random vector X, and ω is the d × d covariance
matrix of X.
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the BW (bit-wise) decoder. In typical transceiver schemes that employ a BW decoder

(commonly used in coherent optical communication systems) an additional outer FEC

coding stage is included. This stage adds an outer FEC encoder prior to the LDPC block

encoder and an HD-FEC outer decoder after the binary SD decoder. This is shown in

Figure 6.3.

Figure 6.3: Architecture of a BW transceiver. It is a simplified representation:
multiple stages, such as the interleaving or pulse shaping blocks, have been omitted to

increase clarity.

Let us assume for the purpose of the following derivation that our system is a generic BW

transceiver that uses outer and inner FEC coding. Once again, the following expressions

are fully derived in [14].

The BW decoder can be defined by the BW decoding rule

cbw = argmax
c∈C

n∑
l=1

log
m∏
k=1

fY |Bk(yl|ck,l). (6.10)

As was considered in the previous subsection for the derivation of a generic expression for

the mutual information, in (6.10), B = [B1, . . . , Bm] is a random vector representation

of the transmitted bits [c1,l, . . . , cm,l] at any time instant l, which are mapped to the

corresponding symbol Xl ∈ X with l = 1, 2, . . . , n. The symbols Xl belong to an M -ary

constellation X such that M = 2m. In the specific cases considered in this report, because

strictly binary modulation (2-PAM or BPSK) is used, the equality [c1,l, . . . , cm,l] = c1,l =

cl holds. This means that index k can be dropped from (6.10), resulting in expression

(6.11), where B is now a random variable representing transmitted bit cl.

cbwBPSK = argmax
c∈C

n∑
l=1

log fY |B(yl|cl), (6.11)
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In order to maintain generality, and following the derivations shown in [14], let us assume

that we are using constellation X with M > 2 and that our BW decoder is defined

by (6.10). If we compare the expression shown in (6.10) to the the optimal maximum-

likelihood detection rule given in (6.3), certain differences can be appreciated. We stated

previously that the mutual information given in (6.4) represents an achievable rate for

ML receivers. In general, because cbw 6= cml, the I(X;Y ) will not be an achievable rate

for BW decoders. As a result, it will be necessary to derive an achievable rate for BW

decoders.

An achievable rate for BW decoders can be found by casting them in the framework of

a mismatched decoder. This can be done as follows. The channel under consideration is

a symbol-wise channel defined by the channel law fY |X(y|x). If we consider the symbol-

wise metric

q(b, y) =
m∏
k=1

fY |Bk(y|bk), (6.12)

the BW rule given in (6.10) can be expressed as

cbw = argmax
c∈C

n∑
l=1

log q(bl, yl)), (6.13)

where bl = [c1,l, . . . , cm,l]. In this context, the ML decoder given in (6.3) can be viewed

as a mismatched decoder with a metric q(bl, yl) = fY |X(yl|xl) that is matched to the

symbol-wise channel. Under this same guise, the BW decoder uses a metric matched

to the bits fY |Bk(y|bk) instead of the channel symbols, which is where its name comes

from.

It has been shown in [24] and [25] that a metric known as the generalized mutual infor-

mation, GMI in short, constitutes an achievable rate for a BW decoder. It represents a

bound on the number of bits/symbol that can be reliable transmitted through a chan-

nel. Moreover, [14] shows how the GMI is a superior prediction metric when it comes

to predicting BERpost for BW transceivers than both the MI and BERpre. A general

expression for the GMI is shown below as is defined in [24],

GMI = max
s≥0

EB,Y

[
log2

q(B, Y )s∑
b∈Bm PB(b)q(b, Y )s

]
, (6.14)

The GMI expression in (6.14) is general in the sense that it holds for any metric q(b, y)

and for any symbol distribution PB(b). This expression can be further simplified by
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making two assumptions. First, that the bits [B1, . . . , Bm], represented by the random

vector B, are independent. Second, that the receiver uses the BW metric defined in

(6.12). Both of these assumptions are valid for our simulation scenario. Considering

independent bits [B1, . . . , Bm] is valid for any encoder that induces a uniform symbol

distribution (which is the case we consider in this paper), and is valid for any constella-

tion and labeling. The BW metric defined in (6.12) is used when log likelihood ratios are

computed for each bit independently, which also happens to be the case (more details

are provided later in this section). Therefore, for the BW metric in (6.12) and assuming

independent bits B1, . . . , Bm, where B is the set of possible bit sequences, (6.14) can be

expressed as [24]

GMI = max
s≥0

m∑
k=1

EBk,Y
[

log2
fY |Bk(Y |Bk)s∑

b∈B PBk(b)fY |Bk(Y |b)s

]

=
m∑
k=1

EBk,Y
[

log2
fY |Bk(y|bk)∑

b∈B PBk(b)fY |Bk(y|b)

]

=
m∑
k=1

I(Bk;Y ),

(6.15)

where the optimization over s in this case gives s = 1. A further expanded expression

of (6.15) is provided in [22]. Up to this point in the letter, the definition of the GMI

has been made in terms of the channel observations Y . Recalling the architecture of the

BW receiver shown in Figure 6.3, we know that they usually include an inner SD-FEC

decoder. Typically, these decoders will operate based on information units known as

‘soft bits’, also referred to as L-values or log-likelihood ratios (LLRs). These soft bits

are real numbers whose magnitude represents the certainty the decoder has regarding

their actual ‘hard’ value. An L-value close to zero means that the decoder is uncertain

regarding the ‘hard’ value of the bit in question. In contrast, a large and positive LLR

implies that we are certain the transmitted code bit was a one. If the LLR value is large

and negative, we are sure the transmitted code bit was a zero. Since LLRs embody

another way of representing information, the GMI can be redefined in terms of these

L-values. The soft binary demodulator computes log-likelihood ratios as

Lk = Lapo
k − Lapri

k = log

∑
x∈X1

k
PX|Ck(x|1)fY |X(y|x)∑

x∈X0
k
PX|Ck(x|0)fY |X(y|x)

, (6.16)

where Xbk is the set of constellation symbols labeled by bit b ∈ B = {0, 1} at bit position

k ∈ {1, . . . ,m}, Lapo
k are the a posteriori L-values computed as shown in (4.5), Lapri

k =

log
PCk (1)

PCk (0)
are the a priori L-values, Y is a random variable representing the channel
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observations, and fY |X(y|x) is the probability density function of the channel. If we

consider that all symbols are equally likely (as is the case), (6.16) can be written as

Lk = log

∑
x∈X1

k
fY |X(y|x)∑

x∈X0
k
fY |X(y|x)

. (6.17)

It is shown in [25] that when the L-values are calculated following (6.16), I(Bk;Y ) =

I(BK ;LK), and thus the GMI given in (6.15) becomes

GMI =
m∑
k=1

I(Bk;Lk). (6.18)

It is important to note that the equality given in (6.18) only holds when the LLRs are

obtained based on the exact computations shown in (6.16) and (6.17). When approxi-

mations of these LLRs are used to alleviate the computational complexity of (6.16), the

equality
∑m

k=1 I(Bk;Y ) =
∑m

k=1 I(Bk;Lk) will no longer hold, and there will be a loss in

achievable rate. The most commonly used approximation of the L-values is the max-log

approximation, which is discussed at length in [26].

Regardless of the computation of the L-values (exact or approximated) the expression

of the GMI given in (6.15) can be approximated via Monte Carlo integration [24]. This

is shown in (6.19) where we have used the property I(A|B) = H(A) − H(A|B), λlk,b

with l = 1, 2, . . . , n are i.i.d random variables distributed according to the PDF of the

L-values fLk|Bk(λ|b), and Hb(p) is the binary entropy function.

GMI ≈
m∑
k=1

Hb(PBk(0))

− 1

n
min
s≥0

m∑
k=1

∑
b∈B

PBk(0)

n∑
l=1

log2

(
1 + es(−1)

bλlk,b

)
.

(6.19)

Prior to particularizing the estimate in (6.19) to our simulation scenario, it is interesting

to consider the differences between the achievable rates defined in (6.7) and (6.19).

Earlier in this section, we stated that the I(X;Y ) constitutes an achievable rate for

ML decoders. We also mentioned that it does not represent an achievable rate for

BW decoders. Following this, the GMI was introduced as a metric that represents an

achievable rate for BW decoders. Although the GMI has not been proven to be the

largest achievable rate for a BW receiver3, it is known for predicting the performance of

3A different rate, known as the LM rate, has been studied in [27]. In addition, in the case where
unequally likely constellation points are allowed, a new achievable rate has been derived in [28].
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systems (like the one considered in this letter) that use capacity-approaching SD-FEC

codes quite well.

In general, I(X;Y ) ≥ GMI [24], where the rate penalty I(X;Y ) − GMI is understood

as the penalty caused by the use of the suboptimal bit-wise decoder. The decoding is

suboptimal because the bit-wise decoding rule (6.10) ignores the dependency between the

bits in a symbol (it assumes they are independent). In view of this fact, the GMI in (6.15)

and (6.18) can be interpreted as a sum of unconditional bit-wise mutual informations.

A set of experimental results that showcase the rate penalty of using (suboptimal) BW

decoding, or in other words, the difference between the achievable rates defined in (6.7)

and (6.19), is provided in [2]. Figure 6.4 portrays the MI and GMI of a DP (dual

polarization) system as a function of the SNR for different modulation orders. It is

a copy of the second figure included in [2], having been obtained by replicating and

simulating the experimental conditions of [2] using a Matlab simulation. In addition,

Figure 6.4 serves as a visual example of the penalty present in the GMI relative to the MI

incurred due to suboptimal decoding. In [2], the GMI is also shown to be an appropriate

metric for selection of the optimum modulation order of a system as a function of the

SNR. Moreover, said work introduces a normalized version of the GMI, which can be

used to obtain the minimum required FEC code rate to achieve the maximum number

of bits per symbol that can be reliably transmitted through a channel at a specific SNR.

Having obtained a generic estimate for the GMI of a BW communications scheme, we

can proceed by obtaining a specific version of (6.19) for the system considered in this

letter. Given that our Matlab simulation operates in the real (we only consider the in-

phase signal component) memoryless AWGN channel, the L-values given in (6.17) can

now be computed as

Lk = log

[∑
x∈X1

k
exp(−|y−x|

2

σ2
z

)∑
x∈X0

k
exp(−|y−x|

2

σ2
z

)

]
, (6.20)

where σz is the variance of the Gaussian noise added in the channel. For given sequences

of mn transmitted bits ck,l and mn L-values λk,l computed via (6.17) for k = 1, . . . ,m

and l = 1, . . . , n, the GMI in (6.19) can be estimated as

GMI ≈ m− 1

n

m∑
k=1

n∑
l=1

log2

(
1 + e(−1)

ck,lλk,l

)
, (6.21)

where the optimization over s is obtained for s = 1 once again. The minimization

of (6.19) will only occur for s = 1 if the L-values are calculated as shown in (6.17).
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Figure 6.4: MI and GMI as functions of the SNR for the DP-mQAM optical
transceiver experimental scenario used in [2]. The MI and the GMI values are twice as

large as they would be for a single channel system like the one considered in this
paper.

Computation of the L-values based on inexact approximations will cause (6.19) to be

optimized for s 6= 1. This follows from [24]. Finally, we can further simplify these

expressions by applying the specific conditions of the framework considered in this paper.

Recalling that in our simulations m = 1 holds, the ML decoder rule given in (6.3) can

be written as

cml
BPSK = argmax

c∈C

n∑
l=1

log fY |B(yl|cl). (6.22)

If we compare (6.22) to the expression for the binary BW decoding rule given in (6.11),

it is easy to see that cml
BPSK = cbwBPSK. For the cases considered in this letter, this means
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that the BW decoder and the ML decoder are one and the same, which results in their

respective achievable rates being equal. In other words, the mutual information and the

GMI will be identical. It is easy to explain this phenomenon by recalling the assumption

made by the suboptimal BW decoder. The rule that defines such a decoder, given in

(6.10), ignores the dependency of the bits in a symbol (it assumes they are independent).

Throughout this paper, we have represented said symbols by the random variable X,

which is drawn from an M -ary constellation X. Throughout the derivations of this

subsection, we assumed the cardinality of said constellation fulfilled M > 2. If M > 2,

the symbols X of constellation X will be represented by more than one information bit,

and so ignoring their dependence will result in a loss in achievable rate. However, when

M = 2, which happens to be the scenario considered currently, constellation X only has

two symbols represented by a single bit. Therefore, when a constellation where M = 2

is chosen, the BW decoding rule will be no different to the ML decoding rule due to the

fact that there is only one bit per symbol (no dependencies are ignored). Knowing that

in our simulations I(X;Y ) = GMI, both (6.9) and the expression for the GMI derived

below and given in (6.24), will define an achievable rate for our simulated system.

In a memoryless AWGN channel, when m = 1, the L-values shown in (6.20) can be

computed as

Lk = log

[exp(−|yk−1|
2

σ2
z

)

exp(−|yk+1|2
σ2
z

)

]
=

2

σ2z
yk. (6.23)

where k = 1, . . . , n. For given sequences of n transmitted code bits cl and n L-values

λl where l = 1, . . . , n computed according to (6.16), the Monte-Carlo estimate shown in

(6.21) can be reduced to

GMI ≈ 1− 1

n

n∑
l=1

log2

(
1 + e(−1)

clλl

)
. (6.24)

How (6.24) can be computed in the Matlab framework is shown in Figure 6.5.
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Figure 6.5: Computation of the GMI as given by (6.24).
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Chapter 7

Conclusion

The objective of this thesis was to characterize an ultra-broadband RF electronic drive

amplifier in order to study and understand what factors give rise to nonlinearity in its

behaviour. To achieve this goal, we began with the introduction and development of the

algorithms and modelling techniques used to perform the nonlinear system identification

of the amplifier. Following this, the experimental activities and software simulations used

to extract practical Volterra models were discussed. Next, how to assess the impact

caused by introducing these models in a generic communications system was explained.

After that, the parameters that determine the extent to which the response of the

amplifier is nonlinear were thoroughly analyzed. Finally, considerations regarding future

work and improvements were provided.

Nonlinear devices like electronic drive amplifier’s can be modelled using numerous tech-

niques. These techniques can also be implemented based on different adaptive algo-

rithms. Once characterized, the nature of an electronic drive amplifiers response, in-

cluding the reasons for it’s display of nonlinearity, can be much easier understood.

In this thesis, truncated third order Volterra-series based models for an SHF-807-303987

30 GHz amplifier under different operating conditions have been obtained based on the

Volterra least mean squares algorithm. Metrics capable of determining the content of

nonlinearity in the response of said amplifier, which have been named as the normalized

volterra kernel weights, have also been derived. In addition, the impact caused by

integrating these Volterra models in a generic communications system operating in the

presence of additive white Gaussian noise has been assessed. Moreover, the set of factors

and the extent to which they impact the appearance of nonlinearity in the response of

the amplifier, as well as the effect this nonlinear response has on the performance of the

communications system, has been determined.
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These factors are all characteristics of the signals used as inputs to the amplifier. Among

them, the peak-to-peak voltage of the amplifier input signal has been shown to be heavily

related to the amount of nonlinearity in the amplifier response, with an increase in said

parameter causing significant losses in system performance. A relationship between the

nonlinear content of the amplifier response and the input signal data rate has also been

found. In contrast, modifying the bit pattern length of the input signal has been shown

to lead to negligible changes in the content of nonlinearity in the amplifier response.

Following the assessment of these input signal characteristics, preliminary work related

to devising a method that could potentially be used to obtain amplifier behavioural

models without the need for lab measurements was introduced.

The results included in this text show that the objective of this thesis has been met

considerably well. However, it should be noted that all of the extracted models and

conclusions derived from them are based on measurements conducted on a single device

for a specific amplifier model, and thus their applicability to different devices of that

same model, as well as other amplifier types, should be verified in later work. In terms

of future research, proceeding with the development of a regressive model that enables

the derivation of amplifier behaviour in the absence of lab data seems to be the most

enticing topic. Aside from this, it would be interesting to analyze the impact caused by

nonlinear amplifier behaviour on the FEC blocks of a communications system.
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Chapter 8

Budget

The contents of this chapter detail the budget required to complete this thesis. It

contains tables describing the costs of the following budget item categories:

• Tangible Assets: A detailed list of the components employed in the research ex-

periments is provided.

• Expendable Equipment: This table contains records of the material resources and

and office supplies that have been consumed throughout the development of the

research.

• Fixed Assets: In this table, the costs related to the use of lab equipment is detailed.

These expenses are computed based on the average depreciation cost and the time

each specific asset has been used.

• Software: The different software platforms used throughout the thesis are listed.

The costs are calculated based on the average amortization cost of the software

licences.

• Labour Cost: This table includes the expenses related to the man hours required

to complete all of the necessary research tasks.
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Table 8.1: Tangible Asset Budget.

Quantity Item Description Cost/Unit (e) Total Cost (e)

1 Amplifier SHF-807-303987 1482,88 1482,88
1 6dB Attenuator Anritsu 41/43 316,29 316,29
2 10dB Attenuator Anritsu 41/43 316,29 632,58
1 Remote Electrical N1045A 60 GHz 107,53 107,53

Sampling Head 2/4 Port
3 Female Connector N1027A-1CF 45,69 137,03

Protective Cap
3 Male Connector N1027A-1CM 43,93 131,79

Protective Cap

Total (e) 2808,10

Table 8.2: Expendable Equipment Budget.

Quantity Item Description Cost/Unit (e) Total Cost (e)

3 Pen Bic Velocity Ball 0,72 2,16
250 Paper A4 Sheets 0,02 4,75
4 Folder A4 Paper Sheet Storage 0,52 2,08
15 Paper Clips Jumbo Corrugated Clips 0,01 0,15
10 Staples Intended for use with 0,01 0,08

20 Sheet Capacity Stapler
1 Calculator T.I 84 120,22 138,33

Total (e) 147,55

Table 8.3: Fixed asset Budget.

Item Acquisition Depreciation Monthly Time Depreciation
Cost (e) Time Depreciation Used Cost

(years) Expense(e) (months) (e)

SG 43.456,00 5 724,26 2 1.448,54
Anritsu MG3697C

BPG 20.647,53 5 344,13 2 688,25
SHF 12103A

DCA 24.474,47 7 291,36 2 582,72
Agilent 86100D

RSM 8.597,61 7 102,35 2 204,70
Agilent 86118A

PTM 44.323,72 7 527,66 2 1.055,33
Agilent 86107A

Macbook 13-inch 1986,00 4 41,38 6 248,25
Retina Display

Total (e) 4.227,79
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Table 8.4: Software Budget.

Software Acquisition Depreciation Monthly Time Depreciation
Cost (e) Time Depreciation Used Cost

(years) Expense(e) (months) (e)

Matlab 1958,97 1 163,25 6 979,49
Advanced Waveform 4911,71 7 58,47 2 116,95

Analysis Software
Flex Eye

Channel Control 10.893,22 1 129,68 7 778,09
& Acquisition

Total (e) 1.874,53

Table 8.5: Labour Cost Budget.

Task Duration (Hours) Cost/Hour (e) Total Cost (e)

Analytic & Simulation 650 116,64 75.816,00
Framework Development

Lab Experiment 10 266,61 2.666,10
Setup

Lab Measurements 50 116,64 5.832,00
Weekly Progress Reports 100 116,4 11.640,00

Weekly Assessment Meetings 22 582,74 12.820,28

Total (e) 108.774,38

8.1 Bugdet Summary

The following table provides a summary of the total budget required to complete this

MASc thesis, which comes to a grand total of 139.808,08 euros.

Table 8.6: Budget Summary.

Budget Item Partial Cost (e) Cumulative Cost

Tangible Assets 2.808,10 2.808,10
Expendable Equipment 147,55 147,55

Fixed Assets 4.227,79 4.227,79
Software 1.874,53 1.874,53

Labour Cost 108.774,38 108.774,38

Indirect Costs (5%) 5.891,62

Cost (Before Tax) 123.723,97

Cost (After Tax - 13% HST) 139.808,08
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Appendix A

Matlab implementation of the

Cubic Volterra Least Means

Squares Algorithm

1 function [volterra_kernels , error_squared , modelled_output] = ...

2 cubic_vlms(uncorrupted_signal , received_signal , memory , mu1 , mu2 , mu3

, max_iterations)

3

4 x_input = [zeros(1,memory) transpose(real(uncorrupted_signal))];

5 modelled_output = zeros(1,length(received_signal));

6 order_2_base_term = 3; % Smallest number of quadratic Volterra

kernels possible (occurs when memory = 2);

7 order_3_base_term = 1; % Smallest number of cubic Volterra kernels

possible (occurs when memory = 2);

8 adjustable = order_2_base_term + sum(3: memory);

9 if memory ==2

10 adjustable2 = order_3_base_term + sum (3:3:( memory -1)*3); %4

11 elseif memory == 3

12 adjustable2 = order_3_base_term + sum (3:3:( memory -1)*3); %10

13 elseif memory == 4

14 adjustable2 = order_3_base_term + sum (3:3:( memory -1)*3) + 1; %20

15 elseif memory == 5

16 adjustable2 = memory + sum (3:3:( memory -1)*3); %35

17 elseif memory == 6

18 adjustable2 = 11 + sum (3:3:( memory -1)*3); %56

19 else

20 adjustable2 = 21 + sum (3:3:( memory -1)*3); %94 (adjustable2_mem6 +

ajustable_mem7)

21 end

22 WvlmsI = zeros(1,memory+adjustable+adjustable2);

23

113



Comprehensive Model for an Amplifier used in an Optical Comms. System

24 for n=1: max_iterations % number of samples of longest signal

25

26 X1 = fliplr(x_input(n+1:n+memory));

27

28 for i=1: memory

29 if i==1

30 X2 = X1(i)*X1;

31 else

32 X2 = [X2 X1(i)*X1(i:end)];

33 end

34 end

35

36 if memory == 2

37 for ii=1: memory

38 if ii==1

39 X3 = X1(ii)*X2;

40 else

41 X3 = [X3 X1(ii)*X2(end)];

42 end

43 end

44

45 elseif memory == 3

46 for ii=1: memory

47 if ii==1

48 X3 = X1(ii)*X2;

49 elseif ii==2

50 X3 = [X3 X1(ii)*X2((ii -1)+memory:end)];

51 else

52 X3 = [X3 X1(ii)*X2(end)];

53 end

54 end

55

56 elseif memory ==4

57

58 for ii=1: memory

59 if ii==1

60 X3 = X1(ii)*X2;

61 elseif ii==2

62 X3 = [X3 X1(ii)*X2((ii -1)+memory:end)];

63 elseif ii==3

64 X3 = [X3 X1(ii)*X2((ii -1)+memory +2: end)];

65 else

66 X3 = [X3 X1(ii)*X2(end)];

67 end

68

69 end

70

71 elseif memory == 5
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72

73 for ii=1: memory

74 if ii==1

75 X3 = X1(ii)*X2;

76 elseif ii==2

77 X3 = [X3 X1(ii)*X2((ii -1)+memory:end)];

78 elseif ii==3

79 X3 = [X3 X1(ii)*X2((ii -1)+memory +2: end)];

80 elseif ii==4

81 X3 = [X3 X1(ii)*X2((ii -1)+memory +6: end)];

82 else

83 X3 = [X3 X1(ii)*X2(end)];

84 end

85

86 end

87 end

88

89 Y_rx_real = real(received_signal(n));

90

91 y_modelled = WvlmsI *[X1 X2 X3]’;

92 modelled_output(n) = y_modelled;

93 error_y = Y_rx_real - y_modelled; %

Instantaneous error of VLMS

94

95 WvlmsI = WvlmsI + error_y * [mu1*X1 mu2*X2 mu3*X3]; % Weight

update rule of VLMS

96

97 error_squared(n) = error_y ^2;

98 end

99 MSE = 10* log10(mean(error_squared));

100 volterra_kernels = [WvlmsI (1: memory) WvlmsI(memory +1: memory +3+ sum (3:

memory)) WvlmsI(memory +3+ sum (3: memory)+1: end)];

101 end
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