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Jon Ander Iñiguez de Gordoa Pouso

Abstract

Quantum error correction is necessary in quantum communication. In that sense, quan-
tum turbo codes present a remarkably low probability of error compared to other quantum
error correcting codes. The document of this Final Degree Project analyses the performance
of iterative SISO decoders in quantum turbo codes, especially when the decoder is under
the influence of a channel mismatch. The obtained results suggest that the closer the es-
timated depolarizing probability is to the actual depolarizing probability of the channel, the
lower the WER of the SISO decoder will be.

In this document, chapter 1 contemplates the relevance of quantum error correcting
codes in current and future quantum technologies. Chapter 2 provides the basic background
on linear algebra and quantum mechanics that are crucial in order to understand quantum
error correction. Chapter 3 presents a few notions in quantum error correction and the sta-
bilizer codes, which are the cornerstone in order to export classical error correcting codes
into the quantum world. Chapter 4 presents the actual quantum turbo codes, their construc-
tion, their decoding algorithm and their performance when the decoder suffers from channel
mismatch. Chapter 5 summarizes the main conclusions of this Final Degree Project, and
chapter 6 provides the budget of the whole project.
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1 State Of The Art

Quantum supremacy is a term popularized by John Preskill which refers to the potential
ability of quantum computers to solve problems with a superpolynomial speedup in comparison
to classical computers [1]. Even though quantum computing is still in its rudimentary stage,
the tech giants are already on a race to dominate quantum computing. In January 2019, IBM
revealed the world’s first integrated quantum computing system for commercial use called IBM
Q System One [2]; however, many experts received the announcement with skepticism. In
February 2019, Intel claimed to have created the world’s first quantum computing testing tool
[3]. In March 2019, Microsoft launched Microsoft Quantum Network, a global community of
individuals and organizations working with Microsoft to research and launch quantum computing
applications [4]. And Google has been working with NASA on the Quantum Artificial Intelligence
Lab since 2013, and they have been designing quantum processors since then [5].

Similarly, quantum communication has also been on the rise in the past few years. Per-
suaded by the unconditional security that it offers, many countries have decided to invest in
quantum communication, mostly oriented to potential military applications. The main example
of this is China, who, among other things, achieved to establish a quantum-encrypted videocon-
ference between Vienna and Beijing in 2017 with the help of a quantum communication satellite
[6].

In this context of emerging quantum technologies, quantum error correction plays a key role
in the development of such technologies. Quantum error correction is a branch of a larger the-
ory named Quantum Information Theory. Quantum Information Theory is the field of study of
the quantum information stored in the state of quantum systems and it analyses how quantum
information behaves in the quantum world. It is the quantum counterpart of Classical Informa-
tion Theory, which was introduced by Claude Shannon in his article A Mathematical Theory of
Communication [7] in 1948.

Quantum error correction is achievable thanks to quantum error correcting codes. The pri-
mary purpose of quantum error correcting codes is to protect quantum information from quan-
tum noise. These codes are needed in two different situations: quantum computing and quan-
tum communication.

In quantum computing, the qubits that contain the quantum information can be affected by
the noise introduced by imperfect logical gates, the interaction with the external environment
or even when they are just being stored. Quantum error correcting codes must assure a fault-
tolerant quantum computing, which means that the whole system works perfectly even when
some of its components are imperfect. In order to achieve fault tolerance, qubits in a quantum
computer must be kept error-free long enough until the overall computation is finished. In com-
putation, reliability is key, and that is why codes with a high distance (such as concatenated
codes) are used.

In quantum communication, where Alice (the sender) and Bob (the receiver) are physically
separated, Alice uses a channel to send qubits to Bob. This channel is assumed to be a noisy
channel, and it might corrupt the quantum information that Alice sent to Bob. In this scenario,
when Bob decodes the received qubits, quantum error correcting codes must be able to recover
the original quantum information sent by Alice, even when such information was corrupted by
the noisy channel. When quantum communication requires sending a large amount of qubits,

3
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codes with a high transmission rate are preferred: codes that often encode qubits into larger
blocks, with the aim of getting close to the actual capacity of the channel [8].

Among the existing quantum error correcting codes, Quantum Turbo Codes (QTCs) present
an especially interesting performance and low probability of error. These codes are based on
the classical turbo codes and they can be imported to quantum error correction with the help of
stabilizer codes and entanglement assistance.
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2 Background for Quantum Error Correction

This chapter summarizes the basic concepts of Linear Algebra and Quantum Mechanics that
are essential in order to understand quantum communication and the following error correction
that will be expained in the next chapters.

2.1 Linear Algebra

A few concepts of Linear Algebra are needed in order to understand the mathematical for-
mulation of Quantum Mechanics. Section 2.1 introduces the concepts of Bra-Ket notation, Pauli
matrices, tensor product and the commutator and anti-commutator operators.

2.1.1 Dirac’s Bra-Ket notation
The Bra-Ket notation, also known as Dirac’s notation, was introduced in 1939 by Paul Dirac.

It is the standard notation for Linear Algebra that is used to describe quantum states. In this
notation, a ket is a column vector and a bra is the Hermitian conjugate of a ket. The inner
product between a bra and a ket is also called a bracket. The Bra-Ket notation is shown in Table
2.1.

Notation Description

|ψ〉 Vector. Also known as Ket.
〈ψ| The Hermitian conjugate of the ket with the same label, 〈ψ| =|ψ〉†. Also known

as Bra.
〈ϕ|ψ〉 Inner product between |ϕ〉 and |ψ〉.
AT Transpose of matrix A.
A∗ Complex conjugate of A.

A† Hermitian conjugate of A, A† = (AT )∗.

Table 2.1: Dirac’s Bra-Ket notation

2.1.2 Pauli Matices
Pauli matrices are a set of four 2 x 2 complex Hermitian and unitary matrices. These ma-

trices play an important role in Quantum Computation and Quantum Information. The Pauli
matrices are defined as:

σ0 ≡ I ≡
(

1 0
0 1

)
; σ1 ≡ σx ≡ X ≡

(
0 1
1 0

)
;

σ2 ≡ σy ≡ Y ≡
(

0 −i
i 0

)
; σ3 ≡ σz ≡ Z ≡

(
1 0
0 −1

)
.

It can be easily proved that the Pauli matrices meet the following properties:
• X2 = Y 2 = Z2 = −iXY Z = I
• XY = iZ, Y Z = iX, ZX = iY

5
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• Y X = −iZ, ZY = −iX, XZ = −iY

2.1.3 Tensor Product
The tensor product is a mathematical operation that puts vector spaces together in order

to form another vector space. Let V and W be two vector spaces of dimension m and n,
respectively. The tensor product between V and W, denoted as V ⊗ W , is another vector
space of dimension mn where the elements of this new space are linear combinations of tensor
products |ϕ〉 ⊗ |ψ〉, with |ϕ〉 ∈ V and |ψ〉 ∈ W . If the vectors |i〉 and |j〉 are orthonormal bases
for V and W respectively, then |i〉 ⊗ |j〉 is a basis for V ⊗W [9].

When it comes to matrix vector spaces, the tensor product is performed by the Kronecker
product. Let A ∈ Cm×n and B ∈ Cp×q be two arbitrary complex matrices. The Kronecker
product between A and B, A⊗B ∈ Cmp×nq, is defined in equation (2.1).

A⊗B ≡

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ≡



a11b11 . . . a11b1q . . . a1nb11 . . . a1nb1q
...

. . .
...

. . .
...

. . .
...

a11bp1 . . . a11bpq . . . a1nbp1 . . . a1nbpq
...

. . .
...

. . .
...

. . .
...

am1b11 . . . am1b1q . . . amnb11 . . . amnb1q
...

. . .
...

. . .
...

. . .
...

amnbp1 . . . amnbpq . . . amnbp1 . . . amnbpq


(2.1)

In the following document, the Kronecker product will be the considered tensor product.
In the Bra-Ket notation, the tensor product between two arbitrary vectors, |ψ〉⊗ |ϕ〉, is some-

times denoted as |ψ〉 |ϕ〉, or |ψϕ〉, just for the sake of simplicity. Besides, the notation A⊗k is
often used, which means that A⊗k = A⊗ A⊗ A⊗ ...⊗ A, i.e., the matrix A tensored by itself k
times.

2.1.4 Commutator and anti-commutator
The commutator between two operators A and B is defined in equation (2.2).

[A,B] ≡ AB −BA (2.2)

Similarly, the anti-commutator is defined in equation (2.3).

{A,B} ≡ AB +BA (2.3)

If [A,B] = 0, that is, if AB = BA, we say that A commutes with B. While if {A,B} = 0, or
AB = −BA, we say that A anti-commutes with B.

The commutation and anti-commutation relations between Pauli matrices can be easily
proved. The commutator relations between Pauli matrices are shown in equation (2.4).

[σj , σk] = 2i
3∑
l=1

εjklσl, (2.4)

6
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where σl represents the Pauli matrices as shown in figure ??, and εjkl = 0, except for
ε123 = ε231 = ε312 = 1 and ε321 = ε132 = ε213 = −1. As expected, every Pauli matrix commutes
with itself.

Likewise, the Pauli matrices obey the anti-commutator relations shown in equation (2.5).

{σj , σk} = 2δjkI, (2.5)

where δjk is the Kronecker delta, and I is the 2× 2 identity matrix. Note that Pauli matrices
always anti-commute between distinct elements.

2.2 Quantum Mechanics

Quantum mechanics describes the behavior of subatomic particles and provides a mathe-
matical and conceptual framework for the development of physical theories.

This section presents the postulates of quantum mechanics, as well as some singular con-
cepts such as the no-cloning theorem, entanglement and quantum teleportation, due to their
interesting role in quantum communication and quantum error correction.

2.2.1 The Postulates of Quantum Mechanics
The interconnection between the physical world and the mathematical formalism of quantum

mechanics is provided by the postulates of quantum mechanics [9]. These postulates were
introduced in the early 1930s by physicists John von Neumann and Paul Dirac.

Postulate 1: State Space. Any isolated physical system is associated with a complex
Hilbert space known as the state space of the system. The system is completely described by
its state vector, which is a unit vector in the state space of the system.

The simplest quantum mechanical system, and the one we will be working with, is the qubit.
A qubit has a two dimentional state space. In a qubit, an arbitrary state vector can be written as
in equation (2.6)

|ψ〉 = α |0〉+ β |1〉 (2.6)

where α, β ∈ C are probability amplitudes, and |0〉 and |1〉 are the standard orthonormal basis
for that Hilbert space. This orthonormal basis can be written as in equation (2.7).

|0〉 =

(
1
0

)
; |1〉 =

(
0
1

)
. (2.7)

The qubit state described in equation (2.6) is a superposition of the basis states, which
means that a single qubit can be described as a linear combination of |0〉 and |1〉.

Since postulate 1 states that the state vector |ψ〉 is a unit vector, 〈ψ|ψ〉 = 1 must hold, which
is equivalent to say that |α|2 + |β|2 = 1.

Postulate 2: Evolution. The evolution of a closed quantum system is described by a unitary
transformation. The relationship between the state |ψ1〉 of a system at time t1 and the state |ψ2〉
of the same system at time t2 is described by a unitary operator U [9]. This unitary operator
depends on t1 and t2 only, and it fulfills equation (2.8).

|ψ1〉 = U |ψ2〉 (2.8)

7
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When it comes to single qubits, any unitary operator can be performed in real systems.
Some interesting unitary qubit operators are the quantum gates, which are crucial in quantum
computation. Among these quantum gates, the Pauli gates (whose unitary operators are de-
scribed by the Pauli matrices), the Hadamard gate and the phase shift gate stand out. Their
schematic representation is shown in figure 2.1 and figure 2.2.

The X Pauli gate, also known as the bit flip gate, flips the probability amplitudes of the
standard basis of an arbitrary qubit |ψ〉 = α |0〉+ β |1〉.

X |ψ〉 = X(α |0〉+ β |1〉) = α |1〉+ β |0〉

The Z Pauli gate, also known as the phase flip gate, changes |1〉 to − |1〉 of any qubit.

Z |ψ〉 = Z(α |0〉+ β |1〉) = α |0〉 − β |1〉

The Y Pauli gate executes both a bit flip and a phase flip into the qubit, and multiplies the
standard bases by ±i.

Y |ψ〉 = Y (α |0〉+ β |1〉) = iα |1〉 − iβ |0〉

X Y Z
Figure 2.1: Schematic representation of Pauli gates

The Hadamard gate is given by equation (2.9).

H ≡ 1√
2

(
1 1
1 −1

)
. (2.9)

The phase shift gate is defined in equation (2.10).

RΦ ≡
(

1 0
0 eiΦ

)
. (2.10)

Note that the Rπ gate is equal to the Z Pauli gate. Another special case of the phase shift
gate is P ≡ Rπ

2
, which is used in quantum error correction.

H Rφ P

Figure 2.2: Schematic representation of Hadamard, phase shift and P gates

Besides the previously mentioned one-qubit quantum gates, there are also some two-qubit
quantum gates, which are very important in the construction of error correction code uni-
taries. The most relevant ones are the controlled-NOT or CNOT gate, the controlled-Unitary
or controlled-U gate and the SWAP gate. Their schematic representation is shown in figure 2.3.

8
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The CNOT gate performs a NOT operation (or flip) on the second qubit (or target qubit) if
the first qubit (or control qubit) is |1〉. The unitary operator of the CNOT gate is presented in
equation (2.11).

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.11)

The controlled-U gate (C(U)) is a more general two-qubit operation. This gate performs
an arbitrary U operator to the target qubit if the control qubit is |1〉. The unitary operator of a
controlled-U gate can be represented as in equation (2.12).

C(U) =


1 0 0 0
0 1 0 0
0 0 u11 u12

0 0 u21 u22

 (2.12)

Finally, the SWAP gate just swaps the two qubits of order in a circuit, and its unitary operator
is represented in equation (2.13).

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.13)

• • ×

U ×
Figure 2.3: Schematic representation of CNOT, controlled-U and SWAP gates

Postulate 3: Quantum Measurement. Measurements in quantum mechanics are de-
scribed by a set of measurement operators {Mm}. These measurement operators act on
the state space of the system that is measured, and index m denotes the results that may
be obtained in the measurement. Let the state of a quantum system be |ψ〉 right before the
measurement. Then, the probability that result m is obtained is given by equation (2.14) [9].

p(m) = 〈ψ|M †mMm|ψ〉 (2.14)

Besides, the state of the system after the measurement, denoted as |ψ′m〉 (being m the
obtained result in the measurement), is described by equation (2.15).

|ψ′m〉 =
Mm |ψ〉√
〈ψ|M †mMm|ψ〉

(2.15)

9
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Note that the set of measurement operators {Mm} must fulfill the following condition so that
the probabilities of measurement outcomes sum to one:∑

m
M †mMm = I, so that

∑
m
p(m) =

∑
m
〈ψ|M †mMm|ψ〉 = 〈ψ|I|ψ〉 = 〈ψ|ψ〉 = 1.

From postulate 3, it can be deduced that when a quantum state is measured, the superposi-
tion state held by |ψ〉 is destroyed, and the post-measurement state changes to a specific state
consistent with the measurement results. This conclusion suggests that the received states
cannot be measured in quantum error correction, because those states would be destroyed by
such operation [10].

Postulate 4: Composite systems. The state space of a composite system is the tensor
product of the state spaces associated with the component systems. If there are n numbered
systems, with |ψi〉 being the state associated with system number i, then the joint state of the
composite system is |ψ1〉 ⊗ |ψ2〉⊗ ... ⊗ |ψn〉.

Postulate 4 allows us to introduce another remarkable concept called entanglement.

2.2.2 Entanglement
A composite quantum system is an entangled system if it cannot be written as the tensor

product of its component systems:

@ |ψ〉 ∈ HA, |ϕ〉 ∈ HB : |ψ〉AB = |ψ〉 ⊗ |ϕ〉 , |ψ〉AB ∈ HA ⊗HB.

The Bell states, also known as EPR pairs (named after Albert Einstein, Boris Podolsky
and Nathan Rosen), are specific states that represent the simplest examples of entanglement.
These states are defined as

|Φ+〉 =
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉√

2
=
|00〉+ |11〉√

2
,

|Φ−〉 =
|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉√

2
=
|00〉 − |11〉√

2
,

|Ψ+〉 =
|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉√

2
=
|01〉+ |10〉√

2
,

|Ψ−〉 =
|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉√

2
=
|01〉 − |10〉√

2
.

An interesting property of these states is that the measurement of either qubit determines
the result of the other qubit:

Consider the Bell state |Ψ−〉 and the measurement operators M1 = |00〉 〈00|, M2 = |01〉 〈01|,
M3 = |10〉 〈10| and M4 = |11〉 〈11|. As postulate 3 states, the probability for each result (m =
1, 2, 3, 4) to be obtained in a measurement is

10
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p(1) = 〈Ψ−|M †1M1|Ψ−〉 = 0;

p(2) = 〈Ψ−|M †2M2|Ψ−〉 = 1
2 ;

p(3) = 〈Ψ−|M †3M3|Ψ−〉 = 1
2 ;

p(4) = 〈Ψ−|M †4M4|Ψ−〉 = 0.

This means that the only possible outcomes are |01〉 and |10〉. If we measure one of the
qubits, the result obtained will be either |0〉 or |1〉 (with a 50% of probability for each outcome),
but the outcome of the other qubit will necessarily be the opposite of the first measured qubit.

2.2.3 No-Cloning Theorem
Theorem: No-cloning theorem. It is impossible to create an identical copy of an arbitrary

quantum state. In other words, there is no unitary operator U in H⊗H that fulfills U(|ϕ〉 |ψ〉) =
|ϕ〉 |ϕ〉, for any qubits |ϕ〉 and |ψ〉.

This theorem means a limitation in quantum communication since a qubit cannot be repli-
cated in order to obtain repetition codes and protect the information from quantum noise, as it
is done in classical communication.

2.2.4 Quantum Teleportation
Quantum teleportation is a process that allows the transmission of quantum states with-

out the need of a quantum communication channel. In quantum teleportation, some classical
communication and quantum entanglement is needed. Assume that Alice wants to deliver an
arbitrary qubit |ψ〉 = α |0〉 + β |1〉 to Bob. The protocol of quantum teleportation [11], which is
shown in figure 2.4, is as follows:

|ψ〉 • H
M1

•
M2

•

XM2 ZM1

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉

|Φ+〉AB

Figure 2.4: Schematic representation of quantum teleportation

1. An ERP pair |Φ+〉AB is generated. One qubit is given to Alice and the other one is given
to Bob. The initial composite state is

|ψ1〉 = |ψ〉 |Φ+〉AB = 1√
2
[α |0〉 (|00〉+ |11〉) + β |1〉 (|00〉+ |11〉)

2. A CNOT gate is applied to the composite state, with the arbitrary qubit |ψ〉 as the control
qubit and Alice’s EPR pair qubit as the target qubit. The composite state now is

|ψ2〉 = 1√
2
[α |0〉 (|00〉+ |11〉) + β |1〉 (|10〉+ |01〉)

3. A Hadamard gate is applied to |ψ〉. The state becomes

11
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|ψ3〉 = 1
2 [α |0〉 (|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉) =

= 1
2 [|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉) + |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)

The previous expression is a sum of four terms, where the first two qubits correspond to
Alice’s qubits and the third one correspond to Bob’s. For example, the first term has Alice’s
qubits at state |00〉, while Bob’s qubit is at state α |0〉+ β |1〉, which is the original state |ψ〉
[9].

4. Alice measures the two qubits that she has, and sends the obtained bits to Bob using a
classical communication channel (either 00, 01, 10 or 11).

5. Bob performs a correction to his EPR pair qubit depending on the bits he receives from
Alice. Table 2.2 shows what Pauli gate(s) Bob needs to apply to his qubit so that he
recovers the original state (|ψ5〉 = |ψ〉).

Alice’s measurements Post-measurement state Correction needed

00 |ψ4〉 = α |0〉+ β |1〉 None (I)
01 |ψ4〉 = α |1〉+ β |0〉 X
10 |ψ4〉 = α |0〉 − β |1〉 Z
11 |ψ4〉 = α |1〉 − β |0〉 X, and then Z

Table 2.2: Correction in quantum teleportation depending on measurement results

12
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3 Quantum Error Correction

Chapter 3 deals with Quantum Error Correction (QEC). This chapter introduces a concep-
tual framework where the error-correcting codes developed in classical communication can be
interpolated into quantum communication, obtaining quantum error-correcting codes with simi-
lar properties to the original classical codes. As a consequence, Quantum Turbo Codes, which
are based on classical turbo codes, can be constructed, and these Quantum Turbo Codes will
be analysed in chapter 4.

A quantum error correcting code encodes k logical qubits, that is, the useful information in
the communication, into n physical qubits that are sent through a noisy quantum transmission
channel. The purpose of this encoding is being able to recover the original information (the
original k logical qubits) in case any qubit is corrupted by the noisy channel.

|ψ〉 E N D |ψ̂〉
k n n k

Figure 3.1: Simplified block diagram of quantum error correction

Figure 3.1 shows a simplifed block diagram of quantum error correction for a [[n, k]] quantum
error correcting code. The E gate represents the encoding of k logical qubits into n physical
qubits. The N gate is a noisy quantum channel; as it is explained in section 3.2, a depolarizing
channel is considered in this document. D represents the decoding operator of the received n
qubits into the k qubits that allow us to get an estimation |ψ̂〉 of the original quantum state |ψ〉.

In the first section of this chapter, the main differences between quantum error correction and
classical error correction are presented. Then, depolarizing channels, the Pauli group, and the
stabilizer codes are introduced. The last section of this chapter shows the relationship between
quantum error-correcting codes and classical error-correcting codes, and how quantum codes
can be constructed from classical codes.

3.1 Restrictions in Quantum Error Correction

In the previous chapter we saw some interesting properties of quantum mechanics that might
suppose a problem in Quantum Error Correction. There are fundamental differences between
the quantum and the classical information processing because a quantum system can exist in
the form of superposition state [13]. Next are detailed the main restrictions that arise in the
quantum world, as well as the strategies that are used in quantum theory in order to overcome
each issue.

Restriction 1: No-cloning theorem. The no-cloning theorem presented in section 2.2.3 im-
plies that qubit repetition cannot be used in quantum error correcting codes since it is impossible
to replicate qubits.

However, qubit redundancy does not violate such theorem. Note that the left part of equation
(3.1) shows a redundancy of an arbitrary qubit |ψ〉 = α |0〉 + β |1〉 and such quantum state can
be obtained in reality.

α |00〉+ β |11〉 6= (α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉) (3.1)
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Restriction 2: Measurement destroys superposition. As it is explained in the 3rd pos-
tulate of section 2.2.1, the measurement of a quantum state collapses its superposition an the
quantum information is lost. This means that error correction must be done without measuring
the received states.

In order to do that, instead of measuring the actual qubits, the error syndromes are mea-
sured. The syndrome tells us what error, if any, happened to the quantum state [9].

An example of how error syndromes work is presented next. Let |ψ〉 = α |0〉 + β |1〉 be a
qubit that needs to be transmitted through a noisy channel. The encoder of the qubit works as
follows:

|ψ〉 = α |0〉+ β |1〉 → |ψenc〉 = α |000〉+ β |111〉 .

Let the noisy channel perform a bit flip on the second qubit, ie, the error occurred is E =
I ⊗X ⊗ I. Then, the received state would be:

|ψN 〉 = E |ψenc〉 = (I ⊗X ⊗ I)(α |000〉+ β |111〉) = α |010〉+ β |101〉 .

For this case, the syndrome measured could be achieved by applying the quantum circuit
presented in figure 3.2. As it can be seen, this circuit leaves the received state |ψN 〉 unchanged,
while computing two classical bits s1 and s2 that correspond to the error syndrome. For |ψenc〉 =
α |000〉+ β |111〉, it can be proved that:

•
• •

•

|0〉 s1

|0〉 s2

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉 |ψ6〉

|ψN〉

Figure 3.2: Example of a quantum circuit for syndrome measurement

1. |ψ1〉 = |ψN 〉 |0〉 |0〉 = α |010〉 |0〉 |0〉+ β101 |0〉 |0〉

2. |ψ2〉 = α |010〉 |0〉 |0〉+ β |101〉 |1〉 |0〉

3. |ψ3〉 = α |010〉 |1〉 |0〉+ β |101〉 |1〉 |0〉

4. |ψ4〉 = α |010〉 |1〉 |1〉+ β |101〉 |1〉 |0〉

5. |ψ5〉 = α |010〉 |1〉 |1〉+ β |101〉 |1〉 |1〉 = |ψN 〉 |1〉 |1〉

6. |ψ6〉 = |ψN 〉 and s1 = 1, s1 = 1.

14
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As it can be seen, syndrome measurement does not destroy the superposition of the quan-
tum state |ψN 〉. The information given by the syndrome bits can be used in order to correct the
received state |ψN 〉: the first bit s1 tells us if the first two qubits of the state are the same or
not, and the second bit tells us if the second and third qubit are the same or not. Therefore, an
estimation of the occurred error can be obtained, and the quantum state |ψN 〉 can be corrected
using quantum gates. There might be errors that cannot be corrected with this method (such
as phase-flip errors [10]) or errors that share the same syndrome, but this is just an example of
how an error can be corrected without destroying the actual superposition of quantum states.

Restriction 3: Errors are continuous. Errors might not be just phase flips or bit flips, but
partial changes in the quantum states such as the ones introduced by the quantum gate Rφ. A
continuum of possible errors may occur on a single qubit, and determining which error occurred
in order to correct it would appear to require infinite precision, and therefore infinite resources
[13].

However, due to the phenomenon of error discretization, it can be proved that if an arbitrary
continuous error is a linear combination of regular errors that have associated error syndromes,
then such continuous error can be corrected after the syndrome measurement and just applying
the correction associated to each syndrome [14]. In other words, if an error correction code C
corrects a set of errors E , then C is also able to correct all the linear combinations of the
elements in E .

3.2 Depolarizing channel

A depolarizing channel is a noisy quantum channel affecting a quantum state. This channel
has particularly nice symmetry properties. The probability of a qubit affected by a depolarizing
channel to remain intact is (1−p), while an error occurs with probability p. The channel performs
an error X (bit flip) on the qubit with probability px = p

3 , an error Z (phase flip) with probability
pz = p

3 , and an Y error with probability py = p
3 [12].

The depolarizing channel represents the errors that are considered in this document.

3.3 Pauli group

The n-fold Pauli group Gn is defined to be the set of the n-th tensorial products of Pauli
operators [15], {I,X, Y, Z}⊗n, together with the possible overall factors ±1 and ±i.

It can be proved that every element of Gn squares to ±In = ±I⊗n, and any two elements
of Gn either commute or anti-commute. Moreover, every element of Gn is either Hermitian or
anti-Hermitian [16].

Note that the Pauli matrices define a basis for the C2×2 space, which means that any oper-
ator can be expressed as a linear combination of Pauli matrices. Furthermore, as explained in
section 2.1.3, if |i〉 and |j〉 are orthonormal bases for V and W respectively, then |i〉 ⊗ |j〉 is a
basis for the composite vector space V ⊗W . Then, we can deduce that since the Pauli matrices
{I,X, Y, Z} form a basis for C2×2, then the n-fold Pauli group Gn is a basis for the vector space
(C2×2)⊗n = C2n×2n . This means that all the matrices in C2n×2n are a linear combination of the
elements of Gn. As a consequence, by the discretization of errors presented in section 3.1, we
conclude that it is enough to consider the errors that are elements of the Pauli group in order to
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design quantum error codes that correct any error in C2n×2n .
Sometimes, it is useful to represent elements of the Pauli group with the symplectic repre-

sentation. The symplectic representation allows us to represent each element of the Pauli group
with a pair of bit strings, a and b, that represent if an X or a Z operation is being used in each
position of the tensor product, repectively, as

σ = eiΦXaZb, σ ∈ Gn

where Xa = Xa1Xa2 ...Xan and Zb = Zb1Zb2 ...Zbn . The string of bits a will have a 1 in the ith

position if an X is being applied in such position, b will have a 1 in the ith position if Z is being
applied in such position, and both a and b will have a 1 if an Y operator is being applied in the
ith position. This way, any element in Gn can be represented as (a|b).

3.4 Stabilizer codes

Stabilizer codes, also known as additive quantum codes, are an important class of quan-
tum codes whose construction is analogous to classical linear codes. Thanks to the stabilizer
codes, the problem of finding Quantum Error Correcting Codes is reduced to that of constructing
classical dual-containing quaternary codes [16].

3.4.1 Stabilizer formalism
Let S be an abelian subgroup of the Pauli group Gn that does not contain −In. A stabilizer

code C(S) associated with its stabilizer S is defined as a subspace fixed by S that fullfills
equation (3.2).

C(S) = {|ψ〉 : M |ψ〉 = |ψ〉 , ∀M ∈ S} (3.2)

In other words, the code space is the simultaneous +1-eigenspace of all elements of the
stabilizer S. Since S is an abelian group, all the elements M ∈ S must commute.

Let [[n, k]] be a stabilizer code that encodes k logical qubits into n physical qubits. Then the
dimension of the code space C(S) is 2k, and the stabilizer S has 2n−k elements [16].

A stabilizer S can be defined by a set of independent generators {Mi}. These independent
generators cannot be expressed as products of each other, and each element of S can be
written as a product of elements of the set. If an abelian subgroup S of Gn has 2n−k distinct
elements, then S is specified by a set of n − k independent generators. Therefore, if a specific
vector |Ψ〉 is stabilized by the n− k generators of a group S, then |Ψ〉 is stabilized by S [16].

In stabilizer codes, it is very common to use a notation where all the tensor product symbols
⊗ are omitted. For example, an example of a generator Mi of a stabilizer S can be written as:

Mi = I ⊗X ⊗ Z ⊗ Z = I X Z Z.

The Gottesman-Knill theorem [17] implies that the quantum computation related with sta-
bilizer codes can be efficiently simulated by means of a classical computer, which is very helpful
since quantum computers are not an available resource yet.
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3.4.2 Encoding stabilizer codes
The encoding process of a [[n,k]] stabilizer code consists of adding n − k ancilla qubits to

the k logical qubits, and then applying an encoding unitary operator U to the whole quantum
system in order to obtain the quantum state that will be sent through a quantum channel.

An ancilla qubit is a qubit whose value is known a priori, and it is usually chosen to be in
state |0〉. In stabilizer encoding, when n− k ancilla qubits are added to the k logical qubits, the
resulting state (before applying the U encoder) is

|ϕ〉 = |0〉n−k ⊗ |ψ〉 ,

where |ψ〉 is the tensor product of the k logical qubits that are wanted to be sent through the
noisy channel. Now let B be a group generated by the following set:

M1 = Z I I . . . I I . . . I
M2 = I Z I . . . I I . . . I
M3 = I I Z . . . I I . . . I

...
...

...
...

...
. . .

...
...

. . .
...

Mn−k = I I I . . . Z I . . . I

It is easy to prove that B is a stabilizer for the quantum state |ϕ〉. The groups B and the
stabilizer of the |ψ〉 state S are said to be isomorphic because their elements have the same
commutation relationships [10], and it is denoted as B ∼= S. Isomorphism leads to the following
lemma, which plays a huge role in quantum error correction in stabilizer codes.

Lemma: If B and S are both subgroups of Gn, and B ∼= S, then there exists a unitary
operator U such that for all B ∈ B there exists a S ∈ S such that B = USU−1, up to an overall
phase.

This lemma is very helpful in error correction because the unitary U constructed in the
previous lemma can be considered as the encoding operator Uenc for the code C(S) [8]. In
other words, it sufficient to find a unitary operator U that fulfills the previous lemma in order to
find an operator that encodes the k logical qubits and ancilla qubits into n physical qubits.

Moreover, it can be proved that encoding operators Uenc can be formed as a combination
of Hadamard gates, phase gates Rπ/2 and CNOT gates [9]. Therefore, the encoding problem
is reduced to finding the combination of quantum gates that construct a quantum circuit that
performs an operator Uenc needed for going from the standard form stabilized by B to an actual
codeword stabilized by S [10].

When it comes to the decoding process, since Uenc is an unitary matrix, it is sufficient to
apply the unitary operator Udec = U †enc. The quantum circuit that will be used in order to perform
this operator will be the same as in the encoder, but applied in the opposite direction and with
the complex conjugates gates [10].
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3.4.3 Error syndrome in stabilizer codes
Let C(S) be a stabilizer code, and E = {Ea} ⊂ Gn be a set of errors. The error syndrome as-

sociated to an error Ea is the vector sa with coefficients si,a. These coefficients express whether
if the error Ea commutes or anticommutes with the generators Mi, and they fulfill equation (3.3).

MiEa = (−1)si,aEaMi (3.3)

Coefficients si,a in sa can take either the value of 0 or 1. If si,a = 0, it means that the error
Ea commutes with the generator Mi, and if si,a = 1, it means that Ea anticommutes with Mi.

|0〉 H • H si

|ψN〉 Mi |ψN〉

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉
Figure 3.3: Quantum circuit for syndrome measurement in stabilizer codes

Figure 3.3 shows an example of a quantum circuit that measures the si syndrome coefficient
associated to the generator Mi from a noisy state |ψN 〉 = E |ψenc〉, with E ∈ E . This syndrome
measurement process is as follows:

1. |ψ1〉 = |0〉 |ψN 〉

2. |ψ2〉 =

(
1
√

2
|0〉+

1
√

2
|1〉

)
|ψN 〉 =

1
√

2
|0〉 |ψN 〉+

1
√

2
|1〉 |ψN 〉

3. |ψ3〉 =
1
√

2
|0〉 |ψN 〉+

1
√

2
|1〉Mi |ψN 〉 =

1
√

2
|0〉 |ψN 〉+

1
√

2
|1〉λ |ψN 〉 =

(
1
√

2
|0〉+

1
√

2
λ |1〉

)
|ψN 〉,

where λ = +1 if [E,Mi] = 0, and λ = −1 if {E,Mi} = 0.

4. |ψ4〉 =

(
1
√

2
H |0〉+

1
√

2
λH |1〉

)
|ψN 〉 =

(
1
√

2

(
1
√

2
|0〉+

1
√

2
|1〉

)
+

1
√

2

(
λ
√

2
|0〉 −

λ
√

2
|1〉

))
|ψN 〉 =(

1 + λ

2
|0〉+

1− λ
2
|1〉

)
|ψN 〉. Note that |ψ4〉 = |0〉 |ψN 〉 for λ = +1, and |ψ4〉 = |1〉 |ψN 〉 for

λ = −1.

5. |ψ5〉 = |ψN 〉, and si = 0 or si = 1.

Therefore, if the error E ∈ E that affects the encoded state commutes with the generator Mi,
the value of λ will be +1, and the syndrome measured at the output of the quantum circuit will
be si = 0. On the contrary, if the error E anticommutes with Mi, the value of λ will be -1, and
the syndrome measured at the output of this quantum circuit will be si = 1.
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3.4.4 Correcting errors in stabilizer codes
Once the syndrome vector s is obtained, the correction operator shown in equation (3.4)

needs to be applied to the codeword. Note that Ê(s) is the estimated error given the syndrome
vector s.

|ψ̂〉 = Ê(s)† |ψN 〉 (3.4)

A code is said to be non-degenerate if that code has a different syndrome for each error Ea
in the error set E , and therefore it is capable of distinguishing each error. On the other hand,
a code is said to be degenerate if the error set E contains errors that cannot be distinguished
between each other because they share the same error syndrome; however, degenerate errors
(errors that share the same syndrome) can be corrected by the same operator.

In the case of nondegenerate codes, since each error Ea in E has a different syndrome,
measuring the n − k generators will diagnose the error completely [16]. This means that any
error in the error set E is correctable in nondegenerate codes.

In the case of degenerate codes, a uniquely identifiable error syndrome is not always re-
quired for an error to be correctable. Many errors that share the same syndrome can be cor-
rected by the same operator. However, problems arise when an error Ea 6= In commutes with
all the generators Mi of the stabilizer S. The syndrome vector of this error will be a zero vector,
which is usually associated with Ea = In, where the codeword is not corrupted by the error at
all. Two different cases should be considered here:

1. If Ea ∈ S, then we do not need to worry because Ea will not corrupt the codeword at
all. Remember that all the elements of S must fulfill equation (3.2). Hence, the correction
operator applied to this kind of errors will be In (qubits are not modified) and the output
will be correct.

2. If Ea /∈ S, then this error is not correctable because it does corrupt the codeword but it has
a zero vector syndrome and it is undetectable for the code.

3.5 Relationship between quantum and classical codes

This section presents how quantum error-correcting codes can be created from classical
error correcting codes.

3.5.1 Stabilizer codes and classical quaternary codes
One of the greatest things of stabilizer codes is that they can be constructed from classi-

cal quaternary codes. A classical quaternary code over a finite field GF(4) is defined by its
parity-check matrix H4 and contains the elements 0, 1, ω, and ω. These elements obey the
multiplication properties summarized in table 3.1.

Let H̃4 be a new matrix defined by equation (3.5), and consider a map between the elements
of GF(4) and the Pauli operators shown in table 3.2. If we apply this map from GF(4) to the Pauli
operators and substitute the quaternary elements of H̃4 with the corresponding Pauli operators,
the rows of the matrix H̃4 will represent a set of generators Mi for a quantum stabilizer code
[10].

H̃4 =

(
ωH4

ωH4

)
(3.5)
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x 0 1 ω ω

0 0 0 0 0
1 0 1 ω ω
ω 0 ω ω 1
ω 0 ω 1 ω

Table 3.1: Summation properties of the elements in GF(4)

Note that, as it is stated in section 3.4.1, all the generators Mi of a stabilizer must com-
mute with each other. So, in principle, not every classical quaternary code is suitable to be
transfromed into a quantum stabilizer code. The initial classical quaternary code must be a
dual-containing code (that is, the rows of its parity-check matrix must be orthogonal with each
other, including with themselves) so that it can be used in order to get a stabilizer code [8].

Element in GF(4) Pauli operator
0 I
1 X
ω Y
ω Z

Table 3.2: Map between the Pauli operators and the elements in GF(4)

By following this procedure, a classical quaternary [n, k, d] code can be turned into a non-
degenerate [[n, 2k − n, d]] stabilizer quantum code [16]. Furthermore, the better the classical
quaternary code is, the better stabilizer code will be obtained [10].

Similarly, binary codes can also be used in order to construct stabilizer quantum codes [8].

3.5.2 Entanglement Assisted Quantum Error Correction Codes
As seen in section 3.5.1, the problem of finding a good quantum error-correcting code is

reduced to finding a good classical quaternary code. However, the parity-check matrix of such
quaternary code must be self-orthogonal, which means that we need to find dual-containing
quaternary codes. This restriction could have relevant implications because there might be a
case where the best quaternary code could not be used to obtain a quantum code. Never-
theless, as it will be explained in this section, a shared entanglement between transmitter and
receiver can overcome this obstacle. The codes that use entanglement in order to overcome the
dual-containing constraint are called Entanglement Assisted Quantum Error Correction Codes
(EAQECCs).

An EAQECC encodes k logical qubits into n physical qubits, with the help of n−k− c ancilla
qubits and c ebits or entangled pair of qubits.

The c ebits are assumed to be pre-shared by the transmitter and the receiver, that it, the
receiver has received c halves of the EPR pairs before the transmission of the other qubits, and
those ebit halves are assumed to have been transmitted without errors.

Roughly explained, the introduction of the c ebits modifies the group B that stabilizes the
overall quantum state |ϕ〉 and expands the generators of such group [16]. As a consequence
of this expansion, we find a new group that is abelian [8]. This means that if we follow the

20



Jon Ander Iñiguez de Gordoa Pouso

procedure defined in section 3.5.1, we will get a set of Mi that commute with each other, even
when the original quaternary code is not dual-containing.

The amount of ebits that need to be introduced in each quantum code depends on the parity-
check matrix of the classical quaternary code it is based on [18], as it can be seen in equation
(3.6). Note that if the quaternary code is dual-containing, c is 0 because no entanglement is
needed.

c = rank(H4H4
†) (3.6)

In conclusion, stabilizer codes can be constructed based on any classical binary or quater-
nary code thanks to entanglement assistance. Moreover, it can be said that it is enough to find
a good classical code in order to get a good non-degenerate quantum code [10]. Moreover,
pre-shared entanglement allows us to import modern codes such as Turbo codes to quantum
error correction, as we will see in the following chapter.
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4 Analysis of Quantum Turbo Codes

Following the possibility of constructing quantum error correcting codes based on already
existing classical codes (thanks to the stabilizer codes and entanglement assistance, as it is
explained in chapter 3), the next step in quantum error correction would be to choose the "best"
classical codes, that is, near Shannon limit error-correcting codes, and import them into the
quantum world.

In that sense, classical turbo codes were first published in 1993 and they were the first
practical codes to closely approach the channel capacity [19]. Turbo codes are used in UMTS
and LTE standards, as well as in deep space satellite communications.

The initial Quantum Turbo Codes (QTCs) proposed by David Poulin, Jean-Pierre Tillich and
Harold Ollivier were based on classical serial turbo codes [20], but these QTCs failed to be
recursive and non-catastrophic at the same time. Quantum Turbo Codes need to be simultane-
ously recursive and non-catastrophic so that the codes have a minimum distance growing with
the blocklength, and the iterative decoding algorithm converges, respectively. Entanglement
assistance in QTCs can be used in order to overcome such simultaneity problem [21].

In this chapter, Quantum Convolutional Codes (QCCs) are explained first, since they are
used as building blocks for the construction of QTC codes [10]. Then, the actual Quantum Turbo
Codes are analysed, assessing the construction, decoding and performance of such codes.

4.1 Entanglement Assisted Quantum Convolutional Codes

Quantum Convolutional Codes (QCCs) can be defined as stabilizer codes [20] with an en-
coding matrix U and a convolutional structure [21]. QCCs are often provided with entanglement,
obtaining Entanglement Assisted Quantum Convolutional Codes (EAQCCs). The entanglement
in EAQCCs allows the construction of both recursive and non-catastrophic encoders [10].

The unitary encoder U of a EAQCC encodesmmemory qubits, k logical qubits of a quantum
state |ϕ〉, a ancilla qubits and c halves of ebits into m new memory qubits and n = k + a + c
physical qubits, as shown in equation (4.1).

|ψ〉 = U
(
|m〉 ⊗ |ϕ〉 ⊗ |0〉⊗a ⊗ (|Φ〉+AB)⊗c

)
(4.1)

In equation (4.1), |ψ〉 represents the resulting encoded state of m memory qubits and n =
k+ a+ c physical qubits. The state |m〉 represents the m memory qubits of the initial state, and
|Φ〉+AB represents the EPR pairs that work as entanglement to the code.

The transformation that the unitary U produces on binary representations of Pauli operators
acting on the m, k and a qubits and c halves of ebits is shown in equation (4.2).

(M ′ : P ) = (M : L : S : E)U (4.2)

In equation (4.2), M ′ acts on the m output memory qubits, P acts on the n output physical
qubits, M acts on the m input memory qubits, L acts on the k input logical qubits, S acts
on the a input ancilla qubits, and E acts on the c halves of input ebits [21]. Note that S can be
decomposed as S = Sx+Sz. The ith component Sxi of S is the Pauli operator X if the syndrome
si = 1, and Sxi = I if si = 0.

Quantum convolutional codes work similarly to classical convolutional codes. The quantum
data is divided in periodic blocks of information qubits, ancilla qubits and halves of ebits. The
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overall encoding operation of the code is the iterative application of the unitary transformation
matrix U to each block, where the m output memory qubits of one transformation are fed into
the next transformation as its m input memory qubits [21], as shown in figure 4.1. The total
number of identical repetition of the transformation U is called the length of the code [20], and
is denoted as N .

M0

U

P1

L1

S1

E1

U

P2

L2

S2

E2

. . .

U

PN

LN

SN

EN

Figure 4.1: Circuit diagram of a quantum convolutional encoder with unitary U

The main advantage of QCCs is that the complexity of the overall encoding increases only
linearly with the length of the code for a fixed m, and the complexity of the decoding increases
linearly with the length of the code by using a local maximum likelihood decoder along with a
belief propagation algorithm [21]. When N is large compared to n, the quantum communication
rate of a quantum convolutional code is k/n, and the entanglement consumption rate is c/n.

4.1.1 State Diagram
The state diagram of a quantum convolutional code is a very important tool in the analysis

of such code. The state diagram is defined as a directed multi-graph with 4m vertices (called
memory states), where each vertix is labeled with an m-qubit Pauli operator M . Two vertices
M and M ′ are linked by a directed edge (M → M ′) with a label (L,P ), if there exists a k-qubit
Pauli operator L, an n-qubit Pauli operator P , and an a-qubit Pauli operator Sz ∈ {I, Z} such
that

(M ′ : P ) = (M : L : Sz : Ic)U.

The labels L and P are referred to as the logical label and the physical label of the edge,
respectively. Figure 4.2 shows an example of a seed transformation U , and figure 4.3 shows
the state diagram of such transformation seed.
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Figure 4.2: Example of a transformation seed U

Figure 4.3: State diagram of the transformation seed in figure 4.2

The state diagram of a quantum convolutional code is used in order to determine if such
QCC is non-catastrophic and recursive.

4.1.2 Non-catastrophity
It is very important for a quantum convolutional encoder to be non-catastrophic because oth-

erwise a finite-weight error could turn into an error with infinite weight [10]. We can tell if a QCC
is catastrophic or non-catastrophic by taking a look at the state diagram of such code. However,
some concepts need to be introduced first before explaining how to find non-catastrophic codes
by looking at the state diagram.

A path in the state diagram is a sequence of vertices M1,M2, ...,Mt such that the edge
Mi → Mi+1 belongs to that sequence, for i ∈ 1, 2, ..., t. Each logical operator belonging to the
code C corresponds to a path in the state diagram, which corresponds to the memory states
that are visited while encoding the logical operator [20]. A closed path is also called a cycle.

The weight of a Paul group is the number of terms in the tensor product which are not equal
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to the identity I. Then, the physical and logical weights of a logical operator are defined as the
sums of the corresponding weights of the edges traversed in a path that encodes such logical
operator [10].

Now, a QCC encoder is non-catastrophic if and only if the only cycles in its state diagram
with a physical weight equal to zero have also a logical weight equal to zero [20].

If we observe the state diagram in figure 4.3, we will see that there is no zero physical-weight
cycle with a non-zero logical weight, and therefore, such encoder is non-catastrophic.

4.1.3 Recursiveness
Recursiveness is also desirable for QCC encoders, specially when the QCC encoder is used

as the inner encoder of a quantum turbo code. Using a recursive QCC as the inner encoder
of a quantum turbo code ensures that the distance of such QTC, on average, will grow almost
linearly with the length of the code [21].

The concept of admissible path is used to determine the recursiveness of an encoder. An
admissible path is a path in the state diagram such that its first edge is not part of a zero
pysical-weight cycle.

A recursive encoder is such that any admissible path with logical weight 1 starting from a
vertex belonging to a zero physical-weight loop does not contain a zero physical-weight loop
[20].

As an example, we can see that the encoder of the state diagram in figure 4.3 is not recur-
sive. The vertex I belongs to a zero physical-weight loop; this loop is formed by the edge (I, II).
The path formed by the edges (Z,ZZ) and (I, II) is an admissible path with a logical weight
equal to one. This is path starts from vertex I, and it contains the zero physical-loop (I, II).
Therefore, by definition, the encoder of this example is not recursive.

4.2 Quantum Turbo Codes

This section presents the construction of quantum turbo codes as an interleaved serial con-
catenation of the quantum convolutional codes explained in section 4.1. This section also
presents the decoding process of QTCs, and the performance analysis of these codes de-
pending on the estimated error probability of the depolarizing channel.

4.2.1 Construction: Interleaved serial concatenation
Quantum turbo codes are obtained from a particular form of interleaved serial concatena-

tion of quantum convolutional codes. In classical communication, it is possible to construct
classical turbo codes from interleaved parallel concatenation of classical convolutional codes
too; however, the no-cloning theorem explained in section 2.2.3 makes interleaved parallel con-
catenation impossible in the quantum world [10]. Therefore, the only possible way to construct
quantum turbo codes is from an interleaved serial concatenation of QCCs.

So, the encoder of a QTC is formed as the interleaved serial concatenation of QCCs and it
has three basic components:

• Outer code: A QCC that encodes kout qubits into nout qubits with encoder V out.

• Inner code: A QCC that encodes kin = nout qubits into nin qubits with encoder V in.
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• Interleaver: A quantum interleaver of size N = nout = kin.

A quantum interleaver Π of size N is an N -qubit symplectic transformation, composed of a
permutation π of N qubts and a tensor product of single-qubit symplectic transformation [20].
The overall transformation generated by a quantum interleaver is shown in equation (4.3), where
K1, ...,KN are some fixed symplectic matrices acting on the Pauli group G1.

(P1, ..., PN )← (Pπ(1)K1, ..., Pπ(N)KN ) (4.3)

Figure 4.4 shows a graphical representation of a quantum turbo encoder. The interleaver Π
is constructed by a combination of SWAP gates and Pauli gates, and the convolutional encoders
V in and V out are constructed by unitaries that can be formed by combinations of Hadamard,
phase and CNOT gates. The encoder of a quantum turbo code works as follows: first, the outer
encoder encodes the information stream, then the interleaver performs a transformation to all
the qubits, and finally the qubits at the output of the interleaver are encoded again by the inner
encoder.

Lout

V out

Π

V inSout Sin Pin

Eout Ein

Figure 4.4: Circuit diagram of a quantum turbo encoder

Therefore, the resulting encoding matrix of the interleaved concatenated code is

V = V outΠV in.

It is considered that the best combination in order to build a quantum turbo code is to choose
a recursive, non-catastrophic QCC as the inner code, and a non-recursive, non-catastrophic
QCC as the outer code of such quantum turbo code. This combination ensures that the re-
sulting quantum turbo code is recursive and non-catastrophic. Furthermore, this combination
minimizes the entanglement consumption of the code, because the outer code is not an entan-
glement assisted code.

The communication rate of the resulting turbo code is kout/nin, and the entanglement con-
sumption rate is (cout + cin)/nin, where cout and cin are the number of ebits consumed by the
outer code and the inner code, respectively.

4.2.2 Iterative decoding
Section 4.2.1 explained how encoders are constructed in quantum turbo codes. This section

shows how these codes are decoded.
The decoding of classical turbo codes, such as in the sum-product algorithm, is based on

finding the codeword that is most probable to have been sent by the transmitter based on the
syndrome. However, this method cannot be applied in quantum communication because quan-
tum states are continuous. Instead, the Pauli error (which is discrete) that has affected the quan-
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tum state is considered in quantum decoding. In quantum error correction, maximum-likelihood
decoding estimates the most probable error coset that may have happened to the information
during transmission [20], so that the corresponding correcting operator can be applied to the
received state.

The "Soft-Input-Soft-Output" (SISO) decoding algorithm for QTCs was proposed by David
Poulin, Jean-Pierre Tillich and Harold Ollivier [20]. This algorithm consists in the exchange of
a posteriori information between the constituent quantum convolutional decoders of the QTC,
and was later improved by introducing the concept of extrinsic information transfer [21].

Figure 4.5 shows a schematic representation of the SISO decoder. The decoding algorithm
[10] is detailed below:

Figure 4.5: Circuit diagram of the SISO decoder for quantum turbo codes

1. The inner SISO decoder SISOIn first decodes the inner code, based on the channel
information, P In(P ), and the measured error syndrome, (Sx)In corresponding to such
inner code. The inner code is decoded by (V in)†, and the syndrome measurement is
done as explained in section 3.4.3.

2. Then, the obtained probabilities of error P In(L/Sx) that might have happened during the
transmission (based on the measured syndrome (Sx)In) are passed through the inter-
leaver and sent to the outer SISO decoder as its input information, POut(P ).

3. The outer SISO decoder, SISOOut, decodes the outer code similarly as in step 1: by
(V Out)†, and based on the input information POut(P ) and syndrome (Sx)Out of the outer
code.

4. The output probability of the outer SISO decoder POut(P/Sx) (that is, the information
about the probability of the physical operator P depending on the syndrome) is used as
the input of the inner SISO decoder. In order to do that, POut(P/Sx) is deinterleaved
before it is sent back to SISOIn, in the form of the probability P In(L) that the inner code
has suffered some logical error L.

5. The inner SISO decoder SISOIn decodes the inner code again with the input P In(L)
and syndrome (Sx)In. Note that for the first iteration, the probability P In(L) is taken as
equiprobable.
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6. The whole procedure is repeated an arbitrary number of times. The process can be
stopped after a fixed number of iterations, or when the decoding in the inner and outer
decoders match.

7. The eventual output of the overall SISO decoder is the probability distribution POut(L/Sx),
which tells us the most probable error coset given the syndrome Sx, and the corresponding
error correction operation can be now applied to the decoded quantum state.

The algorithm described above passes along a posteriori information between the outer and
inner decoder, and as a consequence, the iterations on each decoder depend on one another.
This is translated into a harmful positive feedback effect that prevents the decoding algorithm
from achieving the desired performance results usually obtained in iterative decoding [21].

In order to overcome this undesired effect, it is necessary that the a priori information di-
rectly related to a given information qubit is not used again in the other decoder. This can be
achieved by designing the decoders in a way such that they remove a priori information from
the a posteriori information before they feed it to the other decoder. This way, decoders do
not exchange a posteriori information, but only extrinsic information instead, which is new and
unkown to the other decoder.

Figure 4.6: Circuit diagram of a SISO decoder that removes a priori information from a posteriori
information in order to obtain extrinsic information. Note that the probabilities are in logarithmic
scale.

Figure 4.6 shows a four-port SISO decoder that exploits an A Posteriori Probability (APP)
module. The inputs are the a priori information P a(L) and P a(P ), and the outputs are the
a posteriori information P o(L) and P o(P ). The extrinsic probabilities P e(Lji ) and P e(P ji ), for
the jth qubit and time instant i, are obtained by discarding the a priori information from the a
posteriori information, as shown in equation (4.4).

P e(Lji ) = NLj
P o(Lji )

P a(Lji )
,

P e(P ji ) = NP j
P o(P ji )

P a(P ji )
.

(4.4)
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Note that NLj and NP j in equation (4.4) are normalization factors. Moreover, in order to
reduce the computational complexity, log-domains are considered, so that multiplications and
fractions are simplified into additions and substractions, as shown in equation (4.5).

ln[P e(Lji )] = ln[NLj ] + ln[P o(Lji )] + ln[P a(Lji )],

ln[P e(P ji )] = ln[NP j ] + ln[P o(P ji )] + ln[P a(P ji )].
(4.5)

Therefore, the inputs and outputs of the SISO decoders, such as the one if figure 4.6, are
the logarithmic a priori and extrinsic probabilities, respectively [10].

Figure 4.7: Circuit diagram of the updated SISO decoder for quantum turbo codes

Finally, the introduction of the extrinsic information modifies the decoding algorithm slightly,
and the circuit diagram of such decoder changes too. Figure 4.7 shows an updated circuit
diagram of the decoding algorithm in SISO decoders, in which the inner and outer decoders
exchange extrinsic information (in contrast to figure 4.5, where a posteriori information is ex-
changed). If figure 4.7, A(y) and E(y) represent the logarithmic a priori and extrinsic probabili-
ties of y, respectively, with y ∈ {L1, L2, P1, P2}.

4.2.3 Performance of iterative decoding algorithm with channel mismatch
In section 4.2.2 we saw that the channel information is given to the SISO decoder as an

input. However, in many cases it is impossible to obtain an exact determination of a noisy quan-
tum channel. This section analyses the impact of a channel mismatch on the error correction
performance, that is, how strong SISO decoders are when the estimated probability error of the
depolarizing channel is not accurate.

The quantum error correcting systems were simulated by the Matlab programs authored by
Mark M. Wilde, Min-Hsiu Hsieh, and Zunaira Babar [22]. This software measures the word error
rate (WER) of a quantum turbo code, and it is available under the GNU General Public License
v3. The QTC of this software is optimized with EXIT charts. In these original Matlab codes, the
depolarizing channel and the channel information fed to the SISO decoder were characterized
by the same variables. Therefore, a little modification had to be done so these codes so that a
channel mismatch could be simulated (new variables had to be defined).
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(a) Simulation for p = 0.29 (b) Simulation for p = 0.31

(c) Simulation for p = 0.33 (d) Simulation for p = 0.34

Figure 4.8: Simulations of the channel mismatch in a QTC with a random interleaver. The
graphics show the WER on the y axis, and the estimated probability p̂ on the x axis

When it comes to the interleaver of the quantum turbo encoder, simulations were performed
with three different interleavers: a random interleaver, an S-random interleaver and a JPL inter-
leaver.

A random interleaver is a pattern π that permutes the symbols of the code in a completely
arbitrary way. It reorders the input symbols using a random permutation. The random interleaver
chosen for the simulations in this project had a with a blocklength of N = 3000.

With the random interleaver explained before, four different scenarios were simulated. In
each scenario, the depolarizing channel of the quantum communication had a different error
probability p, and the WER of the QTC was estimated for a set of estimated depolarizing prob-
abilities p̂. The value p̂ is the channel information that is given to the SISO decoder, even when
this probability does not match with the actual depolarizing probability p of the depolarizing
channel used in the quantum communication. These four simulations were done for p = 0.29,
p = 0.31, p = 0.33 and p = 0.34, and in each simulation, the WER was calculated for a set of
estimated probabilities p̂ ∈ [0, 0.5].

Figure 4.8 summarizes the results obtained in such simulations. Subfigure 4.8 a) shows the
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WER obtained depending on the estimated depolarizing probability p̂ when the actual depolar-
izing probability is p = 0.29; subfigure 4.8 b) shows the WER depending on p̂ when p = 0.31;
subfigure 4.8 c) shows the WER depending on p̂ when p = 0.33; and subfigure 4.8 d) shows the
WER depending on p̂ when p = 0.34. The vertical lines in subfigures 4.8 a), 4.8 b), 4.8 c) and
4.8 d) represent the value p̂ = p.

Note that the channel mismatch does affect the error correction of quantum turbo codes.
The SISO decoders present the lower WER when the estimated error probability p̂ matches the
actual error probability p, and the WER increases as the value of p̂ moves away from p. Overall,
the WER curves presented in figure 4.8 are quite similar to the WER curves corresponding to
a channel mismatch in classical turbo codes [23], so it seems that the mismatch results in the
quantum world are coherent with the results in the classical world.

(a) Simulation for p = 0.29 (b) Simulation for p = 0.31

(c) Simulation for p = 0.33 (d) Simulation for p = 0.34

Figure 4.9: Simulations of channel mismatch in a QTC with a random interleaver. The graphics
show the WER on the y axis, and p̂ on the x axis in logarithmic scale

If we analyse the graphics more meticulously, we can deduce a few more interesting conclu-
sions. Even though both the underestimation and overestimation of the depolarizing probability
affects quantum error correction negatively, a big overestimation of the channel is slightly more
disadvantageous than a big underestimation. This can be seen more clearly in figure 4.9, where
the x axis of the plots are shown in logarithmic scale. In the subfigures of figure 4.9, the slope
of the WER is greater at the right of the vertical line (where p̂ > p) than at the left of the vertical
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line (where p̂ < p).
Moreover, there is an area around p̂ = p where the WER seems to be quite stable in every

subfigure. This is shown more clearly in figure 4.10, where all the WER curves are drawn in
the same graphic. Among the four simulations, the narrowest stable area is shown in the case
where the depolarizing probability of the channel is p = 0.34; and the widest stable area is
shown in the case where p = 0.29. It seems like the lower the depolarizing probability of the
channel is, the wider the stable area in the WER curve will be.

(a) All simulations with the x axis in logarithmic
scale

(b) All simulations with the x axis in linear scale

Figure 4.10: All the simulations of channel mismatch in QTC

Appart from the random interleaver, other kinds of interleavers were simulated too, in order to
compare how channel mismatch affects different interleavers. The other simulated interleavers
are the S-random interleaver and the JPL interleaver.

On the one hand, an S-random interleaver is an interleaving pattern π which permutes
elements randomly with the following condition:

|π(i)− π(j)| > S for i and j such that |i− j| ≤ S.

In order to choose the value of S it is recommended that the condition S =

√
N

2
is satisfied,

where N is the blocklength of the interleaver. This way, S-random interleavers can usually be
produced in reasonable time by generating random integers repeatedly until such condition is
fulfulled [24]. The S-random interleaver that was simulated in this project was an interleaver with
length N = 3000 and S = 25. Note that these two parameters fulfill the condition recommended
before. This S-random interleaver was simulated for a depolarizing channel with probability
p = 0.33.

The results of this simulation are shown in figure 4.11. Figure 4.11 shows the performance
analysis of the S-random interleaver compared to the results of the random interleaver for
p = 0.33. We can see that the performance of the S-random interleaver is analogous to the
performance of the random interleaver, in the sense that both graphics have a similar shape
in figure 4.11. The S-random interleaver, however, shows a lower WER especially when the
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Figure 4.11: Simulation of the S-random interleaver compared to the random interleaver for
p = 0.33

estimated p̂ is close to the actual p. These results are coherent with the simulations of the in-
terleavers without mismatch [24], where it is shown that S-random interleavers present a lower
error floor than random interleavers.

Figure 4.12: Simulation of the JPL interleaver compared to the random interleaver for p = 0.33

On the other hand, a JPL interleaver is an interleaving pattern that, unlike the random or the
S-random interleaver, permutes the symbols based on a deterministic algorithm. This specific
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algorithm consists of factorizing the length N into two integers and performing a few operations
for each position s from s = 1 to s = N .

The JPL interleaver used for the simulation has a blocklength of N = 3000, just like the
random and S-random interleavers used in the previous simulations. This simulation was made
for a depolarizing channel with error probability p = 0.33, in order to compare the performance
of the JPL interleaver with the performances of the previous interleavers. The obtained results
are depicted in figure 4.12. Note that the WER curve for the JPL interleaver has a similar shape
to the WER curve for the random interleaver; the only difference is that the JPL interleaver
presents a slightly lower WER when the estimated depolarizing probability p̂ is close to p.

The results of the three interleavers for a depolarizing channel with p = 0.33 are plotted in
figure 4.13. This figure shows that for p̂ values that are close to p, the S-random interleaver is
the one with the best performance in terms of word error rate, followed by the JPL interleaver
and the random interleaver. These results coincide with the simulations of the simulations of the
interleavers with no mismatch [24], where it is shown that the S-random interleaver has a lower
error floor than the JPL interleaver, and that the JPL has a lower error floor than the random
interleaver.

Figure 4.13: Simulations of the random, S-random and JPL interleaver for a depolarizing chan-
nel with p = 0.33
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5 Conclusion

Section 4.2.3 showed that channel mismatch does affect the decoding in quantum turbo
codes. That is, when the SISO decoder is fed with a channel information that is not accurate,
the decoder of the QTC will present a higher word error rate than in the case where the channel
information was accurate. On the one hand, when the estimated error probability p̂ of the
depolarizing channel is close to the actual error probability p of the channel, the QTC presents a
relatively low WER. On the other hand, when the estimated p̂ is far from probability p, the WER
in QTC increases considerably. Overall, the behavior of quantum turbo codes with channel
mismatch is coherent with the behavior of classical turbo codes with channel mismatch.

Section 4.2.3 also discloses the influence of the interleaver choice when there is a channel
mismatch. The three interleavers simulated in this project presented a similar WER when the
estimated p̂ was far away from the actual p. However, when the estimation of p̂ was quite
close to the actual value of the error probability of the channel, noticeable differences emerged.
Some interleavers had a lower WER than others when p̂ was close to p. Specifically, when the
estimation p̂ did not vary much from p, the interleavers with a lower error floor [24] performed
better than the other interleavers with a higher error floor.

These results indicate how important it is to feed the SISO decoder of a QTC with the correct
channel information. Even when the exact determination of a quantum communication channel
is unavailabe, it is crucial to find a moderately accurate estimation of the depolarizing probability
in order to get a low WER. The figures in section 4.2.3 demonstrate that the deviation of a few
tenths, or even a few hundredths, may results in a huge increase of the WER.

Future work on the study of channel mismatch may touch upon the influence of the inter-
leaver choice on different depolarizing channels. In this document, the performances of the
random, S-random and JPL interleaver were compared for a depolarizing channel of p = 0.33
only. The three interleavers could be simulated for other values of p too, in order to check if the
conclusions deduced in this document can be extracted to other depolarizing channels with a
different error probability. Besides, many other interleavers could be simulated as well, such as
the Welch-Costas interleaver.
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6 Project Budget

The budget of the development of this Final Degree Project is detailed below. The whole
budget is divided in the following headings:

• Inmobilized material: The sets of products and components bought to third parties and
were used during the realization of the project. The budget of the inmobilized material is ex-
plained in table 6.1.

• Consumable material: The set of every consumable material consumed during the real-
ization of the project. The budget of the consumable material can be seen in table 6.2.

• Equipment: The costs corresponding to the use of every machine during the development
of the project. These costs were calculated by taking into account the average amortization cost
of each machine and the amount of time each machine was used. The budget of the equipment
is shown in table 6.3.

• Software: The software used for the development of the project. The amortization of the
licenses are taken into account. Table 6.4 shows the budget of the software.

• Workforce: The costs corresponding to the human resources involved in every phase of
the project. The budget of the workforce is shown in figure 6.5.

Description Quantity Unit Price (C) Total price (C)
Paper sheets 12 0.01 0.12

Total Inmobilized
Material

0.12

Table 6.1: Budget of the inmobilized material

Description Quantity Unit Price (C) Total price (C)
Pens 2 2.20 4.40

Pencils 2 0.90 1.80
Eraser 1 1.30 1.30

Total Consumable
Material

7.50

Table 6.2: Budget of the consumable material
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Equipment
Acquisiton
quota (C)

Amortization
time (years)

Amortization
quota (C/

hour)

Time of
use

(hours)

Amortization
(C)

Laptop 876.00 5 0.02 220 4.40
Desktop computer 4380.00 5 0.10 672 67.20
Total Equipment 71.60

Table 6.3: Budget of the equipment

Software
Acquisiton
quota (C)

Amortization
time (years)

Amortization
quota (C/

hour)

Time of
use

(hours)

Amortization
(C)

Windows 10 139.00 1 0.02 220 4.40
Matlab 800.00 1 0.09 672 60.48

Total Software 64.88

Table 6.4: Budget of the software

Position Task Duration (hours) Fee (C/ hour) Total cost (C)

Junior engineer
Working on the Final

Degree Project
240 10.00 2,400.00

Total Workforce 2,400.00

Table 6.5: Budget of the workforce

Budget Summary: The budget summary of the Final Degree Project is detailed in table
6.6. It can be seen that the whole budget ascends to 3,386.20 C.

Heading Amount (C)
Inmobilized material 0.12
Consumable material 7.50

Equipment 71.60
Software 64.88

Workforce 2,400.00
Sum 2,544.10

Indirect costs (10%) 254.11
Total without VAT 2,798.51

Total with VAT 3,386.20
TOTAL BUDGET 3,386.20

Table 6.6: Overall budget

40



Jon Ander Iñiguez de Gordoa Pouso

References

[1] Preskill, John, "Quantum Computing and the Entanglement Frontier", arXiv:1203.5813v3.
Nov. 2012.

[2] "Making the World’s First Integrated Quantum System", IBM, 5th June 2019,
<https://www.research.ibm.com/ibm-q/system-one/>

[3] "Intel Drives Development of Quantum Cryoprober with Bluefors and Afore to Accelerate
Quantum Computing", Intel, 5th June 2019, <https://newsroom.intel.com/news/intel-
drives-development-quantum-cryoprober-bluefors-afore-accelerate-quantum-
computing/#gs.h10jb2>

[4] "Microsoft Quantum Network", Microsoft, 5th June 2019, <https://www.microsoft.com/en-
us/quantum/quantum-network>

[5] "NASA Quantum Artificial Intelligence Laboratory (QuAIL)", National Aeronautics and Space
Administration, 5th June 2019, <https://ti.arc.nasa.gov/tech/dash/groups/physics/quail/>

[6] Yiu, Yuen, "Is China the Leader in Quantum Communications?", Inside Science.
19 Jan 2018. 5 June 2019, <https://www.insidescience.org/news/china-leader-quantum-
communications>

[7] Shannon, Claude, "A Mathematical Theory of Communication", The Bell System Technical
Journal. Vol. 27, July 1948: 79-423.

[8] Brun, Todd, and Min-Hsiu Hsieh, "Entanglement-Assisted Quantum Error-Correcting
Codes," arXiv:1610.04013v1. Oct. 2016.

[9] Nielsen, Michael A., and Isaac L. Chuang, Quantum Computation and Quantum Information:
10th Anniversary Edition. New York, NY, USA: Cambridge University Press, 10th ed., 2011.

[10] Etxezarreta Martínez, Josu, Quantum Error Correction: stabilizer coding and beyond.
Graduate thesis. University of Navarra, 2018.

[11] Mastriani, Mario, "Simplified Protocol of Quantum Teleportation," Journal of Quantum In-
formation Science. Sept. 2018: 107-120.

[12] Preskill, John, "Lecture Notes for Ph219/CS2019: Quantum Information. Chapter 3". Cali-
fornia Institute of Technology. Oct. 2018: 24-25.

[13] Xie, Yixuan, Quantum Error Correction and Stabilizer Codes. PhD thesis. University of New
South Wales, 2016.

[14] Raussendorf, Robert, "Key ideas in quantum error correction," Philosophical Transactions
of the Royal Society A. Sept. 2012: 4541-4565.

[15] Albouy, Olivier, "Discrete algebra and geometry applied to the Pauli group and mutually
unbiased bases in quantum information theory". Université Claude Bernard - Lyon I. 2009:
35-36.

41



Iterative decoder for Quantum Turbo Codes

[16] Brun, Todd, Igor Devetak, and Min-Hsiu Hsieh, "Correcting Quantum Errors with Entangle-
ment," Science. Oct. 2006: 436-438.

[17] Gottesman, Daniel, "The Heisenberg Representation of Quantum Computers", Interna-
tional Colloquium Group THeoretical Methods in Physics, Cambridge, MA, International
Press, July 1998: 32-43.

[18] Brun, Todd, Igor Devetak, and Min-Hsiu Hsied, "General entanglement-assisted quantum
error-correcting codes", Proc. IEEE Int. Symp. Inf. Theory. Jun. 2007: 2101-2105.

[19] Berrou, Claude, Alain Glavieux, and Punya Thitimajshima, "Near Shannon limi error-
correcting coding and decoding: Turbo codes", IEEE Proceeding of the International Con-
ference on Communications. May 1993: 1064-1070.

[20] Poulin, David, Jean-Pierre, Tillich, and Harold Ollivier, "Quantum serial turbo-codes", IEEE
Transactions on Information Theory. Vol.55, Jun. 2009: 2776-2798.

[21] Wilde, Mark M., Min-Hsiu Hsieh, and Zunaira Babar, "Entanglement-assisted quantum
turbo codes", IEEE Transactions of Information Theory. Vol. 60, Feb. 2014: 1203-1222.

[22] Wilde, Mark M., Min-Hsiu Hsieh, and Zunaira Babar, "EA-Turbo". 12th June 2019,
<https://code.google.com/archive/p/ea-turbo/>

[23] Ho, Mark S. C., and Steven S. Pietrobon, "A variance mismatch study for serial concate-
nated turbo codes", 2nd International Symposium on Turbo Codes & Related Topics, Sept.
2000: 483-486.

[24] Etxezarreta, Josu, Pedro M. Crespo, and Javier Garcia-Frías, On the performance of inter-
leavers for Quantum Turbo Codes. May 2019.

42


