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ABSTRACT
We present calculated and measured elastic and vibrational excitation cross sections in benzene with the objective to assess the reliability of
the theoretical method and to shed more light on how the electronic motion of the incoming electron is coupled with the nuclear motion of
the vibrations. The calculation employed the discrete momentum representation method which involves solving the two-channel Lippmann-
Schwinger equation in themomentum space. The electron-molecule interaction was described by the exact static-exchange potential extended
by a density-functional theory correlation-polarization interaction that models the molecular response in the field of the incoming electron.
Cross sections were calculated for all 20 vibrational modes from near threshold until 20 eV. They were convoluted with a simulated instru-
mental profile for comparison with electron energy-loss spectra or appropriately summed for overlapping vibrations for comparison with
measured cross sections plotted as a function of electron energy. An electron spectrometer with hemispherical analyzers was employed for
the measurements. Good agreement of theory with experiment was obtained for the spectral profiles at 8 eV, and a nearly quantitative agree-
ment was obtained at 3 and 4.8 eV. The theoretical results provided new insight into the excitation process, and it showed that more modes
are excited than predicted by simple symmetry rules. Spectra showing the details of boomerang structure in the 1.15 eV π∗ resonance were
recorded and are presented, although this aspect of experiment cannot be compared with the current theory.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5110677., s

I. INTRODUCTION

A key issue in electron-driven chemistry is how the energy of
the incoming electron is coupled to the motion of nuclei of a target
molecule. Theoretical treatment of this process is greatly compli-
cated by the transient nature of the intermediate negative ion (the
resonance), given by the spontaneous loss of the electron. In this
work, we evaluate the capacity of an improved version of the Dis-
crete Momentum Representation (DMR) method1 to excite an ele-
mentary type of nuclear motion—the fundamental vibrations. We
do this by comparing calculated andmeasured vibrational excitation
cross sections.

The DMR method (i) provides also, apart from the ener-
gies and widths of the resonances, the cross sections for excit-
ing all vibrational modes without a priori assumptions, (ii) is
applicable even to large polyatomic molecules, and (iii) signifi-
cantly improves the description of resonances by augmenting the
exact static-exchange potential by a density-functional theory (DFT)
correlation-polarization interaction. Our earlier work on cyclo-
propane1 demonstrated the power of the DMR method to quan-
titatively treat the problem and provided a deep insight into the
excitation mechanism, without a priori assumptions about eliminat-
ing certain partial waves. It is thus more powerful than selection
rules and correctly predicted and described even the excitation of
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unexpected modes, where the electron leaves in a p partial
wave—that is, a wave other than the generally assumed possi-
bilities of either the same wave as the incoming electron or an
s-wave.2,3

We chose benzene for our study. It is a prototype of a molecule
with a π electron system, and it is also a prototype for vibrational
excitation of polyatomic molecules by electron impact because it
was on benzene that Wong and Schulz2 pointed out the great selec-
tivity of the resonant excitation and rationalized this selectivity by
selection rules, assuming that the scattered electron can leave the
resonance either in the same partial wave in which it arrived or in
an s-wave. Despite its prototype nature, there is not much theoreti-
cal work concerning vibrational excitation and only few quantitative
experimental cross sections. Primarily, the elastic electron scattering
was studied. For a comprehensive bibliography, we refer the reader
to the most recent paper4 on this topic.

Experimentally, several resonances were found in the energy
range below 20 eV by electron transmission spectroscopy (ETS).5–9

The lowest resonance was reported by different laboratories between
1.1 and 1.6 eV (depending on whether adiabatic or vertical attach-
ment energy was taken) and was interpreted as π e2u. Another reso-
nance was observed by electron transmission spectroscopy at about
5 eV and assigned5–7 as π b2g. It was also observed as a weak shoul-

der8,9 below 5 eV on the plotted total cross section data. The π res-
onances were later also observed as peaks in (relative) vibrational
excitation cross sections (Fig. 40 of Ref. 10 and Ref. 11). Compila-
tion4 of electron scattering studies on benzene shows a broad peak
observed in the region 7–13 eV.

The positions of the resonances and their assignments were
reproduced by rigorous ab initio calculations.4,12,13 Gianturco and
Lucchese12 computed the π e2u resonance by the single-center-
expansion method at 1.82 eV, the π b2g resonance at 7.44, and the

e1u resonance at 10.07 eV. Bettega et al.
13 using the Schwinger mul-

tichannel approach reported the π e2u resonance at 2.3 eV and the
π b2g resonance at 8.3 eV. Prajapati et al.

4 used the R-matrix calcu-
lations and reported the π e2u resonance at 2.66 eV and the π b2g
resonance at 7.41 eV, obtained from the energy dependence of the
total cross sections. The effect of inelastic channels was simulated by
an “absorption” potential.

In contrast to elastic scattering, experimental data on vibra-
tional excitation of benzene by electron impact are scarce. After the
pioneering papers by Schulz and collaborators,2,14 the only vibra-
tional electron energy loss spectra (EELS) of benzene we found in the
literature were those reported in the reviews by Allan10 for residual
electron energies of 0.49, 0.75, and 1.10 eV and by Kato and col-
laborators15 for the incident electron energy of 7.5 eV. We did not
find in the literature any true ab initio calculation of vibrationally
inelastic scattering by benzene. Still, benzene was the molecule on
which symmetry selection rules for vibrational excitation by res-
onant electron impact were formulated.2,3 The rules were based
on symmetry considerations, namely, on the symmetries of fun-
damental modes and of the electronic states of the negative ion.
The original selection rules by Wong and Schultz2 were based on
symmetry considerations only. Gallup realized3 that the vibration
excited by various resonances should be determined by inspection
of the symmetry and also of the magnitude of S-matrix elements
given in terms of integrals over vibrational functions and electronic
states.

Several computational methods have been employed in calcu-
lations of the electron-impact vibrational excitation of polyatomic
molecules. The complex Kohn variation technique was used by
Rescigno et al.16 in their CO2 study. Dissociative electron attachment
and the vibrational excitation of CH3I were explored with the single-
pole R-matrix method.17 A number of calculations employed a
single-center expansion technique for small polyatomic systems
with different levels of approximations for the nuclear dynamics.
The molecular systems considered by these computational studies
were H2O,

18 H2S,
19 CH4,

20 and cyclopropane C3H6.
21

The aim of the present work is to calculate the vibrational
cross section for all modes quantitatively, in ab initio manner,
and to compare them to absolute experimental cross sections. The
measurements automatically yielded, as a sideline, details of the
boomerang structure in the 1.15 eV π e2u resonance which we also
present and discuss even though it is not addressed by the DMR
method.

II. EXPERIMENT
The measurements were performed with a spectrometer

using hemispherical electrostatic energy analyzers which has been
described previously22,23 and does not require a detailed description
here. The technical quality of the data is substantially improved in
comparison with the older benzene measurements performed with
a magnetically collimated spectrometer.10 The experimental condi-
tions were the same as in our previous studies on cyclopropane1

and diacetylene.24 As in our previous studies, absolute values of the
cross sections were determined by the relative flow technique and
normalized to a theoretical helium elastic cross section.25 The confi-
dence limit for the magnitudes of the inelastic cross sections is about
±25% (two standard deviations). As in our previous work, we shall
compare experimental and calculated data in two formats: (i) cross
sections for a given electron energy loss, plotted as a function of
the incident electron energy, which we shall call energy dependence
spectra (EDS), and (ii) cross section plotted as a function of electron
energy loss ΔE for a given incident electron energy.

III. THEORETICAL MODEL AND COMPUTATIONAL
DETAILS

The computational method, which we use and which we
call DMR (Discrete Momentum Representation), is a two-
channel approach in the discrete momentum representation
expressed for each vibrational mode by the following two matrix
equations:

T10 = U10 +U10G0T00 +U11G1T10, (1)

T00 = U00 +U00G0T00 +U01G1T10, (2)

where 10 and 00 mean the transitions 1 ← 0 and 0 ← 0, respec-
tively. Equations (1) and (2) represent a traditional expression for
a two-channel scattering process, coupling in our case the elastic
channel (T00) with the vibrational channel for a particular vibra-
tional mode (T10). All integrals for the interaction potential operator
U are calculated rigorously in the ab initio manner. For evaluation
of U10 and U01 matrix elements, the harmonic vibrational functions
were assumed. As in the theory of infrared (IR) spectroscopy, the
integration over the vibrational coordinate was approximated by
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means of analytical derivatives of U matrix elements with respect
to normal coordinates at the equilibrium geometry. Details of the
method and the numerically controllable approximations used have
been described in our earlier papers.26,27 The code used in this work
has been technically improved to provide higher numerical stabil-
ity at low energies. For clarity, we note also here the approximation
referring to coupling of the elastic and vibrationally inelastic chan-
nels in Eqs. (1) and (2) because it is relevant for the discussion in
Secs. IV and V. It stems from our observation that cross sections for
elastic scattering evaluated by means of Eq. (2) for different vibra-
tional modes differ very little, and this fact permits us to simplify
this equation as

T00 = U00 +U00G0T00 (3)

and to obtain the T00 matrix by a standard single-channel, often
called fixed-nuclei calculation for elastic scattering. The T00 matrix
obtained by means of Eq. (3) is then used in Eq. (1) for all vibra-
tional modes. Hence, the two-channel approach is so converted to a
pseudosingle-channel approach where the size of all matrices is only
N ×N instead of 2N × 2N, whereN represents the number of plane-
wave functions in the electronic basis. Next, by definingmatricesA11

and B10 as

A11 = (1 −U11G1)
−1
, (4)

B10 = U10(1 +G0T00) (5)

for each vibrational mode, we obtain the matrix of amplitudes as

T10 = A11B10. (6)

The interaction matrices U00, U10, and U11 are of the SEP (static-
exchange plus polarization) type. The SE part is calculated rigorously
in an ab initio manner by using the Hartree-Fock density matrix.
Its analytical derivatives with respect to coordinates of the target
and dipolemoment derivatives are obtained from coupled perturbed
Hartree-Fock calculations. The short-range correlation potential is
approximated by a model based on the DFT (density functional the-
ory) as described previously.28 The long-range polarization part is
determined by the static polarizabilities and their derivatives with
respect to the nuclear coordinates. The static polarizabilities used in
the present calculations were obtained as linear response functions
in DFT calculations with PBE0 functional and Sadlej’s polarized
VTZ basis set29 as implemented in the program Dalton, Release 2.0
(2005).30

A direct output of scattering calculations is a manifold of calcu-
lated vibrational cross sections which can be taken as a theoretical
line electron energy loss spectrum. The obtained lines were posi-
tioned at values of experimentally determined frequencies.31 We
follow the conventional numbering and labeling of the 20 normal
modes (10 of which, ν11–ν20, are doubly degenerate) of benzene.31

If not noted otherwise, for direct comparison with the experiment,
we assumed a Gaussian shape for each line with a half-width of
15 meV corresponding to the resolution of experimental measure-
ments done in this paper. The heights of the peaks are set at the val-
ues of calculated differential cross sections. For degenerate modes,
the cross sections were calculated for a single component of the
normal mode only, and the result was multiplied by a factor of
two.

It is important to note that the use of the procedure depicted
by Eqs. (1)–(6) does not lead to the known adiabatic approxima-
tion32 for vibrations as the present theory starts from the coupled
two-channel system of Eqs. (1) and (2). Equations (1) and (2) rep-
resent a set of two coupled equations in the vibrational degrees of
freedom (initial and final states), and thus, it cannot be considered
neither the fixed-nuclei nor the adiabatic approximations. Although
the later simplification of the theory in Eqs. (3)–(6) leads to the
elastic events decoupled from the inelastic collisions (3) and thus
resulting in a fixed-nuclei elastic theory, the inelastic T-matrix ele-
ments are not obtained by a simple average32 over the nuclear states
involved.

A limitation of the DMR method in its present form is the
use of the harmonic approximation. The consequence of this is that
our theoretical model does not account for the excitation of over-
tones and combination bands. Nor does it account for phenomena
caused by the coupling of electron and nuclear movements in the
intermediate resonant state, which cause the boomerang structure
in the low-energy π e2u resonance of benzene. We chose it because
it is currently the only manageable way for treatments of polyatomic
molecules. We obtained good results with it for cyclopropane1 and
diacetylene.24

IV. ELASTIC SCATTERING
We begin our discussion with elastic cross sections because

good results for elastic scattering are a prerequisite for successful
evaluation of cross sections for vibrationally inelastic scattering in

FIG. 1. Differential elastic cross sec-
tion measured (red line) and calculated
(black line) at a scattering angle of 90○.
The experimental data were normalized

to the absolute data of Cho et al.11

(shown as gray circles) at 6 eV. The
experimental and the theoretical data are
independently on absolute scales. The
right panel shows the low energy region
in detail.
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TABLE I. Differential elastic cross sections measured at 135○ by comparison with
helium using the relative flow method.

Energy (eV) 0.2 0.4 0.8 1.0 1.15 2.5 5.0

DCS (Å2/sr) 0.975 1.330 0.986 0.680 0.999 1.014 1.618

our approach. It can be seen from Eqs. (1) and (2) of our two-
channel model that the T00 amplitudes calculated for elastic scat-
tering are needed for evaluation of the amplitudes of vibrational
channels. As expected, our single-channel calculation (shown in the
left panel of Fig. 1) almost duplicates the results of the calculations
reported by Gianturco and Lucchese12 and Bettega et al.13 We have
not measured the absolute values at 90○ and have normalized our
elastic excitation function at this angle to the absolute value of Cho
et al.11 at 6 eV. Figure 1 shows that with this normalization the
present excitation function agrees with the values of Cho et al.11 also
at other energies, confirming the consistency of the shape of the exci-
tation function. At 135○, we have measured the absolute elastic val-
ues at several electron energies using the relative flow method, with
the results listed in Table I, and show them in Fig. 2 as red, yellow-
filled circles. The excitation function, corrected for the instrumental
response function as in our earlier work, has been normalized to
our absolute value at 1 eV. The good agreement between the yellow
circles and the red line in Fig. 2 even at energies other than 1 eV con-
firms the internal consistency of the absolute measurements and the
excitation function. There is good agreement between the present
absolute values and those of Cho et al.,11 except of some discrepancy
at 8.5 and 10 eV at 135○.

Figures 1 and 2 compare the experimental cross sections to
our calculation. The calculated position of the e2u resonance, at
1.6 eV, agrees very well with the center of the boomerang struc-
ture of the experimental band (that is, with the vertical attachment
energy) which is around 1.4 eV. This indicates correct treatment of
polarization and short-range electron-molecule interactions by our
theory.

The experimental curves, in particular the expanded views
in the right panels of Figs. 1 and 2, show a clear-cut vibrational
progression in the π e2u resonance due to the boomerang mecha-
nism.33 Our theoretical model describes the negative ion with fixed

nuclei for elastic scattering and is consequently not amenable to
treatment of vibrational motion in the negative ion. A meaning-
ful comparison can nonetheless be made, based on the analysis
by Chandra and Temkin,34 which they performed on the pro-
totype case of vibrational excitation of N2 via the πg resonance.
They compare the results of the fixed nuclei theory, which does
not reproduce the boomerang structure, with those of the “hybrid”
vibrational-close-coupling theory, which does. They find that the
2πg resonance appears 0.4 eV wide in the fixed nuclei approxima-
tion, which is about the “electronic” width Γ of the resonance. This
is also about the width of the individual boomerang peaks in the
close-coupling theory. The whole envelope of the boomerang struc-
ture, which they calculated by the close-coupling theory, is about
1 eV wide, in agreement with the experiment. The fixed nuclei
peak is much higher than the boomerang structures such that the
areas under the fixed nuclei peak and the boomerang peaks are
comparable.

Given the findings of Chandra and Temkin,34 we conclude that
our calculation reproduces not only the energy of the π e2u resonance
correctly but also approximately its magnitude if it is taken into
account that the height of the narrow peak of the fixed nuclei level
of theory is in the experiment distributed over several boomerang
peaks.

The experimental cross sections in Figs. 1 and 2 show weak but
clear structures around 5 eV due to the π b2g resonance. Unexpect-
edly, this structure is missing in the theoretical elastic cross sections.
This is consistent with earlier theoretical papers12,13 that do not show
any peak or shoulder in the region from 3 to 8 eV. It will be shown
below that despite the fact that the effect of this resonance on the
elastic cross section appears to be underestimated by our theory, the
theory is capable to describe its role for the vibrationally inelastic
cross sections.

Our calculation further yields two distinct resonant peaks
around 7 and 11–12 eV, in contrast to earlier theoretical papers12,13

where only one broad peak could be discerned in this energy range.
These two resonances are of σ e1u and σ e2g type, respectively. Their
determination and their impact on the vibrational excitation of var-
ious modes will be discussed below. The experiment yields only one
broad peak in the 7–12 eV range at 90○, with a slightly flattened top
indicating two unresolved peaks. The reasons for the absence of two
distinct peaks could be that (i) the peak calculated at 11 eV is at
10 eV in the experiment and thus cannot be resolved from the 7 eV

FIG. 2. Differential cross section mea-
sured (red line) and calculated (black
line) at the scattering angle of 135○.
Black, gray filled circles show the cross

sections of Cho et al.11 (at 130○). Red,
yellow filled circles are the present abso-
lute values at 135○. All data are indepen-
dently on absolute scale. The right panel
shows the low energy region in detail.
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peak or (ii) that the potential curves of the negative ion are strongly
repulsive, making the experimental peaks broader, by Franck-
Condon factors, than their electronic width alone. These peaks do
not have a boomerang structure, the reasons presumably being
that (i) their potential surfaces are likely to be repulsive and (ii)
their electronic width is much larger than vibrational spacings. At
135○, two peaks are observed both in the experiment and in theory,
around 7.5 and 13 eV. In terms of absolute values, good agreement
between theory and experiment is found up to about 6 eV, but the
calculated cross sections are larger than in experiment above this
energy.

In particular, the 13 eV feature is very broad and the question
may be raised whether it is appropriate to denote it as a resonance.
It is a question of semantics. It is known that every nonrelativis-
tic Hamiltonian is fully described by a set of poles in a complex
momentum (or energy) plane. These poles are the true resonances
of the system35,36 [Eqs. (59) and (61) of Ref. 36]. The influence of the
respective resonances on the cross section seen on the real energy
axis depends on the distance of these poles from the real axis, rep-
resented by the resonance width. A Breit-Wigner fit to a distant
pole’s eigenphase will show a weak increase that is difficult to dis-
tinguish from the background formed by the other distant poles.
There is no strict criterion to decide from what imaginary value of
the pole we shall call it a “resonance” and below which it is just a
“background.”

V. VIBRATIONAL EXCITATION: THEORY
AND EXPERIMENT

In this section, we compare theory and experiment for vibra-
tional excitation. Since the current theory is limited to (i) the har-
monic description of the vibrations of the target molecule and con-
sequently cannot describe excitation of overtones and (ii) does not
describe boomerang motion in the resonance, this section will be
limited to excitation of fundamentals and disregard the boomerang
structure. Overtone excitation and boomerang structure will be
presented in Sec. VI.

There are two important ways to compare theory and experi-
ment:

1. Comparison of cross sections for exciting selected specific
vibrational modes, plotted as a function of electron energy
(EDS). This method of comparison is particularly suitable
for discerning the role of resonances, which generally cause
enhancement of cross sections, that is, peaks in the spectra.

2. Comparison of energy-loss spectra recorded at given fixed
incident electron energies. The spectra show all vibrational
modes (albeit in some cases overlapping) and thus address an
important strength of the present theory—the capacity to cal-
culate cross sections for all modes. This way of comparison
thus reveals the selectivity of excitation with respect to specific
modes.

A. Differential cross sections as a function
of electron energy

Theory has a decisive advantage over experiment—it provides
cross sections for all modes separately, whereas vibrations with

close-lying frequencies can often not be fully resolved in the exper-
iment. This power of theory is illustrated in Fig. 3, presenting cross
sections calculated for all 20 vibrational modes of benzene. It should
be noted that all lines in Fig. 3 are open to uncertainties in the low-
energy range around the π e2u resonance as the theoretical model
used in this paper cannot account for the complicated nature of
this resonance. This also applies to the theoretical EDS lines in
Figs. 4 and 5. For the comparison with theory suitable superposi-
tions of cross sections of overlapping vibrations need to be made
as described in Secs. V A 1 and V A 2. The energy losses of 123
and 380 meV were chosen for comparison. The former contains the
ring stretch mode and is thus expected to be sensitive to π∗ reso-
nances, where the temporarily occupied orbital has nodes between
carbon atoms, making the potential surface repulsive with respect
to the C–C bond lengths. The 380 meV energy loss is dominated
by C–H stretches and is expected to be sensitive to σ∗ resonances,
with the temporarily occupied orbitals having nodes between car-
bon and hydrogen atoms and a potential repulsive with respect
to the C–H bonds. In this section, we also provide assignment of
the symmetries to the resonances computed up to 11 eV of col-
lision energies. This assignment is carried out via analysis of the

inelastic T-matrix elements as previously done by Čurík et al.1

More details will be given in a follow-up publication describing the
role of the symmetries in electron-impact vibrational excitation of
benzene.

1. Energy loss of 123 meV
Five vibrational modes contribute to the observed signal at the

energy loss of ∆E = 123 meV: ν2, ν6, ν7, ν14, and ν19, with the ener-
gies 123, 125, 123, 129, and 121meV, respectively. Reference to Fig. 3
reveals that these modes include the totally symmetrical ring stretch
(ν2) and three C–H bend modes. The left panel of Fig. 4 shows the
calculated differential cross sections (DCS) for these five modes. It
shows that the dominant contributions to resonant enhancement
are due to the ν19 and ν7 modes. EDS plotted for the sum of all
five calculated cross sections is compared with the experimental EDS
in the right panel. (Simple sum, rather than the weighted sum, is
taken because the frequencies of the five modes are close to each
other.)

As in the plot for an elastic cross section, the peak for the
first resonance in the calculated curve is narrower and higher than
the experiment because of the neglect of vibrational motion in the
transient anion. The right panel of Fig. 4 suggests a satisfactory
agreement even for the e2u resonance, but it should be taken with
some caution. The theory suggests (left panel of Fig. 4) that the
cross section is due primarily to excitation of ν19 (e2u C–H bend),
with negligible contribution of ν2 (symmetrical ring stretch), and,
as already mentioned, these two modes cannot be resolved in the
present experiment on C6H6. They were resolved in the C6D6 spec-
trum of Wong and Schulz,2 however, because the ring stretch vibra-
tion remains nearly unchanged at 117 meV, whereas the C–D bend
vibrations all drop to about 100 meV. The C6D6 spectrum indicates
a prominent excitation of ν2.

A clear resonant enhancement is calculated at 4.2 eV, rea-
sonably close to the experimental value of 4.8 eV. It is some-
what surprising that the resonance is calculated at a lower energy
than measured because the experimental energy is lowered by
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FIG. 3. Energy dependencies of the dif-
ferential vibrational cross sections calcu-
lated for all 20 vibrational modes of ben-
zene at the scattering angle of 90○ (black
lines) and 135○ (green lines).

configuration mixing with an excited configuration,6,13 not included
in the present calculation. The accuracy of the resonant positions
is sensitive to the reliability of the DFT correlation-polarization
interaction. It looks as though the DFT correlation tends to be

somewhat too weak on the carbon centers, giving insufficient shift
of the e2u resonance, whereas it is probably too strong on the
C–H bonds and thus overshooting the 4.8 eV resonance to lower
energies.

FIG. 4. Energy dependence of the differential cross section at the angle of 90○ and with the fixed energy loss of 123 meV. Left panel: calculated EDS curves for the five modes
with frequencies in the 123 meV range. Right panel: the black line represents the sum of all five contributions. The red line stands for the observed EDS. The assignment
labels in the right panel indicate which modes make major contributions to the respective resonant enhancement. Mode ν6 is omitted because of its low cross section in the
whole energy range. All curves are independently on absolute scales.
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FIG. 5. Energy dependence of the dif-
ferential cross section at the angle of
90○ and with the fixed energy loss of
380 meV. The left panel presents EDS
curves for modes ν1, ν5, ν12, and ν15
with the frequencies 380, 380, 380, and
378 meV, respectively. The black line in
the right panel represents the sum of all
four contributions. The red line stands
for the observed EDS. All curves are on
absolute scale.

The calculated 4.8 eV peak is lower in absolute magnitude than
that observed by the experiment, but taking into account that calcu-
lation of quantitative cross sections is generally a very difficult task
because the cross section is a very steep function of the calculated
parameters of the resonance, in particular, its width, the agreement
may be classified as very satisfactory. The width of the 4.5 eV peak
also appears narrower in the theory (0.5 eV) than in the experiment
(0.8 eV). This could be due to the fact that the calculated energy
is lower than the measured and resonance widths generally steeply
rise with rising energy. It is also likely that the potential curve is
repulsive and the experimental width is a combination of the elec-
tronic width Γ and the Franck-Condon width, which will intervene
even in cases where there is no boomerang structure. The theoretical
curve also reproduces qualitatively correctly the cross section above
6 eV except that the two features calculated at 7.5 and 10.5 eV are
not resolved as individual peaks in the experiment but appear as
one broad peak peaking at around 9 eV. This could be due to the
larger width of the experimental peak which causes them to strongly
overlap.

In conclusion, theory agrees well with experiment at energies
above about 2 eV. At the 1.15 eV resonance, theory reproduces
the total vibrational excitation at ΔE = 123 meV satisfactorily but
underestimates the excitation of the symmetrical ring stretch vibra-
tion ν2, which is revealed by the C6D6 spectrum of Wong and
Schulz.2

2. Energy loss of 380 meV
The energy loss is fixed at 380 meV in Fig. 5, and the observed

signal is due to the four CH stretching modes ν1, ν5, ν12, and ν15,
with the energies 380, 380, 380, and 378 meV, respectively. The-
ory and experiment agree in that the cross sections for exciting the
ΔE = 380 meV vibrations are dominated by very broad features in
the 5–15 eV energy range. Theory and experiment also agree reason-
ably well on the absolute magnitude of the cross section. Similar to
the data in Fig. 4, two overlapping peaks appear around 8 and 10 eV
in the calculated cross section, but only one peak peaking around
8 eV can be discerned in the experimental spectrum.

As can be seen in Fig. 3, theory predicts that the e2u resonance
at 1.15 eV and the b2g resonance at 4.8 eV are absent in the cross
sections exciting these four vibrations at 90○ (the 4.8 eV resonance
is weakly present in the cross section for exciting ν5 at 135○ but
not at 90○). The weaker (in terms of areas under the peaks) peaks

appearing at these energies in the experimental spectrum in the right
panel of Fig. 5 are thus likely to be due to the excitation of over-
tone vibrations, not accounted for in the theory. The behavior of the
cross section for exciting ν1 in the 2–5 eV range (left panel in Fig. 5)
differs from the behavior of the cross section for exciting the other
ΔE = 380 meV vibrations, in that it does not continuously drop to
zero with decreasing energy below 5 eV but retains a considerable
value (around 0.01 Å2/sr) down to 2 eV. This behavior appears to
be confirmed by the experiment—the cross section in Fig. 5 is siz-
able in the 2–4 eV range. Explanation of this problem on theoretical
grounds needs a detailed analysis of symmetries of resonance. The
work along these lines is in progress.

B. Electron energy-loss spectra
1. Incident electron energy of 3 eV

At this energy, we obtained an almost quantitative agreement
between theory and experiment, as can be seen in Fig. 6. In the case
of band overlap, Fig. 6 lists only those modes which, according to
the calculation, dominate a given observed peak. A weak peak at
−50 meV is assigned to the ν20 1 → 0 anti-Stokes transition, called
a “superelastic peak” in the electron scattering community. Because
of the reversibility principle, the height of this peak relative to the

FIG. 6. Electron energy loss spectrum at the incident electron energy of 3 eV and
the scattering angle of 135○. The experimental spectrum is plotted in red, and the
theoretical spectrum is plotted in black. Both spectra are plotted on absolute scale.
Assignment of the observed peaks is assisted by the calculated cross sections
(Fig. 3) in cases of ambiguity caused by peak overlap.
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inelastic peak is given by the Boltzmann factor for the abundance of
the first excited vibrational state at room temperature. Numerically,
it is 13%, which corresponds to the ratio of heights of 1→ 0 and 1← 0
peaks. As already mentioned above, five modes in the energy range
of 121–129 meV form a peak at 123 meV. We designated it in Fig. 6
as ν19, as according to our calculations its contribution is the largest,
although it is not dominant. The ratio of calculated cross sections is
1:2:3:2:5 in the series ν2, ν6, ν7, ν14, and ν19.

2. Incident electron energy of 4.8 eV
The spectrum for this electron energy, corresponding to the b2g

resonance, was published by Wong and Schulz2 for C6D6. This res-
onance was characterized as short-lived, based on the broad peak
without the boomerang structure in the electron transmission spec-
tra of Nenner and Schulz6 and Burrow et al.7 Accordingly, it is
amenable to treatment by our theoretical model. The agreement of
theory with experiment is satisfactory shown in Fig. 7, although the
calculated cross sections for most modes are underestimated. There
is some overlap of peak due to vibration modes that are close in fre-
quency. Hence, the theory suggests that the ν4 peak contains admix-
ture of ν8 in the ratio 2:1. The strongest peak is predicted to be due
to the ν7 mode, with the other four modes close in energy being 3–4
times weaker. Wong and Schulz2 also assigned the strongest peak in
their C6D6 spectrum to the ν7 mode with b2g symmetry and assigned
the peak at twice this frequency to the 2ν7 transition. Wong and
Schulz2 designated the CD stretching peak as ν1 (a1g). Our calcu-
lations for C6H6 predict that all four CH stretching modes provide
appreciable contributions to the 380 meV peak (in the ratios 5:3:5:6
for ν1, ν5, ν12, and ν15).

There are five vibrational modes close in energy in the 123 meV
region. The two strongest peaks, ν7 and ν19, are of about the same
intensity. The peak at 241 meV is assigned tentatively to 2ν7.

3. Incident electron energy of 8 eV
Figure 8 shows excellent agreement between the observed spec-

trum and the calculated profile of vibrational excitation. The cal-
culated elastic cross section is slightly larger than the measured, as
already pointed out in Sec. IV and shown in Fig. 2.

FIG. 7. Electron energy loss spectrum of C6H6 at the incident electron energy of
4.8 eV and the scattering angle of 135○. The experimental spectrum is plotted in
red, and the theoretical spectrum is plotted in black. Both spectra are plotted on
absolute scale. In the case of overlapping modes, the labels indicate the mode
with the largest calculated cross section.

FIG. 8. Electron energy loss spectrum for the incident electron energy of 8 eV
and the scattering angle of 135○. The experimental spectrum is plotted in red, and
the calculated one is plotted in black. Both spectra are plotted in absolute scale.
In the case of overlapping modes, the labels indicate the mode with the largest
calculated cross section.

As previously mentioned, in the case of overlapping modes, the
labels in Fig. 8 indicate the mode(s) with the largest calculated cross
sections. Theory suggests that the peak labeled ν4 also contains con-
tribution from the ν8 mode (in the ratio 2:1) and that ν3 and ν9 are of
about the same calculated intensities. The highest peak is due to five
modes, ν2, ν6, ν7, ν14, and ν19, with the ratio of their predicted inten-
sities 0.7:1:2:2:3. The ν10 peak is overlapped by the 10 times stronger
ν17 peak. All four CH stretching modes contribute to the peak at
380 meV. The calculated intensities for the ν1, ν5, ν12, and ν15 modes
are in the ratio 2:1:2:4. In contrast to the spectra recorded for 3 and
4.8 eV, we do not see an overtone at 245 meV and the “superelastic”
peak at −51 meV.

VI. BOOMERANG STRUCTURE OF THE π∗ e2u
RESONANCE AT 1.15 eV AND OVERTONE
EXCITATION

While recording the experimental data for this publication, we
necessarily obtained information on two phenomena currently not
accessible to the present DMR method, and, to our knowledge, no
other theory. They are (a) the boomerang structure of the 2e2u low-
est π∗ resonance and (b) the excitation of overtone and combination
vibrational states. We shall report this experimental information
in this section because even a qualitative discussion of these data
yields conclusions relevant to this paper and provides experimental
information to guide future theoretical work.

The qualitative interpretation of the experimental data will be
based on the following rules:

(i) Infrared (IR) active modes may be excited directly by the
dipole mechanism. The cross sections due to this mecha-
nism peak at threshold and then steeply decrease within a
few tenths of an eV. The mechanism may be described the-
oretically by the Born approximation. This threshold peak
is absent for IR inactive vibrations, that is, for IR inac-
tive modes and for transition to overtone and combination
vibrational states.

(ii) Cross sections for infrared inactive modes, including over-
tone and combination vibrations, are useful for identifying
resonances because the background of direct excitation is
absent.
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(iii) Shorter-lived resonances, i.e., resonances with a large elec-
tronic width Γ, excite overtones relatively less than they
excite fundamentals because excitation of overtones requires
large nuclear relaxation, not possible during the short
interaction time of short-lived resonances. (Note that the
experimentally observed widths of EDS peaks are com-
binations of the electronic widths Γ and the Franck-
Condon widths and thus do not provide direct information
about Γ.) The relative heights of resonant peaks in the
ED spectrum of an overtone, as compared to the spectra
of the corresponding fundamental, thus provide qualita-
tive information on the relative electronic widths Γ of the
resonances.

(iv) Vibrational modes along which the potential surface of the
temporary anion is strongly repulsive at the point of attach-
ment are strongly excited.37

A. Boomerang structure within the first π∗ resonance
and the threshold region

The first step is to identify which are the prominent energy
losses for which the cross sections should be recorded. For this pur-
pose, we recorded an energy-loss spectrum at an incident electron
energy corresponding to the vibrational origin of the e2u resonance
and show it in Fig. 9. It is analogous to the C6D6 spectrum of Wong
and Schulz2 except that they measured C6D6 at 70

○. The peaks are
identified by their apparent (i.e., taken from the spectrum, within
±5 meV) energy loss in Fig. 9 because several overlapping modes are
sometimes responsible for one peak. [The peak labeled “2 × 123”
contains the first overtones of all modes whose fundamentals are
contained in the peak labeled “123,” “123 + 51” contains the com-
bination vibrations of any of the modes whose fundamentals are

FIG. 9. Electron energy loss spectrum for the incident electron energy of 1.169 eV
recorded at 90○. The numbers above the spectrum indicate the observed energy
losses of the peaks, in meV.

contained in the peak labeled “123” combined with one quantum
“51” (ν20), etc.]

In the second step, cross sections for selected energy losses
were recorded as a function of the incident electron energy, and
representative results are shown in Fig. 10.

The following comments based on the spectra in Fig. 10 can be
made:

● The electronic width of the e2u resonance, given by the width
of the lowest boomerang peak, is 75 ± 10 meV.

● The width of the entire progression of the boomerang peak
(the Franck-Condon width of the peak) depends on which
mode is excited. It is widest for exciting ν16 and narrow-
est for exciting the ΔE = 123 meV group of modes. We

FIG. 10. Vibrational excitation cross sec-
tions recorded at 135○ for the fixed
energy losses corresponding to the fun-
damental frequencies of the normal
modes and for the overtone and com-
bination bands as indicated. Boomerang
progressions are indicated by grids
above the spectra, with indication of the
observed spacings.
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interpret these widths as the Franck-Condon widths of the
attachment peak, that is, as reflecting the slope of (the real
part of) the resonant potential hypersurface at the point of
attachment—a steep potential hypersurface at the point of
attachment leads to a wide peak.

● The spacings of the boomerang peaks also depend on the
mode excited. They are 123 meV for the elastic cross section
and the ν20 excitation but attain other values (though all in
the same ballpark) for exciting the other energy losses.

● The bands for exciting fundamental frequencies are dom-
inated by single progressions. The bands for exciting the
overtone (ΔE = 248 meV) and combination (ΔE = 322 meV)
vibrational states have more complex shapes, defying simple
assignment to progressions. Thus starts with two peaks 110
meV apart, of equal height, followed by an abrupt drop of
cross section, not fitting any expected Franck-Condon pro-
file. The band with ΔE = 322 meV is also complex. Two pro-
gressions, 88 and 178meV, can be discerned. A peak is found
at 225 meV and another is found at 410 meV, both with-
out discernible progressions, the latter being higher than any
possible vibration.

● Threshold peaks are observed which are largely compati-
ble with an assignment to Born-type direct dipole excita-
tion. The vibrations ν6, ν14, and ν19 in the ΔE = 123 meV
group are IR active, explaining the threshold peak in the
ΔE = 123 meV cross section. ν10 is IR active, albeit weak, in
the ΔE = 143 meV group. ν5 is IR active (very weak) and ν12
is IR active (strong), in the ΔE = 379 meV group, explain-
ing the large threshold peak (note that ν12 is split to two
peaks at 376 and 382 meV due to a Fermi resonance with ν13
+ ν16, but both components contribute to the ΔE = 379 meV
group with our resolution). ν16 is IR inactive, and there
is only a small threshold peak, which could be due to a
small transition dipole due to anharmonicity. (ν20 is also
strongly IR active, but our spectrum in Fig. 10 does not
extend to sufficiently low energy to show the threshold
peak.) The overtone and combination vibrations yield only
very small threshold peaks, which also could be due to a
small transition dipole due to anharmonicity.

● The cross sections in the range from just above the Born
peak to just below the e2u resonance (about 0.5–1.0 eV) are
peculiar. They are much smaller than those caused by the
(very strong) e2u resonance but still quite substantial (they
are high above the instrumental background). These cross
sections cannot be assigned to the Born mechanism—they
descend far too slowly (in the case of ν16) or are even con-
stant (in the case of the peak with ΔE = 123 meV, with
several unresolved vibrations). The excitation is selective—
it is weak in the ν20 cross section and much stronger in the
C–H stretch excitation. The cross sections in this energy
range are nearly zero for the overtone and combination
vibration excitations, ΔE = 248 and 322 meV. The mecha-
nism of this excitation is uncertain. It could be due to the
low-energy tail of the π∗ e2u resonance.

A final interesting question is what vibrational modes are
excited following an attachment of an electron not to the v = 0
level of the resonance, like in Fig. 9, but to a higher level. Figure 11

FIG. 11. Electron energy loss spectra for the incident electron energies of 1.15 and
1.3 eV recorded at the scattering angle of 135○.

addresses this question by comparing energy-loss spectra obtained at
Ei = 1.15 eV and 1.3 eV (this time at 135○). The experimental answer
is that a much higher density of overtone and combination vibra-
tions is excited, in particular, at higher energy losses. It is important
to note that this gradual loss of selectivity does not interfere with
the postulation of the selectivity rules by Wong and Schulz2—those
rules were expressly postulated to apply only for electron attachment
to the v = 0 level of the resonance, with a totally symmetrical vibra-
tional wave function in the transient anion. Figure 11 shows that the
question of “selection rules” is closely linked, at least for resonances
with the boomerang structure, to the incident electron energy and
the symmetry of the intermediate (boomerang) wave function of the
nuclei.

The qualitative picture to rationalize these observations is based
on the calculation of Chourou andOrel,38 who calculated themotion
of a nuclear wavepacket, in three dimensions, on an ab initio com-
plex potential hypersurface, to obtain a quantitative dissociative
electron attachment cross section in acetylene. In our case, the
nuclear wavepacket does not reach the dissociation point but decays
by autodetachment into a vibrationally excited state of the target
molecule. In the benzene case, the situation is fundamentally sim-
ilar but more complex because of the many dimensions involved
and because of the Jahn-Teller effect. The Jahn-Teller active modes
are along the e2g coordinate which should let it descent to the D2h

point group, but vibronic coupling with σ∗ states further changes
the shape of the resonant potential surface, leading to a C2v (Ref. 39)
or even C2 (Ref. 40) ground state of the benzene anion. The pro-
cess of nuclear wavepacket relaxation appears to be accompanied by
intramolecular vibrational redistribution (IVR) whereby the initially
vibrationally selective electron attachment at higher energies within
the resonance is converted to vibrational states with many overtones
and combinations excited.

B. Overtone excitation at higher energies
Wide energy range spectra of the excitation of the

ΔE = 123 meV and the ΔE = 380 meV groups of fundamental vibra-
tions and of their first overtones atΔE = 245meV andΔE = 745meV
are shown in Fig. 12. The value of 745 meV is less than twice the fun-
damental frequency of 380 meV because of anharmonicity and was
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FIG. 12. Energy dependence spectra recorded at the scattering angle 90○ for fixed
energy losses corresponding to frequencies of normal modes at 123 and 380 meV
and their first overtones.

determined from an energy-loss spectrum recorded at a constant
residual energy of 8 eV, where a progression of peaks at 380, 745,
and 1095 meV appears. We do not know to which of the overlap-
ping modes ν1, ν5, ν12, and ν15 does the energy loss peak of 745 meV
belong.

The following comments based on the spectra in Fig. 12 can be
made:

● The height of the peak at 4.8 eV, relative to the e2u peak
at 1.15 eV, decreases when going from the ΔE = 123 meV
spectrum to the ΔE = 245 meV spectrum. This is in line
with a shorter lifetime of the b2g resonance as compared
to the e2u resonance. This is also in line with the absence
of the boomerang structure in this peak, although note
that the absence of the boomerang structure can also be a
consequence of a repulsive potential hypersurface.

● Similarly, the height of the very broad peak at 8–9 eV, rela-
tive to both the e2u peak at 1.15 eV and the b2g peak at 4.8 eV,
decreases when going from fundamentals to overtones,
indicating very short lifetime (large Γ) of the σ∗ resonances.
Note that the width of the peak in the spectrum cannot
be taken as the electronic width Γ because it is likely to be
caused in part by the Franck-Condon width associated with
strongly repulsive hypersurfaces.

Interestingly, there is a nonzero cross section in the 2–4 eV
energy range, both in the ΔE = 123 meV and ΔE = 380 meV spectra,
although this range is nominally between the e2u and the b2g π∗ res-
onances. This signal disappears for the overtone ΔE = 245 meV but
persists in the ΔE = 745 meV overtone excitation, proving its reso-
nant origin. Note that this weak cross section is reproduced by our
calculation, as shown for the mode ν7 in Fig. 3. We assign it to a very
broad e1u resonance.

VII. SUMMARY AND CONCLUSIONS
In this paper, we tested the capacity of the Discrete Momentum

Representation (DMR) method to describe resonances in electron-
molecule scattering and, in particular, whether it correctly describes
the coupling between the electron and nuclear motion, in the sense
whether it correctly describes which normal modes are excited
by which resonances and with what cross sections. In a broader
sense, this coupling is essential for the description of electron-driven
chemistry in the gas phase.

Limited resolution of the experiment does not permit measure-
ments of cross sections for all vibrational modes individually, but
experimental spectra were compared with theoretical profiles show-
ing appropriate sums of cross sections for overlapping vibrations.
Both the shapes and the heights of the profiles were compared since
both the theory and the experiment yielded absolute values of the
cross sections.

The DMR theory succeeds best for electron energies corre-
sponding to resonances without narrow boomerang structure. Thus,
we obtain a nearly quantitative agreement between the calculated
and measured spectral profiles of energy-losses at the incident elec-
tron energy of 3 eV, both in terms of shape and of absolute magni-
tude. Satisfactory agreement was obtained also at 4.8 and 8 eV. Peaks
in plots of cross sections are plotted as a function of energy reveal
resonances. The DMR theory correctly reproduced the energies of
the π∗ resonances. The DMR theory does not treat nuclear motion
of the temporary anion and thus does not reproduce the experi-
mentally observed boomerang vibrational structure of the first π∗
resonance and calculates it as a single peak. Although the theory cal-
culated the resonance at the correct energy and with a qualitatively
correct area under the peak in the elastic scattering, our calcula-
tions are not compatible with the strong excitation of ν2 reported
by Wong and Schulz,2 and thus, the mechanism of ν2 excitation by
the first π e2u resonance in benzene remains an unresolved prob-
lem. The DMR theory qualitatively correctly reproduced the ener-
gies of the σ∗ resonances—the broad peaks in the 5–15 eV region.
The calculated resonances appear to be somewhat narrower than the
experiment and appear as separate peaks, whereas the experiment
shows only one very broad peak. The symmetry of the lower σ∗ res-
onance at 7.5 eV was determined as e1u in agreement with the work
of Gianturco and Lucchese12 who computed it at 10.07 eV. The sym-
metry of the other σ∗ resonance at 10.5 eV was identified as e2g. We
notice that resonances can be discerned much more clearly in plots
of vibrational excitation cross sections than in plots of elastic cross
sections. This means that the DMR theory, providing vibrational
excitation cross sections, is more powerful in identifying shape res-
onances than theories calculating elastic cross sections alone. Of key
importance is the applicability of the DMR theory even to large poly-
atomic molecules, including molecules of practical importance. As
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an example, work is in progress on the molecule Fe(CO)5, relevant
for nanolithography.

Our experimental spectra in Figs. 7 and 9 are fully compatible
(isotopic shifts of vibrational frequencies taken into account) with
the C6D6 energy loss spectra at 1.15 and 4.8 eV ofWong and Schulz.2

Our work shows, however, that the selection rules which they pro-
pose and which were later treated in more depth3 are essentially
correct as the first approximation but that the situation is more com-
plex at a closer look, in particular, that more modes are excited than
predicted by the selection rules by Wong and Schulz.2 We pointed
this out already in our earlier work on cyclopropane,1 where vibra-
tional modes were excited requiring that an electron arriving in an f-
wave departs in a p-wave, thus extending the postulate of Wong and
Schulz that the electron can depart either in the same partial wave in
which it arrived or in an s-wave. Note that Wong and Schulz were
cautious in their formulation of the selection rules in the sense that
they apply only when the vibrational wave function of the transient
anion is totally symmetric, that is, v = 0, reached with an incident
electron energy of 1.15 eV. Their selection rules were thus expressly
not intended to cover higher incident energies, like in the top panel
of Fig. 11. Note also that our results at 4.8 eV show a less dramatic
selection of modes than assumed by Wong and Schulz. Our calcula-
tions suggest that the 4.8 eV resonance does not excite just a single
CH stretching mode (a1g ν1) and also not just a single CH bend
(b2g ν7).

Our work shows that the selection rules of Wong and Schulz,
while valuable for qualitative assessment, oversimplify the excitation
process and cannot replace a quantitative calculation like the present
one.

We complemented the above work with experimental results
on boomerang structure in the first π∗ resonance and on excita-
tion of overtones. The cross sections for overtone excitation point
out that the intensity of the third π∗ resonance at 4.8 eV, relative
to the first and second resonance (degenerate at 1.15 eV), decreases
in the overtone spectrum, reflecting its larger width. Similarly, the
very broad σ∗ peak in the 8–10 eV range decreases faster than all π∗
resonances, indicating an even larger width Γ.

The boomerang structure within the 1.15 eV resonance is dom-
inated by spacings of around 123 meV which vary as a function of
which vibrational mode is being excited. The width and shape of the
boomerang profile, that is, the number and relative intensity of the
boomerang overtones, vary dramatically in dependence for which
the final mode is the cross section recorded. Increasing the incident
energy within the boomerang profile, for example, from 1.15 eV to
1.3 eV, dramatically increases the number of overtones and density
of states excited after the departure of the electron. These results
point out complex nuclear dynamics on the resonant potential sur-
face, which is further complicated by Jahn-Teller distortion, and
indicate extensive intramolecular vibrational redistribution (IVR)
when vibrational energy is available in the transient benzene anion.
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