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Fig. S1. Posterior Inclusion Probabilities (PIP) summed within windows of 0.5 Mb (a), 1 Mb 

(b) or 2 Mb (c). PIP patterns of C24 are shown as an example. 

 

 



Fig. S2. Centered kinship matrix calculated by GEMMA. Each square represents the 

relatedness between a pair of individuals for inferred ancestry states. Color shades represent 

the deviation of the relatedness between a pair of individuals from the mean relatedness 

value. Labels indicate name of the seedling families and their location corresponds to the first 

individual of the family. 

 

 

 

 

 

 

 

 

 



 

Fig. S3. Summary of local ancestries along the chromosomes (x axis) of 472 common garden 

seedlings, ordered along the y axis according to their genome-wide ancestry (each row is an 

individual). Blue represents chromosomal segments with P. alba ancestry, grey indicates 

hetero-specific ancestry, orange P. tremula ancestry. Darker color shades indicate more 

confidence in the local ancestry estimate. 



 
 

Fig. S4. Admixture linkage disequilibrium (LD) in all chromosomes, calculated as pairwise squared correlation between averaged 

ancestries. Black lines indicate the position of analyzed loci along the chromosome and darker blue shades represent stronger LD. 

 

 

 



 
 

Fig. S5. Decay of admixture LD with physical distance shown for all chromosomes. N sites represents the number of markers 

available for each chromosome. 

 

 

 

 



 
 

Fig. S6. Levels of differentiation between P. tremula (T), hybrids (H) and P. alba (A) for all traits analyzed in this study. Boxes 

represent the first and third quartiles, whiskers extend to the lowest and highest data points within 1.5 x IQR (interquartile range) from 

the first and third quartile, respectively. 

 

 

 



 

 

 
 

Fig. S7. Relationship between genome-wide ancestry (q) and the phenotypic traits. P. tremula-like individuals are on the left, where q 

<0.05, while P. alba-like individuals are on the right, where q >0.95. Hybrid seedlings exhibit intermediate values of q. Linear 

regression lines are shown as visual guides only and are not intended to suggest that a linear regression function represents the best fit 

to the data. 

 

 

 



 

 

 
 

Fig. S8. Posterior distributions for PVE, PGE and heritability h
2
 for all phenotypic traits. 

 

 

 



Table S1. Overview of common garden seedling families, ordered by planting year. The number of individuals per family per 

common garden location is reported for each phenotypic trait analyzed in the study. y = planting year, cg = common garden location 

(FR = Fribourg and SA = Salerno). 

 

Family y cg Phenotypic traits 

   

C1, C2, C3, C4, C5, C6, C7, C8, C9, C9i, C9iii, 

C10, C10i, C10ii, C12, C13, C14, C14i, C15, C16, 

C17, C18, C19, C20, C21, C22, C23, C24, C25, 

C26, C27, C28, C29, C30, C31, C32, C33, C34 

C6b, 

C9ii 

LFAREA, 

LFSHAP HEIGHT1 DIAM1 

HEIGHT2, 

DIAM2 

F011 2010 FR - - 6 6 6 - 

F018 2010 FR - - 28 28 28 - 

F008 2011 
FR 17 17 17 17 17 17 

SA 8 - 8 - - 8 

F009 2011 
FR 13 13 13 13 13 13 

SA 7 - 7 - - 7 

F020 2011 FR 7 7 7 7 7 6 

F021 2011 
FR 7 7 7 7 7 5 

SA 10 - 10 - - 10 

F022 2011 
FR 7 7 7 7 7 7 

SA 9 - 9 - - 9 

F026 2011 
FR 16 16 16 16 16 16 

SA 9 - 9 - - 9 

F030 2011 
FR 7 7 7 7 7 7 

SA 10 - 10 - - 10 

F031 2011 
FR 7 7 7 7 7 6 

SA 9 - 6 - - 9 

F032 2011 
FR 13 13 13 13 13 12 

SA 6 - 6 - - 6 



F033 2011 
FR 7 7 7 7 7 7 

SA 10 - 10 - - 10 

F036 2011 
FR 5 5 5 5 5 3 

SA 10 - 10 - - 10 

F039 2011 
FR 7 7 7 7 7 7 

SA 4 - 4 - - 4 

I345 2011 
FR 7 7 7 7 7 7 

SA 14 - 11 - - 13 

I373 2011 
FR 7 7 7 7 7 7 

SA 9 - 9 - - 9 

I396 2011 
FR 6 6 6 6 6 6 

SA 8 - 6 - - 8 

I397 2011 SA 10 - 8 - - 10 

F054 2014 FR - - 2 2 2 - 

F057 2014 FR - - 13 13 13 - 

F059 2014 FR - - 34 33 34 - 

F062 2014 FR - - 1 1 1 - 

F063 2014 FR - - 3 3 3 - 

F064 2014 FR - - 1 1 1 - 

F066 2014 FR - - 5 5 6 - 

F067 2014 FR - - 4 4 4 - 

F068 2014 FR - - 7 7 7 - 

F069 2014 FR - - 6 6 6 - 

F071 2014 FR - - 4 4 4 - 

F072 2014 FR - - 1 1 1 - 

F073 2014 FR - - 7 7 7 - 

F074 2014 FR - - 6 6 6 - 

F075 2014 FR - - 1 1 1 - 

F076 2014 FR - - 2 2 2 - 

F077 2014 FR - - 13 13 13 - 



F078 2014 FR - - 14 14 14 - 

F079 2014 FR - - 12 12 12 - 

F080 2014 FR - - 13 13 13 - 

F083 2014 FR - - 6 6 6 - 

Total 

  

266 133 445 321 323 258 



 

Table S2. Phenotypic data used in this admixture mapping GWAS study (enclosed as a separate 

spreadsheet dataset). 

 

Table S3. Probabilities from posterior distributions for the parameters heritability (h
2
), PVE, 

PGE and n_gamma. Probabilities are rounded to the fourth decimal. Traits marked with a star 

satisfied the requirements explained in Materials and Methods and their genomic windows with 

Posterior Inclusion Probability (PIP) ≥0.4 were searched for candidate genes. An additional trait 

(C19) was added to the list of focal traits (see Results and Table 2 for details). 

 

Traits Probabilities 

 h
2
<0.01 h

2
<0.05 PVE<0.01 PVE<0.05 PGE<0.01 PGE<0.05 n_gamma>0 

C1 0.1165 0.2993 0.0001 0.0010 0.0709 0.1237 0.9505 

C2 0.1256 0.3250 0 0.0009 0.0748 0.1307 0.9481 

C3 0.2955 0.6628 0.0667 0.2870 0.0881 0.1337 0.9311 

C4 0.6645 0.9601 0.3662 0.8568 0.1179 0.1652 0.9024 

C5 0.1806 0.4679 0.0210 0.1094 0.0690 0.1124 0.9485 

C6* 0.0029 0.0097 0 0.0001 0.0016 0.0031 0.9989 

C6b 0.1847 0.4350 0.0277 0.1240 0.0725 0.1175 0.9463 

C7 0.2113 0.5249 0.0355 0.1746 0.0699 0.1101 0.9466 

C8 0.3514 0.7254 0.1184 0.4513 0.0833 0.1208 0.9330 

C9 0.6319 0.9424 0.3403 0.8222 0.1090 0.1547 0.9103 

C9i 0.7555 0.9825 0.4752 0.9252 0.1410 0.1902 0.8811 

C9ii 0.3707 0.7261 0.1179 0.4310 0.0942 0.1402 0.9256 

C9iii 0.2332 0.5843 0.0251 0.1600 0.0838 0.1326 0.9364 

C10 0.3808 0.7631 0.1173 0.4332 0.0984 0.1443 0.9215 

C10i* 0.0169 0.0569 0.0001 0.0012 0.0094 0.0166 0.9934 

C10ii 0.0775 0.2479 0.0083 0.0621 0.0274 0.0432 0.9793 

C12* 0.0003 0.0021 0 0 0.0002 0.0004 0.9998 

C13 0.1031 0.3065 0.0022 0.0285 0.0472 0.0777 0.9659 

C14 0.0832 0.2214 0 0.0002 0.0514 0.0915 0.9647 

C14i 0.2460 0.5948 0.0467 0.2441 0.0736 0.1128 0.9429 

C15* 0.0007 0.0050 0 0.0001 0.0004 0.0008 0.9997 

C16 0.1460 0.3750 0.0357 0.1545 0.0427 0.0653 0.9668 

C17 0.4761 0.8490 0.1955 0.6168 0.1019 0.1458 0.9168 



C18* 0.0001 0.0001 0 0 0 0.0001 1.0000 

C19**
 

0.0652 0.1921 0.0011 0.0127 0.0313 0.0521 0.9772 

C20* 0.0464 0.1211 0 0 0.0313 0.0566 0.9786 

C21* 0.0344 0.0773 0 0 0.0294 0.0557 0.9808 

C22* 0.0001 0.0003 0 0 0.0001 0.0001 1.0000 

C23* 0.0046 0.0110 0 0 0.0037 0.0074 0.9976 

C24* 0 0 0 0 0 0 1.0000 

C25* 0.0009 0.0044 0 0.0001 0.0010 0.0009 0.9996 

C26 0.0552 0.1610 0.0002 0.0028 0.0310 0.0533 0.9781 

C27* 0.0048 0.0128 0 0 0.0035 0.0063 0.9977 

C28 0.4736 0.8668 0.1772 0.6132 0.1041 0.1495 0.9157 

C29* 0.0091 0.0318 0 0.0002 0.0055 0.0095 0.9962 

C30 0.0856 0.2418 0.0001 0.0019 0.0481 0.0860 0.9666 

C31* 0.0226 0.0499 0 0 0.0197 0.0378 0.9871 

C32* 0.0087 0.0211 0 0 0.0067 0.0120 0.9953 

C33* 0.0474 0.1359 0.0001 0.0009 0.0285 0.0512 0.9801 

C34 0.6678 0.9510 0.3850 0.8518 0.1186 0.1644 0.9012 

DIAM1 0.1590 0.4313 0.0005 0.0119 0.0799 0.1345 0.9427 

DIAM2 0.3488 0.7289 0.1228 0.4721 0.0779 0.1138 0.9376 

HEIGHT1 0.1483 0.4266 0.0013 0.0275 0.0673 0.1130 0.9517 

HEIGHT2 0.3485 0.7354 0.1043 0.4230 0.0839 0.1261 0.9337 

LFAREA 0.2431 0.6442 0.0174 0.1712 0.0845 0.1323 0.9352 

LFSHAP 0.0852 0.2400 0 0.0006 0.0475 0.0804 0.9658 

 

 

 

 

 

 

 

 

 

 



Table S4. Candidate genes identified in the genomic windows with Posterior Inclusion Probability (PIP) ≥0.4. 

 

Genes Chromosome Start Pos. End Pos. Traits Category 

Arabidopsis 

thaliana 

corresponding 

gene 

Protein name Description 

Potri.001G005100 Chr01 339493 342618 C32 Flavonoid AT3G13540.1 
ATMYB5, 

MYB5 
myb domain protein 5 

Potri.001G007000 Chr01 493207 494619 C32 Flavonoid AT1G15670.1  

Galactose oxidase/kelch 

repeat superfamily protein. 

Negatively regulate 

phenylpropanoid 

biosynthesis by targeting 

the phenypropanoid 

biosynthesis enzyme 

phenylalanine ammonia-

lyase. 

Potri.003G138200 Chr03 15639785 15641810 C31 Flavonoid AT4G01070.1 
GT72B1, 

UGT72B1 

UDP-Glycosyltransferase 

superfamily protein 

Potri.003G138400 Chr03 15650072 15653385 C31 Flavonoid AT5G42800.1 
DFR, M318, 

TT3 
dihydroflavonol 4-reductase 

Potri.003G139600 Chr03 15733245 15738267 C31 Flavonoid AT1G64390.1 
AtGH9C2, 

GH9C2 
glycosyl hydrolase 9C2 

Potri.003G140900 Chr03 15813955 15817854 C31 Flavonoid AT4G10960.1 UGE5 
UDP-D-glucose/UDP-D-

galactose 4-epimerase 5 

Potri.006G190800 Chr06 20556974 20558623 C20 Flavonoid AT2G42250.1 CYP712A1 

cytochrome P450, family 

712, subfamily A, 

polypeptide 1 

Potri.006G191000 Chr06 20569291 20573186 C20 Flavonoid AT5G06800.1  

myb-like HTH 

transcriptional regulator 

family protein 

Potri.011G060300 Chr11 5414925 5416493 
C18, C23, 

C19_binary 
Flavonoid AT5G54010.1  

Flavonoid 3-O-

glucosyltransferas 



Potri.011G061000 Chr11 5451888 5453414 
C18, C23, 

C19_binary 
Flavonoid AT5G54010.1  

Flavonoid 3-O-

glucosyltransferas 

Potri.011G079400 Chr11 7883530 7889818 C18, C21 Flavonoid AT2G34410.1  
O-acetyltransferase family 

protein 

Potri.011G080000 Chr11 7934591 7935310 C18, C21 Flavonoid AT1G29950.1  

basic helix-loop-helix 

(bHLH) DNA-binding 

superfamily protein 

Potri.012G138800 Chr12 15331801 15333280 C12, C15 Salicinoid AT5G13930.1 
ATCHS, 

CHS, TT4 

Chalcone and stilbene 

synthase family protein 

Potri.012G034100 Chr12 3047772 3049697 

C19, C24, 

C25, C29, 

C31, 

C29_binary, 

C32_binary 

Flavonoid AT2G22590.1  
UDP-Glycosyltransferase 

superfamily protein 

Potri.012G035800 Chr12 3205152 3206537 

C19, C24, 

C25, C29, 

C31, 

C29_binary, 

C32_binary 

Flavonoid AT3G16520.3 UGT88A1 
UDP-glucosyl transferase 

88A1 

Potri.012G036000 Chr12 3225625 3227245 

C19, C24, 

C25, C29, 

C31, 

C29_binary, 

C32_binary 

Flavonoid AT4G01070.1 
GT72B1, 

UGT72B1 

UDP-Glycosyltransferase 

superfamily protein 

Potri.012G139300 Chr12 15374256 15378451 C12, C15 Salicinoid AT4G00730.1 
AHDP, 

ANL2 

Homeobox-leucine zipper 

family protein. Involved in 

the accumulation of 

anthocyanin 

Potri.012G140500 Chr12 15445809 15448186 C12, C15 Salicinoid AT5G52260.1 
AtMYB19, 

MYB19 
myb domain protein 19 

Potri.012G140700 Chr12 15454375 15457724 C12, C15 Salicinoid AT3G61250.1 
AtMYB17, 

MYB17 
myb domain protein 17 

Potri.013G146200 Chr13 15147780 15151940 C32 Flavonoid AT2G20810.1 
GAUT10, 

LGT4 
Galacturonosyltransferase 



Potri.013G148600 Chr13 15294938 15296422 C32 Flavonoid AT4G21440.1 

ATM4, 

ATMYB102, 

MYB102 

MYB-like 102 

Potri.013G149100 Chr13 15342945 15344193 C32 Flavonoid AT3G23250.1 

ATMYB15, 

ATY19, 

MYB15 

myb domain protein 15 

Potri.013G149200 Chr13 15353474 15356043 C32 Flavonoid AT2G31180.1 

ATMYB14, 

MYB14, 

MYB14AT 

myb domain protein 14 

Potri.015G002600 Chr15 162021 163539 C22, C27 Flavonoid AT5G24520.1 

ATTTG1, 

TTG, TTG1, 

URM23 

Transducin/WD40 repeat-

like superfamily protein. 

Affects dihydroflavonol 4-

reductase gene expression 

Potri.015G003100 Chr15 236720 239777 C22, C27 Flavonoid AT5G54160.1 
ATOMT1, 

OMT1 

flavonol O-

methyltransferase 1 

Potri.015G010100 Chr15 673277 675584 C23, C31 Flavonoid AT5G24318.1  
O-Glycosyl hydrolases 

family 17 protein 

Potri.018G131600 Chr18 15289123 15290383 C6 CA AT2G41480.1  
Peroxidase superfamily 

protein 

 

 

 

 

 

 

 

 

 

 



Methods S1 RAD-seq data processing, reference-mapping and variant calling 

 

We processed the reads from RAD-seq with several bioinformatic tools: first, we assigned them 

to each individual according to their unique barcode through the program fastq-multx (ea-utils; 

Aronesty, 2011), allowing one mismatch in the 15 bp including barcode and restriction site. 

FastQC 0.10.1 (Andrews, 2010) was used to check the quality of the data and low quality bases 

and reads were removed with condetri v.2.2 (Smeds & Künstner, 2011) using default parameters, 

except for the option -lfrac (maximum acceptable fraction of bases after quality trimming with 

quality scores lower than the threshold -lq), for which a value of 0.1 was chosen. 

Good quality reads were aligned against the P. trichocarpa reference genome 

(Ptrichocarpa_210_v3.0; Tuskan et al., 2006). For this purpose, we used Bowtie2 2.2.4 

(Langmead & Salzberg, 2012) with “end-to-end” and “very sensitive” settings. Reads with 

mapping quality lower than 10 were discarded using samtools 1.2 (Li et al., 2009) and read 

group information was added with picard tools 1.130 (http://broadinstitute.github.io/picard). The 

files for each individual were run through several tools in GATK 3.4.46 (DePristo et al., 2011): 

TargetCreator and IndelRealigner to realign around indels, BaseRecalibrator to recalibrate base 

quality scores using the SNVs from Christe et al.(2016) as set of known SNVs, and 

UnifiedGenotyper for variant and genotype calling. This last step was run on the full dataset to 

obtain the data used in entropy (Gompert et al., 2014), while for RASPberry it was limited to 

calling genotypes at SNVs from Christe et al.(2016) that were covered in all parental individuals, 

using the option EMIT_ALL_SITES. 

 

Methods S2 Inference of local and genome-wide ancestry 

 

We used the computer program RASPberry (Wegmann et al., 2011)to estimate local ancestry for 

our Genome-Wide Association Study (GWAS) mapping population, following the rationale and 

general principles outlined in our recent poplar hybrid zone study by Christe et al. (2016), 

including improvements that were necessary primarily because of the lower sequencing coverage 

used here. Firstly, we incorporated genotyping error expected for RAD-seq in the RASPberry 

model by using an estimate of the per-allele error rate obtained with the software TIGER (Tools 

for Integrating Genotyping ERrors; https://bitbucket.org/wegmannlab/tiger) as input value for the 

https://paperpile.com/c/xrWJyG/BQxT
https://paperpile.com/c/xrWJyG/UX4D
https://bitbucket.org/phaentu/%20tiger/wiki/Home


miscopying mutation parameter (0.0625). The complete procedure for estimating and correcting 

RAD-seq genotyping error is presented elsewhere (Bresadola et al., 2019), along with a detailed 

description of the TIGER software. For the species’ mutation rates we added this estimate to the 

previously available values, scaled by the size of the reference panel (0.00185 and 0.00349 for P. 

alba and P. tremula, respectively) as recommended (Wegmann et al., 2011). To reflect 

differences in admixed individuals and reference panels compared to Christe et al.(2016), we re-

estimated the remaining admixture parameters, namely the time since admixture and the 

ancestral recombination rates among the P. alba and P. tremula reference haplotypes. Towards 

this end, we maximized the likelihood across all individuals but arbitrarily limited to markers on 

chromosomes 7 and 11 to reduce computational burden. We thus optimized each parameter in 

turn using the following values: 100, 200, 300, 500, 750, 1000, 2000, 3500, 5000, 7000, 8500 

and 10000 for the ancestral recombination rates; 2, 3, 5, 7, 10, 15, 20, 50, 75 and 100 for the 

number of generations since admixture; 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 

0.12, 0.15, 0.17, 0.2, 0.22 and 0.25 for the miscopying rate. 

Genome-wide ancestry (q) was used for several purposes in our study, e.g. to check the genomic 

composition of our admixture mapping GWAS panel (Fig. 1a), as prior information for 

estimating local ancestry in RASPberry, and to regress out q during polygenic modeling of 

quantitative traits with GEMMA (Zhou et al., 2013; below, Methods S3). In general, we used q 

estimates from entropy (Gompert et al., 2014) in our study. To account for genotyping errors, we 

ran entropy directly on genotype likelihoods, which we adjusted mathematically to incorporate 

estimated RAD-seq genotyping error following the procedure implemented in TIGER and 

described in (Bresadola et al., 2019). Only when running RASPberry, we used an alternative 

approach, and estimated q with ADMIXTURE (Alexander et al., 2009) based on the SNVs used 

for local ancestry inference. However, the two estimates of q were highly correlated (Pearson’s r 

= 0.9897; p-value <2.2e-16).  

 

Methods S3 Rationale for choice of plant traits measured in this study 

 

In this study, we measured a range of traits that differ among the parental species and their 

hybrids. In particular, we focused on phytochemical traits (the abundances of phenylpropanoid 

secondary metabolites in leaves), leaf morphology and growth-related traits. This set of traits 



was chosen because of its potential relationship with plant performance and fitness: 

phenylpropanoid molecules are involved in numerous important processes in plants, including 

structural support (cell wall fortification and wood formation), disease resistance, UV protection, 

and plant-animal mutualism (Dixon et al., 2002; Chen et al., 2009; Vogt, 2010; Caseys et al., 

2015). Moreover, the underlying genes and pathways are well known compared to most other 

traits in plants. Leaf area is associated with biomass gain in poplar (Rae et al., 2004) and greater 

leaf size likely correlates with higher competitive ability (Rae et al., 2006). Plant height is often 

used as an early fitness proxy in perennial plants (Younginger et al., 2017), and trade-offs 

between growth and defense are of major interest in plant biology (Züst & Agrawal, 2017). All 

traits studied here represent ecologically relevant phenotypic trait differences between P. alba 

and P. tremula, thus they may be involved in reproductive isolation between species. 

 

Methods S4 Admixture mapping with GEMMA: model choice and validation 

 

We used GEMMA 0.94.1 (Zhou et al., 2013) to scan the genome of admixed individuals for 

associations between ancestry segments and phenotypes (cf. admixture mapping). GEMMA 

offers the opportunity to choose between fitting a univariate linear mixed model (LMM), a 

multivariate linear mixed model (LMM) and a Bayesian sparse linear mixed model (BSLMM). 

We used BSLMM (option -bslmm 1) because it implements a polygenic approach, in which the 

effect of multiple loci on the phenotype is evaluated simultaneously, rather than a single locus at 

a time. Most of our modeling decisions and rationales are described in the main paper. 

The kinship matrix calculated by GEMMA based on our input data accounted for the similarity 

at the level of genome-wide ancestry. Being a centered matrix, it showed the deviation of the 

genomic similarity between a pair of individuals from its mean value: P. tremula-like individuals 

deviated from this in a specific direction, while P. alba-like individuals deviated in the opposite 

direction (Fig. S2). In addition to genome-wide ancestry patterns, this matrix also captured 

genetic relationships within and among the open-pollinated families. 

To evaluate the extent to which we came to similar conclusions about trait genetics with different 

models, we used multiple analysis options in GEMMA, including -notsnp. This option allowed 

us to directly use the phenotypic measurements (rather than residuals as described in the main 

paper) and to include the covariates in the file together with the input genotypic information (this 



was possible because the -notsnp option disables the filter for minor allele frequency). We note 

that in -notsnp runs, the parameter estimates associated with genomic architecture (PVE, PGE 

and n_gamma) should be interpreted with caution, because they also include the effect of q, 

planting year and common garden location. 

For each trait we performed 10 independent model runs, with 2 million burn-in steps and 10 

million iterations. The burn-in steps were discarded and convergence was assessed visually by 

means of trace plots and comparing the consistency of the results across runs. To obtain the 

posterior distributions of the hyperparameters, we down-sampled the 10 chains, saving 1 value 

out of 10, and combined chains to obtain posterior distributions. Values of Posterior Inclusion 

Probability (PIP) per 0.5 Mb windows were calculated separately for the 10 runs and then 

averaged. Only for one trait (the flavonoid kaempferol-rutinoside-pentose - C21) a subset of the 

10 chains suggested the presence of an alternative solution, providing different posterior 

distributions for the hyperparameters and different PIPs values. We therefore ran a total of 100 

chains, to be able to evaluate the validity of the second solution and to calculate a reliable 

average when combining all chains. 

For 12 phytochemical compounds, trait values (molecular abundances of specific secondary 

metabolites) were equal to zero in more than 10% of the individuals. In these cases we also ran 

the trait in a binary version, replacing with 1 all the observations larger than 0. We then used a 

binomial logistic regression to obtain the residuals to be used as phenotypic information in 

GEMMA. These runs were not taken into account to examine the posterior distributions of the 

hyperparameters, but only when selecting interesting genomic regions for selected traits. 

To further evaluate the consistency of our results when using different analysis options, we also 

ran the univariate linear mixed model (LMM) in GEMMA (option -lmm 2), which provides a p-

value deriving from a likelihood ratio test for each site. 

 

Notes S1 Genomic windows highlighted by alternative modeling approaches in GEMMA 

 

BSLMMs using the “-notsnp” option:To evaluate the extent to which our results were consistent 

among different analysis options in GEMMA, we ran the program also with the raw phenotypic 

data (not the residuals) and the -notsnp option. This resulted in highly congruent results. For 

traits C6, C10i, C12, C18, C19 (quantitative and binary) C20, C21, C27, C29 (quantitative and 

https://paperpile.com/c/2SH7Rw/SwVg+hQ1T/?prefix=(molecular%20abundances%20of%20specific%20secondary%20metabolites%3B,
https://paperpile.com/c/2SH7Rw/SwVg+hQ1T/?prefix=(molecular%20abundances%20of%20specific%20secondary%20metabolites%3B,


binary), C31, C32 (quantitative) and C33, the windows exceeding the Posterior Inclusion 

Probability (PIP) threshold of 0.4 were exactly the same between GEMMA runs based on the 

residuals or directly on the measurements. For three traits (C15, C22 and C23), there was an 

additional window in the -notsnp run compared to the run on the residuals, while for C25 and 

C32 (binary) one window had PIP ≥0.4 in the run on the residuals, but none reached the 

threshold in the -notsnp run. Only for one trait (C24), the windows with high PIP emerging from 

the run on the residuals and from the -notnsp run were different, although nearby on 

chromosome 12 (window between 3 and 3.5 Mb and between 4 and 4.5 Mb in the run on the 

residuals and in the -notsnp run, respectively). 

Linear Mixed Models (LMM):The single-SNV analysis (LMM), when compared to BSLMM, 

highlighted a significant association only for one trait (C24) if using 5x10
-8

 as threshold for the 

significance of the p-value, a common practice in GWAS applications (Barsh et al., 2012). Out 

of the ten top-ranking sites for this trait, four are located in the window highlighted by BSLMM, 

while the remaining six are found in a flanking window downstream. Even considering a less 

stringent p-value of 10
-7

, we would have been able to identify associations only for three 

additional traits: C12, C15 and C18. The ten sites with the lowest p-value for C12, C15 and C18 

are located in the windows with PIP ≥0.4 we selected based on the BSLMM results. In general, 

LMM identified a much smaller number of significant associations since independently testing 

each site for association is less powerful than applying polygenic approaches. 

 

Notes S2 Additional information on candidate genes 

 

This admixture mapping study revealed several candidate gene-trait associations with potential 

relevance for functional plant biology and evolutionary genetics. The best candidate genes are 

described below while other candidate genes with potential relation to the traits are listed in 

Table S3. 

The flavonoid isorhamnetin-glycuronide (C32) showed association with the first window on 

chromosome 1 (0.5 - 1.0 Mb), containing the gene Potri.001G005100, which encodes a MYB 

transcription factor (MYB5 in Arabidopsis thaliana). This compound was also associated with a 

window on chromosome 13 (15.0 - 15.5 Mb), which conspicuously contains two additional 

MYB genes (Potri.013G149100 - MYB14 in A. thaliana, and Potri.013G149200 - MYB15 in A. 



thaliana), a finding discussed in more depth in the main paper. These windows also contain other 

candidates, the gene Potri.001G007000 (chromosome 1) encodes a Kelch repeat F-box that 

regulates phenylpropanoid biosynthesis in A. thaliana (Zhang et al., 2013), while 

Potri.013G146200 (chromosome 13) encodes a protein with a putative galacturonosyl transferase 

activity. In isorhamnetin-glycuronide, the sugar is either in glucuronide or galacturonide form 

making this gene a likely candidate. 

The interval between 5 and 5.5 Mb on chromosome 11 was associated with three quercetins 

linked to glucose-based sugars (quercetin rutinoside-pentose C18; quercetin-3-O-rutinoside C23 

and quercetin-glucuronide-pentose binary C19). This genomic region hosts two genes 

(Potri.011G060300 and Potri.011G061000) whose orthologs in A. thaliana are known to encode 

flavonoid 3-O-glucosyl transferases acting as catalysts for the transfer of glycosyl groups, which 

represent important chemical modifications to flavonoid core molecules (Yonekura-Sakakibara 

& Saito, 2014). In the P. trichocarpagenome (annotation v3.0), these genes are annotated as 

Anthocyanidin 3-O-glucoside 2''-O-glucosyl transferases. This study suggests that their activity 

may extend to the flavonols in Populus. 

Similarly, the window between 3 and 3.5 Mb on chromosome 12 was significantly associated 

with several traits, in particular the flavonoids quercetin-glucuronide-pentose (C19), quercetin-3-

O-glucuronide (C24), quercetin-3-O-glucoside (C25), kaempferol-glycuronide (C29 and binary 

C29), isorhamnetin-glycoside (C31), isorhamnetin-glycuronide (binary C32). This region 

contains three genes (Potri.012G034100, Potri.012G035800 and Potri.012G036000) annotated in 

A. thaliana as UDP-glycosyl transferases. Potri.012G036000 has further been characterized as a 

chalcone 4'-O-glucosyl transferase in P. trichocarpa and according to Phytozome 

(https://phytozome.jgi.doe.gov) its expression profile shows a correlation coefficient of 0.953 

with that of flavonol-synthase 1 (Potri.004G139700), a key enzyme of the flavonoid pathway. 

Among other noteworthy genetic associations, the window of interest on chromosome 15 

(500001 bp to 1 Mb) exhibited association with the flavonols quercetin-3-O-rutinoside (C23) and 

isorhamnetin-glycoside (C31). In this window, the gene Potri.015G010100 was annotated as 

encoding a O-glycosyl hydrolase family 17 protein, that reduces the complexity of sugar 

moieties of phenylpropanoids. On the other hand, the first 0.5 Mb in chromosome 15 were 

associated with two isorhamnetins (the flavonoids isorhamnetin rutinoside-pentose (C22) and 

isorhamnetin-3-O-rutinoside C27): this window contains the gene Potri.015G003100, whose 



ortholog in A. thaliana encodes a flavonol O-methyltransferase 1 that converts quercetins into 

isorhamnetins (potentially converts C18 to C22 and C23 to C27). 

Isorhamnetin-glycoside (C31) showed significant association with the window located between 

15.5 and 16 Mb on chromosome 3. This window hosts the gene Potri.003G138200, also 

annotated as UDP-glycosyl transferase. 

Finally, the window between 15 and 15.5 Mb on chromosome 12 exhibited a significant 

association with the salicinoids HCH-Salicortin (C12) and HCH-tremulacin (C15). One 

candidate gene of special interest in this region is Potri.012G138800, encoding a chalcone-

synthase (CHS). From the viewpoint of functional plant biology, the chalcone-synthase (CHS) 

(Potri.012G138800) is of particular interest. While this enzyme is essential to the flavonoid 

pathway due to its basal role, this gene would not normally be expected to be associated with 

salicinoid biosynthesis. The Populus genome contains at least six CHS genes (Tsai et al., 2006). 

The role of CHS in the flavonoid pathway is the conversion of coumaroyl-CoA and malonyl-

CoA into chalcone. In the salicinoid pathway, the polyketide synthase activity of the enzyme 

may act directly on benzoyl-CoA, which has recently been put forward as a potential precursor 

of this group of compounds (Babst et al., 2010). The expression of this gene is correlated with 

that of many other genes (36 in total, according to Phytozome data) not involved in the 

biosynthesis of flavonoids, suggesting that this gene is indeed part of a different metabolic 

network. Knowledge regarding the biosynthetic pathway of salicinoids remains very poor. 

Chedgy et al.(2015) reported the functional characterization of two genes encoding acyl 

transferases and predicted to produce the secondary metabolites putatively involved in the 

benzenoid metabolism. Their findings are consistent with a potential role of these enzymes in the 

salicinoid pathway, but need to be confirmed by direct functional tests in vivo. To our 

knowledge, the CHS gene we identified is the first potential candidate gene put forward for the 

biosynthesis of salicinoids through a GWAS. 

We note that two of the candidate genes described in this study were recently identified as 

having undergone adaptive protein evolution in one or both of these two hybridizing species 

(Christe et al., 2017). Both genes were identified in genomic windows associated with 

isorhamnetin-glycuronide (C32). The galacturonosyl transferase found on chromosome 13 was 

found to be under positive selection in both P. alba and P. tremula, while MYB5 (chromosome 

1) was affected by positive selection in P. tremula only. 
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