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Abstract

In analogy to the appreciation of humor, that of tickling is based upon the re-interpretation of 

an anticipated emotional situation. Hence, the anticipation of tickling contributes to the final 

outburst of ticklish laughter. To localize the neuronal substrates of this process, fMRI was 

conducted on 31 healthy volunteers. The state of anticipation was simulated by generating an 

uncertainty respecting the onset of manual foot tickling. Anticipation was characterized by an 

augmented fMRI- signal in the anterior insula, the hypothalamus, the nucleus accumbens and 

the ventral tegmental area, as well as by an attenuated one in the internal globus pallidus. 

Furthermore, anticipatory activity in the anterior insula correlated positively with the degree 

of laughter that was produced during tickling. These findings are consistent with an encoding 

of the expected emotional consequences of tickling and suggest that early regulatory 

mechanisms influence, automatically, the laughter circuitry at the level of affective and 

sensory processing. Tickling activated not only those regions of the brain that were involved 

during anticipation, but also the posterior insula, the anterior cingulate cortex and the 

periaqueductal gray matter. Sequential or combined anticipatory and tickling-related 

neuronal activities may adjust emotional- and sensorimotor pathways in preparation for the 

impending laughter response. 

Keywords:

Affective touch, anticipation, anterior insula, fMRI, tickle, periaqueductal gray matter
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Introduction

The anticipation of a sensation of tickling is considered to be an integral part of the mechanism 

underlying ticklish laughter (Ramachandran, 1998). Since the tickling that induces laughter is 

applied particularly to vulnerable bodily parts, it is initially anticipated as a potential threat. It 

may be reappraised as harmless during the actual stimulation, which is frequently associated 

even with positive feelings (Provine, 2004). This circumstance is exemplified by a child’s 

reaction to the menace of tickling, which involves an attempt to escape from it, screaming or 

laughter. Hence, the anticipation of tickling appears to trigger neuronal processes that are 

relevant during laughter. Investigations appertaining to the neuronal responses of humor and 

laughter have progressively targeted the focus of interest (Wild et al., 2003; Lauterbach et al., 

2013; Scott et al., 2014), not least regarding their association with physiological parameters 

(Lackner et al., 2014) and the impact of affect-regulating pathways (Mobbs et al., 2003). As 

yet, the inter-dependency of laughter and the related anticipatory processes has not been a 

subject of study. 

According to James (James, 1890), the expectation of an externally applied stimulus involves 

the same centers in the brain as those that are related to its actual experience. During the act 

of stimulation, this mechanism would help to improve the efficiency with which the 

information is processed. For example, the primary sensorimotor cortices that are involved in 

the anticipation of touch and of tickling are similar to those that are implicated in the actual 

sensory experience (Carlsson et al., 2000). The sense of touch mediates not only a 

discriminatory but also an affective dimension (Olausson et al., 2002), which, if sufficiently 

potent, triggers an emotional reaction. This response involves changes in heart rate, blood 

pressure, respiration and vocalization. In the case of tickling, vocalization is manifested as 

laughter. Hence, the affective response to tickling and the related anticipatory processes may 

be deep-seated in the same brain centers.

Emotional reactions are driven by the so-called emotional motor system - an ancient, 

involuntarily regulated pathway which complements the voluntary system [reviewed by 

(Holstege and Subramanian, 2016)]. The midbrain periaqueductal gray matter (PAG) is an 

important relay in this system; it is immediately implicated in the expression of emotions, 

including the control and the co-ordination of the motor neurons that are involved in laryngeal 

and respiratory movements (Holstege, 2014). There is broad scientific concordance in 
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For Peer Review

considering the PAG as pivotal in triggering vocalization in various species, including humans 

[(Jurgens, 1998, 2009; Belyk and Brown, 2016) see also Figure 1]. Laryngeal and respiratory 

vocal effectors are also controlled by the volitional motor system, notably, in humans, by 

newly developed primary motor regions exhibiting monosynaptic connections [(Fitch, 2011; 

Simonyan and Horwitz, 2011; Belyk and Brown, 2017) see also Figure 1]. This situation permits 

the production of a flexible vocal repertoire including speech and song. By contrast, core 

processes for laughter as a spontaneous form of emotional vocalization appear to be seated 

in subcortical regions. This tenet is supported by the observation that laughter is vividly 

produced in infants at an early age, namely, by the fourth month. Furthermore, patients with 

bilateral damage at sites of the motor cortex that are associated with vocal control lose the 

ability to sing and speak whilst retaining the capacity to produce non-verbal emotional 

utterances, such as moans, cries and laughter (Groswasser et al., 1988). The PAG is strongly 

interconnected with numerous brain regions that are associated with the limbic system, 

particularly with the lateral hypothalamus (Behbehani et al., 1988), which is intrinsically 

coupled with the emotional motor system (Holstege, 1992). Investigations in the squirrel 

monkey suggest that the hypothalamus furnishes the most substantial input to implement 

vocalizations that accompany emotional states (Dujardin and Jurgens, 2006). In the rat, the 

lateral hypothalamus is involved in vocalizations that are related to the expression of positive 

emotions (Burgdorf et al., 2007), notably to those that occur in the context of tickling and play 

(Roccaro-Waldmeyer et al., 2016). In humans, the lateral hypothalamus is activated during the 

processing of humor (Watson et al., 2007; Schwartz et al., 2008) and of ticklish laughter 

(Wattendorf et al., 2013). Both the hypothalamus and the PAG receive projections from the 

insula (Reep and Winans, 1982); the latter represents a primary cortical relay for tactile 

afferents that mediate affective information (Olausson et al., 2002). The functions of the 

anterior insula (AI) are believed to be implicated in the triggering of human laughter (Watson 

et al., 2007; Holstege and Subramanian, 2016). Interestingly in this context, the AI not only 

senses the physiological condition of the body and related feelings, but also estimates the 

impact of an upcoming stimulation on this bodily state (Craig, 2002; Craig, 2009). Furthermore, 

the AI is believed to form a part of a limbic-related processing network that produces an 

affective state in response to the emotional significance of a stimulus, which is then 

automatically relayed to regulate emotional behavior [(Phillips et al., 2003) see also Figure 1]. 

Along these lines, activity in this cortical region occurs during the experience of tickling or a 
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pleasant touch and during the anticipation of these sensations (Lovero et al., 2009; Lucas et 

al., 2015). However, a possible involvement of downstream regions, such as the hypothalamus 

and the PAG, has not been considered thus far. Our own investigations have permitted us to 

demonstrate activity that is associated with ticklish laughter in the AI/hypothalamic/PAG- axis 

(Wattendorf et al., 2013; Wattendorf et al., 2016). However, in these former studies, no 

attempt was made to locate the sites of activity that are associated with the preceding 

anticipatory processes. It was with this aim in view that the present study was conducted. The 

partial brain volume targeted included the three aforenamed key nodes of the emotional 

motor system. By focusing on the AI, the hypothalamus and the PAG, we have now 

distinguished the processes of anticipation from those that are relevant during tickling.
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List of Abbreviations

A condition anticipation of tickling

ACC anterior cingulate gyrus

AI anterior insula

AID anterior insula, dorsal

AIV anterior insula, ventral

BOLD blood-oxygen-level-dependent

EPI echo planar imaging

C condition foot contact (touching)

fMRI functional magnetic resonance imaging

FWE family-wise error

PGI globus pallidus internal segment

PAG periaqueductal gray matter

HYP hypothalamus

LMCD laryngeal motor cortex, dorsal

LMCV laryngeal motor cortex, ventral

MI mid insula

MNI Montreal Neurological Institute

NAC nucleus accumbens

PI posterior insula

ROI region of interest

SVC small volume correction

SPM statistical parametric mapping

T tickling

Thalamus A thalamus nuclei anteriores

Thalamus CM thalamus nucleus centromedianus

Thalamus VA thalamus nucleus ventralis anterior

Thalamus VL thalamus nucleus ventralis lateralis

Thalamus VP thalamus nucleus ventralis posterior
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Materials and Methods

Subjects

Amongst the 43 healthy participants, 31 (21 females and 10 males; mean age: 24.3 years; age 

range: 20-29 years) were included in the fMRI-study. Three individuals were discarded due to 

technical constraints during the acquisition process. Nine individuals were excluded from the 

evaluation because their head movements consistently exceeded the limit of head motion, as 

revealed by the statistical parametric mapping (SPM) re-alignment procedure (see 

Supplementary Information: Participants). The informed consent of all participants was 

obtained, and the procedure was approved by the Ethical Committee of the University 

Hospital of Greifswald, Germany (BB63/10).

Behavioral data

An fMRI-adapted fiber-optic microphone (MR confon, Magdeburg, Germany) was used to 

record laughter during the scanning procedure. The audacity® software 2.1.1 (Audacity Team, 

www.audacityteam.org) was implemented to evaluate the intensity of the audible signal. 

Laughter always involves a strong expiratory component, which, in its weaker form, may be 

produced without articulation. The occurrence of a strong expiration without an 

accompanying audible vocalization was thus classified as an expiratory bout of laughter. Bursts 

of laughter that consisted of only one audible articulation were defined as weak; those 

involving several (>1) audible articulations that were produced in rapid succession were 

defined as strong. A further subdivision of the latter category was not possible, since strong 

bouts of laughter often ended in undefined audible phenomena. According to this approach, 

the intensity of laughter was assessed in an escalating form, which may reflect the underlying 

neuronal processes: in primates, the intensity of a single burst of vocalization is correlated 

with neuronal activity in the periaqueductal gray (PAG), which is the critical region of its 

initiation (Larson, 1991). Existing publications report on the correlation between the physical 

magnitude of the specific sensory stimuli and the exponential neuronal responses in the lower 

range of the perceived phenomenon (Molski, 2011). Considering that in the present 

investigation we frequently reported expiratory responses without an accompanying audible 

vocalization (weak reaction, see Results), we here simplified the predicted exponential trend 
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of the neuronal response that was elicited, and coded the different intensities of bouts of 

laughter with exponential weights (expiratory laughter = 1x, weak laughter = 2x, strong 

laughter = 4x). For each participant, maximally 15 scores for the 15 tickling events were 

determined in this way. Calculation of the sum of these scores permitted a classification of the 

total vocal response that was produced during the tickling periods in terms of both the 

frequency and the intensity of the audible events. This value was used for the correlation 

analysis of this parameter with the anticipatory or the tickling- related activity. After the fMRI-

session, the participants completed a questionnaire in which they were requested to rate the 

mean sensation of tickling and the perceived pleasantness on a visual analogue scale (VAS), 

ranging from 1-10, with 1 being the lowest score (no sensation of tickle or pleasantness) and 

10 the highest. Statistical analyses were conducted using SPSS 21 (IBM) and Excel (Microsoft).

Experimental fMRI-design

We investigated the selected brain volume in the framework of an event-related paradigm 

with three conditions: (i) Tickling of the right foot (T) by a friend or his/her partner. In this 

condition, the participant was encouraged not to suppress the audible vocalizations 

(Wattendorf et al., 2013). (ii) Monotonous foot contacts (C). (iii) Anticipation (A), which 

precedes the T- or the C- stimulus (Figure 2). Upcoming episodes of T or C were visually 

indicated by the same ‘‘smiley face”. To prevent habituation of the person being tickled, the 

T- and the C- stimulations were executed with a variable delay (jitter) of up to 4.9 s (mean: 

2.45s; SD: 1.5), which represents the anticipatory activity (A). A jittering of successive stimuli 

also improves the evaluation accuracy in event-related designs (Dale, 1999). A red bar, which 

was visible only to the tickler, was randomly superimposed on the left or the right side of the 

screen, at the end of the anticipatory period, and served as the signal to begin the episode of 

tickling (T) or touching (C). Each of these two conditions (T and C) was presented 15 times, 

each with a duration of 6.2 s and alternated with a baseline condition (11.2 s) in which 

participants had to look at a fixation cross. Technical and methodological difficulties are 

frequently encountered during the testing of a paradigm that is associated with physical 

motions. To minimize head movements and the associated artefacts in the fMRI-signal, the 

participants held a wooden barbecue stick between their teeth, which did not interfere with 

the production of laughter (Wattendorf et al., 2013; Wattendorf et al., 2016). Since this 
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procedure involves an exertion of the facial muscles during the entire scanning session, it may 

account for confounding brain activity due to smiling (Hennenlotter et al., 2005) during T.

Acquisition of data

Imaging was performed on a 3 T Scanner (VERIO, Siemens, Erlangen, Germany) with a 12-

channel head-coil. Functional images were acquired using a T2*-weighted echo planar imaging 

(EPI) sequence [repetition time (TR): 2 s; echo time (TE): 30 ms; flip angle [ ]: 70°], which 

embraced the anterior insula, the hypothalamus and the PAG in 20 interleaved axial slices 

(resolution: 1.73 x 1.73 x 2 mm3; matrix: 64 x 64 x 20 voxels; total acquisition time: 608 s). The 

frontal and the occipital poles were not included in this brain volume (see Figure 1). A phase-

oversampling strategy was implemented to avoid folding artifacts. To minimize susceptibility 

artifacts, images were additionally tilted by 30o relative to the anterior/posterior commissure 

[AC-PC line (Robinson et al., 2004)]. For a gradient-echo field mapping, thirty-four phase and 

magnitude images were acquired [TR: 488 ms; TE(1): 4.92 ms; TE(2): 7.38 ms; [ ]: 60 ; 

resolution: 1.73 x 1.73 x 2 mm3]. A T1-weighted, three-dimensional magnetization- prepared 

rapid gradient echo (MPRAGE) sequence (TR: 1900 ms; TE: 2.52 ms; [ ]: 9°; voxel size: 1 x 1 x 

1 mm3; matrix: 256 x 256 x 176 voxels; 176 sagittal slices) was used to obtain structural images 

of the brain anatomy.

Analysis of data

Data were analyzed using SPM8 software (Wellcome Department of Cognitive Neuroscience, 

London, England (Friston et al., 1995), running on Matlab version R2012a (MathWorks Inc; 

Natick, MA). 

The pre-processing procedure involved an unwarping of the geometrically-distorted 

functional images (EPIs) in the phase-encoding direction using the FieldMap toolbox for SPM8. 

After slice-timing correction, each of the 304 individual volumes was re-aligned to the one 

which displayed half-maximal displacement (as indicated by the translation or rotation 

parameters with the highest maximal deviation), to correct for motion artifacts. Slow-signal 

drifts were eliminated using a temporal high-pass filter (128 s). Each EPI was co-registered 

with the T1-weighted anatomical image. The co-registered T1-image was segmented and 

normalized to the Montreal Neurological Institute (MNI) template; EPIs were resliced at 1.73 
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x 1.73 x 2 mm3. The resulting EPIs were smoothed with a 6 x 6 x 6 mm Gaussian Kernel filter 

(full-width at half maximum). 

First-level analysis: To control for variance due to motions of the head, movement parameters 

that were estimated during the re-alignment procedure were introduced as regressors into 

the general linear model (GLM). The fMRI-data were additionally adjusted for artifacts by a 

reduced weighting of motion-contaminated volumes using the RobustWLS toolbox 

(Diedrichsen and Shadmehr, 2005). An event-related analysis was conducted to separately 

identify the regions of the brain that were activated by the anticipation (A) - and the tickling 

(T) - stimuli in each subject. A reaction and neuronal conduction time of 400ms after the 

request to effectively tickle was included in the modeling, which is shorter than the period 

that was implemented in our previous investigation (1s), in which the participants could not 

prepare in advance (Wattendorf et al., 2013). We proceeded in the same way for the 

evaluation of the C-condition. Contrast images were calculated to describe the comparisons T 

> A and T > C.

Second-level analysis: A hypothesis-driven SPM-analysis was undertaken in a region of 

interest (ROI)  which comprised the bilateral anterior insular cortex (AI), the midbrain and the 

bilateral hypothalamus. The anterior insular cortex (AI) was included with a view to relating 

regional activation patterns with the monitored and corresponding affective state (Phillips et 

al., 2003). The midbrain and the hypothalamus were included with a view to revealing the 

impact thereon of the behavioral reaction (Dujardin and Jurgens, 2006). The AI was defined 

according to data that are presented in the Anatomical Atlas of Neuromorphometrics [SPM 

(http://neuromorphometrics.com)]. The midbrain/hypothalamus was defined according to 

the Atlas of the Automated Anatomic Labeling (AAL) toolbox (Tzourio-Mazoyer et al., 2002). 

Functional maps appertaining to the conditions anticipation (A), tickling (T) and monotonuous 

foot contacts (C) as well as to T versus A and T versus C were analyzed in the predefined ROI-

volume, based on a small volume correction (SVC) at the voxel-level. Voxels were considered 

to be significant if they survived a family-wise-error (FWE)-corrected threshold (p < 0.05) that 

was adjusted for the small volume. With a view to classifying activities in accordance with the 

results of our previous investigation on ticklish laughter (Wattendorf et al., 2013), the 

described evaluations were complemented with an explorative analysis of the brain volume 

which has been measured. Thus, in addition to activity in the AI, the hypothalamus and the 

PAG, that in the mid- and the posterior portions of the insular cortex, the basal ganglia, the 
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thalamus, the anterior lobe of the cerebellum and portions of the parietal, the temporal and 

the frontal lobes was also evaluated. In this instance, the results for T, A and C, as well as for 

T versus A and T versus C, were reported at a significance threshold of p < 0.05, which was 

FWE-corrected (voxel-level) for the multiple comparisons involving the measured brain 

volume. 

A linear-regression analysis (implemented in SPM8) permitted a correlation between each 

participant’s total (intensity-weighted) vocal output in response to tickling and the 

corresponding beta- values (effect size) of the anticipation (A)- and the tickling (T)- events. The 

results are reported for the two aforementioned ROIs (anterior insula and 

midbrain/hypothalamus) after an SVC- analysis with a corrected threshold of p (FWE) < 0.05 

at the voxel level that was adjusted for the small volume. 

The anatomical locations of significant areas of activation were identified using the SPM 

Anatomy Toolbox [(version 21 (Eickhoff et al., 2005)] and the Atlas of the Human Brain (Mai 

et al., 2004). The posterior and the mid, as well as the dorsal and the ventral anterior regions 

of the insular cortex, were distinguished according to the labeling patterns that were reported 

by Wager and Barrett (Wager and Barrett, 2004). To assess a potential impact of motion 

artifacts on the BOLD- signal, scan-to-scan frame-displacements (calculated by the sum of the 

six motion parameters for head movements combined over all volumes) were introduced as 

the regressor [see (Power et al., 2012; Yan et al., 2013)] in a further analysis of the A- and the 

T- conditions (p < 0.001, uncorrected). 
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Results

Behavior

Six of the 31 participants manifested an audible response to each of the 15 episodes of tickling; 

four exhibited no reaction whatsoever (median: 11). The intensity of an event of ticklish 

laughter was gauged as “strong” (number of events: 0-15; median: 3), “weak” (number of 

events: 0-4; median: 0) or “expiratory” (number of events: 0-12; median: 3). The differences 

in intensity were taken into account in calculating the amount of laughter that was produced 

by each participant (see Methods). The average aggregated score per subject was 24.2 

(“strong” laughter: 4.71, weighted as 18.84; “weak” laughter: 0.81, weighted as 1.62; 

“expiratory” laughter: 3.74). With respect to this parameter, no significant differences were 

observed between males and females (Mann-Whitney test; p = 0.44). The participants rated 

the stimulus as “pleasant” (mean score: 7.18 (SD: ±1.9) of 10; no significant gender 

differences) and as “rather ticklish” (mean score: 5.35 (SD: ±2.1) of 10; no significant gender 

differences). Ticklishness correlated with the amount of laughter that was produced 

(Pearson’s test: r = 0.477, p = 0.007).  

FMRI- results 

The brain regions that were activated in anticipation of tickling (A) and those that were 

associated with tickling (T) could be clearly distinguished by their extent of activation in the 

insular cortex of both hemispheres. A was associated with activation in the anterior insula (AI), 

whereas T involved additional activity in its posterior (PI) and mid (MI) portions (Figure 3, 

Figure 4, Table 1, Supplementary Information Table 2). The anticipatory situation (A) was 

associated with significant activation in additional sites: the bilateral nucleus accumbens 

(extending into the putamen in the left hemisphere), the posterior lateral hypothalamus in 

the left hemisphere and the ventral tegmental area. During tickling (T), activity was likewise 

detected in the nucleus accumbens (extending from the putamen and the pallidum) and the 

lateral hypothalamus, but also in the thalamus, the amygdala, the anterior cingulate cortex, 

the periaqueductal gray matter (PAG), the brainstem tegmentum and the cerebellum in both 

hemispheres. The activity in the PAG appears to be localized in two longitudinally oriented 

columns ventrolateral (Bandler and Shipley, 1994) to the midbrain aqueduct (see 

Supplementary Figure S2). Activation of the anterior cingulate cortex (ACC) was significant in 
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the direct comparisons T > A and T > C, and that of large portions of the pallidum in the 

comparison T > A (see Supplementary Table S2). A closer inspection of the data confirmed an 

attenuated fMRI- signal in the bilateral internal segments of the globus pallidus during A (24 -

10 -4; z = 6.30 / -24 -8 -6; z = 6.26, see Supplementary Figure S3). An analysis of the activity 

relating to monotonous foot contacts (C) revealed the response to tickling to be distinct from 

non-ticklish touch (see Supplementary Figure S1, Table S1, Table S2). In particular, the 

involvement of subcortical regions was specific for the tickling- but not for the touching 

condition. By contrast, during both forms of somatosensory stimulation, the right posterior 

superior temporal sulcus was involved, which points to the social dimension of both situations 

(Beauchamp, 2015).

The laughter score correlated positively with anticipatory activity in the dorsal AI on the right 

side (Figure 4, Table 1). In the right midbrain tegmentum, it was related to episodes of tickling 

(Table 1).

The quality control revealed that when the individual summed motion-frame-displacement- 

values were implemented in a second-level regression analysis, only a few voxel values 

attained statistical significance for  condition T (cerebellum: z = 3.52, voxels = 6; putamen: z = 

3.22, voxels = 6) and none for condition A. Thus, a major confounding effect of motion on the 

results can be excluded. 
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Discussion

In our previous studies (Wattendorf et al., 2013; Wattendorf et al., 2016), the experimental 

set-up did not differentiate between anticipation of tickling (A) and tickling itself (T). It now 

appears that activity in the anterior insular cortex (AI) and in the hypothalamus is associated 

with A and with T, whilst that in the mid-posterior portions of the insula (MI, PI) and in the 

periaqueductal gray matter (PAG) is primarily involved in the T-condition. These findings 

accord with those of previous investigations addressing the brain representation of affective 

touch (Lovero et al., 2009; Lucas et al., 2015), namely, as appertaining to the distribution of 

anticipatory and stimulus-related activity in the insular cortex. However, in these former 

studies, no activity was revealed in the hypothalamus and the PAG, two subcortical centers 

that participate in an imminent behavioral response (Mobbs et al., 2007). It is conceivable 

that, during the anticipation of tickling, an internal representation of the expected 

consequences is used and combined in a modified reaction to the actual stimulation. 

The anticipation of tickling is associated with neuronal activity in the anterior insula 

The posterior insular cortex contains primary interoceptive afferences which the anterior 

portions integrate with cognitive and limbic-related information (Craig, 2002; Critchley, 2005; 

Craig, 2009). This process represents the basis of emotional experiences and has been 

associated with a broad spectrum of functional conditions (Kurth et al., 2010). The anterior 

insular cortex (AI) is believed to comprise a portion of the neuronal network that produces an 

affective state corresponding to an emotional stimulation (Phillips et al., 2003). Interestingly 

in this context, an anticipation of the averse consequences of a stimulus invariably leads to an 

activation of the AI and, at the same time, is associated with autonomous excitement and 

behavioral changes (Etkin and Wager, 2007). Indeed, the prediction of an affective state in the 

absence of a peripheral input appears to be a key role of the AI (Paulus and Stein, 2006). This 

observation may also apply to tickling or a pleasant touch: Although activity in the AI has been 

observed during the sensory stimulation itself (Carlsson et al., 2000; Morrison, 2016), this 

region appears to be specifically implicated in paradigms that signal an upcoming experience 

of the related bodily sensations (Lovero et al., 2009). Our data support the implication that 

the AI is involved in the anticipation of tickling (A). The functions that involve its right ventral 

portion permit the drawing of further conclusions: 

14

ht
tp
://
do
c.
re
ro
.c
h



One of the characteristics of tickling is that during the act itself, it is re-interpreted as a 

harmless stimulus. The continuous up-dating of information appertaining to the actual 

situation is assumed to be supported by the von Economo neurons (VEN) in the ventral portion 

of the AI (von Economo, 1926), which have been implicated in the rapid, highly-integrated 

representations of an emotional experience (Craig, 2009). In a previous study, the mechanism 

that underlies the recognition and the re-appraisal of humorous stimuli has indeed been 

explained by this process (Watson et al., 2007). The ventral AI [agranular, see (Evrard et al., 

2014)] is functionally involved in an affective state that is generated according to an emotional 

rather than a cognitive input (Kurth et al., 2010). This region appears to be the seat of feelings 

that are not defined or interpreted (Wager and Barrett, 2004), such as those that are 

associated with the experience of one of the basic emotions (Damasio et al., 2000) or a state 

of intensified drive [e.g., the craving for food (Pelchat et al., 2004)]. The ventral AI also 

participates in the regulation of peripheral physiological changes that are related to affective 

states (Mutschler et al., 2009). Notably, neuronal activity that is restricted to the right ventral 

AI signalizes higher sympathetic arousal (Critchley et al., 2000), as gauged, for example, by the 

concomitant change in skin conductance that occurs during the experience of positive 

emotions (Kuniecki et al., 2003). Moreover, in the rat, efferent sympathetic projections from 

the agranular and the dysgranular insular cortices have been traced (Cechetto and Chen, 1990; 

Yasui et al., 1991). This discovery serves as more than circumstantial evidence of the insula’s 

involvement in regulation via the sympathetic nervous system, which has been verified in 

humans: unexpected cardiac events following insular stroke are deemed to be associated with 

the sympathetic role of the right AI (Tokgozoglu et al., 1999). Hence, during the anticipation 

of tickling, the dextroventral AI possibly acts as a dynamic point of reference (Gu et al., 2013) 

in the automatic regulation of the laughter circuitry. 

15

ht
tp
://
do
c.
re
ro
.c
h



The anticipation of tickling is associated with neuronal activity in the lateral hypothalamus, 

the nucleus accumbens and the ventral tegmental area

An involvement of the lateral hypothalamus in human laughter was first suggested by findings 

in pathological situations (Martin, 1950), relating, in particular, to those in which its 

tuberolateral portions were lesioned (Valdueza et al., 1994), and has been confirmed by the 

results of our previous fMRI- study (Wattendorf et al., 2013). The hypothalamus is 

anatomically connected to several regions of the brainstem, notably to the periaqueductal 

gray matter (PAG) (Holstege, 1987). It is deemed to stimulate the PAG to implement the 

motoric patterns of affective vocalizations (Dujardin and Jurgens, 2006). However, our 

investigation revealed that, in the anticipation of tickling (A) the posterior lateral 

hypothalamus, but not the PAG was activated. In this context, it is of interest that a substantial 

proportion of the neurons in the lateral hypothalamic area of rats and monkeys respond 

specifically to appetitive or aversive situations themselves rather than to associated sensory 

or motoric processes (Nakamura and Ono, 1986; Noritake and Nakamura, 2011). Also, the 

results of imaging studies in healthy individuals have confirmed the function of the (lateral) 

hypothalamus to be associated with the processing of the emotional valence of a stimulus 

(Karlsson et al., 2010). Interestingly, experiments in the squirrel monkey have revealed 

stimulation of the PAG to evoke changes in the intensity, but not in the specific acoustic 

parameters, such as rhythm or the articulation of vocalizations (Larson, 1991; Dusterhoft et 

al., 2004). This finding is compatible with a role of this region in initiating and gating rather 

than in elaborating the vocal response. Hence, any anticipatory influence of the hypothalamus 

on the PAG (e.g., on the intensity of the vocal response) would become manifest only during 

the actual vocalization. Moreover, during the anticipatory phase, respiration is being 

imperceptibly adjusted to prepare for laughter, a process that always occurs in the post-

inspiratory expiratory phase (Dutschmann et al., 2014). By its influence on respiration 

(Redgate, 1963), the lateral hypothalamus could play an indirect role in regulating the 

laryngeal voice box, perhaps via vocal pattern generators in the parvicellular reticular 

formation (Van Daele and Cassell, 2009). In addition, our findings reveal the anticipation of 

tickling to involve the nucleus accumbens and the ventral tegmental area. These regions 

support not only the processing of emotionally salient or rewarding events in humans (Carter 

et al., 2009), but also the development of responses to predictive cues, at least in rats (Yun et 

al., 2004; Roitman et al., 2005). 
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Laughter-associated anticipatory activity involves the anterior insula 

In those participants who manifested higher anticipatory activity in the dorsal anterior insula 

(AI) of the left hemisphere, laughter was consistently more pronounced during the act of 

tickling (T). This finding implies an influence at a level of stimulus- encoding which that relates 

to cognitive appraisal. In their meta-analysis, Wager and his colleagues (Wager and Barrett, 

2004) reported emotional situations in which undifferentiated affective states need to be 

translated into plans of action to be powerful predictors of activity in the dorsal AI 

[dysgranular, see (Evrard et al., 2014)]. This region is activated in situations that implicate 

specific avoidance or approach strategies, for example, those in which an individual is 

attentive to painful (Kong et al., 2006) or other incentive external stimuli (Anders et al., 2004). 

Analogously, in our study, those participants who attached more importance to, or 

consistently anticipated the sensory stimulation, were probably more ticklish and accordingly 

more prone to laughter. As an example, an investigation of the neuronal correlates of touch 

by Lovero and her colleagues (Lovero et al., 2009) revealed anticipatory activity in the AI to be 

correlated with that in a more mid- to- posterior region that responds during stimulation. This 

process would thus directly enhance the sensory response, if coupled, in terminal fields for 

primary interoceptive afferents.

Tickling with accompanying laughter activates an emotional- and sensorimotor network

In contrast to the anticipatory phase (A), the act of tickling itself (T) was associated with a 

more extensive pattern of activation in regions of the brain that included the PAG, the 

amygdala, the basal ganglia, the lateral hypothalamus and the insula. As far as this finding 

goes, our results confirm those of our earlier investigation on ticklish laughter (Wattendorf et 

al., 2013). However, in the present study, with an adapted paradigm, a more discriminative 

analysis was possible. Firstly, A and T likewise activated the anterior insular cortex (AI), 

whereas only the latter condition involved its mid-posterior portions (MI, PI). Evidence 

deriving from a variety of species indicates that the PI receives primary interoceptive 

information from the ventral posterior thalamus (Dum et al., 2009). This region not only 

associates the incoming information with subjective evaluation in the AI (Craig, 2009), but also 

projects directly to the same posterior thalamic region, as well as to the dorsolateral striatum 
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(Cechetto and Saper, 1987; Chikama et al., 1997). In humans, decision-making processes 

related to actions that are relatively automatic or habitual are mediated by neuronal 

circuitries involving the sensorimotor cortices and the dorsolateral striatum/putamen 

(Balleine et al., 2007). Moreover, the suppression of activity in the internal segment of the 

globus pallidus during A, suggests that the inhibitory input from this region to the anterior and 

the ventrolateral thalamus (Haber, 2016) was restricted and that the motor-related functions 

of these thalamic regions were probably disinhibited. Hence, more direct and automatic 

processes may be implemented in the evocation of laughter. In this respect, our findings 

accord with existing data, which afford evidence that an involuntary (Ruch and Ekman, 2001) 

and “reflex-like” (Martin, 1950) mechanism underlies the outburst of laughter in humans. 

Secondly, we found that T activated the anterior cingulate cortex (ACC), which has both 

autonomic and emotional regulatory functions (Mai and Paxinos, 2012). Referring to research 

on vocalizations in the squirrel monkey, the ACC is believed to initiate directed but not 

reflexive vocal behavior via its projections to the PAG (Jurgens, 2009). In humans, this region 

has been implicated in the volitional control of the affective components of vocalization (Hage 

and Nieder, 2016), for example, when angry manifestations are produced on command 

(Fruhholz et al., 2015). In our previous investigation, this region was not activated during T. 

However, in the present study, the entire epoch of T was investigated, whereas in the previous 

one, only the early response to T was considered. It is conceivable that during the ongoing 

stimulation, an awareness of the social dimension of the situation sets in, therewith involving 

control functions in the anterior cingulate cortex. This social awareness may serve to regulate 

the magnitude of the vocal reaction (Larson, 1991) or, more subtly, to signalize social status 

by context-dependent frequency modulations (Pisanski et al., 2016). The extent to which 

ticklish laughter involves obligatory control by the cortical centers is currently unknown. 

In the present study, the neuronal processes that are initiated by the anticipation of tickling 

could, for the first time, be distinguished from those that are evoked by the act of tickling 

itself. It is conceivable that in a natural (non-experimental) setting, with its accompanying 

menacing gestural components, the equivalent anticipatory activity would be more potent 

and specific, eliciting vocalizations such as screaming and laughter. Moreover, some of the 

participants may have exhibited a tendency to react in a purely expiratory manner to T 

whereas others may have vocalized intensively when exposed to a comparable stimulation. 

To improve the characterization of the triggering processes of ticklish laughter, future fMRI- 
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studies could investigate, in parallel, multiple physiological parameters, such as changes in 

skin conductance, with a view to correlating them with the rated audible expressions. 

Conclusions

The pattern of activity that characterizes the anticipation of tickling was distinct from the one 

that is manifested during effective stimulation. This finding modifies and extends James’ 

contention (1890) that the same brain regions are involved during the expectation and the 

experience of an externally applied stimulus. Anticipation of tickling apparently evokes 

regulatory processes that are directly and indirectly coded in the emotional- and the 

sensorimotor systems. In this way, the two pathways can be adjusted for laughter.
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Figure 1. Simplified model of efferent pathways for vocal control in humans

Brain regions are indicated in yellow when bearing reference to, or representing, the emotional 

motor pathway, in green when being assigned to the voluntary motor pathway, and in lime-green 

when relating to the effectors for vocal output. The periaqueductal gray (PAG) is crucial for the 

control of emotional vocal expression via its connections with the nucleus ambiguus (laryngeal 

effectors) and the nucleus retroambiguus [respiratory/vocal coordination (Jurgens, 2002; Holstege 

and Subramanian, 2016; Belyk and Brown, 2017)]. The PAG- activity is driven by the hypothalamus, 

which furnishes the main input for spontaneous vocal reactions (Dujardin and Jurgens, 2006). The 

PAG is also a target of efferences from the anterior cingulate cortex (ACC). The ACC is an 

evolutionarily older cortical site, which appears to support a directed expression of vocalization 

(Jurgens, 1998). In humans, the functions of the dorsal ACC include emotional intonations that are 

superimposed on the production of volitional speech (Barrett et al., 2004; Aziz-Zadeh et al., 2010; 

Belyk and Brown, 2016; Dichter et al., 2018). The anterior insular cortex (AI) senses the current 

affective state and automatically relays the corresponding information to the emotional motor 

system (Phillips et al., 2003). The ventral laryngeal motor cortex (LMCV) is the homologue of the non-

human primate LMC, whereas the dorsal laryngeal motor cortex (LMCD) is unique in the human 

primary motor cortex. These primary motor cortical regions extend the potential of voluntary vocal 

control, permitting flexible speech and song, notably via the reticular formation of the lower 

brainstem and by direct connections with laryngeal effectors in the nucleus ambiguus (Fitch, 2011; 

Simonyan and Horwitz, 2011; Belyk and Brown, 2017).

Figure 2. Experimental design

During the fMRI- scanning procedure, the participants experienced two different sensory 

stimulations, which were randomly applied: simple contact (C) or tickling (T) of the right foot. A visual 

cue signalized the upcoming stimulation, which followed only after a variable delay – the phase of 

anticipation (A) - of 0.1 to 4.9 s. To secure the unpredictability of the situation to the tickled person, 

the nature of the stimulation (tickling or touching) was signalized to the tickler alone by a 

superimposed red bar on the screen at the onset. The corresponding neuronal activity was measured 

in a defined brain volume, which included the anterior insula (AI), the hypothalamus and the 

periaqueductal gray (PAG). A picture of a participant has been included, demonstrating the 

experimental set-up that was used. 
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Figure 3. Group-related activity during tickling and its anticipation

Panel A: The anticipation of the affective stimulation (A) involved the anterior insular cortex (AI), the 

nucleus accumbens (NAC) and the hypothalamus (HYP). In the illustrated example, the level of 

significance for threshold activity was set at p < 0.001 (uncorrected). 

Panel B: Tickling and the accompanying laughter (T) activated the mid (MI) and the posterior (PI) 

regions of the insula, the hypothalamus (HYP) and the periaqaeductal gray (PAG) (p < 0.001; 

uncorrected). Activation of the nucleus accumbens as well as of the anterior insular cortex is not 

represented. The right hemisphere (R) is indicated.

Figure 4. Anticipatory and tickling-associated activity correlating with laughter

Panel A: The anterior insular cortex (AI) of both hemispheres was activated during the anticipation of 

tickling (A). In the illustrated example (p < 0.001; uncorrected), activation of the AI in the right 

hemisphere involved not only the ventral (AIV), but also the dorsal (AID) portions. Panel B: 

Anticipatory (A) activity in the anterior dorsal insula (AID) predicts the laughter reaction during 

tickling (p < 0.001; uncorrected). Panel C: The scatterplot shows the relationship between the beta-

values (effect size) that were derived from the peak of activity in the AID of the right hemisphere and 

the degree of laughter (summed score of the weighted laughter bursts) that was emitted during 

tickling (r2 = 0.43, p = 0.001). The right hemisphere (R) is indicated.
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Table 1: Main effects of tickling (T) and of anticipation (A) and correlating activity of 
(A) and of (T) with the laughter that was produced during (T)

Activated brain region MNI Coordinates (peak x y z) /
Cluster size (voxels) Z-score

Main effects Side T A T A
R   9 -32 -22 10357 0 -25 -22 6.92 3.94*Periaqueductal gray ext. into 

Midbrain tegmentum
Cond. (A): Ventral tegmental area L   -5 -31 -10 10357 7.54

R    5 -15 -12 10357 6.57Lateral hypothalamus L   -5 -13 -12 10357 -5 -15  -8 6.58 3.87*
R  38   -1 -16 10357 6.57Posterior insula

(gyri longi insulae) L -38   -6 -16 578 6.67
R  40  13    2 10357 6.96Mid-insula (gyri breves insulae) L -42    4    2 10357 6.69
R aDorsal anterior insula

(gyri breves insulae) L -31   25   6 10357 -30  25   6 64 5.52 5.45
R 33   18  -8 33  26  -4  37 3.97* 5.58Ventral anterior insula

(gyri breves insulae) L -35   23  -8 4.25*
R 29  11 -16 10357 4.82Inferior frontal gyrus/lateral 

orbital gyrus/Piriform cortex L -30   9 -16 39 5.74
R 50  16  -2 10357 6.85Inferior frontal gyrus

(pars opercularis) L -50  18  -4 10357 5.50
R  12 -24    4 10357 5.55Thalamus

 (VA, VL, VP,CM, A) L -17 -15    6 10357 5.96
R   15   2   -4 10357 5.50Pallidum/Putamen L -17  -5    0 10357 5.70
R 10357 10   7  -2 13 a 4.98Nucleus accumbens L 10357 -11   4  -4 44 a 5.79
R 29  -6 -24 10357 5.18Amygdala/Hippocampus L -29  -8 -24 578 5.66

Cerebellum (lobus anterior) R/L 0 -43 -14 10357 7.43

  Post. superior temporal sulcus R 52 -20   -6 10357 6.58
Laughter Correlation

Dorsal anterior insula R  34  30   8 3.98*
Midbrain tegmentum

extending to periaqueductal gray R 10 -29   -6 46 3.73*

FMRI-activation sites were thresholded at p < 0.05 (FWE) corrected for multiple comparisons 
over the measured brain volume (voxel-level). Moreover, according to the a priori hypothesis, 
a small volume correction (SVC) analysis was performed centered on the anterior insula, the 
hypothalamus and the midbrain (voxel-level; p < 0.05; FWE corrected). Activations that were 
significant with the SVC analysis only are marked with *. Significant activations without a local 
maximum are indicated with a. Cluster sizes referring to multiple brain regions are italicized. 
Coordinates of maximal activation are displayed in Montreal Neurological Institute (MNI) 
stereotactic space.
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Supplementary information: 

Legends

Figure S1. Group-related activity during foot contacts

Monotonous foot contacts (C) involved the mid-(MI) and the posterior- (PI) regions of the insular 

cortex. In the illustrated example, the level of significance for threshold activation was set at p < 

0.001 (uncorrected). Activation is more significant in the left than in the right hemisphere which is 

consistent with the application of right foot contacts. The right hemisphere (R) is indicated.

Figure S2. Group-related activity in the periaqueductal gray matter during tickling 

Tickling (T) involved the periaqaeductal gray matter (PAG) (p < 0.05; FWE correction). During this 

condition, activity in the PAG was registered in two columns, which are ventrolaterally localized 

relative to the aqueduct. This finding accords with the longitudinally oriented functional organization 

of this region. Further investigations are necessary to clarify whether the behavioral reactions to 

tickling are compatible with the role of a passive response to an inescapable situation, as has been 

described for the ventrolateral neuronal columns. The right hemisphere (R) is indicated.

Figure S3. Group-related deactivation during anticipation in the inner segment of the globus 

pallidus

During anticipation (A) the activity in the internal segment of the globus pallidus (GPI) was reduced (p 

< 0.05; FWE correction). The right hemisphere (R) is indicated.
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Fig. S3
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Table S1: Main effects of touch 

Activated brain region Side MNI Coordinates (peak x y z) 
/ Cluster size (voxels) Z-score

Main effects of touch
R 40  -5  -6     2 4.56Posterior insula

(gyri longi insulae) L -38  -5  -6 318 5.65
R 43   6  -4 21 4.88Mid-insula (gyri breves) L -40   0  10 318 6.08
R 38  13  -8 4.09*Ventral anterior insula

(gyri breves insulae) L -42  14  -6 4.32*
RDorsal anterior insula

(gyri breves insulae) L -33  21   8 4.14*
R 53  11  14 37 5.26Inferior frontal gyrus 

(opercular part) L -50   6  12 318 4.53
R 28  13 -14 5 4.71Lateral orbital gyrus/Piriform 

cortex L -24   6 -14 12 4.96
R 21  -6 -12 30 5.26Amygdala L -24   0 -20 4 4.82
R 48  39  12 33 5.31Middle frontal gyrus L

Cerebellum (lobus anterior) R 19 -32 -24 23 5.34
Post. superior temporal sulcus R 50 -25  -6 133 6.30

FMRI-activation sites were thresholded at p < 0.05 (FWE) corrected for multiple comparisons 
over the measured brain volume (voxel-level). Moreover, according to the a priori 
hypothesis, a small volume correction (SVC) analysis was performed centered on the 
anterior insula, the hypothalamus and the midbrain (voxel-level; p < 0.05; FWE corrected). 
Activations that were significant with the SVC analysis only are marked with *. Cluster sizes 
referring to multiple brain regions are italicized. Coordinates of maximal activation are 
displayed in Montreal Neurological Institute (MNI) stereotactic space.
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Table S2: Brain regions showing significantly different activation in response to
 tickling (T) versus foot contacts (C) and to tickling (T) versus anticipation (A)

Activated brain 
region

MNI Coordinates
(peak x y z) /

Cluster Size (number of voxels)
Z-score

Contrast Side T > C             T > A T > C T > A

R 7 -27 -10 6520 8 -34 -16 10942 7.03 6.28Periaqueductal gray extend. 
into Midbrain tegmentum L -5 -32 -8 6520 -5 -31 -10 10942 7.48 7.14

R 2 -19 -12 6520 3 -15 -12 10942 6.84 5.42Posterior, lateral 
hypothalamus L -4 -15 -12 6520 -7  -8 -10 10942 6.14 4.58

R 15 -13   0 6520 14 -22   4 10942 5.31 5.49Thalamus
 (VA, VL, VP, CM, A) L -19 -15 0 6520 -19 -13   8 10942 5.02 6.26

R 40 -10 -16 258 34 -19   4 10942 5.44 6.10Posterior insula
(gyri longi insulae) L -38 -6 -18 6520 -36  -1 -14 10942 5.45 5.98

R 41 11 2 767 40   7  -6 10942 6.37 6.59Mid-insula
 (gyri breves insulae) L -36 6 2 432 -42   2   2 10942 5.77 7.06

R 767 aDorsal anterior insula
(gyri breves insulae) L -30 19 8 432 5.09

RVentral anterior insula
(gyri breves insulae) L

R 36 11 -16 2 33 9 -12 10942 4.70 5.42Inferior frontal gyrus/lateral 
orbital gyrus/Piriform cortex L -30   9 -18 3 -31 9 -14 10942 4.62 5.34

R 52  16  -2 767 51  18  -2 10942 5.68 6.09Inferior frontal gyrus
(pars opercularis) L -50  18  -4 4 -50 14 -10 1 4.80 4.45

R 52  -1  10 767 55   2  12 10942 5.56 5.54Rolandic operculum L -49   2   2 432 10942 4.79 a

R 17 0 2 6520 17 -17 -12 10942 5.21 6.16Pallidum/Putamen L -17 -5 0 6520 -17  -5   0 10942 5.87 5.40
R 6520 a

Nucleus accumbens L 6520 a

R 22 -17 -28 6520 26  -5 -22 10942 4.99 5.78Amygdala/Hippocampus L -31 -10 -24 6520 -30  -1 -22 10942 5.11 5.70
Cerebellum (lobus anterior) R/L 0 -43 -14 6520 0 -43 -12 10942 7.17 7.00

R 53 -20 -4 17 53 -20  -4 10942 4.77 5.20Post. sup. temporal sulcus L -49 4 -20 1 4.49
Anterior cingulate cortex R/L 0 23 18 2 0  28  16 84 4.54 5.52

FMRI-activation sites were thresholded at p < 0.05 (FWE) corrected for multiple comparisons 
over the measured brain volume (voxel-level). Moreover, according to the a priori 
hypothesis, a small volume correction (SVC) analysis was performed centered on the 
anterior insula, the hypothalamus and the midbrain (voxel-level; p < 0.05; FWE corrected).  
No additional brain regions were revealed by the SVC analysis. Significant activations without 
a local maximum were indicated with a. Cluster sizes referring to multiple brain regions are 
italicized. Coordinates of maximal activation are displayed in Montreal Neurological Institute 
(MNI) stereotactic space.
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Participants

Scan-to-scan frame-displacements were evaluated by summing the data for the six head-

movement parameters. Six participants were excluded because the number of displacements 

exceeding 1 lay beyond the 60th percentile. The summed data for the head-movement 

parameters within all volumes correlated significantly with the total (intensity-weighted) 

number of vocal responses (r = 0.37, p = 0.02) in all participants. After the exclusion of those 

with strong displacements, the significance of the association was lost (r = 0.31, p = 0.08). For 

the final analysis, scans in which the frame-displacements exceeded 3 (summed parameters) 

in any single motion direction were excluded. On the basis of this criterion, a further three 

participants were discarded. Out of the 6 excluded participants, 5 were also eliminated by the 

application of this second criterion. For the reduced, censored set of participants, the final 

correlation between the total (intensity-weighted) amount of vocal responses and the 

combined motion parameters was r = 0.31 (p = 0.09).
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