

UML-Ninja: Automatic Assessment of
Documentation and UML Practices in
Open Source Projects
Bachelor of Science Thesis in Software Engineering and Management

Aras Bazyan
Nimish Krashak

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Göteborgs universitets publikationer - e-publicering och e-arkiv

https://core.ac.uk/display/237422845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

ARAS BAZYAN
NIMISH KRASHAK

© ARAS BAZYAN, June 2018.
© NIMISH KRASHAK, June 2018.

Supervisor: MICHEL CHAURDRON, TRUONG HO-QUANG
Examiner: ROGARDT HELDAL

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2018

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

UML Ninja: Automatic Assessment of
Documentation and UML Practices in Open Source

Projects
Aras Bazyan

Department of Computer Science and Engineering
University of Gothenburg

Gothenburg, Sweden
aras.bazyan@gmail.com

Nimish Krashak
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

nimish.krashak@gmail.com

Abstract—Context: Assessment of software documentation
practices in open source projects is important because, besides
the source code, information regarding the open source project
is in the documentation. Quality of documentation can help in
determining the quality of the project. Goal: The goal of this
paper is to automate the process of assessing the quality of
documentation and UML in open source projects. Method: We
conduct a design science research study and evaluate the outcome
based on 14 interviews with researchers and practitioners. Result:
The result of this paper is UML-Ninja, which is a web tool to
automatically assesses quality of documentation in open source
projects based on indicators. Conclusion: Both researchers and
practitioners found the approach of UML-Ninja tool good and
appropriate.

Index Terms—Documentation, UML, Automation, OSS

I. INTRODUCTION

Software architecture (SA) documentation provides a
blueprint of a system and represents the structure of a system
[1]. SA document contains models and design decisions made
during the architecture design process and it is an essential part
of a project as it provides access to the necessary information
to stakeholders [2], [3]. Besides source code, SA documenta-
tion is one of the fundamental sources of information regarding
the project. The models in SA are mostly presented using
the Unified Modelling Language (UML) [25]. UML is widely
used when it comes to modelling. It has become the accepted
standard for modelling in system and software development
[4]. A field study done by Regina et al. proclaims that from
the 1240000 projects on GitHub that were mined in their
research to count the number of projects that contained UML
documents, around 1% of the projects were deemed to contain
UML documents. This means around 5000 projects were found
with UML documents and therefore depict high numbers of
UML projects. This research only took GitHub projects into
consideration whereas there are organisations that use UML
in their projects without hosting them on GitHub.

There are a few studies on the use of UML in Open Source
Projects (OSS) [6], [8]. In OSS, SA descriptions and models
are used for communication purposes as well as understanding
the project. When it comes to the assessment of documentation

or UML in OSS projects, the approach taken in the available
literature is field study or case study [9], [11]. Good quality of
documentation is important in software development, in fact,
software quality improves when the quality of documentation
improves [7].

In order to maintain good quality of software documen-
tation, having an easy access to an overview of the current
state of software documentation quality will help in identifying
areas of improvement. There is lack of tools that automatically
assess quality of documentation in OSS. This paper introduces
UML-Ninja1 a web tool that automatically assesses UML
and documentation practices in OSS and presents the data in
a dashboard. This is done by collecting and analysing data
regarding a project and showing the data in a well-structured
and easy to use dashboard view. The dashboard view is the
main component of UML-Ninja, it offers a quick way to see
an overview of the project quality in terms of documentation,
including UML models. The quality check is on the model
level and not code level, because the focus of UML-Ninja
is assessment of non-source code content, the documentation
specifically.

The goal of the tool is to motivate users to improve the
quality of their documentation. The motivation for developing
UML-Ninja is the hope that it enables many use cases for
many stakeholders in the field of software engineering. For
example:

• Developers: As a developer of a project you would like
to see the current status of the project‘s documentation
quality and be able to recognise and rectify any issues
with documentation.

• Student: As a student you would like to check the quality
of your documentation and UML in your course projects
so that you can improve it.

• Researcher: As a researcher you would like to collect
data for further research and analysis or collect data
regarding quality of documentation in software projects
for empirical studies. Using this solution, the researcher

1http://204.48.31.89

1

mailto:aras.bazyan@gmail.com
mailto:nimish.krashak@gmail.com
http://204.48.31.89

would be able to get the required data in an automatic and
structured manner. A researcher could also be wanting to
compare one project with another in terms of documen-
tation.

The rest of this paper is structured as follows. In section
II, we present the research questions of this paper. Section III
explains and reviews background and related works. Section
IV describes the research methodology of this paper. In section
V we introduce and describe UML-Ninja in detail. Section VI
evaluates UML-Ninja and describes validity threats

to this study. Section VII discusses the findings and relate
them to the related works. Section VII highlights the conclu-
sions of this paper and presents possible future works.

II. RESEARCH QUESTIONS

This section presents the research questions (RQ) this
paper is answering. The research questions consist of one
main question followed by two sub-questions (SQ). The two
sub-questions complement the main research question. The
research questions are formulated as follows:

RQ1: How can we automatically assess the quality of
UML and documentation practices in open source projects?

RQ1 aims to find a new approach and it is formulated in
the following two sub-questions:

• SQ1,1: How can the assessment of documentation be
automated?

• SQ1.2: How can the assessment of UML documentation
be automated?

The scope of SQ1,1 refers to documentation process and
documentation content. Documentation process includes e.g.
frequency of document updates. Documentation content in-
cludes e.g., the layout of the document.

The scope of SQ1.2 refers to UML process and UML
content. UML process includes e.g., contribution ratio to see
how many people actively contribute to UML. UML content
includes e.g., number of dependencies vs. number of classes
in a class diagram.

III. BACKGROUND AND RELATED WORK

This section discusses background and related work about
the assessment of documentation and automatic assessment of
software quality.

A. Background Work

This research is an extension of our supervisor, professor
Chaudron‘s research regarding use of UML in the open source
industry and its benefits of use [16]. The overall vision of his
research is aimed towards improving quality of documentation
in software projects which is applicable to this research as
well. In the research [16], they extracted 93,648 UML files
from 24,797 GitHub projects. They conducted a survey with
contributors of 458 GitHub projects in order to identify the use
of UML in OSS projects. It was found that UML is generally
perceived as supportive to new project contributors, but it has

not impact on attracting new contributors [16]. Considering the
findings from that research, our research uses the findings as a
foundation upon which UML-Ninja is created to motivate the
users of UML-Ninja to achieve the overall vision of improving
documentation quality.

B. Related Works

Documentation plays an important role in software develop-
ment to describe the product at all levels of development [31].
Moreover, UML documentation of software projects helps
representing the software system on an abstract level [14]
which helps software developers in understanding the software
system [15].

In terms of analysing quality of documentation, several
researches have been done that have produced a list of metrics
that could accurately depict quality of documentation [9], [32].
The research done by Aversano et al. [9] describes an approach
to identify metrics related to software documentation that
contributes towards improving software quality. In contrast
to our study, Aversano‘s research only produces a list of
indicators for documentation without implementing them in a
tool for demonstration purposes. Moreover, his research does
not detail UML documentation indicators that are an essential
part of documentation. Thus, the analysis of documentation
by using only documentation indicators stated by Aversano‘s
research, would be an incomplete approach to assess quality
of documentation.

Another research by Carvalo et al. [32] focuses purely
on software documentation. This research produced various
indicators about the software documentation but on the other
hand does not emphasize UML indicators in contrast to our
research. Indicators for UML are a key focus of our research.

To analyse UML models in OSS, extraction and classifica-
tion of those models is a required step. To achieve this, a field
study was done by Chaudron et. al [11], which was focused
on the usage of UML in open source projects. The authors
demonstrated their approach through manual identification of
commonly used UML models in software projects that are
present in the documentation of open source software. The
main findings included the type of UML models used, relation
between size of design and size of implementation along
with timing of code changes related to document changes.
Our study is different from this study as we are taking a
further step to assess the documentation in the project and
not solely identify key patterns, and relations found between
change in implementation to change in documentation/UML
documentation.

Regarding analysis UML models, Tsiolaki [12] produced
metrics for analysis of UML Class Diagrams based on the
model elements such as class, operations, associations etc.
In comparison to our research, this research does not focus
on automation of analysis and mainly uses mathematical
representations through graph transformation to calculate the
metrics whereas our research focuses on automating the pro-
cess of the assessments.

2

A research has also been done by Ericsson et al. [13]
that focuses on assessing technical documentation of software
projects. Metrics such as clone detection, usage profile, struc-
ture, and metric analysis were used to analyse the documenta-
tion. The study mainly focussed on composing and identifying
various metrics used to assess documentation quality.

Regarding automatic assessment of UML models, a related
work is SDMetrics [17]. SDMetrics is an object-oriented
design measurement tool that is used to measure structural
properties of UML models. It is capable of measuring 34
types of class diagram metrics [17]. SDMetrics is only focused
on content of UML models. Our study is different from the
previous two related works as our study focuses on both
documentation and UML aspects of a software project in order
to provide a complete picture of the quality of the project‘s
documentation. Moreover, our research aims at automating the
analysis in order to conserve time required for analysis of
documentation and interpretation of results.

Moreno-Len and Robles [30], described an approach to
automate evaluation of Scratch2 projects. Scratch is an in-
troductory and visual programming language aimed to help
children learn to code. Moreno-Len and Robles‘s implemen-
tation of automated analysis provided the owner/developer of
Scratch projects a quick overview of their Scratch project
using automatic source code analysis, the results of which
were grouped into indicators that covered the key aspects
of a Scratch project. This related work is most relevant to
our field of study in terms of automation of assessment of a
software project. In contrast to our project, their focus is only
on assessing Scratch projects and not documentation or OSS
projects.

IV. RESEARCH METHODOLOGY

The selected research methodology is Design Science,
which focuses on creation of innovative artefacts to solve
real world problems while providing a high priority towards
relevance to the industry which the research is related to [18].
We chose to follow the Design Science Research Process
(DSRP) model [10] for the development of UML-Ninja tool.
There are six steps in DSRP model:

A. Identify problems and motivate

Problem identification and motivation emphasises on the
research problem. In our case, as mentioned in the previous
sections, there is lack of tools that automatically assess docu-
mentation practices in OSS and facilitates the easy integration
of different types of indicators. A solution that automates
the process of assessing the quality of documentation can
help save time and make the process easier. It also enables
the possibility to obtain documentation quality data using
a dashboard view that accumulates the required data in an
orderly structure.

2https://scratch.mit.edu

B. Define Objective of a Solution

Objectives of a solution is about why the solution is needed
and what is the aim of the solution for the problem described
in step A. In our case, the objective of the solution is to
be able to quickly assess documentation practices in OSS
that can help in improving documentation quality and to
obtain relevant information regarding documentation quality.
The solution focuses on assessing documentation in general as
well as UML documentation practices, which resulted out of
research and discussions carried out with our supervisors. The
topic of ”indicators” was touched upon during the discussions
which were defined as a specific measurable characteristic of
the documentation of a software project used to determine the
quality of it.

Further discussions with them concluded that documenta-
tion can be divided into two parts with sub-parts in order to
illustrate the complete picture of documentation:

• Documentation: This part focuses on documentation in
general and it is divided into two sub-parts:

– Documentation Process: Qualitative features regard-
ing documentations such as frequency of documen-
tation updates.

– Documentation Content: The content of Documen-
tation practices is formed by the information in-
side the document. Due to not having access to
software documentation of each project along with
time constraints of this project, the contents of the
document were not analysed but indicators that affect
its content were researched upon.

• UML: This part focuses on UML models and it is divided
into two sub-parts:

– UML Process: Qualitative features regarding the
process of UML documentation in OSS, such as the
ratio of UML contributor ratio.

– UML Content: Content of UML documentation
mainly consisted of UML models. A deeper analysis
on UML class diagrams are done in the tool using
indicators due to them being the most prominent
model being used to depict software architecture in
open source projects [11].

The indicators for both parts were produced by looking
through already done research along with consulting our
supervisors who have done multiple researches concerning
UML documentation and its use [8], [11], [16].

Table 1 shows the indicators this paper researched about.
It includes details regarding the indicators this paper re-

searched about. Description column describes the indicator in
detail. Raw Output contains the range of values that results
from calculation of the indicator. Reference column states the
source of the indicator. Reason for Implementation Choice
explains the reason why the indicator was implemented or
not implemented by UML-Ninja.

3

https://scratch.mit.edu

TABLE I: DETAILED LIST OF INDICATORS USED IN THIS RESEARCH

Indicator ID Indicator Type Indicator Name Description Raw Output Reference Implemented in UML Ninja Reason for Implementation Choice

1
UML Content Attributes vs Class Ratio between total number of attributes and total number of

classes in a class diagram 0.0 < 1.0 [20] Yes

The metrics used to calculate this indicator - Number of classes and number of
attributes to a large extent depict the relation between the class diagram and its
qualitative features

2
UML Content Associations vs Class

Ratio between associations and classes in a class diagram 0.0 < 1.0 [20] Yes

The metrics used to calculate this indicator - Number of classes and number of
associations to a large extent depict the relation between the class diagram and its
qualitative features

3
UML Content Methods vs Class Ratio between number of methods and number of classes in a

class diagram 0.0 < 1.0 [20] Yes

The metrics used to calculate this indicator - Number of classes and number of
methods to a large extent depict the relation between the class diagram and its
qualitative features

4 UML Content Average Parameters per Method Average number of parameters per method > 0.0 [26],[20] Yes
This indicator has been empirically analyzed to calculate a threshold value which
is viable after verifying this metric with multiple software projects

5 UML Content Dependencies vs Class Relation between number of dependencies and number of
classes 0.0 < 1.0 [20] Yes

This indicator bears a positive correlation with the above stated Associations vs
Class. Data availability restrictions were also a reason to choose this metric.

6 UML Content Data Access Metric Ratio between number of private and protected attirbutes and
total number of attributes 0.0 < 1.0 [21] Yes

The metric has been empirically analyzed to accurately predict cohesiveness of a
class

7 UML Content Correspondence Similarity of content of UML documentation to source code % Supervisor No
This show both aspects of the abstraction of the model/documentation as well as
the 'up-to-date-ness' of the documentation

8 UML Content Reverse/Forward Engineered If the model reverse engineered? Or forward engineered? Boolean Supervisor No Source code analysis was out of scope for this research

9 UML Content Coupling Between Objects Count of number of class that are coupled to a particular class Integer Supervisor No
Data not available through SDMetrics. Would have required different analysis
technique

10 UML Content Cohesion Degree to which elements in a model belong together % [29] No
Data not available through SDMetrics. Would have required different analysis
technique

11 UML Process UML Commit Ratio Commit ratio between UML commits and all commits. Ratio Supervisor Yes
This shows the amount of UML commits in a open source project and how much
they update UML models.

12 UML Process UML Contributor Ratio Ratio between number of all contributors to the number of
people updating the models. Ratio Supervisor Yes This shows the amoutn of people who actively work on and update UML models

13 UML Process Document Evolution Ratio between UML Document updates and size of the
document Ratio Supervisor No Data not available for the evolution of document

14 Document Process Document Commit Ratio Commit ratio between document commits and all commits Ratio Supervisor Yes
This shows the amount of document commits in a open source project and how
much they update documentation

15 Document Process Document Contributor Ratio Ratio between the number of all project contributor to the
number of people updating the documentation % Supervisor Yes

This shows the amount of people who actively work on and update documentation
in the project

16
Document Process Version Controlled Does the project use versioning (system) (such as GitHub) for

documentation Boolean Supervisor Yes

This shows if the document is under a version control system. Project memebrs
can review and compare document with other version if the document is under
version control.

17
Document Content Editability

Is the document static (pdf) or editable (.docx, online) Boolean Supervisor No

This is an indicator of project practices towards modeling: en editable format
implies that the project considers that models/documents could be updated as the
project evolves

18 Document Content Clone Detection Clone detection is an analysis done to detect text copies in the
technical documentation. Boolean [13] No Level of content analysis is out of scope for this research

19
Document Content Structure Analysis

Structure analysis is used to analyze the technical
documentation is structured, with respect to chapters, sections,
paragraphs, etc. Layout Structure [13] No

Different documents have different structures that they follow which is hard to
normalize, especially if they use different documents with different structures.

20
Document Content Readability The ease with which a user can read the text written in the

documentation % Supervisor No

User input required to assess readability for each documentation which is not
feasable for this research. Also, data needs to be obtained regarding the language
and grammer in the document.

21 Document Content Completeness The extent to which number of software features/functions are
documented % [9] No

Out of scope to calculate features/functions of software project along with
analysing documentation content

C. Design and develop

Design and development step focuses on the development
of a solution for the problem at hand. In our case, the aim
is to develop a tool for automatic assessment of software
documentation quality. The tool facilitates an easy integration
of different types of indicators for assessing documentation
practices in OSS.

D. Demonstrate

Demonstration refers to showing and using the developed
artefact. In our case, we demonstrate the tool by testing it
with 10 OSS projects. These projects were chosen based on
the availability of their data on the two databases that we had
access to. The rest of the details are described in the section
V, Introducing UML-Ninja Tool.

E. Evaluation

Evaluation, emphasises on evaluating the artefact with
regards to if and how it solves the identified problem.
Throughout the project time frame, we had weekly meetings
with the supervisors on updates and progress. During
meetings, we also discussed and received continuous
feedback on the tool.

To evaluate the final version of UML-Ninja, we conducted
14 interviews. The interview questions consisted of two parts.
Part 1 consisted of 8 open-ended questions concerning the
usefulness of the tool. The participants were asked if and
how the tool could help them in accomplishing their tasks in
terms of assessing quality of documentation in a project. They

were also asked questions regarding limitations of the tool and
possible indicators that could be implemented in UML-Ninja.
Part 2 of the questions was focused on evaluating the usability
of the tool using System Usability Scale (SUS) [19] standard
questions. SUS is one the standard and reliable ways to evalu-
ate usability [22], it consists of 10 questions with five response
options for respondents. The choices are based on a 5-point
scale, ranging from ”Strongly agree to ”Strongly disagree.
An example of SUS question form is shown in appendix C.
Evaluating usability is important because we want UML-Ninja
to be user friendly and easy to use. The interview participants
mainly consisted of academic professionals, and researchers
at university of Gothenburg. Moreover, committee members
of the Mining Software Repository of the ICSE organization3

were also suggested by our supervisors to participate in the
evaluation of UML-Ninja. Student and developer inputs were
also taken into consideration for this evaluation due to them
being a prospective user of this tool. Students that had been
a teaching assistant to one of the university course pertaining
to Software Architecture Documentation were chosen to help
with the assessment of our tool. Table 2 shows the number
and user profiles of the participants.

The prospective interviewee‘s knowledge and contribution
to the topic of UML and documentation in general was
considered to filter participants that will be relevant to our
research.

3https://2018.msrconf.org

4

https://2018.msrconf.org

TABLE II: NUMBER AND USER PROFILE OF INTERVIEWEES

User Profile Number of Participants

Researcher 6

Developer 4

Student 4

Considering the possible use cases of this tool, the interview
was aimed at the categories of people as described in section I,
Introduction. The interviews are used to evaluate UML-Ninja,
which is described in section VI, Evaluation of UML-Ninja
Tool.

Preference for the evaluation was given to an in-person
interview with each session being recorded with the intervie-
wee. Due to several constraints, this was not possible for each
interviewee therefore a Skype interview was the alternative
used for assessment with the entire call also being recorded
for analysis purposes. The structure of the evaluation for in-
person interviews or Skype calls was divided as such -

• Introduction (3 mins) - A verbal introduction of the
research and the tool was given to the interviewee along
with statement of anonymity. The interviewee was in-
formed on the procedure and had the right to discontinue
the interview at any time they wished to.

• Hands-on Tutorial (5 mins) - A hands on tutorial was
given to the interviewee while explaining various func-
tions and elements of the tool.

• Exploration (10 mins) - The interviewee was requested
to freely explore the tool and clarify any issues he/she
experienced when operating it.

• Interview (10 mins) - The interview session lasted around
10 minutes where first, the interviewee was introduced
to the list of prospective users of this tool along with
the tasks related to each user. They were requested to
answer as one of the prospective users. The interviewee
was then posed with open-ended questions regarding the
usefulness of the tool followed by SUS standard questions
for usability.

If neither of the preferences were suitable for the intervie-
wee, the interviewee was provided with links to the online
hosted website along with a Google Form survey to fill in to
complete the assessment. The questions asked during any of
these methods of gathering input were the same. The survey
was online for 7 days. The list of the interview questions can
be found in appendix A.

F. Communication

Communication focuses disseminating the research carried
out to academia and the industry through, for example aca-
demic research papers like this one.

V. INTRODUCING UML-NINJA TOOL

UML-Ninja is an innovative web tool that automatically
assesses UML and documentation practices in an OSS project.
The main design goals for UML-Ninja are divided into two
categories: usefulness and usability. Design goals for useful-
ness include:

• Functionality: Checking if the tool does what it is sup-
posed to.

• Increased productivity: Checking if the tool helps accom-
plish tasks more efficiently.

Design goals for Usability include:
• Ease of use: Checking if the tool is easy to use.
• User friendliness: Checking if it is easy to understand the

elements of the tools.
The development of UML-Ninja consists of three phases:

data collection, data analysis and data presentation.

A. Tool Data Collection

The data required to analyse the projects and calculate the
chosen indicators were obtained by combining data from two
databases that our supervisors provided to us. One of the
databases [33] contained data regarding the number of UML
commits, number of contributor and miscellaneous data about
the project that was obtained using GitHub API4. The other
database, which was the conclusion of a study from Chaudron
et al. [8], contained data regarding UML models for the 10
projects that we had chosen to assess. To obtain the data for the
UML class diagrams in the projects, the tools Img2UML [27]
and SDMetrics5 were used. Img2UML was used to converts
the UML class diagrams to XMI format that was later imported
to SDMetrics to obtain properties of the class diagram, such as
number of classes, number of attributes etc. XMI is a mark-
up language that is intended to provide a standard way to
exchange information regarding metadata.

The combined data regarding the 10 projects was then added
to an SQLite6 database that was local to UML-Ninja.

B. Tool Data Analysis

From the 21 indicators that we researched about in this
paper, we implemented 12. The analysis of the data was
done based on the data available and the chosen indicators.
For example, the data for the indicator Document Editable
(boolean) is different from the data of the indicator Document
Contributor Ratio (Integer). Details about the indicators and
the implementation choice is shown in table 2.

4https://developer.github.com/v3/
5https://www.sdmetrics.com
6https://www.sqlite.org

5

https://developer.github.com/v3/
https://www.sdmetrics.com
https://www.sqlite.org

Fig. 1: Screenshot of UML-Ninja dashboard view.

Regarding the implemented indicators for UML process,
documentation process and documentation content, we chose
to implement them because of several reasons, including
the importance of the indicators and value they add to the
assessment of documentation, the type of available data about
the OSS projects, time constraints and the level of complexity
of indicator. Data regarding OSS project is different than a
local software project. For example, data about every change in
a GitHub repository is stored under GitHub‘s version control
system whereas, this does not apply to a local software project.

We used the data that was accessible to us, to implement
the respective indicators. For example, for UML contributor
ratio we had access to the data about the number of people
who added and updated the UML models as well as the total
number of project contributors.

The motivation behind the UML content indicators that the
tool currently has implemented is based on the importance
of the class diagram metrics that are used to calculate
values for those indicators. The metrics that are used for
the 6 UML content indicators include: Number of Classes,
Number of Methods, Number of Associations, Number of
Attributes. These metrics are a part of Genero et al.s metrics
[20] and the analysis of these metrics have been done in
the following study done by Piattini et al. [34]. Piattini et
als study concluded through empirical validation involving
multiple experiments that the above stated metrics share a
positive relation to qualitative features of the class diagram
such as modifiability, understandability and analysability.

Table 3 shows the implementation details regarding the
implemented indicator in UML-Ninja. Calculation and
Analysis Method column describes the method with which
the indicator is calculated. Level Value is the range of values
an indicator can be in. Score Points is the range of scores an

indicator can achieve based on the level value.

The levels for each indicator shown in table 2 were
calculated and converted into a ratio of 0 to 1, and the ratio
was converted into a 1 to 5 level or Yes/No value. The reason
of converting the values into a 0 to 1 ratio was to have all
the values on the same scale.

The following formula was used to convert the raw data of
each indicator into a 1 to 5 scale level:

If you have number x in the range [a, b] and you want to
transform them to number y in the range [c, d], the following
calculation is required:

y = (x− a)
d− c

b− a
+ c

The use of levels to rate the indicators is inspired by Dr.
Scratch7 [30] which is a web tool to automatically assess
Scratch projects. Using levels is a type of gamification, for
example, the user can level up if they improve the quality of
the indicator. Information on how the levels are calculated
can be found in appendix B.

Each indicator can either award maximum 5 points if it is on
a 1-5 scale, or 2 points if it is a Yes/No indicator. According
to [28], Class Diagram, Sequence Diagram, Activity Diagram
and Use Case Diagram are the main UML diagrams. The
project that is being assessed receives 2 more points for each
diagram if they exist in the project. We chose the number
of points to be rewarded as 2 for this because primarily,

7http://www.drscratch.org

6

http://www.drscratch.org

we wanted the number to be between 1 and 5 for easier
calculation and interpretation. Moreover, the indicator of these
types award points to a project based on their existence in the
project therefore awarding more points than 2 would not have
been appropriate in regards to the efforts required.

All level points are summed up to produce an overall score.
Based on the implemented indicators in the current version
of UML-Ninja, the maximum overall score is 62 points. The
score of each indicator is summed up to calculate the overall
score of the project in term of documentation. The sum of
indicator scores is divided by the maximum overall score,
which is 62, and converted into a percentage.

DocumentationPercentageLevel =

SumofAllIndicatorScores

MaximumOverallScore
∗ 100

The level of documentation in the project is assigned based
on the following percentage ranges:

• 0 - =< 20% = Basic
• 20% - =<50% = Developing
• 50% - =<60% = Good
• 60% - =<80% = Great
• 80% - =<100% = Excellent
Having levels is an attempt to gamify the process. For

example, to level up, the user is expected to improve the
quality of their project‘s documentation. Another reason is that
it is a quick way to show the quality of documentation in the
project. If the user wishes to explore the details they can check
the details of each individual indicator and its score.

C. Data Presentation

As seen in Fig. 1, UML-Ninja has a dashboard to presents
the information regarding the indicators and the scores.
The dashboard view is divided into 3 parts, excluding the
navigation bar at the top of the page that is used to navigate
to other pages in the web tool:

a) Info Bar: The Info bar contains information regarding
the current project the use is viewing:

• Repository: Name of the repository being assessed.
• GitHub API Link: Link to the repository‘s GitHub API
• Number of Contributors: Number of developers of the

project.
• Main programming languages: The main programming

languages used in the project.
b) Indicator Boxes: As shown in Fig 1, there are 4

indicator boxes on the dashboard view, each of which consist
of indicators that fall in that particular category. The properties
of the bars:

• Indicator bar level: This is used to show the level of the
indicator. The levels are colour coded: if the indicator is
at Level 1, it is shown in red, level 2 and 3 are shown in
orange, level 4 is shown in blue, level 5 is shown in green.
The colours represent the status of the quality level.

• Each indicator name is clickable which will open an
information modal containing information regarding that
particular indicator, as shown in Fig. 2.

• Each level bar of the indicator is also clickable which
opens a graph modal that displays the variables that were
used for the calculation of that indicator. The raw value
of each indicator is also shown in the graph modal, as
shown in Fig. 3.

Fig. 2: Modal Information

Fig. 3: Detail and Graph Modal of Indicator

c) Overview Box: The overview box is on the left side of
the dashboard which contains the overall score of the project
based on the indicators, UML score and the level of the
project based on the overall score percentage. It also contains

7

TABLE III: DETAILS ABOUT THE INDICATORS IMPLEMENTED IN UML-NINJA

ID Name Type Calculation and Analysis Method Level Value Score Points

1 Version Control Document Process Is the document under a version controlling
system, such as GitHub?

{Yes, No} {0, 2}

2 Document Commit Ratio Document Process ommit Ratio C = # all commits
docuemnt Commits [1-5] [1-5]

3 Document Contributor
Ratio

Document Process ontributor Ratio C = # all contributers
document contributors [1-5] [1-5]

4 Document Editable Document Content File format and extension, e.g., docx, pdf, txt etc. {Yes, No} {0 , 2}

5 UML Commit Ratio UML Process ML Commit Ratio U = # all Commits
UML Commits [1-5] [1-5]

6 UML Contributor Ratio UML Process

ontributor Ratio C = # all contributers
UML contributors [1-5] [1-5]

7 Attributes vs Class UML Content vsCA = # attributes
 (# attributes + # number of classes) 2ˆ

 [1-5] [1-5]

8 Associations vs Class UML Content vsCA = # associations
 (# associations + # number of classes) 2ˆ

 [1-5] [1-5]

9 Methods vs Class UML Content EvsCM = # methods
 (# methods + # number of classes) 2ˆ

 [1-5] [1-5]

10 Average Parameters Per
Method

UML Content PPMA = # methods
parameters [1-5] [1-5]

11 Dependencies vs Class UML Content EvsCM = # dependencies
 (# dependencies + # number of classe) 2ˆ

 [1-5] [1-5]

12 Data Access Metrics UML Content PPMA = # attributes
private attributes + # protected attribute [1-5] [1-5]

Facebook and Twitter icons, which upon clicking will allow
the user to share the current status of the project to the social
media channels.

The information is structured and presented from high to
low abstraction. The user is presented with a high level
of abstraction regarding the documentation quality of their
project. If they wish to know about the implemented indicators
or the reasoning behind their score or how to level up, they
can get the relevant information by clicking on the indicator,
upon which an information modal is displayed. Fig. 2 shows
an example information modal for one of the indicators. At
the bottom of the information modal, we have mentioned a
few points that need to be considered when using UML-Ninja.
They can be seen in Fig 2.

UML-Ninja can be accessed at http://204.48.31.89/.

VI. EVALUATION OF UML-NINJA TOOL

In this section, we describe how UML-Ninja tool was
evaluated. For the evaluation of our solution, we contacted
prospective participants belonging to the user profiles stated in
the introduction. Contacts to most of them were made through
email with a few being done verbally when applicable. Our
preference was to have an in-person or online interview to bet-
ter understand the thoughts and opinions of the interviewees.

A. Approach of UML-Ninja

The approach taken by UML-Ninja was to automate the
process of assessing documentation in OSS and show the
information in a dashboard view in an orderly way. In the
interviews we asked interviewees about their opinions of the
approach. The main themes of the feedback regarding the
approach included that the approach is a ”good idea”, ”useful”,
”quick”, ”elegant” and ”efficient”.

There was also critical feedback. The main critical feedback
was regarding the use of the indicators and how they were
selected and assessed. An interviewee was ”not sure how
accurate the finding were”, another stated that the tool ”should
also be able to analyse the current state of the project and could
be able to tell about the timeline of the documentation and how
it was evolved”. Another interviewee said that the approach
is a ”quicker way to process result for a large project, where
there are lot of stuff stored in the repos. However, the update
frequencies of UML models are not taken into consideration,
I believe this aspect is also important to be included”.

B. Usefulness of UML-Ninja

To understand the respondent‘s perspective on the useful-
ness of the tool, open ended questions were asked during the
first phase of the interview. More specifically, there were 3
questions that were set-up to receive direct feedback regarding

8

http://204.48.31.89/

usefulness of this tool. The feedback to first question - ”Do
you think this tool will help you accomplish your tasks?”
were mostly positive with 12 out of 14 respondents answering
”Yes”. A following 10 of those 12 respondents detailed their
feedback. 4 of the respondents stated how ”Easy” it is to
accomplish their tasks and also stated how this tool will help
them save time. One of those 4 respondents was the developer
of Dr. Scratch tool who stated that ”the tool is on the right
track for usefulness for researchers and developers but might
need more testing for developers.” The other 3 respondents
were divided respectively into 2 researchers and 1 student.
Moreover, the summarization aspect of the tool was appre-
ciated and brought up by 5 respondents. A researcher from
University of Gothenburg who is researching on ”Threats that
prevent developers to adapting to research approaches” was
one of the respondents who supported that feature and stated
that it would save time to assess the quality of documentation.

The next question that helped produce direct feedback for
the usefulness of the tool was directed towards motivation
- ”As a developer, do you think this tool will motivate
you to improve quality of documentation of your project?”.
11 out of 14 respondents answered Yes to this, including
researchers who had recently or still play the role of a
developer. One of the themes that was brought up by the
respondents was gamification of documentation analysis to
which, 4 respondents reacted positively stating it as the reason
behind motivation to improve documentation quality. During
the interview, the theme Visibility was also bought up by
4 respondents who stated that it would not be the UML-
Ninja tool itself but the method of its deployment that will
motivate them to improve documentation quality. Enforcement
by product owner, collective use as a team, deployment on
easily visible interface are the aspects of deployment stated
by the respondents that would further motivate the user to use
this tool to improve documentation quality. ”Quick Feedback”
was another qualitative feature of the tool that can serve
as a motivation as stated by 3 developers, 1 student and 1
researcher.

On the other hand, there was criticism on the purpose of
the tool that was provided by a researcher who is an associate
professor of Software Evolution at the Model-Driven Software
Engineering group in a technical university in Netherlands. It
was stated that this tool could promote ”superficial improve-
ment of documentation quality” instead of actual improvement
of documentation quality as developers could be focussed on
improving the scores of indicators present in the tool which
would not necessarily improve the overall documentation
quality. In addition to this, feedback from the creator of the
Dr. Scratch tool also made it clear that this tool could instead
be perceived to be used as merely a status check rather than
a motivation to improve documentation quality.

During the interview, an interesting observation was bought
up by the developer of Dr.Scratch who stated that another
possible user profile could be lecturers in Software courses.
He further explained that lecturers can adopt this tool as a
part of their teaching by enforcing his/her students to attain a

certain score/level before submission of their work. The final
question that provided direct feedback on the usefulness of
this tool was aimed at gaining knowledge regarding whether
or not the respondents would want to use the tool for their
purposes. 4 respondents stated that they would not use the
tool for their purposes as they do not work with software
projects concerning UML, 3 of which were researchers with
the remaining being a developer.

C. Usability of UML-Ninja

As mentioned in the previous sections, we are using SUS
standard questions [19] to evaluate usability of UML-Ninja.
SUS calculations produce a single number that represents a
composition measure of the overall usability of the tool being
evaluated. Calculating SUS score includes first summing up
the score contributions from each question item.

Each of the individual score on the question, ranges from 0
to 4. For question items 1, 3, 5, 7 and 9, the score contribution
is the position of the choice minus 1. For example, for question
1, if the position of the choice is 3, the score is 2.

For question items 2, 4, 6, 8 and 10, the score contribution is
5 minus the position of the choice. For example, for question
2, if the position of the choice is 3, the score is 2. After
summing up the individual item scores, the sum is multiplied
by 2.5 to obtain the overall SUS score.

SUS score values have a range of 0 to 100; it should be
noted that it is not a percentage value.

In case of evaluating UML-Ninja, we calculated SUS score
for each respondent then calculated the average SUS score by
summing all the SUS scores and dividing it by 14; the number
of respondents. The SUS score we achieved for UML-Ninja‘s
usability was:

1082.5

14
= 77.32

Fig. 4 shows the grade ranking of SUS scores. According
to [23], score 77 is a solid C grade, meaning that usability of
UML-Ninja is good but not excellent.

Fig. 4: Grade rankings of SUS scores from [23]

D. Limitations of UML-Ninja

One of the open-ended interview questions was aimed
at gathering feedback on limitations of the tool. The main
limitation as stated by 4 respondents was customizability. The
tool does not currently allow for users to control the visibility

9

of indicators as well as re-arranging UI elements. Another
aspect of customizability is to customize the threshold values
of indicators.

Improper visibility of UI elements was the second
main limitation as stated by respondents. They stated that
though this tool provides information in order to improve
documentation, the placement of this information is not
appropriate as it needs to be in the forefront of all other
data. All other data as stated by the respondents mostly
constituted of the indicators and their levels. This limitation
therefore became the foundation for another limitation
that was brought up by 3 respondents that the system is
too assessment driven rather than a motivator to improve
documentation quality as the majority of the dashboard
view of the tool displays the current levels of indicators
depicting the quality of documentation of the project and not
suggestions to improve the quality which is the aim of the tool.

Another critical feedback stated by a researcher was in re-
gards to using static ranges to convert raw data from indicators
to a 1-5 scale. It was brought to our attention that static ranges
for conversion in general are becoming lesser adopted in tools
and more accurate ways of converting ranges to a scale such
as percentile are beginning to become a standard.

The data required to set a percentile by analysing multiple
repositories with documentation was out of the scope for this
research but can be applicable as an extension for future
work for the tool to be able to more accurately analyse
documentation.

Lastly, there was feedback provided regarding the choice
of assessment criteria where some more important indicators
such as difference between model to code, analysis of other
UML models could be a more reliable reference to depict
software documentation quality than the ones currently in use.

Furthermore, the participants of the evaluation were posed
by an open-ended question on improvements to this tool.
The majority of the respondents, 6, brought up the topic
of adding more indicators pertaining to mostly UML and
documentation content. Additional UML indicators to analyse
more UML models was the most common feedback in regards
to addition of indicators. The second-most important feedback
we received was regarding analysing software process, more
specifically whether or not the chosen software process for
a project is followed. A researcher also provided feedback
regarding analysing content of GitHub ReadMe file to check
whether it follows a documented structure or not. Addition of
these indicators will make it more difficult for users to easily
navigate our website, and therefore customization which was
stated as a limitation, can be a part of the improvement plan.

Project comparison was also a request for a feature that
was mentioned by several researchers as it would really help
them in their researches to compare the documentation quality
data of 2 or more projects. This improvement suggestion goes
hand in hand with the improvement suggestion - Evolution.
This suggestion would allow a user to see data progression

and would be valuable for researchers to compare several
projects or for developers to map the growth of the software
documentation quality.

E. Threats to validity

In this section we discuss the relevant threats to validity
and how we tried to mitigate them. We consider the four
aspects of validity threats as presented by Wohlin et. al [24].

a) Construct Validity: To avoid misunderstanding,
we presented a brief introduction and the purpose of the
study to the interviewees as well as what we expect from
them. We also included that information in the interview
invitation emails. However, this threat exists because the
way the interviews were constructed and carries out were
different. There is a validity threat that the interviewees
who answered the questions online, without our verbal
introduction, misunderstood the questions or the purpose of
the study.

b) Conclusion Validity: The degree of conclusion
validity is limited in this study as we did not look into
any relationships in our data. However, the number of
interviews (14) we carried out to evaluate our tool and
our approach was fairly small. Nevertheless, majority of the
interviewees we interviewed are researchers who are equipped
with profound knowledge regarding UML and documentation.

c) Internal Validity: The data UML-Ninja uses to assess
quality of documentation in a project is obtained using other
tools and services. Incorrect data or miscalculations from
other tools affect the result UML-Ninja produces regarding the
quality of documentation. For example, if the tool Img2UML
is unable to identify a property of a class diagram or if the
tool SDMetrics misinterprets the XMI structure produced by
Img2UML, the results UML-Ninja show are directly affected.
Furthermore, the data used regarding UML and documentation
commits is based on the commit message. For example, if a
commit comment is ”Update class diagram”, it is counted as
a UML commit. This is an internal validity threat because
if there is a mistake in counting UML or documentation
commits, the result of those indicators that use this data for
assessment is affected. However, as mentioned in section V,
Introducing UML-Ninja Tool, the data that was provided to
us by our supervisors had been validated. We do not have
much control over these threats, they are potential threats to
validity and cannot be ruled out in the current approach taken
by UML-Ninja. However, to mitigate these threats, we use a
local SQLite database and save the data about the projects
there.

Another internal threat to validity is that the interest,
experience and background of the interviewees may influence
their feedback. For example, students or developers who
may not think documentation is important may find UML-
Ninja not useful or necessary. To mitigate this threat and
obtain valuable feedback, we made sure the prospective

10

interviewees had some degree of competence regarding UML
and documentation.

d) External Validity: The approach of UML-Ninja is
focused on automatic assessment of documentation in OSS.
To improve external validity, we selected interviewees who
had different professions and roles, e.g., students, developers
and researchers. Furthermore, the approach of UML-Ninja is
tailored to automate assessment of UML-Ninja, the approach
might not be applicable for other purposes or in different
domains.

VII. DISCUSSION

In this section, we discuss the answers to our research
questions and relate the findings to the related works. Re-
garding the main RQ, How can we automatically assess the
quality of UML and documentation practices in open source
projects? in this paper we introduced an approach to automate
the process of assessing documentation in OSS projects. As a
result, we developed a tool, UML-Ninja, to do so. The results
indicate that it is technically possible and applicable. UML-
Ninja requires other existing tools and services to function and
make the process automatic. The evaluation of the approach
indicates that the approach is good and useful. However, in
the evaluation it was also discussed that not everything can be
done quantitatively, and assessing qualitative data is difficult,
as it can be subjective. This is similar to the finding from
Dr. Scratch [30]. Automation can help to some extent, e.g. it
is quick, but it cannot guarantee that the output is correct or
complete.

Regarding the two sub-questions, How can the assessment
of documentation be automated? and How can the assessment
of UML documentation be automated? the results show that
the approach of dividing documentation and UML into two
sub-parts; process and content, was reasonable. Our evaluation
indicates that implemented indicators were relevant. In addi-
tion, there were suggestions regarding new indicators, such as
checking coupling, source code to model ratio and checking
more document types e.g., Readme files. Checking different
type of files is similar to the related work of Carvalho [32]
which was focused on assessing content of documentation
only. UML-Ninja assesses the process of documentation as
well, to provide a better overview on the quality of documen-
tation and how to improve it. For example, the indicator UML
content contributor ratio is related to the process of UML and
checks the percentage of all members that actively contribute
to designing and updating the UML models.

In regards to usefulness of the tool, 12 out of 14 respondents
agree that the tool is in fact useful to achieve the final vision of
improving software quality through improving documentation
quality. On the other hand, the results also indicate that 3 of
the researchers that we interviewed would not use this tool in
their respective fields. The reasoning as stated to support this
was mostly due to documentation not being an essential part
of their field of work. In comparison to

this, the remaining 3 researchers stated that they would
use this tool as it provided an easy overview combined with
indicators covering the vital aspects of documentation. This
type of automatic analysis was not an element of Aversano et
al.s study [9]. The above stated reasoning by the 3 researchers,
was supported by a number of participants from the other
2 user profiles with 3 out of 4 developers willing to use
this tool. 2 developers further stated better integration with
other systems as mentioned in the evaluation, will serve as a
motivation to use the tool. With this feature being requested
by a further 2 students and 1 developer it becomes apparent
that though the participants are willing to use the tool, a
better integration with other systems such as GitHub and other
dashboards will be vital to use this tool efficiently.

In addition to the respondent‘s feedback on the usefulness of
this tool, benefits of using this tool over other existing methods
were also identified by the participants with 4 researchers
stating that the tool seems like a step up from manual analysis
of documentation. The remaining two researchers did not agree
due to not being convinced with the indicators used to assess
documentation quality. 1 developer also had similar remarks
which could be countered by making the system customizable
which can allow users to add, remove or hide indicators
based on preference or research. The collected feedback on
indicator suggestions were mostly aimed at implementation
of more UML Indicators as well as indicators regarding the
synchronisation between code and documentation commits. In
order to establish these indicators as part of the tool, Chaudron
et al.s study [11] can be essential in prioritizing the importance
of the UML indicator based on which UML model it pertains
to. Their study could also be used to understand the current
relation between code changes to document changes and its
effects on software quality which can help us understand the
severity of the issue on a larger scale.

Regarding the usability of UML-Ninja, our evaluation sug-
gests that it is user friendly and easy to use. It is difficult
to compare this with the related works because they have
not taken usability into consideration when developing a tool.
Usability is important for UML-Ninja because it is an online
tool that is accessible by anyone. The aim is to make it easy to
use by anyone who wants to assess the quality their project‘s
documentation. In addition, usability is important to UML-
Ninja because of the extensive amount of information on the
dashboard view. It is important to for the user to find relevant
information in an easy and quick manner. Overall, a 77 SUS
score is a good grade for usability of UML-Ninja in the first-
attempt. However, UML-Ninja was evaluated by 14 people
only. If the usability is evaluated using a larger number of
participants or users with different user profiles than we chose,
the SUS number might be different.

VIII. CONCLUSION

In this paper, in order to automate the assessment of
documentation and UML in open source projects, we present
UML-Ninja, an online web tool with a dashboard. The goal
of UML-Ninja is to be able to quickly assess documentation

11

practices in software projects that can help in improving docu-
mentation quality and to obtain relevant information regarding
documentation quality. In order to cover the essential parts
of documentation, the approach of UML-Ninja is to divide
documentation into two parts and two sub-parts. In total there
are 4 parts: Documentation Process, Documentation Content,
UML process and UML Content. Each part as stated, includes
specific indicators in order to assess the respective aspect
of documentation. UML-Ninja grades the overall quality of
documentation for a project. The indicators were selected
based on research on the topic and discussions with our
supervisors. To evaluate the approach, usefulness and usability
of UML- Ninja, 14 interviews were carried out with different
user profiles, including students, developers and researchers.
Finally, a number of limitations of UML-Ninja were presented
and explained.

UML-Ninja is the first attempt to automate the assessment
of documentation quality in OSS projects. Based on the
evaluation points, we realized that the tool can be improved in
many ways, and they can be future works of this study. The
future research work includes implementing more indicators,
implementing a feature to make the indicators customizable
in order to assess documentation for different stakeholders.
Another possible future work can be implementing a feature to
compare the same project from different time period or check
the evolution of documentation in a software project lifecycle.
Finally, an interesting future work can include integrating
UML-Ninja with GitHub to give badges to projects based on
the quality of documentation.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,
3rd ed. Addison-Wesley Professional, 2003.

[2] M. Shahin, P. Liang, and M. R. Khayyambashi, “Architectural design
decision: Existing models and tools,” in Software Architecture, 2009
& European Conference on Software Architecture. WICSA/ECSA 2009.
Joint Working IEEE/IFIP Conference on. IEEE, 2009, pp. 293–296.

[3] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford, “Docu-
menting software architectures: views and beyond,” in Proceedings of
the 25th International Conference on Software Engineering. IEEE
Computer Society, 2010.

[4] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2010.

[5] K. W. Miller, J. Voas, and T. Costello, “Free and open source software,”
It Professional, vol. 12, no. 6, pp. 14–16, 2010.

[6] S. A. Ajila and D. Wu, “Empirical study of the effects of open source
adoption on software development economics,” Journal of Systems and
Software, vol. 80, no. 9, pp. 1517–1529, 2007.

[7] D. L. Parnas, “Precise documentation: The key to better software,” in
The Future of Software Engineering. Springer, 2011, pp. 125–148.

[8] R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for open source projects that use uml: mining
github,” in Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems. ACM, 2016,
pp. 173–183.

[9] L. Aversano, D. Guardabascio, and M. Tortorella, “Evaluating the quality
of the documentation of open source software,” in Proceedings of the
12th International Conference on Evaluation of Novel Approaches to
Software Engineering, 2017.

[10] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
design science research methodology for information systems research,”
Journal of management information systems, vol. 24, no. 3, pp. 45–77,
2007.

[11] M. H. Osman and M. R. Chaudron, “Uml usage in open source software
development: A field study.” in EESSMOD@ MoDELS, 2013, pp. 23–32.

[12] A. Tsiolakis, “Consistency analysis of uml class and sequence diagrams
based on attributed typed graphs and their transformation,” in ETAPS
2000 workshop on graph transformation systems. Citeseer, 2000.

[13] A. Wingkvist, M. Ericsson, R. Lincke, and W. Lowe, “A metrics-based
approach to technical documentation quality,” in Quality of Information
and Communications Technology (QUATIC), 2010 Seventh International
Conference on the. IEEE, 2010, pp. 476–481.

[14] C. Larman, Applying UML and Patterns: An Introduction to Object
Oriented Analysis and Design and Interative Development. Pearson
Education India, 2012.

[15] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of uml in software maintenance,”
IEEE Transactions on software engineering, vol. 34, no. 3, pp. 407–432,
2008.

[16] T. Ho-Quang, R. Hebig, G. Robles, M. R. Chaudron, and M. A. Fernan-
dez, “Practices and perceptions of uml use in open source projects,” in
Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), 2017 IEEE/ACM 39th International Conference on. IEEE, 2017,
pp. 203–212.

[17] J. Wst. (2018) Sd metrics. [Online]. Available: http://sdmetrics.com/
[18] R. H. Von Alan, S. T. March, J. Park, and S. Ram, “Design science in

information systems research,” MIS quarterly, vol. 28, no. 1, pp. 75–105,
2004.

[19] J. Brooke, “Sus: a retrospective,” Journal of usability studies, vol. 8,
no. 2, pp. 29–40, 2013.

[20] M. Genero, M. Piattini, and C. Calero, “Early measures for uml class
diagrams,” Lobjet, vol. 6, no. 4, pp. 489–505, 2000.

[21] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[22] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of the
system usability scale,” Intl. Journal of Human–Computer Interaction,
vol. 24, no. 6, pp. 574–594, 2008.

[23] A. Bangor, P. Kortum, and J. Miller, “Determining what individual sus
scores mean: Adding an adjective rating scale,” Journal of usability
studies, vol. 4, no. 3, pp. 114–123, 2009.

[24] G. H. Travassos, S. Pfleeger, and V. Basili, “Experimental software
engineering: an introduction,” in 1st Experimental Software Engineering
Latin American Workshop-ESELAW, 2004, rECHECK REFERENCE.

[25] R. Hilliard, “Using the uml for architectural description,” in Interna-
tional Conference on the Unified Modeling Language. Springer, 1999,
pp. 32–48, rECHECK REFERENCE.

[26] M. Lorentz and J. Kidd, “Object-oriented software metrics, a practical
guide,” 1994.

[27] B. Karasneh and M. R. Chaudron, “Img2uml: A system for extracting
uml models from images,” in Software Engineering and Advanced
Applications (SEAA), 2013 39th EUROMICRO Conference on. IEEE,
2013, pp. 134–137.

[28] P. Langer, T. Mayerhofer, M. Wimmer, and G. Kappel, “On the usage
of uml: Initial results of analyzing open uml models.” in Modellierung,
vol. 19, 2014, p. 21.

[29] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in object-
oriented systems,” 1995.

[30] J. Moreno-León and G. Robles, “Dr. scratch: A web tool to automatically
evaluate scratch projects,” in Proceedings of the workshop in primary
and secondary computing education. ACM, 2015, pp. 132–133.

[31] N. J. Kipyegen, W. P. Korir, and K. Njoro, “Importance of software
documentation,” International Journal of Computer Science, vol. 10,
no. 5, pp. 1694–0784, 2013.

[32] N. R. Carvalho, A. Simoes, and J. J. Almeida, “Dmoss: Open source
software documentation assessment,” Computer Science and Information
Systems, vol. 11, no. 4, pp. 1197–1207, 2014.

[33] H. Linero, The Relation Between Code Documentation and Internal
Quality of Software, Master Thesis, 2018.

[34] “Journal of object technology,” pp. 59–92, 2005.

12

http://sdmetrics.com/

APPENDIX

 Appendix A: Interview Questions

Appendix B: Indicator Level Calculation

The levels for the UML content indicators are calculated as

follows:

● 0.0 - =<0.2 = Level 1

● 0.2 - =<0.4 = Level 2

● 0.4 - =<0.6 = Level 3

● 0.6 - =<0.8 = Level 4

● 0.8 - =<1.0 = Level 5

The levels for the UML content indicators are calculated as

follows:

● 1.0> - 0.8 = Level 1

● 0.8> - 0.6 = Level 2

● 0.6> - 0.4 = Level 3

● 0.4> - 0.2 = Level 4

● 0.2> - 0.0 = Level 5

 Appendix C: SUS standard questions

	I Introduction
	II Research Questions
	III Background and Related Work
	III-A Background Work
	III-B Related Works

	IV Research Methodology
	IV-A Identify problems and motivate
	IV-B Define Objective of a Solution
	IV-C Design and develop
	IV-D Demonstrate
	IV-E Evaluation
	IV-F Communication

	V Introducing UML-Ninja Tool
	V-A Tool Data Collection
	V-B Tool Data Analysis
	V-C Data Presentation

	VI Evaluation of UML-Ninja Tool
	VI-A Approach of UML-Ninja
	VI-B Usefulness of UML-Ninja
	VI-C Usability of UML-Ninja
	VI-D Limitations of UML-Ninja
	VI-E Threats to validity

	VII Discussion
	VIII Conclusion
	References

