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General Introduction



General Introduction

Obesity and chronic illnesses

In recent decades, there has been an increase in the proportion of people
becoming obese due to our increasingly more sedentary life style and high
calorie diets. According to a WHO report [1], globally an estimated 11% of men
and 15% women are classified as obese, that is , having a body mass index equal
or greater than 30 kg/m?. This is concerning as obesity is being associated
with developments of an increasing number of non-communicable chronic
illnesses. These illnesses predominantly include type 2 diabetes mellitus,
several cardiovascular diseases, and metabolic syndrome [2—4], but obesity has
also been found to be a contributing factor for several forms of cancer [5].

A number of different studies have shown the positive effects of diet induced
weight loss, especially when coupled with regular exercise, to reduce the
co-morbidities of obesity [6-8]. Studies have also shown the benefits of diet
and exercise towards recovering from the aforementioned chronic illnesses. In
addition, the type and composition of the diet, such as the proportion of fats and
carbohydrates, also has an effect on weight loss [9]. However, one major issue
for long-term health is the eventual weight regain of many obese individuals,
post weight loss. As such, current research is focusing on the genetic and
molecular causes of obesity and linking them with associated co-morbidities
and chronic illnesses to design more targeted therapies towards personalised
treatment of obesity and its co-morbidities. Studies show an impairment of
insulin signalling along with changes in cellular metabolism as key molecular
changes that take place in obesity [10-12].

Metabolic flexibility and its role in obesity

Cellular energy metabolism, also referred to as cellular respiration, is a set of
biochemical reactions that generate energy from various fuel molecules, also
called substrates, such as glucose, fatty acids and amino acids. These substrates
act as nutrients for the growth and/or functioning of cells. Primarily, the
biochemical reactions involve the conversion of these substrates by oxidation
into carbon dioxide and water while synthesising adenosine triphosphate
(ATP). ATP is a molecule that powers biochemical reactions throughout the cell
by releasing energy whenever it loses one or two of its phosphate groups. In
aerobic respiration, oxygen acts as an electron receptor in the overall reaction.
Under anaerobic (oxygen starved) conditions, other electron receptors are
used; however, this variant is inefficient as it yields fewer ATP molecules per
reaction as compared to aerobic respiration [14]. These biochemical reactions
are termed as glycolysis and fatty acid oxidation for glucose and fatty acids
respectively. Amino acids are catabolised into either glucose or fatty acids via
gluconeogenesis or lipid synthesis respectively.
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Figure 1.1: WHO estimates showing the prevalence of obesity as a percentage of population
in respective countries in 1971 and 2016. lllustration based on data sourced from [13].
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General Introduction

Depending upon the availability of nutrients in the human body at any given
time, different cells and tissues metabolise either glucose or fatty acids. In
nutrient rich conditions, such as after a meal, glucose is the preferred substrate
for metabolism. However, as the glucose reservoirs in the human body deplete,
cells and tissues start switching over to fatty acid metabolism to reserve the
limited amount of glucose for cells and tissues unable to metabolise fatty acids,
such as erythrocytes, endothelial cells and neurons in the brain. This ability
to switch between these substrates is termed as metabolic flexibility [15].
Metabolic flexibility exists both at the intracellular level, where glycolysis and
fatty acid oxidation fuel metabolism, as well as across the human body where
various tissues and organs communicate with each other to maintain usable
levels of glucose and fatty acids. The metabolic flexibility across the human
body is also referred to as the Randle Cycle [15, 16], named after Sir Philip John
Randle who described it back in 1966. In the Randle Cycle, metabolically active
tissues and organs such as the adipose tissue, the liver and skeletal muscles play
an important role in maintaining circulating levels of glucose and fatty acids
through signalling cascades and hormones.

Studies in obesity and chronic diseases have often found an impairment
in metabolic flexibility affecting cellular energy metabolism [17, 18]. This
impairment manifests itself as impaired cellular signalling leading to ineffective
utilisation of metabolic substrates. In the adipose tissue, this leads to inefficient
release of fatty acids to circulation. Cellular metabolism in obese individuals
also showed a marked deviation in the expression of rate limiting enzymes in
glycolysis and fatty acid oxidation compared to baseline. For example, in this
particular study [19], gene expression data of the adipose tissue between lean
and obese individuals showed the impaired expression of several enzymes in
obese individuals. As such, the impaired expression of these enzymes affects
cellular metabolism, and leads to subsequent unavailability of substrates for
other tissues.

An application of systems biology

The complex interplay of obesity and chronic illnesses, as well as the
mechanistic changes occurring at the cellular level are a prime target for analysis
using approaches from systems biology. Systems biology is the application of
computational and mathematical approaches to model biological components
as whole systems in order to study and analyse emergent behaviours and
properties [20]. The approaches allow the synergistic application of multiple
types of data in order to perform targeted analyses and generate new
information.



Multi-omics data

In modern life sciences research, the study of the various aspects and/or levels
of the cellular information, function and dynamics have been divided into
their own targeted fields, referred to as -omics’. These include the genomics
that relates to the evolution and genetics aspect of the cell, the transcriptomics
that deals with the expression of the genes, the proteomics that deals with the
location and function of the proteins, and the metabolomics that deals with the
biochemical metabolites and their utilisation in the cell. Individually, these
various ‘-omics” have provided a plethora of research data and advancement.
However, collectively, they represent a synergistic picture of the cellular
dynamics and functions which are difficult to discern from study of these
‘-omics’ individually. In this thesis, we made use of transcriptomics and
proteomics data.

Transcriptomics

Transcriptomics is the study, collection and the analysis of the gene expression
of cells or tissues at a given time. The transcriptomics reveals which genes
of the cell are being transcribed to be translated into proteins, and represent
the state of the cell at the give time in response to an activity or stimulus. The
transcriptome of the cell or tissue can also be measured in a successive series
of data points at different time points, providing a crude motion picture of the
activity of the cell or tissue. Various high-throughput technologies exist to
capture these snapshots, the major ones being microarray and RNA-sequencing
[21], providing expression data for tens of thousands of genes at a time. For a
detailed explanation of the various technologies, Lowe et al is referred [21].

Proteomics

Similar to transcriptomics, proteomics is the large-scale study of the
protein content of the cell, its localisation as well as its function. While the
transcriptomics reveals the expression of the genome, the proteomics represents
the translation into biomolecules that are responsible for the biochemical
processes taking place in the cell. Similar to transcriptomics, the proteomics
can also be measured as different time points to represent the evolution of the
activity of the cell with respect to time, and maybe in response to a stimulus.
However, unlike transcriptomics, proteomics have not reached the same scale
of high-throughput data generation. This gap is primarily because of how the
quantification technologies of proteomics work — in that the quantity, structure
and function needs to be determined in a lengthy multistep procedure [22].
Multiple technologies for proteomics data collection exist, as reviewed in [22].
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General Introduction

Data analysis

Various statistical analysis methods and pipelines have been developed for
the analysis of high-throughput ‘-omics’ data [23]. One of the most common
analyses performed on transcriptomics data is differential expression analysis
[24]. This analysis is used to generate contrasts between two sets of data points
to find the differences in expression between them. These sets can be two
different cases, two different studies, or two different time points in the same
study (providing a trend for gene expression changes in response to stimuli).
Differential expression analysis generates a list of differentially expressed genes
that were found to be significantly changed between the two sets of data points.
These genes can then be used to probe databases to analyse different biological
processes and pathways that might be affected by the stimuli or conditions of
the study, allowing for further targeted research and analyses. In addition
to differential expression analyses, (multi)-omics data can also be utilised to
generate clusters of individuals or data points based on similarity to generate
different biological profiles [25]. In this thesis, we have utilised multi-omics
data analyses for differential expression analyses (Chapter 2, 3 and 5) as well as
for stratifying biological profiles (Chapter 5).

Network biology

Network biology is the application of graph theory towards the curation,
visualisation and analysis of biological multi-omics data [26]. One of the
advantages of multi-omics data, as described previously, is the benefit of
synergistic analyses via the integration of data. Network biology represent
one of the best frameworks for data integration and integrated analyses by
connecting the different components of the biological system together in the
form of pathways and interactions. From generating abstracted regulatory
networks for exploring the dynamics of regulation of biological components
[27], to data-driven co-expression networks for finding groups of genes being
regulated or targeted together [28], to physically interacting protein-protein and
protein-ligand networks [29], network biology allows the merger of different
levels of data at different time scales. In addition, network biology capitalises
on the analytical methods available to graph theory and applies them in a
biological context for generating new information such as new biological
behaviours, new protein functions or new structural topology [30-32]. Figure
1.2 shows an example of the application of network biology, showing a
correlation network of gene expression with genes clustered together based on
their fold change. The blue-red colour spectrum provides the range of fold
change, while the edge style shows the correlation value between gene pairs.

In this thesis, we have utilised network biology in multiple applications
including generating time series gene co-expression networks (Chapter 2),
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Figure 1.2: Correlation network of genes showing their expression fold changes as the
blue-red node colour spectrum. The edge style shows the type of correlation between
the genes, and the clustering broadly shows groups of genes having similar expression fold
changes.

multi-scale multi-level abstracted visualisation of cellular processes (Chapter
3), overlaying existing/published information (Chapter 3), and generating
theoretical models for querying biological systems for which we do not have the
data (Chapter 4).

Datasets analysed in this thesis

We have analysed transcriptomics and proteomics expression data from a
weight loss study conducted at Maastricht University [33]. The study was
originally conducted to explore the ‘yoyo’ effect — the weight regain post
weight loss in the context of high caloric restriction. The study compared two
weight loss diets, a low calorie diet at 1250 kcal/day and a very low calorie
diet at 500 kcal/day. The original study found that the intensity of the caloric
restriction affected the changes induced in the gene expression of the adipose
tissue, however this did not produce any differences in the weight regain
post weight loss as both diet groups regained above 50% of their lost weight
during dietary intervention. Given that diet induced weight loss is one of the
most effective means of reducing obesity and the chances of developing its
co-morbidities, this study became quite suitable for our research as we would
be able to utilise the time series expression data to map cellular processes
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involved in weight loss and caloric restriction. In addition, we also had access
to phenotypic/clinical measurements of the individuals, allowing us to find
patterns linking mechanistic changes at the cellular level to the phenotypic
changes at the organism level.

In addition, the study presented in this thesis also relies on several
publicly available datasets. These datasets are the GTEx baseline RNA-seq
transcriptomics expression data (ArrayExpress: E-MTAB-5214), an obesity
study data (Gene Expression Omnibus: GSE55200), and the BLUEPRINT
epigenome project (ArrayExpress: E-MTAB-3827). Collectively, these studies
provided additional baseline and contrasting expression information for the
inference of results obtained from the analysis of the Yoyo study:.

Thesis objectives and study design

The primary objective of this thesis was to explore, and identify cellular
processes being affected during weight loss as possible targets for future
research for personalised treatment of obesity, and by extension its
co-morbidities. We followed an exploratory data driven study design where
we started with analyses unhindered by strict hypotheses and presumptions.
The study direction evolved based on the evidences provided by the various
statistical and network based analyses conducted. These evidences were
checked against known literature in parallel to the analyses with the purpose to
minimise the chances of biased interpretation and to explore more avenues for
subsequent analyses.

Thesis outline

In Chapter 2, we present a systems biology pipeline in which we capitalise on
the variability in human data to generate groups of related co-expressing genes
being affected by caloric restriction in the subcutaneous adipose tissue. The
objective is to explore cellular processes affected by caloric restriction that can
be targeted for further analysis in the context of obesity. We started with the
microarray transcriptomics data for the Yoyo study and performed differential
expression analysis to isolated differentially expressed genes that were then
used as input for the dynamically co-expressed neighbourhood (DCeN)
algorithm [34]. As opposed to general co-expression algorithms, DCeN forms
patterns of gene co-expression within the individuals first, before averaging the
correlation values, thereby avoiding the dampening effect of using average
expression across individuals to calculate the correlations. This approach
provided us with several clusters of closely co-expressing and correlated
genes, with each cluster associated with unique functions in the backdrop of
metabolism.



In Chapter 3, we focus on one of the clusters of correlated genes from
Chapter 2. This cluster represents various rate limiting enzymes associated
with cellular metabolism and was the first instance where we came across
metabolic flexibility. The objective of this chapter is to review current known
literature about cellular processes involved with metabolic flexibility. In
addition to reviewing cellular processes involved with metabolic flexibility,
we also constructed and provided a network resource for overlaying existing
information.  The utility of the network resource was demonstrated by
overlaying baseline gene expression data of the cellular metabolism from the
GTEx dataset, and comparing it to a differential expression analysis of a publicly
available dataset to immediately highlight components having an expression
pattern divergent from baseline.

In Chapter 4, we modelled cellular metabolic flexibility using a discretised
modelling framework called René Thomas Kinetic Logic Formalism. The
hypothesis for this study is that the inhibition of pyruvate dehydrogenase
complex (PDC) by the pyruvate dehydrogenase kinase (PDK) isoenzymes
during cellular metabolism is a key mechanism for cellular metabolic flexibility.
Literature estimates suggest that metabolic flexibility, specifically the switching
of substrates, is a sub-second process, for which we currently do not have
accurate measurements, nor any method to observe in real-time. As such, the
discretised framework allowed us to model the system in a time and quantity
abstracted system, thereby focusing on the phenotypes generated by the model
instead. The results from our model suggested that not only the regulation of
PDC by PDKs affecting cellular metabolic flexibility a very likely case, but also
that irregularities introduced in other parts of the model also transmitted their
effect through this negative regulatory interaction.

Chapter 5 represents a return to data driven analysis and the Yoyo study,
where we utilise our information from Chapter 3 and 4 to generate a list
of genes/proteins involved in metabolic flexibility. ~The objective in this
chapter is to stratify metabolic profiles during caloric restriction based on
the genes/proteins and, by extension, their cellular processes involved with
metabolic flexibility. We apply a new systems biology pipeline where we use
the Affinity Network Fusion (ANF) algorithm [35] to stratify samples of the
individuals from the Yoyo study based on their metabolic profile generated
by their transcriptomics and proteomics data of the metabolic flexibility
genes/proteins. The algorithm provided us with two clusters of samples,
which when arranged chronologically with respect to the Yoyo study showed
the respective individuals of the samples either changing or maintaining
their clustering as they progress through the caloric restriction. Differential
expression analysis revealed that one of the clusters had a lower expression
of cellular metabolism associated genes across the board compared to the
other cluster. In addition, this cluster also showed a higher expression of
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General Introduction

genes associated with inflammation, indicating a peculiar inverse relationship
between metabolism and inflammation, warranting further investigation in
future studies.

The thesis ends with a general discussion on the interplay of cellular
metabolism, metabolic flexibility and inflammation in the adipose tissue. In
addition, the usefulness and utility of the combinatorial approaches in systems
biology workflows and multi-omics data analysis, as well as the methodological
challenges faced in this study are also discussed.
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2 Profiling Cellular Processes

Abstract

Obesity is a global epidemic identified as a major risk factor for multiple chronic
diseases and, consequently, diet-induced weight loss is used to counter obesity.
The adipose tissue is the primary tissue affected in diet-induced weight loss,
yet the underlying molecular mechanisms and changes are not completely
deciphered. In this study, we present a network biology analysis workflow
which enables the profiling of the cellular processes affected by weight loss
in the subcutaneous adipose tissue. Time series gene expression data from
a dietary intervention dataset with two diets was analysed. Differentially
expressed genes were used to generate co-expression networks using a method
that capitalises on the repeat measurements in the data and finds correlations
between gene expression changes over time. Using the network analysis tool
Cytoscape, an overlap network of conserved components in the co-expression
networks was constructed, clustered on topology to find densely correlated
genes, and analysed using Gene Ontology enrichment analysis. We found
five clusters involved in key metabolic processes, but also adipose tissue
development and tissue remodelling processes were enriched. In conclusion,
we present a flexible network biology workflow for finding important processes
and relevant genes associated with weight loss, using a time series co-expression
network approach that is robust towards the high inter-individual variation in
humans.
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Introduction

In recent years, obesity has become a global epidemic with a World Health
Organisation (WHO) estimate of 11% men and 15% women worldwide being
obese in 2014 [1], with clear indications that this will continue to rise in
the foreseeable future. Obesity has been identified as a major risk factor for
multiple diseases and conditions such as type 2 diabetes mellitus (T2DM),
cardiovascular diseases (CVD) and the metabolic syndrome (MetS) [2-4].
Consequently, a number of studies [5-7] have recommended weight loss
through diet and physical activity to counter obesity and its co-morbidities.

In previous studies, various efforts have been made to understand the
molecular biology behind obesity and the effect of weight loss [8-10]. These
studies have focused on gene expression profiles and targeted pathways
associated with the obese system, providing transcriptomic snapshots to better
understand the functioning of the system in a particular state or in responses to
stimuli by comparing the expression of the genes across the genome.

In recent years, gene expression profiling has been extended into time
series, generating gene expression snapshots at different time points. The time
points collectively show how gene expression changes over time, particularly
in response to different stimuli or interventions. The time series also yield
differential gene expression data which provides expression contrasts between
pairs of time points, which are used to glean which processes may or may not
be active at a particular time point via cellular pathways [11]. However, it has
been difficult to accurately associate cellular processes and pathways with time
series gene expression profiles, partly due to high inter-individual variability in
human transcriptomic datasets [12, 13].

In this article, we present a network biology analysis workflow which ties
time series gene expression analysis with gene expression pattern correlation
and downstream enrichment techniques to identify biological processes and
pathways in the adipose tissue as possible regulatory candidates linking the
obese system and chronic diseases with the beneficial effects of weight loss. The
analyses give us a detailed view of what is happening in the subcutaneous
adipose tissue during weight loss, irrespective of the intensity and duration of
caloric restriction. Furthermore, the analysis provides us with closely correlated
clusters of genes based on their gene expression patterns. These clusters
represent possible areas of cross-talk between different biological processes,
increasing our understanding of the functioning of the subcutaneous adipose
tissue, as well as providing us with new areas of detailed research in the context
of obesity and chronic diseases. In addition, the described network biology
workflow is able to perform these analyses on human datasets containing high
variation between the participants of the study, allowing for application on
small sized studies as well.
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2 Profiling Cellular Processes

Materials and Methods

Analysis workflow

The steps in our network biology analysis workflow is shown in Figure 2.1
and explained in detail in the following subsections. This workflow follows
a data driven approach, taking raw expression data from microarrays to
computable networks and information relating to biological processes. The data
pre-processing (step 1) and constructing of correlation networks (step 2) are
performed in ArrayAnalysis [14] and R [15]. The network analysis steps (3-5)
are performed in Cytoscape [16] using core and app functionality.

Dataset

Raw transcriptomics data was obtained from the “Yoyo study’ [17] (Clinical
Trial ID: NCT01559415, www.clinicaltrials.gov). The study was a human
weight loss and subsequent weight regain study, comparing two weight loss
diets: a low calorie diet (LCD) of 1,250 kcal/day for 12 weeks, and a very low
calorie diet (VLCD) of 500 kcal/day for five weeks. Participants of each diet
then underwent a four week weight maintenance period, with a nine-month
follow up. All participants in the study were overweight and/or obese
Caucasian individuals with body mass index (BMI) from 28 kg/m? to 35 kg/m?
aged from 32 to 67 years (median age 51). The exact details of the study design
can be found in [17].

The transcriptomics data was available on the Gene Expression Omnibus (ID:
GSE77962). The data consisted of Affymetrix Human Gene ST 1.1 microarray
platform expression data of the subcutaneous adipose tissue for 57 individuals.
The complete gene expression data for the first three time points of the study
(before weight loss, after weight loss, after weight maintenance) was available
for only 46 subjects (22 LCD and 24 VLCD). The transcriptomics data was not
available for the final time point of the study.

Data quality control and filtration of background expression

ArrayAnalysis.org was used for the quality control (QC) analysis and
subsequent normalisation of the raw expression data [14]. ArrayAnalysis.org
is an online pipeline for QC and normalisation of microarray expression data.
In our study, we used the default settings for Affymetrix Human Gene ST
1.1 microarray platform and normalised using robust multi-array averaging
(RMA) normalisation. The normalised expression data was then filtered for
noise, generated via background gene expression, by removing genes which
had median expression in the dataset equal-to or lower-than the median
Y-chromosome gene expressions in female individuals in the dataset.
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Time point 1 Time point 2 Time point 3
Low Calorie
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1. Differential Gene 2. Time series
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Figure 2.1: Network biology analysis workflow. (1) The time series expression data
from the time points is normalised and differential expression analysis is performed. (2)
Correlation networks are constructed on the time series for each diet respectively. (3) The
overlap network is generated from the two networks showing the correlations which are
shared between the two diets. (4) Community clustering is performed to find clusters of
genes which are showing the most similar expression patterns. (5) The overlap network
and the gene clusters are then used for process enrichment to find the affected cellular
processes.
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2 Profiling Cellular Processes

Differential expression analysis

The filtered expression data was then used for differential expression analysis
of the genes across the three time points, separately for each diet. This analysis
allowed us to compare how the gene expressions changed after weight loss and
after weight maintenance. Comparing the number of significantly differentially
expressed genes using the criteria [FC| > 1.2 A p-value < 0.05 (where [FC| is the
absolute fold change of each gene) allowed us to estimate how significantly
the diets are affecting the adipose tissue processes. It also showed how the
expression intensities and processes differ between the two diets. Data was
corrected for multiple testing using the g-value method [18].

Network inference and clustering

In order to study and visualise the gene expression over time, we opted to
generate co-expression networks. To maintain correlation values of gene pairs
across the three time points, we applied and modified the correlation method
used in the Dynamically Co-expressed Neighbourhood (DCeN) algorithm
[19]. The DCeN algorithm was developed for analysing time series gene
expression data and calculates the correlations within individuals first which
are then averaged per group. In our modification (see R implementation in
Supplementary File, section Source Code), we calculate the signed correlations
for generating the network for each diet based on a single input data group,
using an absolute correlation value cut-off at 0.6 (|corr.| > 0.6) in at least 25% of
the samples in each group, leaving only strong correlations. This is performed
for each diet, after which an overlap network is constructed by taking the
intersection of the edges present in the respective correlation networks.

Frobenius norm was used to address the inter-individual gene expression
and expression pattern variability within the respective diets. The Frobenius
norm measures the square root of the sum of square differences between the
correlation matrix of the diet and the correlation matrix of the individual.
The difference presents a distance dimension to compare how “distant” an
individual is compared to the whole group in the diet itself. Mathematically,
for two correlation matrices A and B with n gene correlations, the Frobenius
norm will be calculated as

IA-B lp= (2-1)

Topological clustering was done on the co-expression networks using the
GLay community cluster algorithm [20] through the ClusterMaker app [21]
in Cytoscape [16]. Since the networks were already based on correlated gene
expression patterns over time, closely connected gene clusters in the network

20



represented groups of genes having a highly similar or highly dissimilar
expression pattern over time, and thus provided links between the processes in
which the genes are involved. The log, fold change of genes in the respective
topological gene clusters of each diet was also plotted for each cluster to visually
represent the clustering patterns over time, shown in Figures S2 and S3.

Gene ontology and pathway enrichment

Gene Ontology (GO) enrichment was performed on both the complete
networks as well as the network clusters using the ClueGO app [22] in
Cytoscape. For the gene clusters, the settings in ClueGO were modified to allow
any number or percentage of genes in any level of GO (0-20 in ClueGO) with
the p-values of the pathways < 0.05. For the complete network, the settings only
differed in having at least 3 in number, or at least 4%, of genes in the respective
GO terms. Pathway enrichment was performed using the over-representation
analysis module at ConsensusPathDB [23], selecting all available pathway
databases using a minimum gene overlap of 2 and a p-value < 0.01.

Software and libraries

ArrayAnalysis.org [14] was used for QC and normalisation, using custom chip
definition file (CDF) annotation from BrainArray (version 19.0.0, ENSG). R
[15] v3.2.3 was used with limma v3.26.5 package [24] for the differential gene
expression analysis and qvalue v2.2.2 package [18] for the false discovery
rate (FDR) analysis. Cytoscape [16] v3.4.0 was used for visualisation of the
networks. Clustering was done using the ClusterMaker2 app [21] v0.9.5 in
Cytoscape. ClueGO app [22] v2.3.2 in Cytoscape was used for GO enrichment,
and ConsensusPathDB [25, 26] version 31 was used for the pathway
enrichment.

Data availability

All relevant data is within the paper and its Supporting Information files. Gene
expression data for the Yoyo study is accessible at Gene Expression Omnibus
(accession number GSE77962).

Results

Data normalisation and filtration

The microarray gene expression data was obtained from a weight loss study
comparing a low calorie diet (LCD) and a very low calorie diet (VLCD) [27]. In
addition, 138 samples were used from the study — 46 individuals across three
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2 Profiling Cellular Processes

time points. The three time points measured gene expression in the adipose
tissue before weight loss, after weight loss, and after weight maintenance,
respectively. Starting with the raw expression data of the 46 individuals, the
QC analysis results showed two microarray samples as outliers (Figure S1).
These outliers were two individuals from the VLCD diet group because their
data at time point 1 (before weight loss) differed from the data cluster of the
remaining VLCD members, whereas the data at the other two time points did
not. This inconsistency led to the removal of the data from these two individuals
across all three time points to remove any skewness in expression intensities
or patterns introduced by the possibly erroneous data at these first time point
samples. The normalised expression data including 21,641 genes was filtered
for background gene expression leaving a total of 18,113 unique genes.

Differential expression

The differential expression analysis was performed within individuals, between
expressions after weight loss and before weight loss (time points 2-1); after
weight maintenance and before weight loss (time points 3-1); and after weight
maintenance and after weight loss (time points 3-2). The time points 3-2
analysis for LCD came up with very high local false discovery rate (FDR) for
p-value < 0.05, implying a high chance of false positives even in significant
results. Thus, this time point difference was not included in further analyses
for either diet. In Figure 2.2, results of the differential gene expression analyses
between the different time points in the different diets are shown and compared.
A total of 286 genes were significantly differentially expressed between time
points 1 and 2 for LCD, and 1,793 genes for VLCD in the same period. These
numbers goes down to 220 for LCD and 399 for VLCD respectively between time
points 1 and 3. The difference in number of significant differentially expressed
genes between LCD and VLCD during the weight loss period indicates that the
pattern of expression in VLCD is more perturbed than in LCD in response to
stronger caloric restriction. Furthermore, not all genes in the two comparisons
within respective diets were the same, with some genes being significantly
perturbed in either the weight loss period, or the weight maintenance period,
but not in both.

Correlation and overlap networks

The differentially expressed genes of each diet were then used to create
expression data subsets for each diet from the filtered dataset. These subsets
were fed into the modified DCeN algorithm (complete procedure given in the
Materials and Methods section) to generate the correlation matrices, using an
absolute Pearson correlation of >0.6 as the cut-off. The generated co-expression
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Figure 2.2: The number of differentially expressed genes in each diet. (A) The number
of up and downregulated genes along the two time point comparisons. Time points
2-1: After Weight Loss—Before Weight Loss, and time points 3-1: After Weight
Maintenance—Before Weight Loss; (B) the number of differentially expressed genes
overlapping between the two comparisons within each diet.

network for the LCD diet contained 123 genes (nodes) and 250 correlations
between these genes (edges). Forty-one of the 250 edges have negative
correlation values. The positive correlations indicate highly similar expression
patterns across the three time points, while the negative correlations indicate
mirrored expression patterns. The LCD correlation network is shown in Figure
S2. For the VLCD diet, the network contained 1382 nodes and 35,791 edges,
of which 11,270 edges showed negative correlations between their respective
genes. The VLCD correlation network is shown in Figure S3.

To find the common mechanisms, irrespective of the intensity and duration
of caloric restriction, we generated an overlap network of the two diets. The
overlap network is constructed by finding the gene pairs (edges) that are
common between the two networks and correlated in the same direction
(positive or negative). The overlap network shown in Figure 2.3 consisted of a
single large connected component and five separate pairs correlated genes. The
complete network contained 71 genes and 127 correlations between those genes,
of which only 13 correlations were negative. The flexibility of the workflow
to use the high level of sample variability was checked by comparing the
correlation matrices of each individual with the correlation matrices of their
respective diet group using the Frobenius norm of the distance matrix. The plot
of the calculated Frobenius distances showing each individual in the respective
diet is provided as Figure S4. The plot includes certain individuals having a
higher distance from the respective diets, which shows that these individuals,
despite the variability in expression data, were still part of the construction of
the correlation network of the respective diet.
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Figure 2.3: Overlap network showing the intersection of the edges of the low calorie diet
(LCD) and the very low calories diet (VLCD) correlation networks. The intersection only
depends on the sign/direction of the correlation (positive or negative), and not the exact
value of the correlation.

Enrichment and clustering results

The overlap network was then used for Gene Ontology (GO) enrichment
analysis. The most significant classes ranged from metabolic processes such
as long chain fatty-acyl-CoA metabolic process (GOID: 35336) and keratan
sulphate catabolic process (GOID: 42340), to non-metabolic processes such as
adipose tissue development (GOID: 60612) and regulation of tissue remodelling
(GOID: 34103). Using the topological clustering method described in the
Materials and Methods section, the overlap network was clustered into five
clusters, and a set of five un-clustered paired genes shown in Figure 2.4. Cluster
1 consists of eight genes, followed by 17 in Cluster 2, 14 in Cluster 3, 17 in Cluster
4, and five in Cluster 5, with the five unconnected paired correlations remaining
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unclustered. Clusters 1 and 4 provided additional significant enrichment terms,
such as thioester biosynthetic process (GOID: 35384) and regulation of signal
transducer and activator of transcription STAT protein input into nucleus
(GOID: 2000364) respectively, adding a new dimension of process regulation
information to the network. The five un-clustered gene pairs were enriched
together and predominantly targeted the keratan sulphate catabolic process
(GOID: 42340). Clusters 2 and 3 did not provide any significant enriched terms.
Figure 2.5 shows these resultant GO terms as pie charts. Of the 71 genes in
the overlap network, carboxylesterase 1 (CES1), heat shock protein family A
member 12A (HSPA12A), very low density lipoprotein receptor (VLDLR) and
leptin (LEP) showed a high degree centrality of 15, 14, 12 and 11, respectively.
Expectedly, these high degree genes are parts of clusters, with CES1, VLDLR,
and LEP belonging to Cluster 4, while HSPA12A acts as the hub node in Cluster
3.

Discussion

In this article, we presented a network biology workflow to find genes of
interest using gene expression data for targeted analysis of processes and
pathways affected during weight loss. Our data-driven workflow is applicable
to any time series expression data. One of the reasons for the construction
of the workflow was the previously reported poor performance of existing
correlation calculation methods on human time series expression data [19].
Essentially, most standard techniques generate correlations between the
average expression of the genes across the whole group. This methodology
works perfectly for homogeneous datasets/groups, but, for heterogeneous
groups, this methodology fails as the average gene expression of the group
is dampened because of the high variability in the measurements. The
dynamically co-expressed neighbourhoods (DCeN) algorithm created by Elo
and Schwikowski was specifically made to address this issue by calculating
gene—gene correlations within individual members of the dataset, and then
averaging the correlations, thus preserving the variability in the data while
also generating meaningful correlations [19]. In our article, we modified the
DCeN algorithm to focus on a single expression group at a time to generate the
correlation matrices of the diets individually.

Based on the high number of differentially expressed genes in VLCD, the
resultant network for VLCD was also much larger in terms of the number
of genes (nodes) and correlated expression patterns (edges) than the LCD
network. The difference in size of the networks, coupled with the number
of differentially expressed genes, clearly shows that the adipose tissue gene
expression is affected in both diets and that VLCD causes a larger perturbation
of the adipose tissue. The overlap network, constructed via the edge intersection
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Figure 2.4: GLay community clusters of the overlap network. Faded edges show the edges
removed by the algorithm to generate the “community” of genes based on the topology.
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2 Profiling Cellular Processes

of the co-expression networks of the diets, provides a set of genes having the
same expression pattern in both diets. This set of genes and their expression
pattern represents a behaviour, which, based on our results, is likely to always
occur with weight loss irrespective of the caloric restriction, or at least for diets
between 1,250 kcal/day and 500 kcal/day. In that respect, this set is ideal for
construction of adipose tissue regulatory behaviours involved in weight loss,
and can be then extended to other differentially expressed genes found in the
respective diets, as can be seen by the processes found and highlighted in the
results of the GO enrichment analysis.

Additionally, the expression patterns of the genes were plotted for each cluster
using their log, fold change within each diet. The plots, provided as Figure S5,
show either the similarity or the mirroring of the expression pattern of each gene
with respect to the rest of the genes within the cluster. Interestingly, the plots
show that much of the expression pattern clustering is dependent on the change
in expression pattern between the first two time points (during weight loss)
with variations seen in the patterns between the last two time points (during
weight maintenance). Across the 71 genes of the overlap network, PDK4, C6, C7,
ADHI1B, SRPX, GPNMB, SLC7A7, MMP2, OGN, LUM, and CTSK were found
to be upregulated after weight loss, with the remaining genes downregulated.
After weight maintenance, however, the gene expression pattern has variations
with many gene expression patterns showing a reversal in trend but some genes
also maintaining their expression patterns achieved during weight loss such as
MMP2, OGN and LUM.

In addition, we also explored pathway enrichment methods which gave
functionally very similar results to GO enrichment. The complete list of
enriched pathways is provided as Table S5. Most of the enriched pathways and
processes relate to metabolism and have been found crucial in obesity, T2DM,
CVD and MetS [4, 28]. The enriched results include fatty acid biosynthesis
pathways such as the downregulation of the acetyl-CoA metabolic network,
previously described in [29]. We also confirmed the involvement of signalling
pathways such as AMPK [30, 31] and PPAR signalling [32, 33]. Omega-3
and Omega-6 fatty acid metabolism pathways, as well as the complement
system/cascade, were also found to be enriched in our results. Omega-3 have
been proposed to be involved in lipid metabolism and adipokine regulation,
both affected themselves in obesity and metabolic syndromes [34]. Omega-6
fatty acids have been found to be involved in anti-inflammatory effects [35].
However, high Omega-6 to Omega-3 ratio has also been found to increase the
risk for obesity [36]. The complement cascade/system has been found to be
dysregulated in obesity and associated co-morbidities, linking inflammatory
effects, insulin resistance and impaired metabolism [37]. Additionally, other
pathways such as ‘reversal of insulin resistance by leptin” were also enriched for
the overlap network, indicating that certain beneficial pathways are triggered

28



irrespective of the level and duration of caloric restriction. However, the overlap
network only indicates a core set of pathways, and the intensity of the effect
of the respective pathways and biological processes will differ when taken
together with the extended networks unique to each diet.

Detailed literature study of the 71 genes in the overlap network yielded
additional details regarding the involvement of these genes and their products
in adipose tissue metabolism. Interestingly, the clusters of these genes showed
unifying themes for most of the members of the respective clusters, indicating
possible points of cross-talk of different cellular processes in the larger backdrop
of adipose tissue metabolism and energy homeostasis. Additionally, some
genes and their products have not been profiled for any particular cellular
task or process within the context of obesity or adipose tissue metabolism.
However, since these genes were found to be part of their respective clusters,
the possible cross-talks of these genes allows for new avenues of research. The
gene symbols of all the clustered and unclustered genes of the overlap network
are provided as Table S4. In Cluster 1, the pyruvate dehydrogenase kinase 4
(PDK4) and acetyl-coenzyme A carboxylase 1 (ACACA) genes are clustered
together, representing the upstream regulators of the tricarboxylic acid (TCA)
cycle. The protein kinase PDK4 has previously been identified as an inhibitory
regulator of pyruvate dehydrogenase complex (PDC) [38] which converts
pyruvate and co-enzyme A (CoA) into acetyl-CoA for the TCA cycle. On the
other hand, ACACA uses acetyl-CoA for fatty acid biosynthesis by converting
it to malonyl-CoA [39]. Stearoyl-CoA desaturase (SCD), fatty acid desaturase
1 and 2 (FADS1 and FADS2 respectively), were also clustered with PDK4 and
ACACA. The protein SCD has been shown to take part in triglyceride storage in
white adipose tissue [40]. Furthermore, SCD, FADS1 and FADS?2 are involved
in the desaturation of fatty acids, and, as such, are linked to de novo fatty acid
synthesis.

The genes constituting the second cluster of the overlap network (Cluster
2 in Figure 2.4) are also predominantly linked with metabolism, lipogenesis
and lipolysis, in particular diacylglycerol O-acyltransferase 2 (DGAT2), zinc
finger protein 219 (ZNF219), and fatty acid desaturase 3 (FADS3). However,
considering the filtering of the genes and the study design of the source
data, which is to be expected. Next to genes related to this common theme,
links to tissue proliferation and differentiation were found in the cluster as
well. G1/S-specific cyclin-D1 (CCND1), integrin alpha-7 precursor (ITGA7),
transmembrane protein 120B (TMEM120B) and transmembrane protein
184B (TMEM184B) all have been associated with tissue proliferation and
differentiation [41, 42].

The genes in Cluster 3 represent closer links to inter-cell signalling and
immune system response apart from adipose tissue metabolism. Complement

29

ﬂ

$9ssa001] TeM[RD) SuryoIig



2 Profiling Cellular Processes

component C6 and C7 play a role in innate immune response by forming the
terminal membrane attack complex (MAC) [43, 44]. FAT atypical cadherin 1
(FAT) is involved in cell—cell signalling and has been shown to be affected by
diet [45]. Adenylate cyclase-associated protein 2 (CAP2), kelch-like family
member 31 (KLHL31) and klotho beta (KLB) are also involved in signal
transduction through hedgehog, IFN-JAK-STAT and MAPK pathways [46, 47].
Except for these and alcohol dehydrogenase 1B (ADH1B), malic enzyme 1
(ME1) and ethylmalonyl-CoA decarboxylase (ECHDC1), other expressed genes
in the cluster have little known information in the context of obesity and chronic
diseases.

Relative to the previous three clusters, the genes in Cluster 4 show a more
diverse profile in terms of intra-, inter- and extra-cellular biological processes.
Perhaps the most important gene expression in the cluster is that of leptin
(LEP), an adipokine responsible for organism-wide signalling through multiple
signalling pathways [48, 49]. Through these signalling pathways, LEP has
been implicated in regulation of tissue and organism-wide metabolism, energy
homeostasis, fat storage and inflammation [50, 51]. The organism-wide effects
are extended by a very low density lipoprotein receptor (VLDLR), which
facilitates removal of circulating very low density lipoproteins [52], and has
also been found to induce adipose tissue inflammation [53]. Other genes found
in this cluster that are known to be involved in signal transduction include
synuclein gamma (SNCG) [54], and erb-B2 receptor tyrosine kinase 4 (ERBB4)
[55, 56].

Cluster 5 was the smallest of all clusters, consisting of only five members:
follistatin like 3 (FSTL3), 24-dehydrocholesterol reductase (DHCR24), lysyl
oxidase like 2 (LOXL2), tubulin beta 2A class Ila (TUBB2A) and aldo-keto
reductase family 1 member C2 (AKR1C2). FSTL3 is a high-affinity inhibitor of
transforming growth factor beta (TGFB) family members, including activin
A and myostatin, and thus is involved in modulating glucose homeostasis
[57]. DHCR24 binds to and protects p53 from degradation, shielding the cell
from oxidative stress [58]. LOXL2 and TUBB2A appear to be involved with
cellular and tissue morphology via extracellular matrix cross-linking [59]
and microtubule component synthesis, respectively. AKR1C2 is known to be
associated with central obesity and association with long-term weight gain in
men has been suggested [60, 61]. In addition, changes of the AKR1C2 protein in
the adipose tissue during weight maintenance were found to positively correlate
with body weight, waist, BMI and plasma low density lipoprotein (LDL), and
to correlate negatively with plasma LEP [62]. Nevertheless, the exact role of
the expression of this gene in terms of cellular processes related to obesity is
unknown [60].

In summary, our study found several pathways known to be involved with
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obesity and associated co-morbidities, along with clusters of genes representing
different but related molecular and biochemical processes in the adipose tissue
cells. Many of these pathways have been known to be associated with several
dysregulations in obesity; however, the interactions and cross-talk between
these pathways and cellular functions need to be further explored to better
understand the cellular and tissue wide dysregulation in obesity and associated
chronic diseases. Collectively, the presented results provide directions for
future research and exploration of obesity related chronic diseases through
predictive modelling and analyses.

Conclusions

In conclusion, our article presents a workflow for finding candidate regulatory
genes and processes using differential gene expression and expression pattern
over time using a time series dataset. We have shown that this workflow is
able to isolate several biological processes and pathways having known links
with obesity, T2DM, CVD, and metabolic syndrome, allowing future analyses
and predictive modelling focused on these particular biological processes. The
workflow presented here is flexible by design and uses only freely available
tools that can be easily connected. It is applicable to any form of time series
expression data such as RNA-seq data and non-coding RNA expression arrays
and it effectively accommodates inter-sample variability when constructing
the correlation networks. This allows network based analyses of human
intervention studies and datasets for which this was previously difficult.
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Figure 2.52: Correlation network generated for the low calorie diet (LCD). A) Fold change
for time points 2-1. B) Fold change for time points 3-1.
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Figure 2.53: Correlation network generated for the very low calorie diet (VLCD). A) Fold
change for time points 2-1. B) Fold change for time points 3-1.
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Low Calorie
Diet

Very Low
Calorie Diet

Low Calorie
Diet

Very Low
Calorie Diet

Cluster 1

Cluster 2

Cluster 3

—onmstr
—sicaome
— o
—oauna
J—
—cen
-~

—onmst1
—sicaom
— o
—oauna
J—
—ccn
[~
—s

Tty Tmepoma  Timepontd

Tesan2  Tmeponts

Cluster 4

Cluster 5

Un-clustered

Tmeponts  Tmepant2 Timepeits

=

J———
—
-

Tmepontl  Tmeponi2 Tmepom3

Trmeporti  Tmepom2  Timepaints

Tweponts  Tmesantz  Timeports

=

Tmesants  Tmeport2  Tmeponts

Tmeports  Tmapom2  Timesants

Figure 2.55: Gene expression patterns of the respective genes in each topological cluster of
the overlap network, based on the fold change in the respective diets. Also shows the five
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Supplementary Tables

Table 2.51: Results from the robustness analysis using the minimum %age individuals
having the same correlation direction (for |corr.| > 0.6).

%age min. individuals LCD VLCD
25 Total edges 127 127
Y%age 100.00  100.00

30 Total edges 127 126
Y%age 100.00 99.21

35 Total edges 127 126
Yage 100.00 99.21

40 Total edges 125 126
Yoage 98.43 99.21

45 Total edges 119 125
Y%age 93.70 98.43

50 Total edges 108 120
Yoage 85.04 94.49

Table 2.52: Results from the leave-n-out cross-validation analysis for n=1 and 2 (max 10%
of total samples) in the overlap network. The analysis here represents loss of sensitivity.
The correlation criteria is |corr.| > 0.6 in at least 25% of the individuals having the same
direction of the correlation.

Leave-n-out, # of combinations Criteria: |corr.| > 0.6

n= in each diet and min. 25% ind.s LCD - VLCD
0 1 Total edges 127 127
Y%age 100.00  100.00

1 2 Total edges 85 117
Y%age 66.93 92.13

Total edges 52 104

2 231 Y%age 40.94 81.89
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Table 2.53: Results from the leave-n-out cross-validation analysis for n= 1 and 2 (max
10% of total samples) in the correlation networks of the respective diets. The analysis here
represents loss of specificity. The correlation criteria is |corr.| > 0.6 in at least 25% of the

-
individuals having the same direction of the correlation. 3
=

Leave-n-out, # of combinations Criteria: |corr.| > 0.6 0%
n= in each diet and min. 25% ind.s LCD  VLCD Qo

0 1 Total edges 149 1125 E

8

New edges 3

9]

1 2 (avg. of all combinations) 20 54 §

192

[¢)

’ 231 New edges 36 82 »

(avg. of all combinations)

Table 2.54: List of genes in the respective clusters from the overlap network, represented
here in HGNC symbols.

Clusters Genes
1 ACACA, DHRS11, FADS1, FADS2, OLFM2, PDK4, SCD,
SLC29A4
CCND1, CTIF, DAB2IP, DGAT2, DTX1, FADS3, ITGA?,
2 PLEKHG5, PMEPA1, RBPMS2, SYNPO, TENM4, TLCD2,

TMEM120B, TMEM184B, TNFRSF25, ZNF219
ABCC6, ADHI1B, C6, C7, CAP2, ECHDC1, FAT1, GNG?2,

3 HSPA12A, KLB, KLHL31, MAL2, ME1, MRAP

4 GPLD1, KANK4, KIF1C, LEP, NPR3, NQO1, PDZzZD2,
SLC24A3, SNCG, SRPX, VGLL3, VLDLR, VLDLR-AS1

5 AKR1C2, DHCR24, FSTL3, LOXL2, TUBB2A

AACS, CTSK, FFAR4, FMOD, GPNMB, GYS1, LUM, MMP2,

Un-clustered OGN, SLC7A7
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3 Cellular Network of Metabolic Flexibility

Abstract

Background: Metabolic flexibility is the ability of cells to change substrates for
energy production based on the nutrient availability and energy requirement.
It has been shown that metabolic flexibility is impaired in obesity and chronic
diseases such as type 2 diabetes mellitus, cardiovascular diseases and metabolic
syndrome, although, whether it is a cause or an effect of these conditions
remains to be elucidated.

Main Body: In this paper we have reviewed the literature on metabolic
flexibility and curated pathways and processes resulting in a network resource
to investigate the interplay between these processes in the subcutaneous adipose
tissue. The adipose tissue has been shown to be responsible, not only for
energy storage, but also for maintaining energy homeostasis through oxidation
of glucose and fatty acids. We highlight the role of pyruvate dehydrogenase
complex—pyruvate dehydrogenase kinase (PDC-PDK) interaction as a
regulatory switch which is primarily responsible for changing substrates
in energy metabolism from glucose to fatty acids and back. Baseline gene
expression of the subcutaneous adipose tissue, along with a publically available
obesity data set, are visualised on the cellular network of metabolic flexibility to
highlight the genes that are expressed and which are differentially affected in
obesity.

Conclusion: We have constructed an abstracted network covering glucose and
fatty acid oxidation, as well as the PDC-PDK regulatory switch. In addition,
we have shown how the network can be used for data visualisation and as a
resource for follow-up studies.
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Metabolic flexibility

Metabolic flexibility is defined as the ability of an organism to adapt its substrate
for energy production in cellular respiration, based on the availability of the
substrates [1]. The primary substrates are glucose and fatty acids, which are
converted to Acetyl-Coenzyme A (Acetyl-CoA) for use in the tricarboxylic acid
cycle (TCA cycle). Cellular respiration for most tissues and organs utilises only
one energy substrate at a given time; glucose during the fed state and fatty acids
during the fasted state (exceptions include the brain for example). However, it
has been observed that under stress and severe energy deprivation conditions
this exclusivity can be broken and both glucose and fatty acids are consumed for
energy production [1].

Given that metabolic flexibility is associated with maintaining a dynamic and
shifting balance between the two sources of energy, it may have a prominent
role in the development of metabolic diseases and associated conditions.
The inability or impairment of the organism to change its source as per
requirements is called metabolic inflexibility. A number of recent studies have
started focusing on its association with conditions pertaining to malfunctioning
metabolism, including obesity, type 2 diabetes mellitus (T2DM), cardiovascular
diseases (CVD) and metabolic syndrome (MetS) [2-5]. Considering the
implication of metabolic flexibility in disease development, we focus on curating
the underlying cellular/molecular mechanisms in this study, specifically in the
adipose tissue as several adipose tissue gene expression markers have linked it
with reduced metabolic flexibility [6].

Adipose tissue holds a central role in metabolic flexibility and energy
metabolism with major regulatory mechanisms and roles, both tissue- and
organism-wide [7, 8]. Although adipose tissue stores the majority of the fat in
the body, most of the fat is synthesised de novo by the liver. The adipose tissue
ends up storing both the synthesised fat released by the liver, as well as dietary
fat [9][9]. In addition, the adipose tissue only takes up 10-15% of circulating
glucose [10]. However, this interplay and balance between glucose uptake
as well fatty acid uptake and later release is the result of metabolic flexibility
in the adipose tissue. Indeed, metabolic inflexibility in the adipose tissue
has been known to cause impaired adipokine signalling, as well as impaired
non-esterified fatty acid (NEFA) clearance from circulation, triggering NEFA
mediated signalling cascades in other tissues (reviewed in [11, 12]). Thus, the
impairment of metabolic flexibility in the adipose tissue can cause systemic
effects with regards to energy provision and related processes.

In this review, we summarize the cellular mechanisms pertaining to metabolic
flexibility in a network of interacting molecular species and processes. The
major benefit of this approach is that it allows further study of the various
cellular processes involved in metabolic flexibility to pinpoint crucial elements
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3 Cellular Network of Metabolic Flexibility

in said systems. Similar approaches have previously been employed, for
example in [13] where data and existing knowledge were collectively used to
identify seemingly unrelated processes involved in adipogenesis in culture. In
our review, we employ existing knowledge in terms of known pathways to
curate a network representing cellular metabolic flexibility in the adipocytes.
Subsequently, baseline expression data of the subcutaneous adipose tissue
[14] along with expression data from a publicly available obesity dataset
[15] are mapped onto the network as a use case showing the expression
of the components of the network under baseline/non-diseased and obese
conditions.

Biochemical pathways of metabolic flexibility

In this review, we have curated an abstracted network representing pathways
of cellular metabolic flexibility through literature review and querying the
WikiPathways database [16]. We started with biochemical reactions involved in
glucose and fatty acid oxidation in the adipose tissue, namely the glycolysis and
fatty acid B-oxidation processes, and expanded them to link them to each other
via the TCA cycle. Next, rate-limiting enzymes as well as transport, signalling
and regulatory proteins were included to expand upon the biochemical
processes, along with their respective interactions with other components
already in the network. This was followed by the addition of fatty acid synthesis
downstream of the TCA cycle as a feedback mechanism to fatty acid p-oxidation.
Furthermore, cellular signalling cascades known to affect cellular oxidation
were also added.

Finally, to give a simplified overview and ease its understanding, the network
was abstracted by only leaving in rate-limiting steps, major metabolites between
said steps, and associated regulatory proteins. The exact procedure and order
of reduction differs from network to network, however, the basic idea remains
the same, i.e. to represent multiple nodes and/or edges by a single node
and/or edge. Figure 3.1 illustrates this procedure. As an example, consider the
procedure of fatty acid breakdown to release multiple Acyl-CoA molecules,
which is a multi-step process involving multiple sets of enzymes and reactions.
However, unless we are specifically targeting a step within this procedure, or
one of the steps is a rate-limiting step under scrutiny, we can represent the
whole breakdown process in an abstracted manner using a Fatty Acid node,
linked to an Acyl-CoA node with an edge.

The resultant abstracted cellular network of metabolic flexibility is shown in
Figure 3.2. The colour coded sections identify the major pathways with, (i)
green for glycolysis related components, (ii) orange for fatty acid p-oxidation,
(ili) yellow for fatty acid synthesis, (iv) cyan for the TCA cycle, and (v)
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Figure 3.1: Methodology overview showing the workflow to construct the abstracted
network. i) Known knowledge in the form of published literature and databases is queried
regarding cellular metabolism. ii) Base biological processes are isolated, and then expanded
by adding regulators and other related processes as long as they are related to cellular
metabolism. iii) The expanded network is then abstracted by merging edges such that only
major components and rate-limiting steps remain.

magenta for regulators of metabolic flexibility. In the abstracted network, we
also see how these pathways are interacting with each other, in particular
how the various products of the TCA cycle are playing roles in activating or
inhibiting different pathways through feedback mechanisms. We define any
interaction that activates or continues a process in the network as a positive
interaction. In the network shown in Figure 3.2, these positive interactions cover
transcriptional activation, allosteric activation, biochemical reactions (substrate
consumption and/or product formation), protein complex formation, and
species transportation. Negative interactions exclusively refer to inhibitory
interactions, whether they are allosteric inhibition or transcriptional inhibition.
The following subsections explain these pathways in detail.

Cellular energy production

The TCA cycle, also referred to as the citric acid cycle or Krebs cycle, is the
primary biochemical pathway for cellular energy production and respiration
in all aerobic cells [17]. The cycle starts with the conversion of Acetyl-CoA
into citrate, continues through a series of biochemical reactions where it
reduces NAD+ to NADH, produces FADH2 and CO2, and ends with the
reconversion to citrate, thus starting the next iteration of the cycle. The NADH
and FADH2 are then converted into ATPs via oxidative phosphorylation. Thus,
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Figure 3.2: Abstracted cellular network of metabolic flexibility in the adipose tissue. The
network consists of different pathways and processes, which are grouped together into five
major, colour coded categories: (i) green for glycolysis, (ii) orange for fatty acid S-oxidation,
(iii) yellow for fatty acid synthesis, (iv) cyan for TCA cycle, and (v) magenta for regulators
of metabolic flexibility.

by consuming Acetyl-CoA, the cycle produces cellular energy in the form of
ATPs and replenishes NADH concentrations in the cell. The TCA cycle can be
viewed in detail at WikiPathways [16] (Pathway ID: WP78 [18]), and is shown
as the cyan module in Figure 3.2. Glucose or fatty acids are consumed upstream
of the TCA cycle for the generation of Acetyl-CoA, but are regulated by the TCA
cycle downstream as well, forming the basis of metabolic flexibility.

Glucose uptake and oxidation

Glucose is the most readily utilisable resource for the production of Acetyl-CoA
for the TCA cycle. The process starts with the uptake of glucose into the cell,
which can be insulin-dependent via the SLC2A4 (also known as GLUT4)
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glucose transporters, or insulin-independent via the SLC2A1 (also known as
GLUT1) transporters. Glucose is then phosphorylated by phosphofructokinases
(PFK1 and PFK2) and converted into pyruvate, a precursor to Acetyl-CoA, via
glycolysis in the cytoplasm. PFK1 itself is composed of four subunits consisting
of three subtypes; PFKL (liver type), PFKM (muscle type), and PFKP (platelets
type), the combination depending on the tissue [1]. The pyruvate converted
by the PFKs is then transported into the mitochondria by the mitochondrial
pyruvate carriers (MPC1 and MPC2), where it is converted to Acetyl-CoA via
the pyruvate dehydrogenase complex (PDC) [19]. The complete pathway
including intermediate metabolites and enzymes is available at WikiPathways
(Pathway ID: WP534 [18, 20]), with the abstracted pathway shown as the green
module in Figure 3.2. Interestingly, PFKs are allosterically inhibited by citrate, a
primary component of the TCA cycle, when the citrate is transported into the
cytoplasm via the citrate carrier (SLC25A1) [21, 22].

Fatty acid S-oxidation

After glucose, fatty acids, usually in the form of triglycerides, are the preferred
source to generate energy via cellular oxidation. The triglycerides are first
processed by lipoprotein lipase (LPL) outside the adipocytes to yield glycerol
and separated fatty acid chains after which the fatty acids are taken up into the
cell by fatty acid transporters such as CD36 [23, 24]. The fatty acid chains are
converted into Acyl-CoA by Acyl-CoA synthetase family of enzymes, which
is then processed further by various enzymes yielding multiple Acetyl-CoA
molecules per fatty acid chain (increasing the yield of the TCA cycle per gram
of fatty acid) [23, 24]. The rate-limiting step in S-oxidation is controlled by
hydroxylacyl-CoA dehydrogenase (HADH) for small- and medium-length
fatty acids. However, in the adipose tissue, the rate limiting step is the transport
of Acyl-CoA into the mitochondria after the breakdown of long-chain fatty
acids, conducted by carnitine palmitoyltransferases (CPT1A and CPT2) [25].
It has been shown that citrate from TCA cycle can escape into the cytoplasm
from the mitochondria, where it is converted to Acetyl-CoA by ATP-citrate
lyase (ACLY), which can then be converted to Malonyl-CoA by Acetyl-CoA
carboxylase (ACACA). Malonyl-CoA is known to restrict the uptake of fatty
acids into the mitochondria by inhibiting CPT1A, thereby redirecting fatty acids
towards esterification and storage, and creating a feedback mechanism from the
TCA cycle [1]. The complete pathway of fatty acid S-oxidation can be viewed in
WikiPathways (Pathway ID: WP143 [1, 26]), and the abstracted representation
is shown as the orange module in Figure 3.2.
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3 Cellular Network of Metabolic Flexibility

Energy storage in the adipose tissue

Excess energy is stored in the form of fatty acids by the conversion of
Acetyl-CoA into fatty acids by fatty acid synthase (FASN) and stearoyl-CoA
desaturase (SCD) [27]. This conversion can be in response to both higher
presence of glucose and the resultant higher output of the glycolytic pathway,
and thus the previously mentioned Malonyl-CoA mediated esterification.
FASN utilises both Acetyl-CoA and Malonyl-CoA for the production of fatty
acids in the cytoplasm, which can then be desaturated by SCD and stored
as triglycerides. The cytoplasmic Acetyl-CoA can also be provided by the
aforementioned cytoplasmic citrate via its conversion by ACLY. These fatty
acids are then either stored as fat droplets in the adipocytes, or are converted
into free fatty acids and excreted to be transported to other tissues and organs
via plasma albumin [28]. The detailed pathway of fatty acid biosynthesis is
available at WikiPathways (Pathways IDs: WP357 [29]), whereas the yellow
module in Figure 3.2 shows the abstracted representation. Recent studies
have cited adverse effects of high quantities of dietary fructose as it has been
shown that it promotes de novo lipogenesis, contributing to higher circulating
triglycerides, and thus obesity associated chronic diseases [5, 30]. Whether
this contribution has any effects on cellular metabolic flexibility remains to be
elucidated.

The PDC-PDK regulatory switch

In glucose oxidation, PDC controls the final step of the conversion of pyruvate
to Acetyl-CoA for the TCA cycle, and it has been shown that inhibition of
PDC moves the source of energy production from glucose to fatty acids [31].
PDC is composed of three subunits, E1, E2 and E3. Subunit E1 is composed of
pyruvate dehydrogenase E1 component subunit alpha (PDHA1) and pyruvate
dehydrogenase E1 component subunit beta (PDHB). Subunit E2 consists of
dihydrolipoyllysine-residue acetyltransferase (DLAT) while dihyrolipoyl
dehydrogenase (DLD) comprises subunit E3. Finally, pyruvate dehydrogenase
protein X component (PDHX) anchors the E2 and E3 subunits together,
forming functional PDC. One of the major regulators of PDC is the pyruvate
dehydrogenase kinase (PDK) family of proteins which have been shown to
deactivate the functioning of PDC by phosphorylating it at specific positions
[31]. To date, four PDK isoenzymes (1-4) have been identified [31, 32]. Of these,
PDK2 and PDK4 have been found to be ubiquitously expressed, especially in
tissues and organs with high glucose and fatty acid oxidation rates, for example
adipose tissue, liver, heart and other muscle tissues [27]. The adipose tissue has
been shown to have a dominant expression of PDK4. The myocardium, on the
other hand, expresses PDK1 leading to a stricter regulation of PDC [1]. PDK3
expression is the most restricted, and has been found predominantly in the
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brain, testes and kidneys only [1, 31].

In the adipose tissue, the expression of PDK4 has been shown to regulate
the conversion of pyruvate into Acetyl-CoA by inhibiting PDC activity
[27]. However, PDK4 is allosterically inhibited by pyruvate when in high
concentrations, creating a feedback mechanism [27]. In conditions where
glucose concentrations drop, less Malonyl-CoA is available from the TCA cycle
to mediate esterification of fatty acids, allowing fatty acids to be converted into
Acetyl-CoA via S-oxidation [1]. These effects place the PDC-PDK4 protein
interaction as a substrate switch, effectively changing the energy source from
glucose oxidation to fatty acid p-oxidation. Thus the switch regulates which
energy source to metabolise with regards to the nutrient state (glucose or fatty
acid availability), as well as whether to focus efforts towards energy production
or storage. In addition to pyruvate allosteric inhibition, PDK4 has been shown
to have other allosteric interactions with ATP and NADH inducing PDK4
mediated inhibition of PDC. These interactions are highlighted visually by the
orange dashed box in Figure 3.2.

PPAR signalling and regulatory effects

In addition to the allosteric interactions, PDKs are also regulated
transcriptionally via the transcription factors forkhead box protein O (FoxO),
Peroxisome proliferator activated receptors (PPARs), and estrogen related
receptor & (ERRa) [27]. Of particular interest in the context of the adipose
tissue is PPARy and PPAR7y coactivator 1o (PGCla) expressions as they affect
the transcription of PDK4, improving its expression [33, 34]. PPARy is also a
cellular fatty acid sensor having a subset of free fatty acids as its ligands [27, 35],
and is primarily associated with adipogenesis [33]. PPAR7 is shown as part of
the magenta module in Figure 3.2.

AMPK-mediated override

Under unstressed conditions, either glucose or fatty acids are exclusively
utilised as substrate for the TCA cycle. Recently, however, it has been shown
that under conditions pertaining to energy stress, caused by either nutrient
deprivation, or exercise and physical activity, this substrate exclusivity is
overridden by the AMP-activated protein kinase (AMPK) signalling cascade,
allowing both glucose and fatty acids to be utilised for energy production [1].
This override is possible as AMPK relies on high concentration of accumulated
AMP relative to ATP for its activity. AMPK is a heterotrimeric sensor for
cellular energy homeostasis, consisting of a catalytic component (a1 or #2), and
two regulatory components (B1 or 52; ¥1, 92 or 43) [36]. The subcomponents
al, a2, B1, B2, v1, 42, and 3 are respectively referred to as PRKAA1, PRKAA2,
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PRKABI, PRKAB2, PRKAG1, PRKAG2, and PRKAG3 in Figure 3.2. It has been
shown that under nutrient stressed conditions, AMPK mediated inactivation
of ACACA and indirect activation of PFK removes the inhibition of glucose
oxidation, and allows pyruvate to contribute to Acetyl-CoA formation [1].
AMPXK, its subunits, and ACACA are collectively shown as part of the magenta
module in Figure 3.2.

Mapping gene expressions in metabolic flexibility

Our abstracted cellular network of metabolic flexibility (Figure 3.2) can be
used as a network resource to visualise and analyse expression data for a quick
overview of the expression levels of key factors in metabolic flexibility. To
demonstrate this utility, we process and visualise a baseline and a publicly
available obesity study dataset separately. The cellular network of metabolic
flexibility with the visualised data is provided as Additional File 1 for use as a
network resource. Additionally, we opted to retain the genes/proteins usually
known to have negligible expression in the adipose tissue, in the network to see
if their expression is affected in the obesity dataset.

The log, baseline expression in transcripts per million (TPM) [37] for the
adipose tissue is visualised in Figure 3.3 using the Genotype Tissue Expression
(GTEx) Homo Sapiens baseline datasets from Expression Atlas (Array Express
ID: E-MTAB-5214; [14]). The GTEx project analyses global RNA expression
from RNA-seq data of non-diseased tissue from humans and provides a
reference of baseline measurements of human gene expression and regulation.
The expression trends in the baseline expression correspond to the expression
patterns reported in the studies cited earlier, for example the predominant
expression of PDK4 and PRKAA1 reported in adipose tissue [1, 27].

Figure 3.4 shows the log, fold changes in the cellular network of metabolic
flexibility in obese individuals as compared to lean individuals. For this
visualisation, we used a relatively recent publicly available dataset (GSE55200
[15]) which contains the subcutaneous adipose tissue transcriptomics
(microarray) expression from 7 lean and 16 obese individuals. The original
study collected the tissue samples from lean healthy, metabolically healthy
obese, and metabolically unhealthy obese individuals to examine the differences
in expression between the groups. In the visualisation the metabolic processes
appear to be impaired in the obese individuals compared to lean individuals,
primarily because most genes are being down regulated. The PDC-PDK switch
is also affected in the obese individuals compared to lean, although, PDK3
expression is increased in the obese individuals (while those of other PDKs
are decreased). This seems peculiar considering PDK3 has little expression
as per the GTEx baseline expression dataset, indicating that some signalling

56



<> Process O GenelProtein

Positive Interaction

OMe'anume Log, Gene Expression in TPM
L s ol
<) G %
) /”. - @
o f.;m ot
@ Gartoagaton ;m;
& o @ @
G oo o
rlon Y
""" @;n—‘} i @
DA SEEIA R ¢ 2
5:0 ) @
o &

Figure 3.3: Baseline gene expression of the network in the adipose tissue. Expression is
median log, TPM expression of GTEx Homo sapiens baseline dataset from Expression
Atlas.
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Figure 3.4: Differential expression of the metabolic flexibility network between obese vs
lean healthy individuals. Data shown is GSE55200 from the gene expression omnibus. FC
means fold change.
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or other processes are targeting PDK3 in obese individuals. These signalling
processes targeting PDK3 can then be further explored or extend the network
for mathematical modelling (using quantitative or qualitative data from the
visualised dataset), testing various hypotheses regarding the expression of
PDK3 in obesity, which can then be validated using wet-lab methods. In
addition, the glucose and fatty acid transporters also appear to be affected,
again signalling a possible impairment of the metabolic processes involved with
energy production and homeostasis.

Conclusions

Our abstracted cellular network of metabolic flexibility highlights the key
components involved in metabolic flexibility, providing a resource for directed
pathway and system dynamics analyses in the future. Considering the
complex interplay between the various cellular processes associated with
metabolic flexibility, it is clear that metabolic flexibility is affected in obesity
and associated comorbidities, in particular the PDC-PDK switch governing
the substrate utilisation in cellular respiration. Thus the cellular network
of metabolic flexibility allows us to target various components (enzymes,
biological processes etc.) for further analyses in the context of obesity and the
development of chronic diseases.

Availability of data and materials

The datasets analyses in the study are available at array express and gene
expression omnibus (GEO). Specifically:

e E-MTAB-5214: [https://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-5214] [14]

e GSE55200: [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE55200] [15]
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3 Cellular Network of Metabolic Flexibility

Supplementary Materials

The cellular network of metabolic flexibility is provided as a resource in the form
a Cytoscape session file (Additional File 1). Hosted by Genes & Nutrition at:
https://doi.org/10.1186/s12263-018-0609-3 (7Zip, 42KB)
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4 Logical Modelling of Metabolic Flexibility

Abstract

Background: Metabolic flexibility is the ability of an organism to switch
between substrates for energy metabolism, in response to the changing
nutritional state and needs of the organism. On the cellular level, metabolic
flexibility revolves around the tricarboxylic acid cycle by switching acetyl
coenzyme A production from glucose to fatty acids and vice versa. In this
study, we modelled cellular metabolic flexibility by constructing a logical
model connecting glycolysis, fatty acid oxidation, fatty acid synthesis and the
tricarboxylic acid cycle, and then using network analysis to study the behaviours
of the model.

Results: We observed that the substrate switching usually occurs through
the inhibition of pyruvate dehydrogenase complex (PDC) by pyruvate
dehydrogenase kinases (PDK), which moves the metabolism from glycolysis
to fatty acid oxidation. Furthermore, we were able to verify four different
regulatory models of PDK to contain known biological observations, leading to
the biological plausibility of all four models across different cells and conditions.
Conclusion: These results suggest that the cellular metabolic flexibility depends
upon the PDC-PDK regulatory interaction as a key regulatory switch for
changing metabolic substrates.
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Introduction

Metabolic flexibility is the ability of an organism to switch between substrates
for energy metabolism, adapting to the changing nutritional state and needs
of the organism [1]. In complex organisms, such as humans, the various cells
and tissues utilising either glucose or fatty acids and its derivatives to fuel
metabolism maintain metabolic flexibility. This flexibility revolves around
the tricarboxylic acid (TCA) cycle in oxidative metabolism, where several
biochemical processes interact with each other to use either glycolysis or fatty
acid oxidation to fuel metabolism. Due to various tissues and organs having
different energy requirements, metabolic flexibility in complex organisms also
includes the delicate balance between these tissues and organs in utilising
the correct substrate at correct times, so as not to starve off limited supply of
nutrients critical to the functioning of other organs and tissues [1]. This cellular
and tissue/organ level metabolic flexibility works collectively to manage the
nutrient state and needs of the organism, and by design enforces the utilisation
of a single substrate on the cellular level. Recent studies have found impaired
metabolic flexibility to be associated with obesity and related co-morbidities,
chiefly type 2 diabetes mellitus and cardiovascular diseases [2—4].

In a recent review [5], we explored the various cellular processes involved
in maintaining cellular metabolic flexibility in the adipose tissue. The two
major energy production mechanisms, glycolysis and fatty acid oxidation, are
tied to the TCA cycle — glycolysis through the production of pyruvate and
its conversion to acetyl coenzyme A (acetyl-CoA), and fatty acids through
their breakdown to acyl coenzyme A and transportation into the mitochondria
through the carnitine transport mechanism for eventual conversion to
acetyl-CoA. This acetyl-CoA is converted to citrate, which starts the TCA cycle
converting adenosine monophosphate (AMP) to adenosine triphosphate
(ATP) and oxidised nicotinamide adenine dinucleotide (NAD+) to its reduced
form NADH, improving the energy state of the cell. Excess energy, in the
form of citrate escapes to the cytoplasm from the mitochondria, where it
shuts down glycolysis and/or fatty acid oxidation and contributes to the
re-synthesis of cellular fatty acids. Some additional cellular processes also
assist in the regulation of cellular metabolic flexibility, namely the adenosine
monophosphate-activated protein kinase (AMPK) signalling cascade and the
peroxisome proliferator-activated receptor gamma (PPARY) nuclear receptor
mediated transcriptional regulation [5].

In another study of ours [6], we used published data to generate clusters
of correlated genes preserved in the majority of individuals that participated
in a weight loss study [7]. We observed that one of the generated clusters
was primarily involved with the upstream regulation of the TCA cycle. This
observation suggests additional links between the regulation of cellular
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metabolic flexibility and obesity related co-morbidities, considering that weight
loss is the predominant method of countering obesity and its ill effects. In our
review [5], we also highlighted an inhibitory regulatory interaction directed
from pyruvate dehydrogenase kinase (PDK) to pyruvate dehydrogenase
complex (PDC) as a key nutrient switching mechanism between glucose and
fatty acids, especially since we observed it to be affected in obesity.

Based on these observations, we hypothesise that this regulatory interaction,
termed by us as the PDC-PDK regulatory switch, is a key regulator of cellular
metabolic flexibility. As such, we focused on the changing of the metabolic
substrate in response to the PDC-PDK regulatory interaction in this study.
We have used logical modelling (i.e., a predicate logic based modelling
framework) to construct a regulatory model to test this hypothesis, and show
how the various perturbations designed to derail cellular metabolic flexibility
are propagated through the malfunctioning of the PDC-PDK regulatory
switch. We opted to use logical modelling, as opposed to more complex and
complicated quantitative modelling primarily because of the high resolution
of data required to accurately model cellular processes quantitatively [8].
Molecular interactions in the cell, such as protein associations, occur rapidly
at rates from less than 10° M~1s~! to greater than 10° M~!s~! [9] and require
specialised experiments and lengthy simulations to determine accurately [10].
Many of the cellular interactions that we modelled in this study currently have
little-to-no accurate in vivo measurements available on smaller time scales at
which they occur to properly construct and train a quantitative regulatory
model. These interactions include, but are not limited to, protein-protein
interactions, site-specific phosphorylation, allosteric interactions, chemical
associations and dissociations. As logical modelling does not rely on material
and spatiotemporal quantification of entities, it has been successfully applied
previously in scenarios with sparse data availability [8, 11-13].

Materials and methods

We applied a well-established pipeline of logical modelling and analysis of
biological pathways and networks using discrete/qualitative models [11, 14-16].
The pipeline started with the construction of the biological regulatory network,
after which its parameters were defined via logic circuits (which can also
be represented in a tabulated manner). Collectively, the network and the
parameters constitute a single model, with multiple parameter sets representing
distinct models of the same regulatory network. Using the parameters, a new
network called a state transition graph (STG) was constructed, representing all
possible behaviours of the regulatory network in the discrete state space. This
network was then further analysed for relevant biological behaviours, both for
system verification and for predictions. Figure 4.1 represents the overview of
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Figure 4.1: Workflow of the methodology. Biological processes and their known

observations were extracted from literature. These processes were then used to construct
the regulatory network with the logical parameters selected based on the biochemical
reactions and known interactions. The regulatory network then underwent system
verification where it was tested to check if it could exhibit known biological observations
and behaviours or not. If the verification failed, then troubleshooting was performed by
checking the model for errors, changing the system definitions extracted from the literature,
and/or checking if the known observations were in conflict with the system. If the system
verification passed, then the dynamics generated by the model were analysed for biologically
meaningful behaviours.

this methodology, and we have used a toy example to illustrate the procedure
step-by-step in the subsequent sections.

Logical Modelling

In logical modelling, the model represents a system by using discrete values
of 0 and 1 for OFF and ON states of the entities comprising the system. The
dynamics of the system are then defined by step functions that change these
values. In our study, we have employed the René Thomas Kinetic Logic
formalism [17] and refer to the work of Paracha et al [14] for the mathematical
definitions and constraints of the formalism. Of note is the distinction that
we defined 1 as availability and 0 as unavailability of an entity in this study.
This availability and unavailability, however, does not imply any concentration
of the said entity, only whether the entity is able to perform its functions
or not. We used this interpretation primarily to model allosteric inhibitory
interactions which are otherwise difficult to model in a concentration-based
interpretation (since the concentration-based interpretation would imply that
the allosteric inhibition and allosteric activation always decreases and increases
the production of the target entity respectively, which may not always be the
case in reality). In the following sections, we show the modelling and analysis
of a toy example to ease the reader into the application of the formalism.
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4 Logical Modelling of Metabolic Flexibility
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Figure 4.2: Step-by-step analysis of the toy example. a) The regulatory network of the toy
example. P1 and P2 activate P3, whereas P1 inhibits P3. b) The state transition graph
(STG) of the toy example. c) The hierarchical transition graph (HTG) of the toy example.
d) The STG of the toy example with P1 showing ectopic activity. e) The HTG of P1
ectopic activity. f) The STG of P1 ectopic activity when the system is initialised with all
entities as active (i.e. at level 1). The STGs and HTGs were generated using GINsim [18].

Regulatory Network

In the toy example, we have a regulatory network consisting of three entities, P1,
P2 and P3. P1 and P3 have a reciprocal relationship where P3 is an activator of
P1, and P1 the inhibitor of P3. An activator implies that the source entity has a
positive effect on the concentration and/or activity of the target entity, whereas
an inhibitor has a negative effect. We also see P2 as an activator of P3, and by
extension, having an indirect effect on the activity of P1 mediated via P3. The
regulatory network for the toy example is shown in Figure 4.2a. One constraint
in the René Thomas formalism is that the maximum discrete level attainable by
an entity is constrained by the total number of its target entities [17]. In the toy
example, all three entities have a single target entity, and are thus constrained to
a maximum discrete level of 1 each.
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Table 4.1: Logical parameters of the toy example. The format used here represents the
presence of respective entities in the system when they are listed in the parameter set.

Entity Parameter Set Target Value

Pl %P}?)} !
P () 0
{} 0
P :
{P1, P2) 0

Logical Parameters

As multiple entities can affect the same target entity simultaneously, a set
of logical parameters was selected which define the rules and precedence
governing the evolution of the target entities in the network. These logical
parameters are based on the behaviours observed, measured or inferred using
data and experiments. In the toy example, we define the logical parameters
based on the interactions that we have in the regulatory network,

1. P2 is the activator of P3.
2. P3is the activator of P1.
3. P1 is the inhibitor of P3.

We see that the logical parameters for P1 are trivial as it has only one activator
and no inhibitor. Generally, in the absence of their activators, the entities
are assumed to degrade over time. Thus, P1 would be reduced to level 0 in
the absence of P3, whereas P2 would reduce to 0 as its activator has not been
modelled in the regulatory network. It is also possible to assume an implied
activator that would activate P2, but generally, such assumptions are made
only if an inhibitor of the entity in question has been explicitly modelled in
the regulatory network to balance the activity of the said entity. Since we do
not have any such an inhibitor for P2 in the regulatory network, we assume
otherwise. Lastly, the logical parameters for P3 are non-trivial since we have
both an activator (P2) and an inhibitor (P1) that can act simultaneously on P3.
Here we model a precedence for the inhibitor, and assume that P3 would always
be inhibited by P1 whenever P1 is present in the system, otherwise P3 would
rely on P2 to become activated. These parameters are tabulated as Table 4.1.
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4 Logical Modelling of Metabolic Flexibility

State Transition Graphs (STGs)

The logical parameters govern the behaviour of the regulatory network, from
which it is possible to generate a graph of all possible behaviours. This graph
is called a State Transition Graph (STG), consisting of states (nodes) and
transitions (edges). Each state represents a particular configuration of the
complete regulatory network, where a configuration is defined as a unique
combination of the discrete levels of the entities of the regulatory network.
Thus, any two states would have a different discrete level for at least one
entity. The maximum number of states is defined by the formula [vl", where
Ivl represents the maximum discrete level plus 1 (essentially the total number
of levels available for a given entity), and n represents the number of entities
having that level. In the toy example, this formula would be 23, totalling eight
states, as we can see in Figure 4.2b.

The transitions represent the changes in the discrete levels of the entities,
and thus the transitioning of the regulatory network from one configuration
to another. The transitions are constrained by the logical parameters, and can
only exist between two states if the source state satisfies the discrete levels of
the target state through the logical parameters. This imparts directionality to
the behaviours represented in the STG, generating cyclic and acyclic paths in
the graph. A behaviour can then be defined as a path in the STG, essentially
a series of states connected by transitions between them. Finally, we utilise
asynchronous transitions, which only allow one entity to change its discrete
level between two successive states. The logical parameters given in Table 4.1
were used to derive the STG of the toy example shown in Figure 4.2b. Each state
is labelled with three numbers, representing the discrete levels of P1, P2, and P3
in that order (for example, state 101 refers to P1 and P3 having level 1, and P2
having level 0).

System Verification

Using the STGs generated by a regulatory network, it is possible to reverse
engineer sets of logical parameters that allow certain known behaviours of
the system to exist in the regulatory network. By extension, this allowed our
modelled system to be verified against known biological observations or to find
logical parameters that satisfy those conditions. We utilised a model checking
technique called computational tree logic (CTL) to identify known behaviours
[19]. CTL allowed us to use predicate logic along with quantifiers to formulate
behaviours, and test which sets of logical parameters allow such behaviours
to exists within their STGs. Specifically, for a given predicate formula ¢, these
quantifiers are;

o AG¢: From a given state, all states (G) along all paths (A) must satisfy ¢
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o AF¢: From a given state, at least one future state (F) along all paths (A)
must satisfy ¢

o EG¢: From a given state, all states (G) along at least one path (E) must
satisfy ¢

o EF¢: From a given state, at least one future state (F) along at least one path
(E) must satisfy ¢

e AX¢: From a given state, all (A) immediate successor states (X) must
satisfy ¢

e EX¢: From a given state, at least one (E) successor state (X) must satisfy ¢

For the toy example, we formulate the CTL formula as,
((P2=1) - EX(EG(P2=1))) N ((P2=1) - EX(EG(P2=0)))

The formula states that when P2 is at discrete level 1, there exists at least one
path from at least one successor state, which maintains P2 at level 1, AND there
exists at least one path from at least one successor state which reduces the level
of P2 to 0 indefinitely. When applied, this formula is tested against all STGs
produced by all possible logical parameter sets for the toy example regulatory
network. Only 2 logical parameter sets out of the total 36 are able to satisfy this
property, one of which is already given as Table 4.1. Additional file 1 provides
the source file for the toy example system verification, and includes the definition
of the network, the logical parameters, and the CTL formula.

Network Analysis

Once the system was verified, we proceeded with the analysis of the behaviours
provided in the STG. The results of such an analysis for the toy example is
visualized in Figure 4.2. The blue shaded states represent a cyclic behaviour
where the system can keep transitioning from one state after the other,
successively and indefinitely. We can also see that the entity P2 maintains its
level 1 as long as the system remains within this cyclic behaviour. As soon as P2
changes its level to 0, the system transitions away from the cyclic behaviour into
several separate acyclic behaviours, all of which led the system to a deadlock
state 000. A deadlock state, also referred to as a stable steady state or fixed point,
is defined as a state in an STG, which has no exit transitions, and implies that the
system gets stuck in this state. The acyclic states are coloured white, whereas
the deadlock state is coloured red in Figure 4.2b. Cyclic behaviours/trajectories
represent periodic or recurring biological processes, such as circadian rhythms,
while acyclic behaviour/trajectories represent one-way propagations, such as
signalling cascades. In Figure 4.2b, we can see that the maintenance of P2 at
level 1 is required to keep the system in a periodic behaviour.
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4 Logical Modelling of Metabolic Flexibility

Hierarchical Transition Graphs (HTGs)

One of the drawbacks of logical modelling is state-space explosion — the size of
the STG increases exponentially with linear increase in the size of the regulatory
network. For example, increasing our regulatory network to four entities
would yield an STG of sixteen states, while six entities would create an STG of
sixty-four states. Subsequently, the STG of larger regulatory networks becomes
very complex, and extremely tedious and error-prone for manual analysis.
However, it is possible to analyse large STGs by finding sub-networks and
patterns (such as strongly connected components (SCCs), essentially linked
cyclic paths) contained within the STG itself. Towards this end, GINsim allows
us to collapse these sub-networks and patterns in the network to generate
Hierarchical Transition Graphs (HTGs) [18, 20, 21]. The collapsed substructures
as then represented as,

e Transient SCC: a node containing a strongly connected component, which
also has outgoing transitions to other components or parts in the HTG.
These nodes are labelled as ‘ct#’ followed by the number of states contained
within, e.g., ‘ct#4” in Figure 4.2c.

e Terminal SCC: a node containing a strongly connected component, which
does not have any outgoing transitions to other components. These nodes
are labelled as ‘ca#’ followed by the number of states.

e Irreversible Component: a node containing states and transitions that do
not have any cycles in them. Such components represent unidirectional
flow in the behaviours being represented by the HTG. These nodes are
labelled as ‘i#” followed by the number of states.

e Rooted Irreversible Component: an irreversible component that includes at
least one state with no incoming transitions. These nodes are labelled the
same as irreversible components, i.e., ‘i#' followed by the number of states.

e Stable State: a node containing a single deadlock state which the system
is unable to exit upon entering i.e., it has no outgoing transitions. These
nodes are labelled as ‘ss-" followed by the label of the state/configuration
itself. For example, the nodes ‘ss-000” and “ss-100" in Figure 4.2c and 4.2d
respectively.

We then proceeded to collapse the acyclic paths into single nodes, and finally
merged all edges between these collapsed nodes based on the edges present
between the respective states in the STG. Figure 4.2c shows the HTG for the toy
example, where the cyclic path has been collapsed to the light blue node “ct#4’,
and the acyclic path has been collapsed to the grey node ‘i#3’, with the deadlock
state represented as its own node ‘ss-000". Thus, the HTG provides a structural
representation of the system by illustrating the connections between various sets
of behaviours found in the underlying STG. In addition, HTGs are by definition
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acyclic due to the collapsing procedure.

Perturbation Analysis

In addition to the HTG, we also performed the perturbation analysis, where we
restricted the parameters of one or more entities to represent knockouts or
ectopic activities. The STG constructed with these restrictions establishes the
propagation of their effects through the rest of the system. Figure 4.2d shows
the STG when entity P1 is restricted to ectopic activity. We can immediately see
that the cyclic behaviour found in the STG in Figure 4.2b is no longer available,
and that the deadlock state has moved from 000 to 100. In addition, its HTG
(Figure 4.2e) shows only two nodes, a rooted ‘i#7 irreversible node, and the
’ss-100" deadlock node. The lack of incoming transitions to the rooted state
shows unique conditions from which a modelled system is able to recover, but
requires external, un-modelled influences/regulation to achieve.

It is possible to couple a perturbation with a defined initial state to fine-tune the
behaviours of the system in response to known restrictions, or predict outcomes
of new restrictions. In Figure 4.2f, we see an STG generated when the initial state
was defined as 111 with the P1 ectopic activity perturbation. The STG shows the
routes available to the system using the logical parameters from Table 4.1 under
the ectopic expression of P1, both of which lead to the deadlock state 100.

Software

Logical modelling, network and perturbation analyses were performed using
GINsim v3.0 [20]. The system verification was done using SMBioNet v3.1 [22].
Cytoscape [23] was used to visualise the networks.

Results

The Regulatory Network of Cellular Metabolic Flexibility

In a review done previously [5], we had explored the pathways involved with
cellular metabolic flexibility and had constructed a network of these pathways
representing cellular metabolic flexibility. This network links both glucose and
fatty acid oxidation with the TCA cycle as energy production methods, along
with fatty acid (re)synthesis as an energy production and/or storage method.
As mentioned previously in the Introduction section, metabolic flexibility at the
cellular level enforces that only glucose or fatty acids are utilised for energy
production at any given time. Exceptions to this enforcement have only been
observed in situations involving high cellular stress and depleted nutrient
conditions, such as in ischemic hearts [1].
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4 Logical Modelling of Metabolic Flexibility

Figure 4.3 illustrates the complete biological regulatory network model.
We have abstracted the larger cellular network of metabolic flexibility from
the review to reduce the number of entities and thus reduce the complexity
introduced by state-space explosion. Our regulatory network consists of ten
entities, namely Glucose, Pyruvate, Pyruvate Dehydrogenase Kinase (PDK),
Pyruvate Dehydrogenase Complex (PDC), Acetyl Coenzyme A (Acetyl-CoA),
Citrate, Malonyl Coenzyme A (Malonyl-CoA), circulating fatty acids, cellular
fatty acids (Fatty Acids), and adenosine monophosphate-activated protein
kinase (AMPK). The interactions and processes represented by the edges of the
biological network are explained in Table 4.2, and we direct the readers to the
original review article [5] for the detailed explanation of the biological pathways
and interactions involved in metabolic flexibility. Additional file 2 also shows a
generic procedure for abstraction/reduction of regulatory networks. For a more
detailed explanation of the reduction algorithm including the formal definitions
and proofs, we refer the reader to Saadatpour et al. [24].

System Verification of the Logical Parameters Governing
Cellular Metabolic Flexibility

The selection of the logical parameters for the regulatory network was done
manually as most of the interactions present in the system are well-studied
biological processes. The exception was the regulation of PDK as it is relatively
less known and does not rely on stringent biochemical reactions, allowing
for multiple regulatory possibilities. What is known is the inhibition of PDK
isoenzymes via pyruvate, and the activation of PDK isoenzymes through
either TCA cycle products or peroxisome proliferator-activated receptor
gamma (PPAR7) triggered by fatty acids in the cytoplasm [5]. Retaining these
interactions, we get six combinations of logical parameters. We selected four
sets of logical parameters for PDK, generating four models of our regulatory
network (the remaining to two sets of logical parameters lead to either no effect
of inhibition, or no effects of activation). These models are,

Model 1: The inhibitor, Pyruvate, always blocks PDK activity when it is present in
the system.

Model 2: The inhibitor, Pyruvate, only blocks PDK activity when at least one of its
activators, Acetyl-CoA (mediating activation via increased BADH and
ATP) or Fatty Acids (mediating activation via PPAR7y), is absent from
the system. Thus, the activators collectively override Pyruvate mediated
inhibition.

Model 3: Acetyl-CoA mediated activation of PDK bypasses Pyruvate mediated
inhibition.

Model 4: Fatty Acid mediated activation of PDK bypasses Pyruvate mediated
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Figure 4.3: Biological regulatory network of cellular metabolic flexibility. The regulatory
network consists of ten entities representing the biological processes involved in cellular
metabolic flexibility. The entities interact with one another through various processes,
abstractly represented here as activation or inhibition interactions. The interactions are
labelled with Roman numerals, and are explained in Table 4.2.
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inhibition.

Figure 4.4 shows the circuit diagram representations of the logical parameters
for each entity, including the circuit diagrams for the four PDK parameter sets.
The tabulated logical parameters are provided as Additional file 3. The four
models were then tested in SMBioNet [22] for system verification and parameter
selection. The following biological properties were tested,

e Glucose Oxidation: Ensuring that glucose is oxidised to pyruvate, which
contributes to acetyl-CoA production

e Fatty acid Oxidation: Ensuring that fatty acid oxidation to acetyl-CoA takes
place in the absence of malonyl-CoA

e Known PDK interactions: Ensuring that PDK inhibits glucose oxidation,
allowing fatty acid oxidation to take place

e Absence of PDK: Ensuring glucose oxidation resumes in the absence of
PDK, creating malonyl-CoA
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4 Logical Modelling of Metabolic Flexibility

Table 4.2: Edge list and explanation of the interactions in biological regulatory network in
Figure 4.3.

Edge Label Interaction Explanation

i Represents the process of glucose uptake and its multi-step conversion
via various enzymes to Pyruvate [25, 26]
ii Represents the allosteric inhibition of the PDK enzymes by Pyruvate
[27].
iii Represents the inhibition of PDC by PDKs via site-specific
phosphorylation [1, 27].
iv Represents the involvement of PDC in converting Pyruvate into
Acetyl-CoA via decarboxylation [25, 26].
Y Represents the consumption of Pyruvate to create Acetyl-CoA via PDC
mediated decarboxylation [28].
vi Represents the allosteric activation of PDKs via NADH and ATP
produced during the TCA cycle fuelled by Acetyl-CoA [1].
vii Represents the conversion of Acetyl-CoA to Citrate in the
mitochondria, part of which is transported into the cytoplasm
[29, 30].
viii Represents the inhibition of phosphofructokinases (PFKs) by cellular
Citrate, thereby inhibiting the production of Pyruvate from Glucose
[31, 32].
ix Represents the conversion of Citrate to Malonyl-CoA through the
Acetyl-CoA carboxylase 1 (ACACA) mediated carboxylation [1].
X Represents the utilisation of Malonyl-CoA for fatty acid synthesis [29,
30].
xi Represents the reconversion of Citrate to Acetyl-CoA in the cytoplasm

to be used for fatty acid synthesis alongside Malonyl-CoA [29, 30].

xii Represents the breakdown of fatty acids to Acyl-CoA, transport into
the mitochondria via the carnitine transport process and conversion to
Acetyl-CoA for the TCA cycle [33, 34].

xiii Represents the inhibition of the carnitine transport process by
Malonyl-CoA, thereby affecting Acetyl-CoA production [1].

xiv Represents the negative effect of Acetyl-CoA on AMPK activity via
higher ATP and lower AMP concentrations [1, 35].

XV Represents the inhibition of Malonyl-CoA production by the AMPK
mediated inhibition of ACACA [1, 35].

xvi Represents the increased activity of PDKs by cellular fatty acids

via Peroxisome Proliferator-Activated Receptor gamma (PPARY)
signalling [27, 36-38].

xvii Represents the uptake of circulating fatty acids into the cell [39, 40].

xviii Highly abstracted representation of circulating fatty acid regulation
outside the cell.

xix Highly abstracted representation of circulating glucose regulation

outside the cell.
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Circuit Diagrams of the Logical Parameters
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Figure 4.4: Circuit diagrams of the logical parameters for the regulatory network of cellular
metabolic flexibility. a) The circuit diagrams representing the entities other than PDK.
Each entity has a single circuit diagram representing the respective set of parameters. b)
Shows the four models of PDK regulation, differing on how the activators (Fatty Acids
and Acetyl-CoA) are able to affect the activation of PDK in the presence of the inhibitor
(Pyruvate). The tabulated logical parameters for all entities are provided as Additional file
3.
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4 Logical Modelling of Metabolic Flexibility

Table 4.3: CTL formulae used for system verification of the regulatory network of cellular
metabolic flexibility.

Property CTL Formula

Glucose Oxidation ((Glucose = 1 A Pyruvate = 0 A Citrate = 0) —
EX(Glucose = 1 A Pyruvate = 1))
N
((Pyruvate = 1 A PDC = 1 A Acetyl-CoA = 0) —
EX(Pyruvate =1 A PDC =1 A Acetyl-CoA = 1))

Fatty acid Oxidation  ((Fatty Acids = 1 A Malonyl-CoA = 0 A Acetyl-CoA = 0) —
EX(Fatty Acids = 1 AMalonyl-CoA = 0 A Acetyl-CoA = 1))

Presence of PDK ((PDK =1 A PDC = 1 A Pyruvate = 1 A (Fatty Acids
0 | Malonyl-CoA = 1) A Acetyl-CoA = 1) —
EF(PDK = 1 A PDC = 0 A (FattyAcids =
0 | Malonyl-CoA = 1) A Acetyl-CoA = 0))
N
((PDK =1 A (PDC = 0 | Pyruvate = 0) A Fatty Acids =
1 A Malonyl-CoA = 0 A Acetyl-CoA = 0) —
EX(PDK =1 A (PDC = 0| Pyruvate = 0) A Fatty Acids
1 A Malonyl-CoA = 0 A Acetyl-CoA = 1))

Absence of PDK ((PDK = 0 A PDC = 1 A Pyruvate = 1 A (Fatty Acids
0 | Malonyl-CoA = 1) A Acetyl-CoA = 0) —
EX(PDK =0 A PDC =1 A Pyruvate = 1 A (Fatty Acids
0 | Malonyl-CoA = 1) A Acetyl-CoA = 1))
AN
((PDK = 0 A PDC =1 A Pyruvate = 1 A Malonyl-CoA =
0 A Acetyl-CoA = 1) —
EF(PDK = 0 A PDC =1 A Pyruvate = 1 A Malonyl-CoA =
1 A Acetyl-CoA = 1))

These biological properties are codified as CTL formulae in Table 4.3, and their
formulation is explained in Additional file 4. All four models of PDK regulation
were able to satisfy these properties, implying that the four logical parameter
sets modelled for PDK are biologically plausible. The SMBioNet source file for
the system verification of the regulatory network is provided in Additional file
5.

Network Analysis of the Behaviours Exhibited by the Models

Since all four parameter sets of PDK regulation passed system verification on
known biological observations, we analysed all four models. The STG (state
transition graph; see Methods section) of each model consisted of 1,024 states,
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and 6,144 transitions between the edges. The only difference between the STGs of
the four models were the transitions between the states governing the regulation
of PDK, which was expected as per the logical parameters. The STG of model 1
is provided in Additional file 6, and shows the size, density, and complexity of
the network and behaviours contained within.

We then proceeded to collapse the four STGs into their respective HTGs
(hierarchical transition graphs; see Methods section), to compare the
behavioural patterns and substructures in the models. We observed that due to
the regulation of Glucose and Circulating Fatty Acids as inhibitory self-loops,
the majority of the states from the STGs, 992 to be exact, are collapsed into
a single node in the HTG with the remaining nodes showing fluctuations
of Glucose and Circulating Fatty Acids without any effect on the cellular
environment. Essentially, the various groups of system dynamics were being
integrated together by the fluctuation of the glucose and circulating fatty
acid input nodes. The self-inhibitory loop on each of the input nodes would
switch them between 0 and 1, thereby linking all different strongly connected
components together to form a single strongly connected component. Although
this behaviour does show how interconnected the biological behaviours are,
it makes the analysis of these behaviours that much complex. To remedy
this situation, we opted to remove the self-inhibitory loops and restricted
the input nodes to the four combinations of 0 and 1 to see how the system
behaves for these particular input conditions. The only difference is that the
edges that connected the pairs of states differing in only the level of either
glucose or circulating fatty acids are no longer connected due to the absence
of the self-inhibitory loop governing the change in level, neatly dividing the
previously large 1,024 state STG into four smaller 256 state STGs for detailed
analysis. We then proceeded with comparing the HTGs of each model with the
respective input combination discussed below. Figure 4.5 shows the HTGs of
Model 1 for all four input combinations.

Input 1: Glucose only

This input combination models the availability of circulating glucose and the
unavailability of circulating fatty acids. All four models of PDK regulation
collapse the STG into a two node HTG containing all 256 states pertaining to
this input combination. The root node is an irreversible component that does
not contain any incoming edges, and consists of either 31, 33, 29 or 39 states for
models 1, 2, 3 and 4 respectively. This root node shows a situation from which
the system is able to recover to stable behaviours, but is unable to return to the
original situation (hence the irreversible component). The remaining states
are collapsed into the leaf node, which represents a terminal SCC. The system
can remain in the terminal SCC indefinitely, following the cyclic behaviours it
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4 Logical Modelling of Metabolic Flexibility

Hierarchical Transition Graphs of Model 1
One each for the four input conditions . ,,7,,~©
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Figure 4.5: Hierarchical transition graphs (HTGs) of Model 1. Each node is labelled with
a set of letters denoting the type of the node, followed by the number of state that node
is representing. For states having the same type and number of states, an added number
in parentheses is added to the name to differentiate them. The size of the node represents
the number of states contained within the node. The irreversible components (‘i#’)
represent states which do not contain any cycles or homoeostatic behaviours. The strongly
connected components (‘ct#' and ‘ca#t’) represented cyclic or homoeostatic behaviours.
The deadlocked state (‘ss-') represents a single state where the system dynamics seize to
function. The nodes and edges in cyan represent the nodes and edges which are conserved
in all four models of PDK regulation. The HTGs of the remaining models 2, 3 and 4 are
provided as Additional file 7.
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represents. In case the input conditions change, the system would then be able
to move to complementary state in one of the HTGs representing the new input
combination.

Input 2: Both Glucose and Circulating Fatty Acids

In this input combination, both glucose and fatty acids are available for cellular
metabolism. Models 1, 2 and 3 generate a four node HTG each, all consisting
of two irreversible components (one of which is a root node), and two SCCs
(one of which is a terminal SCC). Model 4 generates ten nodes, consisting of
five irreversible components and five SCCs. We observed that the smaller HTGs
of the first three models represent very similar sets of dynamics because the
logical parameters for these models tie the regulation of PDK completely or
partially to the TCA cycle. In model 4, this dependency is nullified as the Fatty
Acid mediated activation via PPAR signalling is able to bypass the TCA cycle.
This results in stable cyclic behaviours in the terminal SCC untying from each
other and dispersing into smaller groups of cyclic behaviours, accompanied by
irreversible components. However, the non-terminal SCC remains the same as
those of models 1, 2 and 3. In essence, the larger structure of the HTGs remains
intact.

Input 3: Circulating Fatty Acids only

In this input combination, only circulating fatty acids are available for
metabolism. All four models show strong divergence in their respective HTGs,
with different types, number, and sizes of nodes. The only conserved pattern
in the HTGs is the terminal SCC, along with three more non-terminal SCCs
leading to the terminal SCC. This sub-network maintains both the number of
states, as well as the edges between the respective SCCs across all four models,
suggesting that although the change in PDK regulation has a strong effect in the
upstream behaviours in the HTGs, the system converges to the same behaviours
and patterns.

Input 4: No Glucose or Circulating Fatty Acids

This input combination represents an extreme scenario where neither circulating
glucose nor circulating fatty acids are available to fuel metabolism. As such, the
system moves towards cell death, which can be seen as the only deadlocked state
(also known as stable state) in the all four HTGs, labelled as ‘ss-0001000010".
Models 2, 3 and 4 show very similar behaviour patterns in terms of the node
types and the edges between them, whereas model 1 shows some behaviours as
separate nodes instead. However, as with the previous input combination, this
one also has a sub-network conserved between all four HTGs consisting of an
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SCC, an irreversible component, and the deadlocked state.

Perturbation of Regulatory Components for Impact Propagation

In the perturbation analysis, we opted to perturb the non-metabolite inhibitors
of the regulatory network to either ectopic or knockout levels to observe
how their effects propagate through the system. The reason for selecting
non-metabolite inhibitors is that the metabolite inhibitors are derived from
the metabolic processes themselves, thus perturbing those would create a
self-fulfilling prophecy in terms of gauging the effects of the regulators on
cellular metabolic flexibility. The only two entities in our regulatory network
fulfilling this criterion are PDK and AMPK.

We started with perturbing PDK to knockout level by restricting it to level
0. We then initialised the system with all entities at level 0 and tested it with
all four input combinations. We observed the same behaviours as those in the
network analysis for all input combinations, except for when both circulating
glucose and circulating fatty acids are available for metabolism. For this input
combination, we observed that when PDK is locked to level 0 the STG shows
that the Acetyl-CoA is derivable from both glucose and fatty acid sources
simultaneously, contrary to the known biological properties which were also
checked via CTL model checking. When we allowed the system to change the
PDK level to 1, we immediately observe only fatty acid driven Acetyl-CoA
production.

We then proceeded to test PDK at ectopic level by restricting it to level 1 and
testing again with the four input combinations (while the remaining entities
of the system are initialised at level 0). We observed that, like previously, the
behaviours were similar to those observed in the network analysis except for
one input combination, this time it being the availability of circulating glucose
and the absence of circulating fatty acids. The STG of this combination showed
that there was no Acetyl-CoA production as the ectopic activity of PDK was
barring Pyruvate conversion to Acetyl-CoA, and there were no available fatty
acids to fuel metabolism. When we allowed the system to change the PDK level
to 0, glucose driven metabolism resumed.

Lastly, we perturbed AMPK using the same method used for PDK. We did
not observe any changes when AMPK was restricted to level 0. However, when
restricted to level 1, we observed that changes in the behaviours generated when
both the circulating glucose and circulating fatty acids are available. For this
input combination, the ectopic activity of AMPK led to a fatty acid preferred
metabolism, which, in turn, led to ectopic PDK levels, leading solely to fatty acid
driven metabolism, instead of any switching behaviour. Here, we observed that
AMPK perturbation still acted through PDK mediated regulation.
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Discussion

In this study, we have utilised a logical modelling and network analysis
workflow to assess the hypothesis of the PDC-PDK regulatory switch being
a key regulatory mechanism behind cellular metabolic flexibility. We start
with the construction of the regulatory network by abstracting the cellular
network of metabolic flexibility reviewed earlier [5]. The regulatory network,
consisting of ten entities and nineteen interactions, covers both the glucose
and fatty acid oxidative metabolism pathways, merging them with the fatty
acid synthesis pathway along with AMPK and PPAR7y signalling pathways.
The selection of the logical parameters for all but one of the entities was
relatively straightforward as the biological processes being represented have
been well studied [25, 26, 29, 34]. The remaining entity, PDK, had four possible
sets of logical parameters as it has competing activators and inhibitors in the
regulatory network. As opposed to other entities, the competitive regulation of
PDK is difficult to decipher because the interactions are not direct outputs of
biochemical reactions. On top of this, various regulators of PDK have different
intensities of regulations for the four PDK isoenzymes in different tissues
[41].

The interactions in the regulatory network are both simplified and abstracted
so we relied on system verification using model checking to test four possible
logical parameter sets for PDK regulation. CTL formulae were used to formulate
both oxidative metabolisms and the known behaviours of the PDC-PDK
regulatory interactions. The model checker, SMBioNet [22] verified all four
logical parameter sets of PDK to contain the formulated known behaviours,
leading us to proceed further with four models differing on the regulation of
PDK. The verification of all four logical parameter sets shows the biological
plausibility of the four different types of PDK regulation, in line with the
multiple intensities and tissue specific regulation discussed in [41]. In addition,
the various STGs and HTGs generated by the four models show that the system
eventually settled into very similar dynamics for the different sets of inputs,
again supporting the biological plausibility of the four models. The STGs and
HTGs differed only in the upstream regulation of the dynamics because of
the difference in PDK regulation. However, the simplicity of the abstraction
used in our regulatory network, both in terms of representing the four PDK
isoenzymes as a single entity as well as merging the various regulations (such
as acetyl-CoA, NADH and ATP mediated activation of various PDKs into a
single edge), limits our model to being non-tissue specific. This limitation also
affects the elucidation of the contexts involved and/or required by the four
models to exhibit the behaviours presented in this study. As the base model
itself is not completely tissue specific, it is possible that these four models
broadly represent different paths of metabolic flexibility in different tissues.
However, it is equally likely that these four models can exist in the same tissue
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but at different times because of other effects not modelled in this study (such
as epigenetic effects over time).

As an additional verification step, we constructed the larger cellular metabolic
flexibility network from our review [5] in the software GINsim, consisting of
63 entities and 81 edges. This network included one modification from the
network depicted in our review — two inhibitory edges, one from ATP to AMP
and the other from NADH to NAD+, were added to account for their cycling in
the cell. We then proceeded to find the deadlocked states in the larger network
to compare with the network we had manually constructed in this study. We
found that the larger network generated only one deadlocked state. However,
comparing only the ten entities modelled in the network in this study, we found
that the levels of these ten entities were the same for both deadlocked states. We
also used the reduction tool offered in GINsim that computationally reduces
a model. We reduced the larger network, deselecting the ten entities found in
our manually constructed model in this study, making the reduction algorithm
preserve them. The reduced model generated by GINsim consisted of eleven
entities, with the additional entity being the node for TCA cycle. This reduced
model also generated a single deadlocked state, as was expected because the
reduction algorithm preserves the mathematical constraints in the model. This
deadlocked state only showed two entities deadlocked at level 1, PDC and
AMPK, the same as the ones from our manually constructed model (shown in
the “Input 4:” sub-sub-section of the Results section). These comparisons serve
as an alternative verification method for the manual construction of the network
presented in this study. The additional models are provided as Additional file
8.

The perturbation analysis, done by restricting certain components to knockout
or ectopic expressions, allowed us to test the propagation of regulation in the
regulatory network when the negative regulators in the system malfunctioned.
We elected to perturb the non-metabolite negative regulators, namely PDK
and AMPK, because we wanted to test the regulation of the switching of
metabolism from glucose to fatty acids independent of the increase or decrease
in metabolite concentrations implied in logical modelling. The results of the
perturbation analysis reveal that malfunctioning of PDK has a direct effect on
the switching of metabolism, which is in line with our hypothesis. What is more
interesting is that the perturbation of the only other non-metabolite inhibitor
modelled in our regulatory network, AMPK, also propagated its effects through
persistent activation or availability of PDK, providing additional support to
our hypothesis. The results of the perturbation analysis, coupled with the
conserved dynamics in all four models reinforces the hypothesis that the PDK
isoenzymes are a key regulatory element of cellular metabolic flexibility via the
PDC-PDK interaction.
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This propagation of the regulatory effect places the PDK enzymes squarely in
the middle of perturbed metabolism, as can be seen in cancer studies [42, 43]
where PDKs were found to be over-expressed. The reprogramming of cellular
metabolism has been identified as a new hallmark of cancer where the cellular
metabolism of the cancerous cells moves away from complete glucose oxidation
to just glycolysis [44]. In the aforementioned cancer studies, PDK expression
was suppressed via treatment with Dichloroacetate (DCA), an inexpensive small
molecule suppressor, to switch metabolism over to glucose oxidation. Similar
treatments in other studies has shown that the DCA treatment caused apoptosis
in cancer cells [45-48]. However, on the other side of the spectrum, a study
targeting Alzheimer’s disease via rat central nervous system cell line models
found that the overexpression of PDK1 (along with lactate dehydrogenase A)
conferred a resistance to Ameloid B and other toxins, thereby mitigating some of
the mechanisms underlying Alzheimer’s disease progression [49]. When taken
collectively, these studies indicate that the balance of PDK enzyme expressions
play an important role in the health of various cell types, thus, relying on the
cellular metabolic flexibility through the PDC-PDK regulatory interaction. In
addition, this maintenance of cellular metabolic flexibility as well as the tweaking
of the PDC-PDK switch can be further used to supply new drug targets for the
aforementioned ailments and conditions.

In cell types reliant on a single substrate for oxidative metabolism, the role of
the metabolic switch is slightly different, likely to regulate the rate of oxidative
metabolism instead of metabolic flexibility. One example of such cell types are
Endothelial cells which utilise glucose. We took the network resource developed
in our previous study [5] and visualised baseline RNA-Seq expression data for
endothelial cells from the BLUEPRINT Epigenome project [50] (available from
ArrayExpress as E-MTAB-3827). These endothelial cells were extracted from
the umbilical vein during proliferating and resting states (the visualisation is
provided as Additional file 9). We observed that the expression of PDKs is
very low, and no expression of PPARY is taking place, indicating the absence
of cellular fatty acid mediated PPARy signalling. Interestingly, there is
expression of Stearoyl-CoA desaturase 1 (SCD), an enzyme from the fatty acid
(re)synthesis pathway. However, studies have shown that SCD in endothelial
cells plays a vital role in mitigating laminar stress [51, 52], thereby justifying its
expression and indicating the limited role of the PDC-PDK regulatory switch in
such cell types.

In essence, all four models of PDK regulation analysed in this study,
coupled with the network and perturbation analyses, strongly suggest the
PDK mediated inactivation of PDC as a key switching mechanism of cellular
metabolism from glucose to fatty acids, and therefore, a key regulator of cellular
metabolic flexibility. However, the model has its limitations, not least of which
is that logical modelling is time and quantity independent. This means that
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that although our models suggests the PDC-PDK switch as a key regulator, it
does not tell us anything about the intensity and duration of this regulation.
In addition, wet-lab experimentation is still required to validate our findings,
the design of which is difficult in itself since many of the interactions and
regulations modelled in the system happen at extremely short time scales, the
accurate measurement of which is tricky at best. These design constraints
themselves are one of the reasons why quantitative data was sparse and lacking
at the time of this study, resulting in the logical modelling conducted in this
study. While our study focuses on the substrate switching in metabolism and
specifically the enzymatic regulation of this substrate switching, there are
other factors/mechanisms of the regulation of cellular metabolism that are
not considered in our current model. One of these is the ratio of deuterium to
hydrogen in the cellular environment, which has been shown to affect cellular
metabolism [53, 54]. Although this aspect is out of the scope of the current
study, it would be interesting to further investigate its impact on the regulation
of cellular metabolism and metabolic flexibility in future studies.

Conclusion

In this study, we have modelled and analysed cellular metabolic flexibility using
logical modelling and network analysis. The results of our models strongly
suggest that the PDC-PDK regulatory switch plays an important role in the
regulation of cellular metabolic flexibility, revolving around the TCA cycle and
the oxidative metabolism of glucose and fatty acids. The results support the
hypothesis that this regulatory switch relies on the regulation of PDK itself, and
thus PDK regulation acts as the pivot balancing cellular metabolic flexibility
between available nutrients.

Availability of data and material

The  Blueprint  Consortium  data  visualised in  this  study
(Additional File 7) is available from ArrayExpress as E-MTAB-3827
[https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3827/].
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5 Stratifying Cellular Metabolism

Abstract

Obesity is a global epidemic, contributing significantly to chronic
non-communicable diseases, such as type 2 diabetes mellitus, cardiovascular
diseases and metabolic syndrome. Metabolic flexibility, the ability of organisms
to switch between metabolic substrates, is found to be impaired in obesity,
possibly contributing to the development of chronic illnesses. Several studies
have shown the improvement of metabolic flexibility after weight loss. In
this study, we have mapped the cellular metabolism of the adipose tissue
from a weight loss study to stratify the cellular metabolic processes and
metabolic flexibility during weight loss. We have found that for a majority
of the individuals, cellular metabolism was downregulated during weight
loss, with gene expression of all major cellular metabolic processes (such as
glycolysis, fatty acid B-oxidation etc.) being lowered during weight loss and
weight maintenance. Parallel to this, the gene expression of immune system
related processes involving interferons and interleukins increased. Previously,
studies have indicated both negative and positive effects of post-weight loss
inflammation in the adipose tissue with regards to weight loss or obesity and
its co-morbidities; however, mechanistic links need to be constructed in order
to determine the effects further. Our study contributes towards this goal by
mapping the changes in gene expression across the weight loss study and
indicates possible cross-talk between cellular metabolism and inflammation.
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Introduction

Obesity has, in recent years, been classified as a global epidemic. WHO
estimates have shown a steady increase in obesity with trends expected to
continue [1]. This makes obesity a public health concern as it has been linked
to cardiovascular diseases, type 2 diabetes and metabolic syndrome [2—4].
Therefore, weight loss and exercise is encouraged to counter obesity and, by
extension, to prevent the progression of its co-morbidities [5, 6]. A focus in
recent research has been to find the mechanistic links between obesity and
associated co-morbidities by studying the underlying molecular processes
[7, 8]. In one of our previous studies [9], we explored the expression of genes
changing in the subcutaneous adipose tissue over time in response to caloric
restriction. We observed that one of the clusters of co-expressed genes, which
was being differentially expressed or differentially regulated over caloric
restriction, was involved with a number of processes associated with the
tricarboxylic acid (TCA) cycle and cellular metabolism. Interestingly, these
processes are also part of what collectively constitutes the system of metabolic
flexibility — the ability of organisms to switch metabolic substrates depending
on nutrient conditions and needs [10]. In our study, this amounted to switching
between glucose metabolism and fatty acid metabolism as these are the chief
metabolic substrates for the majority of the tissue and cell types in the human
body [11].

Studies have found an association between impaired metabolic flexibility (also
known as metabolic inflexibility) and type 2 diabetes mellitus, cardiovascular
diseases and metabolic syndrome [12-15]. Other studies have narrowed down
the effects of metabolic inflexibility in the adipose tissue on the impairment of
adipokine signalling as well as the clearance of circulating non-esterified fatty
acids (as reviewed in [11] and [16]). Corpeleijn et al showed an improvement
in metabolic flexibility after weight loss, by an increase in fatty acid uptake and
oxidation in skeletal muscles, indicating a positive association between the two
[17, 18]. Yet, several studies also show that formerly obese individuals exhibit
metabolic inflexibility post weight loss in response to high-fat diets [19]. There
is also evidence that individuals may be genetically predisposed to be more or
less metabolically flexible [19] although the extent of this predisposition is not
currently well established.

In this article, we utilise a metabolic flexibility gene set based on cellular
metabolism to cluster transcriptomics and proteomics expression data from
a weight loss study. The purpose of this exercise is to identify and analyse
expression profiles of individuals clustered by cellular metabolism centring on
metabolic flexibility. In our previous studies [9, 20, 21], we have shown how
the cellular regulation of the tricarboxylic acid cycle, as well as the switching
of substrates between glucose and fatty acids have a central role to play in
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obesity and chronic ailments such as type 2 diabetes mellitus and metabolic
syndrome. Capitalising on this work, we curated a list of 291 genes involved
in, or associated with the regulation of, cellular metabolism and substrate
switching. The data was then clustered on samples of the individuals to identify
pathways and processes associated with the change in metabolic profiles.

Materials and methods

Dataset

We used expression data from the “Yoyo study’ [22] (Clinical Trial ID:
NCT01559415, www.clinicaltrials.gov), a human weight loss study exploring
the yo-yo effect seen as subsequent weight regain. The study covers two diets: a
low calorie diet (LCD) of 1,250 kcal/day and a very low calorie diet (VLCD)
of 500 kcal/day. The study design has four time points for data collection: the
first being before dietary intervention (time point 1), followed by one at the end
of weight loss diet (12 weeks for LCD, 5 weeks for VLCD) (time point 2), a
third after a 4-week weight maintenance period (time point 3), and follow-up 9
months later (time point 4). All the participants of the study were Caucasian
with a BMI between 28 kg/m? and 35 kg/m?, aged between 32 and 67 years
old (median age of 51 years). Additionally, the amount of weight lost by the
individuals in both diets was almost the same. For further details, we refer to
the original study publication [22].

Transcriptomics

The Yoyo study has microarray transcriptomics measurements for 46 individuals
for the first three data collection points of the study, with samples from the
subcutaneous adipose tissue of the individuals. The transcriptomics data is
available on Gene Expression Omnibus under ID: GSE77962. The array platform
is Affymetrix Human Gene ST 1.1 arrays.

In our previous analysis [9] we have analysed and normalised the
transcriptomics data where we removed outliers, reducing the number of
individuals to 44. We have also performed background noise correction on the
measurements by removing all genes with median expression equal to or less
than the expression of Y-chromosome genes in female individuals, giving us
measurements for a total of 18,113 genes/transcripts.

Proteomics

The proteomics data from the Yoyo study are from the adipose tissue samples
at time points 1 through 3 using liquid chromatography-mass spectrometry
(LC-MS/MS) [23]. Both the samples and controls were labelled with TMT
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isobaric mass tagging labelling reagent (10plex, Thermo Scientific) and
measured in the Dionex ultimate 3000 nanoflow HPLC instrument. The
mass spectrometry data was then queried against UniProt using Sequest HT
Proteome Discoverer 2.1 (Thermo Scientific) [23]. In this study, we use the
corrected proteomics data (corrected for between and within runs) generated
in the original study, and refer the readers to it for details regarding the
parameters of the data generation. The proteomics data is freely available from
the authors upon request.

Phenotypic measurements

The Yoyo study includes phenotypic and clinical measurements of the
individuals. The anthropometric measurements [22] include sex, age, height,
weight, body mass index (BMI), fat mass, fat-free mass, hip circumference,
waist size, systolic and diastolic blood pressure, and physical activity score
(calculated via the Baecke questionnaire for habitual physical activity [24]).
The anthropometric measurements, apart from age and height, were measured
at each data collection point in the original study.

Likewise, fasting forearm venous plasma [25] concentrations of glucose,
insulin, free fatty acids, triglycerides and total cholesterol levels, and HOMA-IR
index were measured for each data collection point. The adipose tissue
arteriovenous flux measurements [26], however, were measured only in a
subset of individuals (13 of the 38). These measurements were taken at time
points 1 and 3, and included flux measurements for glucose, free fatty acids,
total glycerol, free glycerol, triacylglycerol and lactate, as well as measurements
of total blood flow, plasma blood flow and insulin. An additional measurement
available from the Yoyo study is the s-value, which is a score for weight regain
and/or maintenance defined as the ratio of weight loss maintained at follow up
to the weight lost immediately following intervention. Mathematically, this is
represented as s-value = (Wpy - Wr3)/(Wpy — W) where W, is the weight
of the individual at time point . The phenotypic measurements described here
are also freely available from the authors upon request.

Metabolic flexibility gene list

In a previous study [20], we explored the cellular processes involved in cellular
metabolic flexibility and presented them as a combined network of rate limiting
steps involved in these processes. In the current study, we utilised the network
and processes from this review to curate a list of genes/proteins involved in the
regulation of cellular metabolic flexibility. This list is provided as Additional file
1 and consists of 291 genes/proteins.
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Affinity network fusion

For the clustering of the transcriptomics and proteomics expression data across
time points, we utilise affinity network fusion (ANF) [27]. ANF itself is built
on top of the similarity network fusion algorithm [28]. These methods utilise
multi-omics data to construct clusters of individuals that are more similar to
each other than to others across their data spectrum. ANF is an optimisation
over the original algorithm and incorporates weights for the various sources of
the multi-omics data when constructing the affinity network to use with spectral
clustering.

In our study, we utilised ANF to generate clusters of samples based on the
transcriptomics and proteomics expression data filtered on the genes/proteins
in the metabolic flexibility gene list. 38 individuals were used in the clustering
totalling 106 samples across the three time points; 8 individuals were missing
one measurement each at any of the three time points. The expression data used
by the ANF algorithm consisted of the transcriptomics with 240 genes measured
out of the 291 initially selected, and the proteomics with only 27 proteins. As
the usable proteomics data were much smaller in amount and much larger in
dynamic range compared to the transcriptomics, we opted to weight the two
expression data types as the percentage coverage of the metabolic flexibility gene
list, i.e., 240/291 for transcriptomics and 27/291 for proteomics.

The ANF algorithm also uses the k-nearest neighbour parameter to construct
robust affinity networks. In our study, we tested k = {3, 4, 5, 6, 7, 8, 9, 10}
as the possible nearest neighbour values. In all cases, the algorithm produced
two clusters, with only one sample changing cluster membership from k = 8
onwards. The cluster membership list is provided as Additional file 2. We chose
the clustering at k = 3 for further analysis due to the robustness of the clustering
given that the cluster membership did not change for several increasing k-values
after 3.

Statistical analysis of phenotypic measurements

The means of the various phenotypic measurements of the respective samples
of each cluster were compared using t-tests in R [29], whereas a chi-square test
was used for the comparison of sex. The obtained p-values were corrected for
multiple testing using the Benjamini & Hochberg approach, that controls the false
discovery rate (FDR) [30].

Differential expression analysis

For the differential expression analysis between samples of the clusters at
different time points, we used the whole transcriptomics data set analysed
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via Limma v3.40.2 [31] package in R v3.5.1 [29]. The criteria for defining
differentially expressed genes was |Fold change| > 1.2 and p-value < 0.05 [32].
For differential comparisons between samples from the same set of individuals,
the individual was used as a blocking factor in the linear model fit. For
comparisons between sets with a mixture of unique and repeated individuals,
the correlation between samples from the same individuals was modelled using
the duplicate correlation function in limma.

Gene ontology enrichment

Gene ontology enrichment was performed in Cytoscape v3.7.1 [33] using
the ClueGO app for Cytoscape v2.5.4 [34]. Enrichment was performed for
biological process ontologies (updated: 10-04-2019) with all evidences used
for input except for ‘inferred from electronic annotation” (All_without IEA
checkbox). Furthermore, Gene Ontology term fusion was allowed and pathway
selection was restricted to pathways with p-value < 0.05. All other parameters
in ClueGO remained the same.

Pathway overrepresentation analysis

For pathway overrepresentation analysis, we used PathVisio v3.3.0 [35].
PathVisio is a software that uses expression data to map and visualise various
pathways from the WikiPathways database [36] while also using z-score to
analyse which pathways are overrepresented in the database based on the
mapped expression data. This allows us to focus on pathways in relevant
biological context to infer the meaning behind the expression data. In this
study, the pathway selection criteria used was a z-score > 1.96 (critical score
for 95% confidence interval), a p-value < 0.05 and at least three significantly
changed genes (significance criteria the same as in differential expression
analysis). For a tutorial on PathVisio, we redirect the reader to [37].

Results

Stratification of the metabolic profiles

Using the affinity network fusion (ANF) algorithm for clustering we generated
a two-cluster system with samples across individuals and time points clustered
with each other. The primary purpose of this clustering was to cluster the
transcriptomics and proteomics expression patterns of the 291 metabolic
flexibility related genes and proteins. The clustering thus generated two
expression profiles, with individuals changing cluster membership over the
duration of the study (visualised in Figure 5.1A). Figure 5.1B shows the
respective individuals in each cluster membership pattern found. In this
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subfigure, we can see that at the beginning of the caloric restriction (TP1) the
majority of individuals are in Cluster B compared to Cluster A. Immediately
after weight loss, at time point 2 (TP2), the cluster membership for Cluster A
surges to become larger than Cluster B, with both clusters settling close to even
after weight maintenance (TP3). This indicates that the metabolic profile of a
large number of individuals changed during weight loss with some of them
maintaining that change whereas others reverted to their original profile.

We next compared the phenotypic/clinical measurements between the
clusters with 101 samples instead of 106 due to missing/incomplete data for
two individuals. We identified significant differences in sex, height, BMI, fat
mass, fat free mass, waist size and hip circumference. From the forearm venous
plasma measurements, total cholesterol, insulin, free fatty acids, triglycerides
levels as HOMA-IR index were found to be significantly different between the
clusters. However, none of the adipose tissue arteriovenous flux measurements
were found to be significant post multiple testing correction. Lastly, the s-value,
defined as a value for weight regain and/or maintenance, was also not found to
be significantly different between the two clusters. These results are collectively
provided as Additional file 3.

Differential expression analysis of the 18,113 gene transcriptomics data
between the samples of the two clusters showed that only 1,343 genes were
differentially expressed between the two clusters ([Fold change| > 1.2 and
p-value < 0.05 ). 150 of these differentially expressed genes had an absolute
fold change greater than 1.5, and 28 of those had it greater than 2. The number
of differentially expressed genes have been tabulated in Table 5.1. A gene
ontology enrichment analysis [34] on the 1,343 genes revealed that apart from
the expected metabolic processes (fatty acid and other lipid metabolism,
oxidoreductase activity, chemical homoeostasis etc.) there were processes
related to tissue morphology and inflammatory response also being enriched.
Figure 5.2 shows a pie chart of the gene ontology terms that were enriched.

A deeper look at the differentially expressed genes in the context of biological
pathways (using PathVisio [35] for pathway overrepresentation analysis) also
revealed several metabolic pathways being differentially affected between the
clusters. It appears that the overall cellular metabolism in Cluster A is decreased
across the board; in the pathway overrepresentation results, the majority of the
genes in the electron transport chain, fatty acid biosynthesis, fatty acid beta
oxidation, glycolysis, and citric acid pathways are expressed lower (at least with
a fold change of 1.2) in Cluster A compared to Cluster B. However, these are to
be expected due to the way the ANF algorithm constructed the clusters based
on the 291 metabolic flexibility-, and thus metabolism-related genes. On the
other hand, we observed that pathways associated with the immune system and
tissue restructuring were expressed higher in Cluster A compared to Cluster B.
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Figure 5.1: A) Sankey diagram showing the proportion of individuals changing or not
changing clusters across the time points of the dietary intervention. Eight individuals
had missing samples at different time points and thus, were not clustered at those time
points. These samples are shown as black blocks at the respective time points. B) The
various cluster membership patterns of the thirty individuals observed across the three time
points, as well as the respective number of individuals following said pattern.
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% genes per group

cellular response to chemical stimulus 9.55% **

response to fatty acid 0.17% **

oxidoreductase activity, acting on CH-OH group of donors 0.36% **

oxidoreductase activity, acting on the CH-CH group of donors, NAD or
IADP as acceptor 0.12% ™

drug metabolic process 1.19% **

positive regulation of smooth muscle cell proliferation 0.19% **

cell migration 7.95% **

fatty acid metabolic process 3.61% ** extracellular siructure organization 0.85% **
v P ° nucleic acid metabolic process 4.35% **
o ) positive chemotaxis 0.45%
monocarboxylic acid metabolic process 3.99% **

leukocyte cell-cell adhesion 1.16% **

positive regulation of inflammatory response 1.2% **

transport 5.57% **

myeloid leukocyte activation 6.6% ** \generation of precursor metabolites and energy 1.98% **
regulation of lipid metabolic process 1.33% **

\inflammatory response 1.83% **

chemical homeostasis 2.99% ** 'secretion 6.36% **

. . 'maintenance of location 1.86% **
cellular lipid metabolic process 3.1% ** leukocyte activation 4.23% **

. . . anatomical structure morphogenesis 7.14% **
lipid metabolic process 5.73% phosphate-containing compound metabolic process 4.44% **
regulation of multicellular organismal process 6.29% ** regulation of cell migration 5.42% **

Figure 5.2: Pie chart showing the proportions of genes enriched for each of the gene
ontology term for the differentially expressed genes between Cluster A and B. The

differentially expressed genes were significant at p-value < 0.05 and an absolute fold change
of at least 1.2.

Table 5.1: The number of differentially expressed genes across different groups for absolute
fold changes of 1.2, 1.5 and 2. All counted genes are significant at p-value < 0.05. Cluster
A_st or Cluster B_st: individuals staying in the respective cluster A or B throughout the
dietary intervention. Comparisons 1-5 are illustrated in Figure 5.3

[FC|>12 [FC|>15 [FC/>2

Cluster A - Cluster B 1343 150 28
Comparison 1 1286 178 33
Comparison 2 282 24 1
Comparison 3 897 136 25
Comparison 4 669 75 16
Comparison 5 660 49 4

Cluster A_st - Cluster B_st 2838 460 97
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Figure 5.3: lllustration of the 17 subjects which switched from Cluster B to Cluster A during
weight loss, after which 8 of the subjects reverted to Cluster B. The five comparisons used
to break down and analyse the changes in the gene expression are also labelled.

In particular, Complement C6 and C7, inflammatory interleukins IL1B and ILS,
and matrix metalloproteinases MMP2 and MMP9 were found to be expressed
higher in Cluster A. The differential expression analysis results, gene ontology
enrichment results and pathway overrepresentation results are provided as
Additional files 4, 5 and 6 respectively.

Cluster membership patterns
Cluster membership changers

Figure 5.1B shows the number of individuals in each cluster membership
pattern found. We observed that a total of 17 individuals change their cluster
membership from Cluster B to Cluster A when moving from time point 1 (TP1)
to time point 2 (TP2); 9 of these individuals then stay in Cluster A until time
point 3 (TP3), while the remaining 8 revert to their original cluster. We further
analysed this pattern in the following comparisons (illustrated in Figure 5.3;
numbers of differentially expressed genes provided in Table 5.1).

Comparison 1 We first performed a paired differential expression analysis of
all 17 individuals of this pattern between TP2 and TP1 to see the first changes
that occurred when the individuals changed their cluster membership. A
total of 1,286 differentially expressed genes were found in this comparison at
absolute fold change equal to or greater than 1.2 and p-value less than 0.5. Gene
ontology enrichment of these showed a similar pattern to the gene ontology
enrichment when comparing the two clusters as a whole — the processes
were broadly categorised into metabolic, immune/inflammatory and tissue
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morphology. This is understandable as these changes would be the reason for
these 17 individuals being clustered in Cluster A at TP2 as opposed to Cluster B
at TP1. Similarly, the pathway enrichment results also follow the same pattern
as that of the whole cluster comparison. Genes in metabolic processes such
as fatty acid beta oxidation, electron transport chain complexes, glycolysis,
lipogenesis, gluconeogenesis and amino acid metabolism were down regulated
at TP2 Cluster A compared to when these individuals were in Cluster B at
TP1. Genes involved in inflammation, on the other hand, were found to be
upregulated in the same pattern as the whole cluster comparison.

Comparison 2 We performed a paired differential expression analysis between
TP3 and TP2 for the 9 individuals that retained their new cluster to see what
changes occurred even when the cluster membership did not change. In this
comparison, we found 282 differentially expressed genes. Considering that
this comparison is between the 9 individuals which stay in Cluster A at both
TP2 and TP3, the low number is expected. Consequently, the gene ontology
enrichment and pathway overrepresentation analysis also do not show any
major differences between these samples. Of the minor differences found,
peroxisome proliferator activated receptor gamma (PPARY), fatty acid synthase
(FASN) and stearoyl-CoA desaturase (SCD) were found to be upregulated in
these individuals at TP3 compared to TP2. This is interesting, especially in the
light of our previous studies covering the role of these proteins in metabolic
flexibility. However, the lack of strong results from the two analyses overall
make it difficult to infer the effects of their upregulation concretely.

Comparison 3 We performed a paired differential expression analysis between
TP3 and TP2 for the 8 individuals that changed back to the original cluster to
see what changes occurred when these individuals returned to their original
cluster. In this comparison, we found 897 differentially expressed genes. The
gene ontology enrichment analysis for these genes showed that these were also
tied to cellular metabolic processes, with two immune system related terms
also enriched. Compared to the previous two parts, the individuals in this
analysis showed a reversed trend where the immune system related pathways
were being downregulated at TP3 compared to TP2. The human complement
system pathway and toll-like receptor (TLR) associated pathways showed
downregulation of respective components. The matrix metalloproteinase
MMP9 was also strongly downregulated. On the other hand, upregulated
genes showed an upregulation of metabolism related processes across the
board with lipid metabolism and biosynthesis showing the highest z-scores
in pathway overrepresentation. Sterol regulatory element-binding protein
(SREBP) signalling also showed strong upregulation compared to both TP2 in
these individuals, as well as the previous two parts. Also in contrast to the
previous two parts, as well as the whole cluster differential expression, was the
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upregulation of leptin (LEP) and downregulation of leptin receptor (LEPR).
In addition, glycolysis and gluconeogenesis enzymes were mostly found to be
slightly upregulated.

Comparison 4 We performed a differential expression analysis between the 17
individuals at TP3 to see which changes were retained by these individuals by
the final time point. In this comparison, a total of 669 genes were found to be
differentially expressed genes between 17 individuals, 8 at TP3 in Cluster B and
9 at TP3 in Cluster A. The gene ontology enrichment showed a limited number
of terms, all associated with cellular metabolism. Pathway overrepresentation
showed genes from several immune system related processes, such as interferon
signalling and interleukin signalling to be downregulated. @ Metabolism
associated processes, on the other hand, were found to be upregulated. Overall,
the results of this analysis mirror those of the previous part.

Comparison 5 We performed a paired differential expression analysis between
the 9 individuals at TP3 and TP1 to see the changes in metabolic processes, if any,
between their old cluster at TP1 and their new cluster at TP3. In this comparison,
we observed a total of 660 differentially expressed genes, with the gene ontology
enrichment and pathway overrepresentation results following the same pattern
as that in Comparison 1. The reduction in the number of differentially expressed
genes only affected the intensity of the gene expression and the z-score in the
overrepresentation analysis. Due to this, the pathways results are difficult to
interpret as considerable parts of many pathways have varied expression patterns
between the individuals and high p-values.

Cluster membership maintainers

We also observed that a number of individuals do not change their cluster
membership at all and stay within Cluster A (4 individuals) or Cluster B (8
individuals) throughout the study. The differential gene expression analysis
between individuals staying in Cluster A and individuals staying in Cluster B
yields the largest number of differentially expressed genes, at 2,838, compared
to the previous analyses. Gene ontology enrichment analysis showed a
combination of metabolic, inflammatory and tissue morphology terms that were
enriched. The pathway overrepresentation showed that individuals staying in
Cluster A persistently had a lower overall expression of cellular metabolism
with various enzymes across lipid metabolism, SREBP signalling, mitochondria
electron transport chain, TCA cycle, and glycolysis being downregulated
compared to individuals in Cluster B. Immune system processes, such as
components of the human complement system and interleukin signalling were
found to be upregulated in Cluster A. In addition, matrix metalloproteinases
MMP2, MMP7 and MMP9 were also found to be upregulated in Cluster A.
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The differential expression analyses output, gene ontology enrichments
output, as well as the pathway overrepresentation analysis output for the
aforementioned results are provided as Additional files 4, 5 and 6 respectively.

Discussion

Lowered cellular metabolism

In the study presented in this article, we have analysed transcriptomics and
proteomics expression data of the subcutaneous adipose tissue to stratify the
individuals based on the expression of their genes and proteins involved in
cellular metabolism, to construct metabolic profiles based on the roles of these
genes and proteins in cellular metabolic flexibility. We clustered the samples
of the metabolic flexibility related transcriptomics and proteomics data to
generate two clusters, A and B, which showed marked difference in their
whole gene expression profile. The clustering pattern generated by the ANF
algorithm showed an overall lowered expression of metabolism related genes in
Cluster A compared to Cluster B. Interestingly, a larger number of individuals
started in Cluster B, changed their metabolic profile in response to caloric
restriction and joined Cluster A, and then about half of them reverted to their
original profile. This is likely related to the fact that the individuals in the study
were overweight before dietary intervention, and their response to the caloric
restriction is reflected in them changing clusters. However, it is interesting that
several individuals maintained their new lowered metabolic gene expression
beyond caloric restriction into weight maintenance, although, given the time
period between the data collection points (4 weeks), it is difficult to assess the
long term impact and/or changes in metabolic profile. The phenotypic/clinical
measurements did not show any major difference between the two clusters,
apart from the significant anthropometric measurement of sex, height, BMI, fat
mass, fat free mass, waist size and hip circumference. These are explained
by the clustering pattern that we observe where there is a disproportionate
number of before weight loss samples in Cluster B compared to Cluster A, and
vice versa after weight loss. As most of these anthropometric measurements
are related, and are partially interrelated, their simultaneous significance is not
surprising in light of the clustering pattern. Consequently, we also did not see
any difference in the weight maintenance score (s-values) of the two clusters
either, indicating that the impact of the metabolic profiles built on the metabolic
flexibility related genes is much subtler than we had expected. However, we
did see a significant difference (p-value = ~0.03) in the s-values for the nine
subjects which changed their profile over the course of the dietary intervention
from Cluster B (TP1) to Cluster A (TP2), when compared to the s-values of the
eight subjects which stayed in Cluster B throughout the dietary intervention.
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Increased inflammatory response

Comparing the samples of the two clusters as a whole shows that apart from
the difference in cellular metabolism, expected as the clustering was based
on the 291 cellular metabolism associated genes, the two clusters also show a
difference in immune related processes in the adipose tissue expression data.
Interestingly, the immune system processes, such as interferon signalling,
toll-like receptor signalling and interleukin signalling were expressed higher
in Cluster A compared to Cluster B, while the metabolic processes were being
downregulated in Cluster A compared to Cluster B. The immune system
response in terms of inflammation is associated with obesity [38-42], as such
we find it interesting that immune processes were being upregulated in Cluster
A, compared to Cluster B, especially since there is a larger proportion of TP2
samples in Cluster A (TP2 is the time point immediately after weight loss in
the data). It is possible that, because of weight loss, the adipocytes in the
adipose tissue shrink in size, and thus the adipose tissue samples post weight
loss contain a larger proportion of immune cells as compared to adipocytes.
However, this is unlikely, as the differential expression analysis between
Cluster A at TP3 and Cluster B at TP3 shows a lower immune system associated
gene expression in Cluster B samples compared to those of Cluster A. This
result suggests that the immune system expression is not tied to the relative
proportion of cells in the collected samples; otherwise, the immune system
related gene expression would not have been significantly different between the
two clusters at TP3. However, this is purely deductive reasoning, and a study on
the histological/morphological data of the subcutaneous adipose tissue during
weight loss would be required to conclusively (in)validate this perspective.

Implication in the context of metabolic flexibility

Some recent studies in mice have shown an upregulation of macrophage
related immune activity in the mouse adipose tissue after weight loss [43, 44].
Indeed, a previous report from the Yoyo study data also found leukocyte
integrin gene activity in relation to weight regain post weight loss using a set of
extracellular matrix related genes [45]. These studies, collectively, indicate that
the continued immune activity after weight loss may explain and/or contribute
to the variation seen in the weight regain after weight loss. Other studies cite
persistent low-grade inflammation as a cause for chronic non-communicable
diseases [46—48]. It has also been shown that localised high expression of
tumour necrosis factor (TNF) and interleukin-6 (IL-6) are associated with
obesity induced insulin insensitivity [49]. Given that we know that metabolic
inflexibility is associated with chronic illnesses such as type 2 diabetes mellitus,
cardiovascular diseases and metabolic syndrome [2—4, 50], it is possible that
there exists a link through the persistent low-grade inflammation. This is
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certainly possible as in one of our previous studies [21], we showed how PPARy
plays a role in regulating cellular metabolic flexibility, while it is also known
that PPARY has connections to the immune system [51-53].

As mentioned earlier, we see an increase in immune response after weight
loss and/or weight maintenance in the majority of the individuals of the data
analysed. This observation complicates the interpretation as weight loss
is expected to improve or restore metabolic flexibility, given the reduction
of obesity. Furthermore, based on how the ANF algorithm produces the
clustering, we expect to find at least the metabolic flexibility genes to be
different in the two clusters, introducing a minor, yet inherent bias. In the data
we analysed in this study, we did not have the time scale resolution required
to decipher more concrete links between metabolic flexibility, adipose tissue
metabolism and the immune response. However, our study still provides hints
towards this interaction. From a strictly statistical perspective, a considerable
portion of the differential expression results in this study become insignificant
when adjusted for multiple correction. Although this insignificance has little
impact of enrichment analyses and their results, it still shows that much work
needs to be done in order to untangle these cellular interactions and their
effects. As such, the interplay of these systems, at the very least in the adipose
tissue, needs to be further elucidated in more targeted studies as an important
step towards combatting and containing obesity and associated co-morbidities.
Although we cannot comment on the technology that might be required for
accurately measuring the rate of change of cellular metabolism, perhaps it
might be possible to indirectly infer such a rate using cell line experiments. In
addition, given that the data utilised in this article was a dietary intervention
dataset, it would be interesting to analyse a dataset comparing obese and
lean individuals on the same data types and parameters to observe if any
combination of parameters stand out as phenotypically defining metabolic
inflexibility.

Conclusions

Cellular metabolism and metabolic flexibility have been shown to be associated
with obesity and the development of chronic illnesses such as type 2 diabetes
mellitus and metabolic syndrome. In our study, we clustered gene expression
samples from a weight loss study into two clusters, based on 291 genes associated
with cellular metabolic flexibility. Our analyses showed that the majority of the
individuals had their metabolism associated genes downregulated after weight
loss and weight maintenance, but also had an upregulation of immune system
associated genes. A higher expression of the immune system has previously been
associated with the impairment of metabolism post-weight loss in mice. Our
study suggests a similar pattern in the human adipose tissue, opening the way for
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targeted studies to elucidate the interactions of metabolism, metabolic flexibility
and the immune system in the context of chronic diseases. Furthermore, it was
observed that individuals which had changed their metabolic profiles in response
to caloric restriction (as reflected by the change in Cluster membership from B to
A) had a significant retention of lost weight compared to individuals which had
not changed their cluster membership (i.e., remained in Cluster B).

Data Availability

The expression data analysed in the study is available at gene expression
omnibus (GEO) under accession ID: GSE77962. The proteomics data and
clinical/phenotypic measurements are freely available from the authors upon
request.
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General Discussion

The research presented in this thesis shows the application of systems biology
towards the analyses of complex mechanistic components of biological systems.
These approaches rely on a combination of sources and types of data to model
and study emergent behaviours and properties of complex biological systems.
Naturally, weight loss, obesity and associated chronic illnesses provided the
perfect challenge for the application of these methods, as well as for developing
new pipelines to streamline the analytical procedures. The primary objective
of this thesis is to explore and identify cellular processes being affected during
weight loss as possible targets for future research for personalised treatment of
obesity, and by extension its co-morbidities.

The dynamics of metabolic flexibility

The primary function of metabolic flexibility is to ensure the availability
of nutrients for the various cells and tissues depending on their type and
requirements, given the nutrient state or condition of the organism [1]. This
is achieved by switching between the available energy sources for cellular
metabolism. Generally, the cells will metabolise glucose via oxidative glycolysis
given that glucose is readily available for energy metabolism. Only during
the fasting state, when glucose levels begin dropping, cells switch over to
fatty acid metabolism to retain the limited glucose resource for neurons,
erythrocytes, endothelial cells and other cells that are unable to metabolise
lipids [1]. There have already been several indications to the impairment of
metabolic flexibility in the obese system and associated chronic illnesses, but
the mechanisms of the impairment have not been thoroughly explored. Indeed,
the biochemical processes of oxidative glycolysis, fatty acid oxidation, fatty
acid (re)synthesis, and the tricarboxylic acid cycle themselves constitute the
energy productive core of the cellular metabolic landscape. However, these
processes are strongly affected in the obese system when compared to lean
subjects and healthy adipose tissue baseline measurements, as can be observed
in Chapter 3. Several of the essential enzymes involved in cellular metabolism
are observed to have impaired gene expression in the obese system, especially
the pyruvate dehydrogenase kinases (PDKs) as they showed a deviation from
their expression patterns in the subcutaneous adipose tissue. Interestingly,
these essential enzymes are also affected during caloric restriction and dietary
interventions for weight loss to reduce obesity, as can be observed in Chapter 2,
representing a central role of metabolic flexibility in the familiar environment of
cellular metabolism.

In this landscape of metabolic flexibility and the cellular machinery involved
in the underlying biochemical processes, some parts of the machinery do stand
out compared to others for having a far-reaching effect. These parts were
observed to be the negative regulation of pyruvate dehydrogenase complex
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(PDC) by site-specific phosphorylation done by the pyruvate dehydrogenase
kinases (PDKSs), as elaborately discussed in Chapter 4. Modelling a condensed
form of the cellular metabolic flexibility processes did reveal that perturbations
introduced in the system propagated via this negative regulation, indicating a
possible central role of this negative regulation for regulating cellular metabolic
flexibility. In addition, PDKs are known to be targets of several nuclear
receptors, such as the peroxisome proliferator-activated receptor (PPAR) family
[2], opening them to be affected by extracellular signals, possibly indicating a
mechanistic aspect of inter-organ metabolic flexibility. Furthermore, adenosine
monophosphate-activated protein kinase (AMPK) also plays a regulatory role
in fatty acid oxidation, understandable as AMPK is a known sensor for energy
levels in the cell [1]. AMPK is also known to be involved in inflammation,
indicating a cross-talk between inflammation and metabolic flexibility, at least
on the molecular level.

It is known that chronic low-grade inflammation of the adipose tissue is
a side effect of obesity [3, 4], and it has been shown that inflammation is
reduced post weight loss [5]. Yet, Chapter 5 showed an upregulation of the
expression of inflammation-associated interleukins, toll-like receptors and
tumour necrosis factor in a large number of the samples from the Yoyo dietary
intervention study. The majority of these samples were post weight loss
and/or post weight maintenance. In addition, the majority of the samples that
showed a lower expression of these inflammation-associated genes were from
before the dietary intervention, indicating an interesting finding — it has been
shown in some studies in mice that inflammation was observed after weight
loss [6, 7]. Collectively, the studies and the findings in Chapter 5 indicate a
possible cross-talk between cellular metabolic flexibility and inflammation,
especially considering that the samples in Chapter 5 were clustered based on the
transcriptomics and proteomics expression data for a list of gene and proteins
involved with cellular metabolic flexibility.

Towards a clinical profile of metabolic flexibility

In addition to the lack of mechanistic insights in the functioning and role of
metabolic flexibility in obesity and associated chronic illnesses, a set of clinical
measurements for assessing metabolic flexibility and inflexibility have also been
not clearly defined [8]. Chapter 5 shows two metabolic profiles based on the
expression of genes and proteins involved in cellular metabolic flexibility. Yet,
when these profiles are tested on the clinical measurements available in the Yoyo
study, namely the anthropometric, blood plasma, and arteriovenous adipose
tissue flux measurements, only a few measurements showed any significance
differences between the two profiles. These significant measurements were
height, body mass index (BMI), fat mass, fat free mass, waist size and hip
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circumference — expected as the metabolic profiles on which the clustering
was based had a disproportionate distribution of pre-dietary intervention and
post-dietary intervention samples. None of the metabolites and hormones
measured in the blood plasma and arteriovenous flux measurement of the
adipose tissue showed any significant differences between the two profiles , nor
did the two intensities of caloric restriction.

It is important to note that the metabolic profiles were generated from
samples from a single tissue type — the subcutaneous adipose tissue. Metabolic
flexibility is an interconnected energy and nutrient balancing system that also
integrates the metabolic and signalling processes of several tissues and organs
to maintain nutrient availability throughout the whole organism [1]. Indeed,
a manifestation of this energy and nutrient balance is the cycling of glucose
and fatty acids in the form of the Randle cycle [1]. The metabolic profiles
generated by the subcutaneous adipose tissue only represent one part of the
whole organism-level metabolic flexibility. The possibility of the missing
data, from other tissues and organs of the subjects that underwent dietary
intervention, providing improved results to find significant differences in the
clinical measurements of the subjects cannot be overlooked. One such example
would be data showing inter-tissue signalling and communication through
hormonal and metabolites signalling cascades that can be used to analyse the
interdependence and interactivity of these tissues for maintaining metabolic
flexibility. In addition , given that the data utilised in this article study was
a dietary intervention dataset, it would be interesting to analyse a dataset
comparing obese and lean subjects on the same data types and parameters to
observe if any combination of parameters stand out as phenotypically defining
metabolic inflexibility. These insights show a need for detailed studies, targeting
multiple tissues for multiple types of data to generate a detailed clinical profile
of metabolic flexibility to study its regulation, impairment and effects in the
development of obesity and associated chronic illnesses.

The synergy of multi-omics analyses

In recent decades, life sciences and medicine research have had an explosion
of different subfields pushing the boundaries of science in their own niche
areas. Boosted by ever improving technological innovations as well as
high-throughput data generation capabilities, these fields have fragmented into
focusing on different aspects of the underlying biology — commonly referred to
as ‘-omes’ [9]. However, life does not care for arbitrary lines and boundaries
drawn by scientists, or humans in general. One may focus on the transcriptome
for finding regulatory genes, or the proteome for possible ligands of an enzyme,
or the metabolome for the flux of metabolites, the fact remains that all these
systems work simultaneously in the living cells, building on top of one another
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in an interconnected and interdependent manner. For example, it is quite well
known that gene expression does not always translate directly into protein
expression and activity [10]. Thus arises the need for research and analyses
that draw upon the multiple facets of available data to construct and analyse
complex systems in an integrated manner.

The research presented in this thesis follow a pattern of iterative data source
aggregation. It starts with the exploratory analysis of the transcriptomics data
obtained from the subcutaneous adipose tissue in Chapter 2, expanding into
the realm of known knowledge from databases and literature in Chapter 3,
integrating known knowledge to construct theoretical models in Chapter 4, and
then adding multiple sources and types of data to generate a more refined
picture of metabolic flexibility and its interconnectedness with weight loss,
obesity and inflammation in Chapter 5. This aggregation of data sources results
in a richer and more comprehensive analysis of the complex system being
studied. In essence, there is a growing need to move towards holistic instead of
reductionist analyses to both understand and truly appreciate the complexity of
living systems.

The scalability and analytical power of network
biology

Holistic data analyses require robust frameworks and methodologies to
accommodate the different constraints of each source and/or type of data being
analysed. These frameworks need to be able to represent the different layers
of biological data, from interactions of molecules in biochemical reactions to
interactions between cells, tissues and organs. One successful application to
fulfil these requirements has been that of network biology. Network biology
is the application of the methods and frameworks of graph theory to curate,
visualise and analyse biological systems in an integrated manner [11, 12].
Indeed, the versatility of a network representation to visualise biological entities
and overlay existing knowledge streamlines the analyses and interpretation
of the data, as can be seen in Chapter 2, and 3. The network structure itself
represents a form of data and can be capitalised upon to find groups of
interacting components or infer patterns of behaviours and phenotypes that a
system is exhibiting, as can be seen in Chapter 2 and 4.

A network representation, with biological entities represented as objects
(node/vertices) and their connection represented with a simple line between
them (links/edges), provides both simplicity and adaptability to the framework
simultaneously, allowing multi-scale and multi-level visualisation and analysis
of complex biological systems, as can be seen in the works contained in
this thesis. As such, networks are not only a data format or visualisation,
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but a simplified and elegant model of the underlying system as well,
capable of containing large sets of dynamics and behaviours and providing
new information and connections that are often missed when processing
experimental data.

Methodological challenges faced in this work

One drawback of holistic analyses, however, is that they require large amounts
of generated and meticulously curated data. This problem is exacerbated
when studying humans because of the time and cost requirements associated
with large studies for multi-omics data generation. Furthermore, if the study
requires invasive procedures for sample collection, the ethical constraints and
requirements, although justified, still form barriers. Reducing the number of
subjects involved in studies ameliorates these problems, but then the high
variability found between human subjects is amplified relative to the sample
size. Depending upon the tissue or organ, data from human subjects can be
quite divergent [13]. This problem was observed when the transcriptomics data
from the Yoyo study was analysed in Chapter 1, requiring approaches other
than the standard WGCNA method [14] for gene co-expression analyses.

In addition to high variability, challenges in terms of the lack of data were
also faced in two other aspects. First was missing data from the Yoyo study
where several subjects were not measured at several data points, reducing the
number of available samples and data points to be used in the analyses. It is
possible to infer missing values in the data; however, working with a few
dozen subjects also lowers the confidence of the inferred data considering the
small sample size, thereby forcing a removal of subjects with missing data
from the analyses. These issues warrant closer collaborations between wet-lab
and dry-labs as both stand to gain from one another’s expertise in generating
large amounts of targeted high-quality data and the subsequent feedback of
downstream analyses. Essentially, collaborations should start before, not after,
data generation. Another benefit of these closer collaborations would be the
targeting and collection of the large number of biological parameters of the
biological system, which are often overlooked when doing wet-lab analyses,
but are crucial for a detailed in silico representation and analysis of the complex
biological systems.

Lasting thoughts

Living organisms are a multi-scale and multi-level system of densely
interconnected components, that is, they operate at different time scales and
between different layers of components simultaneously, in a mechanistic and
almost harmonious manner. The general approach to analysing biological
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systems up until very recently has been to analyse them in parts, due to
technological limitations. However, with the advent of newer technologies
and faster machines, it is now possible to move away from the traditional
reductionist analytical approaches towards holistic analyses, such as those being
offered by systems biology, aiming to understand, model and predict biological
functioning, thus, embracing the complexity of biology and appreciating its
beauty in its entirety.
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Summary

One of the fastest growing and most persistent public health problems affecting
the health of the global human population is the epidemic of overweight and
obesity, with WHO estimates from 2018 showing the tripling of obesity since
1975 with no signs of any reduction in the rate. This increase is alarming,
considering that obesity elevates the risk of developing chronic illnesses such
as cardiovascular diseases, type 2 diabetes mellitus, strokes and even some
forms of cancer, making obesity one of the major, yet easily accessible, gateways
to persistent chronic illnesses. The modern increasingly sedentary lifestyle
coupled with an increasingly calorie rich and unbalanced diet is the chief
cause of obesity with many rich and developed countries showing the largest
proportions of obesity.

The general directions to counter overweight and obesity include a calorie
restricted diet and regular physical exercise; however, these are not always
effective as many individuals suffer from subsequent weight regain following
a diet or exercise plan. Consequently, modern research is tackling obesity on
several fronts, from studies on the effects of lifestyles, in terms of different types
of diets and physical exercises, to studies focusing on the molecular changes
during the development of obesity itself as well as associated chronic illnesses.
These efforts have resulted in many a change in our understanding of the
human body, not least of which is our recognition of the adipose tissue as an
active and major regulatory organ, while previously the adipose tissue was
thought of as a passive energy storage tissue. Additionally, the localisation, and
thus type, of the adipose tissue also defines the role of the adipose tissue and
the extent of its regulatory effect.

This thesis presents an exploratory research of the molecular changes
occurring in the subcutaneous (below the skin) adipose tissue during obesity
and weight loss to provide a map of molecular processes changing and
performing different roles in the two respective conditions. Expression data
showing the expression of genes of the subcutaneous adipose tissue from
a weight loss study is explored in chapter 2 to provide a list of genes the
expressions of which change over time in response to diet. The samples of the
tissue in the weight loss study were acquired from the abdominal subcutaneous
adipose tissue. This list of genes provides the foundation on which further
analyses are performed to elucidate the changes occurring in the subcutaneous
adipose tissue as weight loss progresses. Of the various changes in the
expression of genes, and by extension their cellular processes, we observed that
the genes involved in the regulation of cellular metabolism had their expression
changing in response to the weight loss diet. A search in existing literature
regarding these genes presented us with the concept of metabolic flexibility
in which an organism changes the nutrients it is metabolising for energy
generation in response to the availability of said nutrients. Research has shown
that the impairment of metabolic flexibility is associated with obesity and
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several of the chronic diseases. Chapter 3 provides a condensed visual map of
the various cellular processes and the respective genes (and protein complexes)
that regulate metabolic flexibility, as well as their expression profiles when
comparing the expression data of obese individuals with lean individuals.

With current wet-lab technology it is difficult to either directly observe or
measure cellular metabolic flexibility in near real-time as the switch from one
nutrient type to another is a rapid process. Thus, we utilised theoretical biology
in terms of in silico modelling of cellular metabolic flexibility in chapter 4
to analyse the system. The various models showed a prominent role for the
pyruvate dehydrogenase kinases (PDKs) in regulating the switching of cellular
metabolism from glucose to fatty acids and vice versa. In addition, different
combinations of the regulators of the PDK enzymes were also tested, showing
that the difference in regulators eventually led the cellular system to converge
on the same set of results, indicating that the different combinations may be the
different methods of the regulation of PDK enzymes in effect in different cells
and tissues.

However, in silico modelling has its limitations, predominantly that models
are only as good as our understanding of the system in question and the rules
that underlie its functions. In order to continue exploring the role of cellular
metabolic flexibility in the context of obesity and weight loss, we returned to the
data from the weight loss study in chapter 5. In addition to gene expression
data, we also utilised protein expression, blood plasma and anthropometric
measurements to stratify the individuals undergoing weight loss in to groups
based on the expression data of the genes and proteins involved in metabolic
flexibility. Our analysis yielded two groups which showed opposing trends
with one group showing a lower expression of metabolic flexibility associated
genes and proteins, and the other group the opposite. Additionally, our analysis
also revealed that the two groups showed opposing trends in the expression of
genes and proteins associated with inflammation during weight loss, with the
expression patterns of inflammation-associated genes and proteins following an
inverted trend compared to metabolic flexibility-associated genes and proteins
in the respective groups. Essentially, this represents an association, if not a role,
of inflammation with the regulation of metabolic flexibility, and with obesity
and chronic illnesses in the bigger picture.

Collectively, the research presented in this thesis has provided a detailed
picture of cellular metabolic flexibility in obesity and weight loss, as well as
the changes taking place in the subcutaneous adipose tissue during weight
loss as a whole. The chapters have identified genes, proteins and biological
processes involved with metabolic flexibility, allowing their use as a guide map
for successive targeted research in the future, as we progress towards tackling
the epidemic of obesity and associated chronic illnesses.
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Samenvatting

Een van de snelst groeiende en meest hardnekkige volksgezondheidsproblemen
die de gezondheid van de wereldbevolking beinvloeden is de epidemie van
overgewicht en obesitas. Volgens schattingen van de WHO uit 2018 is het
aantal gevallen van obesitas sinds 1975 verdrievoudigd zonder enige tekenen
van verlaging van deze toename. Deze toename is alarmerend, gezien het feit
dat obesitas het risico op het ontwikkelen van chronische ziekten zoals hart-
en vaatziekten, diabetes mellitus type 2, beroertes en zelfs sommige vormen
van kanker verhoogt, waardoor obesitas een van de belangrijkste routes is dat
leidt tot de ontwikkeling van chronische ziekten. De moderne, sedentaire
levensstijl in combinatie met een steeds calorierijker en onevenwichtig dieet
is de hoofdoorzaak van obesitas, waarbij populaties in rijke en ontwikkelde
landen de grootste proporties van obesitas vertonen.

De algemene aanbevelingen om overgewicht en obesitas tegen te gaan,
zijn een caloriearm dieet en regelmatige lichaamsbeweging; deze zijn echter
niet altijd effectief, omdat veel mensen last hebben van gewichtstoename
na een dieet of trainingsschema. Dientengevolge pakt modern onderzoek
zwaarlijvigheid op verschillende fronten aan, van studies naar de effecten
van levensstijlen, in termen van verschillende soorten diéten en fysieke
oefeningen, tot studies die zich richten op de moleculaire veranderingen tijdens
de ontwikkeling van zwaarlijvigheid zelf en bijbehorende chronische ziekten.
Deze inspanningen hebben geleid tot veel veranderingen in ons begrip van het
menselijk lichaam, niet in het minst van onze erkenning van het vetweefsel als
een actief en belangrijk regulerend orgaan, terwijl voorheen het vetweefsel
werd beschouwd als een passief energieopslagweefsel. Bovendien bepaalt de
lokalisatie, en dus het type, van het vetweefsel ook de rol van het vetweefsel en
de omvang van het regulerende effect ervan.

Dit proefschrift presenteert een verkennend onderzoek naar de moleculaire
veranderingen die optreden in het subcutane (onderhuidse) vetweefsel tijdens
obesitas en gewichtsverlies om de veranderende moleculaire processen in
kaart te brengen die in de twee respectieve omstandigheden verschillende
rollen vertegenwoordigen. Expressiedata die de expressie van genen van
het subcutane vetweefsel uit een onderzoek naar gewichtsverlies laten zien,
worden in hoofdstuk 2 onderzocht, om op deze manier een lijst van genen
te verschaffen waarvan de expressies in de loop van de tijd veranderen als
reactie op een dieet. De monsters van het weefsel in het onderzoek naar
gewichtsverlies werden verkregen uit het onderhuidse buikweefsel. = De
betreffende lijst met genen uit de expressiedata hebben de basis gevormd voor
verdere analyses om de veranderingen in genexpressie op te helderen die
zich voordoen in het onderhuidse vetweefsel naarmate het gewichtsverlies
vordert. Van de verschillende veranderingen in de expressie van genen en hun
cellulaire processen hebben we vastgesteld dat de genen die betrokken zijn
bij de regulatie van cel metabolisme hun expressie veranderen als reactie op
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het dieet voor gewichtsverlies. Een zoekopdracht in bestaande literatuur over
deze genen presenteerde ons het concept van metabolische flexibiliteit waarin
een organisme de metabolisatie van voedingstoffen veranderd ten bate van
de energieopwekking in reactie op de beschikbaarheid van de betreffende
voedingsstoffen. Onderzoek heeft aangetoond dat de aantasting van metabole
flexibiliteit wordt geassocieerd met obesitas en verschillende chronische ziekten.
hoofdstuk 3 biedt een beknopt visueel overzicht van de verschillende cellulaire
processen en de respectieve genen (en eiwitcomplexen) die de metabolische
flexibiliteit reguleren, evenals hun expressieprofielen bij het vergelijken van de
expressiegegevens van zwaarlijvige individuen met magere individuen.

Met de huidige ‘wet-lab-technologie” is het moeilijk om cellulaire metabole
flexibiliteit zowel direct te observeren als in real-time te meten, simpelweg
omdat de overstap van het ene voedingsmiddeltype naar het andere een snel
proces is. Dus gebruikten we theoretisch biologie in termen van in silico
modellering van cellulaire metabolische flexibiliteit in hoofdstuk 4 om het
systeem te analyseren. De verschillende modellen toonden een prominente
rol voor de pyruvaatdehydrogenase kinasen (PDK'’s) bij het reguleren van de
overschakeling van cellulair metabolisme van glucose naar vetzuren en vice
versa. Bovendien hebben we verschillende combinaties van de regulatoren
van de PDK-enzymen getest, hieruit bleek dat het verschil in regulatoren
ons uiteindelijk leidde naar dezelfde set resultaten, wat aangeeft dat de
verschillende combinaties effectief een voorstelling zijn van de verschillende
methoden van regulering van PDK-enzymen in verschillende cellen en
weefsels.

In silico modellering heeft echter zijn beperkingen, met name dat modellen
slechts zo goed zijn als ons begrip van het systeem in kwestie en de regels die ten
grondslag liggen aan zijn functies. Om de rol te blijven verkennen van cellulaire
metabole flexibiliteit in de context van obesitas en gewichtsverlies, keerde wij
terug naar de gegevens van het gewichtsverliesonderzoek in hoofdstuk 5.
Naast genexpressiegegevens, gebruikten we ook eiwitexpressie, bloedplasma en
antropometrische metingen om de individuen die gewichtsverlies ondergaan
te stratificeren in groepen op basis van de expressiegegevens van de genen
en eiwitten die betrokken zijn bij metabole flexibiliteit. Onze analyse leverde
twee groepen op die tegengestelde trends vertoonde, waarbij één groep een
lagere uitdrukking vertoonde van metabole flexibiliteit geassocieerde genen en
eiwitten, en de andere groep het tegenovergestelde. Bovendien bleek uit onze
analyse dat de twee groepen tegengestelde trends vertoonden in de expressie
van genen en eiwitten die betrokken zijn bij ontstekingsprocessen gedurende
gewichtsverlies, met de expressiepatronen van ontsteking gerelateerde
genen en eiwitten volgens een omgekeerde trend vergeleken met metabole
flexibiliteit geassocieerde genen en eiwitten in de respectieve groepen. In wezen
vertegenwoordigt dit een associatie, zo niet een rol, van ontstekingsprocessen
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in de regulatie van metabole flexibiliteit alsmede met obesitas en chronische
ziekten in het grotere geheel.

Gezamenlijk heeft het onderzoek in dit proefschrift een gedetailleerd beeld
opgeleverd van cellulaire metabole flexibiliteit bij obesitas én gewichtsverlies,
evenals de veranderingen die plaatsvinden in het onderhuidse vetweefsel
tijdens het proces van gewichtsverlies als geheel. De hoofdstukken hebben
genen, eiwitten en biologisch geidentificeerd processen in kaart gebracht die
te maken hebben met metabole flexibiliteit, welke als leidraad kunnen worden
gebruikt voor vorderingen in toekomstig onderzoek in de aanpak van de
epidemie van obesitas en bijpehorende chronische ziekten.
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Metabolic foundations of obesity and weight loss

Obesity is at epidemic levels, increasing worldwide in both developed and
developing countries. Not only does obesity cause long-term physical stress
on the body leading to joint pain and arthritis, it is also associated with the
development of chronic illnesses such as type 2 diabetes mellitus, several
cardiovascular diseases such as atherosclerosis, myocardial infarctions,
arrhythmias and sudden cardiac arrests, and several cancers of organs and
tissues associated with the gastrointestinal tract. Although weight loss via diet
and exercise is one of the most successful methods of controlling obesity, many
individuals regain about half of their lost weight shortly after the diet. In
addition, our knowledge of the changes occurring inside our cells and organs is
limited by both technology and the invasiveness of sampling procedures.

Due to these limitations, our understanding of the physiological changes in
the human body had been limited for quite some time. An excellent example of
this is the change in our understanding and perception of the adipose tissue
over the past two decades. Previously, the adipose tissue was considered only
as an energy storage organ for storing fats. As such, even though it was a
major contributor to obesity, its role was considered a passive one. However,
with advancement in technology, we have discovered the active hormonal
and regulatory role that the adipose tissue plays in obesity, weight loss, and
energy metabolism. The study presented in this thesis provides a glimpse of
those changes in the adipose tissue in the case of weight loss in obese subjects.
The study elucidates the role of adipocyte cellular metabolism in managing
different nutrients for producing energy and provides a contrast of how the
molecular processes differ between obesity and weight loss. These differences
paint a picture of how obesity may arise on the molecular level and how
cellular metabolism may affect weight loss, allowing future studies of a more
targeted and personalised design, both in diet and exercise plans as well as
drug development, to counter the effects of obesity and induce efficient weight
loss. Additionally, the study presented here also pushes for a metabolism-based
understanding of obesity and weight loss, allowing both researchers and the
larger society to move beyond calorie counting when it comes to weight loss,
and, in the future, personalise their own weight loss plans based on their
understanding of their own metabolism.

Tools and resources for extended research

One of the problems facing the research community, and arguably the
research domain in general, is the difficulty in replicating existing research.
Many a times, produced data and reported results are difficult to use or
replicate due to technological limitations, sampling biases and a general lack
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of details of the procedure. To address these issues, the FAIR principles have
been developed, promoting research and data to be Findable, Accessible,
Interoperable and Reusable. Although not mandatory yet, these principles
provide an abstract framework for research to be both available and useful to
the wider research community, even across research domains. In compliance
with these principles, the study presented in this thesis has been published with
extensive supplementary materials. In addition, all computational pipelines
and software used have been detailed with their versions and libraries in the
respective research articles to support reproducibility, and any new or modified
programming scripts have been provided as supplementary material.

Furthermore, the computational pipelines and analysis procedures utilised
in this thesis have been constructed in a generalised manner. That is, the
procedures can be used on similar data types in different biological settings to
answer different research questions. Such approaches allow for the reusability
and iterative improvement of the methodology in tandem with pushing the
boundaries of science.

Marching towards virtual humans

Research is becoming increasingly costly and time consuming as we proceed
with pushing the boundaries of knowledge and science. This produces a drain
on the economy, as research cannot always promise a product or profit. This
drain is especially true for medical sciences where a drug or treatment can take
upwards of 15 years to develop, study, and trial for safety. However, medical
sciences have also benefitted magnificently with the advancement of computers
and digital technology. We have digitised our data to store millions of samples
of thousands of studies, allowing unparalleled access and reusability. We
are still tied to costly procedures, as we still require wet-lab analyses and
experimentation to find medical solutions conclusively. To remedy this,
computational modelling, simulation and analyses are taking precedence to cut
down on time and cost. This thesis contains an application of this approach
where a model of cellular metabolism was used due to technological limitations
and a lack of available data. Such models are easy to manipulate and adapt
for a variety of conditions, allowing researchers to simulate their experiments
or procedures before spending limited and crucial economic resources. With
advancement in computer engineering providing efficient and economical
computational resources, the fields of theoretical and systems biology are
steadily marching towards virtualising human systems and data to construct
detailed simulations of humans, from molecular processes to personalities
and behaviours. Such a technologies hold great potential for targeted and
personalised medication for a fraction of the costs associated with current
research and development procedures.
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