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Abstract
Let D be a non-empty open subset of Rm, m ≥ 2, with boundary ∂D, with finite Lebesgue
measure |D|, and which satisfies a parabolic Harnack principle. Let K be a compact, non-
polar subset of D. We obtain the leading asymptotic behaviour as ε ↓ 0 of the L∞ norm of
the torsion function with a Neumann boundary condition on ∂D, and a Dirichlet boundary
condition on ∂(εK), in terms of the first eigenvalue of the Laplacian with corresponding
boundary conditions. These estimates quantify those of Burdzy, Chen and Marshall who
showed that D \ K is a non-trap domain.
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1 Introduction andMain Results

Let D be an open, non-empty set in R
m, m ≥ 2, with finite Lebesgue measure |D|, and

let K ⊂ D be a compact set with boundary ∂K , and with positive logarithmic capacity if
m = 2 or with positive Newtonian capacity cap (K) if m ≥ 3. Let uK,D be the solution of

−�u = 1,

with Dirichlet boundary condition

u(x) = 0, x ∈ ∂K, (1)

and Neumann boundary condition

∂u

∂ν
(x) = 0, x ∈ ∂D, (2)
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where ν is the inward normal. Boundary conditions Eqs. 1 and 2 have to be understood
in the weak sense. In particular Eq. 1 holds for all regular points of ∂K . Let πD(x, y; t),
x ∈ D, y ∈ D, t > 0 denote the Neumann heat kernel for D. We say that the parabolic
Harnack principle (PHP for short) holds in D if for some t0 ∈ (0,∞) there exists c0 =
c0(D, t0) < ∞, such that

πD(x, y; t) ≤ c0πD(v, w; t), t ≥ t0, x, y, v, w ∈ D.

See also [8]. As was pointed out in [4], PHP is equivalent to the following assertion: there
exist t1 ∈ (0,∞), c1 < ∞, c2 > 0 depending on D such that

sup
x,y∈D

∣
∣
∣
∣
πD(x, y; t) − 1

|D|
∣
∣
∣
∣
≤ c1e

−c2t , t ≥ t1. (3)

It was shown in [4] that if D satisfies PHP then uK,D is bounded, and D \ K is a non-
trap domain. In Theorem 1 below we quantify this statement in terms of the first eigenvalue
λ(K,D) of the Laplacian with boundary conditions Eqs. 1 and 2 in the case where K is
scaled down by a factor ε with respect to a fixed point (the origin) in D.

Estimates of this type are well known for the torsion function u� for an open set �

satisfying a 0 Dirichlet boundary condition on ∂�. In [2] it was shown that u� ∈ L∞(�) if
and only if λ(�) > 0. If the latter holds then

λ(�)−1 ≤ ‖u�‖∞ ≤ cmλ(�)−1,

where cm is the sharp constant defined by

cm = sup{λ(�)‖u�‖∞ : � open inRm, λ(�) > 0},
and ‖ · ‖p denotes the standard Lp norm, 1 ≤ p ≤ ∞.

In [2] it was shown that cm ≤ 4 + 3m log 2. This bound has been improved since. See
for example [5] and [10]. For general open, non-empty, and connected D, and a non-empty
compact subset K ⊂ D one does not have boundedness of uK,D . Examples of these trap
domains were given in [4].

Theorem 1 Let D ⊂ R
m, m ≥ 2, be open, non-empty, containing the origin, and let D

satisfy the parabolic Harnack principle. If K is a non-polar compact subset of D, then for
ε ↓ 0,

λ(εK,D)‖uεK,D‖∞ =
{

1 + O
(

(log ε−1)−1/2
)

, m = 2,

1 + O
(

ε(m−2)/2
)

, m ≥ 3,
(4)

where εK = {y ∈ R
m : ε−1y ∈ K}. Furthermore for any non-polar compact set K ⊂ D,

‖uK,D‖∞ ≥ 1

λ(K,D)
. (5)

It was shown in Theorem 2.5(i) in [4] that if Eq. 3 holds, then the Neumann Laplacian
on D has discrete spectrum. Sufficient geometric conditions for D to satisfy the PHP were
obtained in, for example, Corollary 2.7 of [4]. Conversely PHP implies some geometric and
spectral properties of D. The proposition below is of independent interest.

Proposition 2 Let D be open, non-empty, with |D| < ∞. If Eq. 3 holds then we have the
following.

(i) D is connected.
(ii) The first eigenvalue of the Neumann Laplacian acting in L2(D) has multiplicity 1.
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(iii)

μ(B)

( |B|
|D|

)2/m

≥ μ(D) ≥ c2, (6)

where μ(D) is the first non-zero eigenvalue of the Neumann Laplacian acting in
L2(D), and B is a ball of radius 1 in R

m.

2 Proof of Theorem 1

In this section we prove Theorem 1.

Proof Let πK,D(x, y; t), x ∈ D \ K , y ∈ D \ K , t > 0 denote the heat kernel with a
Neumann boundary condition on ∂D, and with a 0 Dirichlet boundary condition on ∂K . We
have for δ ∈ (0, 1),

uK,D(x) =
∫ ∞

0
dt

∫

D\K
dy πK,D(x, y; t)

=
∫ t1/(1−δ)

0
dt

∫

D\K
dy πK,D(x, y; t) +

∫ ∞

t1/(1−δ)

dt

∫

D\K
dy πK,D(x, y; t)

≤
∫ t1/(1−δ)

0
dt

∫

D\K
dy πD(x, y; t) +

∫ ∞

t1/(1−δ)

dt

∫

D\K
dy πK,D(x, y; t)

≤ t1

1 − δ
+

∫ ∞

t1/(1−δ)

dt

∫

D\K
dy πK,D(x, y; t). (7)

By the heat semigroup property, and by Cauchy-Schwarz’s inequality,

πK,D(x, y; t) =
∫

D\K
πK,D(x, z; t/2) πK,D(z, y; t/2) dz

≤
(∫

D\K
πK,D(x, z; t/2)2 dz

)1/2 (∫

D\K
πK,D(z, y; t/2)2 dz

)1/2

= (

πK,D(x, x; t) πK,D(y, y; t)
)1/2. (8)

By the spectral theorem we have

πK,D(x, x; t) ≤ e−δtλ(K,D)πK,D(x, x; (1 − δ)t). (9)

By Eqs. 8 and 9,
(

πK,D(x, y; t)
)δ ≤ e−δ2tλ(K,D)

(

πK,D(x, x; (1 − δ)t)πK,D(y, y; (1 − δ)t)
)δ/2

≤ e−δ2tλ(K,D) sup
x,y∈D

(

πK,D(x, y; (1 − δ)t)
)δ

≤ e−δ2tλ(K,D) sup
x,y∈D

(

πD(x, y; (1 − δ)t)
)δ . (10)

By Eq. 3,

(

πD(x, y; (1 − δ)t)
)δ ≤

(
1

|D| + c1e
−c2(1−δ)t

)δ

≤ 1

|D|δ + cδ
1e

−c2δ(1−δ)t , t ≥ t1

1 − δ
.
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This, together with Eq. 10, gives

(

πK,D(x, y; t)
)δ ≤ e−δ2tλ(K,D)

(
1

|D|δ + cδ
1e

−c2δ(1−δ)t

)

, t ≥ t1

1 − δ
. (11)

We obtain by Eq. 11, and by Hölder’s inequality,
∫ ∞

t1/(1−δ)

dt

∫

D\K
dy πK,D(x, y; t)

≤
∫ ∞

t1/(1−δ)

dt

∫

D\K
dy

(

πK,D(x, y; t)
)1−δ

e−δ2tλ(K,D)

(
1

|D|δ + cδ
1e

−c2δ(1−δ)t

)

≤
∫ ∞

t1/(1−δ)

dt

∫

D

dy
(

πD(x, y; t)
)1−δ

e−δ2tλ(K,D)

(
1

|D|δ + cδ
1e

−c2δ(1−δ)t

)

≤
∫ ∞

t1/(1−δ)

dt

(∫

D

dy πD(x, y; t)

)1−δ

|D|δe−δ2tλ(K,D)

(
1

|D|δ + cδ
1e

−c2δ(1−δ)t

)

= 1

δ2λ(K,D)
e−δ2t1λ(K,D)/(1−δ)

+cδ
1|D|δ(c2δ(1 − δ) + δ2λ(K,D)

)−1
e−t1(δc2+δ2λ(K,D)/(1−δ))

≤ 1

δ2λ(K,D)
+ cδ

1|D|δ
c2δ(1 − δ)

. (12)

By Eqs. 7 and 12,

uK,D(x)λ(K,D) ≤ δ−2 +
(

t1

1 − δ
+ cδ

1|D|δ
c2δ(1 − δ)

)

λ(K,D).

By taking the supremum over all x ∈ D \ K we obtain

‖uK,D‖∞λ(K,D) ≤ δ−2 +
(

t1

1 − δ
+ cδ

1|D|δ
c2δ(1 − δ)

)

λ(K,D).

Hence for δ ∈ (0, 1) and ε ∈ (0, 1),

‖uεK,D‖∞λ(εK,D) ≤ δ−2 +
(

t1
1−δ

+ cδ
1|D|δ

c2δ(1−δ)

)

λ(εK,D). (13)

In the lemma below we obtain an upper bound for the rate at which λ(εK,D) ↓ 0 as ε ↓ 0.

Lemma 3 If D is open, non-empty in R
m, m ≥ 3, with |D| < ∞, and if K ⊂ D with

cap (K) > 0 then

lim sup
ε↓0

ε2−mλ(εK,D) ≤ cap (K)

|D| . (14)

IfD is open, non-empty inR2, with |D| < ∞, and ifK ⊂ D has strictly positive logarithmic
capacity, then

lim sup
ε↓0

(

log ε−1)λ(εK,D) ≤ 2π

|D| . (15)

We note that (i) the constants in the right-hand sides of Eqs. 14 and 15 are well-known
and sharp (see for example [7]), (ii) both formulae hold for arbitrary open and connected
sets D with |D| < ∞, and without any regularity assumptions on ∂D. We now choose

δ = 1 − |D|1/mλ(εK,D)1/2. (16)
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Then δ ∈ (0, 1) for all ε sufficiently small. By Eqs. 13 and 16,

‖uεK,D‖∞λ(εK,D) ≤ 1 + O
(

λ(εK,D)1/2
)

. (17)

The proof of Eq. 5 is similar to the one of Theorem 5 in [3], and Theorem 1, (0.5) in [1].
Let ψ denote the normalised first eigenfunction (positive) of the Laplacian with Neumann
and Dirichlet boundary conditions on ∂D and ∂K respectively, suppressing both K and D

dependence. We have by Cauchy-Schwarz’s inequality that
∫

D\K ψ ≤ |D \ K|1/2. Using

ψ
∂uK,D

∂ν
= uK,D

∂ψ

∂ν
= 0 on ∂D ∪ ∂K,

we obtain by Green’s formula,

λ(K,D)‖uK,D‖∞
∫

D\K
ψ ≥ λ(K,D)

∫

D\K
uK,Dψ = −

∫

D\K
uK,D�ψ

= −
∫

D\K
ψ�uK,D =

∫

D\K
ψ .

This implies the assertion.
Finally Eq. 4 follows by Eqs. 5, 17, and Lemma 3.

3 Proof of Lemma 3 and Proposition 2

Proof of Lemma 3 Recall that 0 ∈ D, and so

R = min{|y| : y ∈ ∂D} > 0.

Since K is compact,
RK = max{|x| : x ∈ K} < ∞.

Let

ε1 = min

{

1,
R

RK

}

.

If ε ≤ ε1 then εK ⊂ B(0;R). See [9] for estimates related to the proof of Lemma 3. First
we consider the case m ≥ 3. Let μK denote the equilibrium measure of K in R

m, and let

φK(x) = �((m − 2)/2)

4πm/2

∫

K

μK(dy) |x − y|2−m.

Then φK(x) = 1, x ∈ K , 0 < φK < 1, x ∈ R
m \ K , and φK is smooth on the complement

of K . We use 1 − φK as a trial function in the Rayleigh-Ritz characterisation of λ(K,D).
This gives

λ(K,D) = inf
u∈H 1(D), u|K=0

∫

D\K |∇u|2
∫

D\K u2

≤
∫

D\K |∇φK |2
∫

D\K(1 − φK)2

≤
∫

Rm\K |∇φK |2
∫

D\K(1 − φK)2

= cap (K)
∫

D\K(1 − φK)2
. (18)
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It remains to bound the denominator in the right-hand side of Eq. 18 from below. Since we
will apply this lower bound with ε1K rather than K itself, we assume that K ⊂ B(0; R).
We let 0 < α < 1. It is a standard fact that the capacitary potential is monotone increasing
in K . In particular,

φK(x) ≤ φB(0;R)(x) = min

{

1,

(
R

|x|
)m−2}

.

Hence
∫

D\K
(1 − φK)2 ≥ (1 − α)2

∫

{φK(x)≤α}∩D

1

≥ (1 − α)2
(|D| − |{φB(0;R)(x) > α}|)

≥ (1 − α)2
(|D| − α−m/(m−2)ωmRm

)

, (19)

where ωm = |B1(0)|. We choose α such that

α = α−m/(m−2) |B(0;R)|
|D| . (20)

This, together with Eqs. 18, 19 and 20 implies

λ(K,D) ≤ cap (K)

|D|
(

1 −
( |B(0;R)|

|D|
)(m−2)/(2(m−1)))−3

. (21)

In particular for ε ∈ (0, 1], εε1K ⊆ εB(0;R), and this together with Eq. 21 gives

λ(εε1K,D) ≤ cap (εε1K)

|D|
(

1 −
(

ε|B(0;R)|
|D|

)(m−2)/(2(m−1)))−3

. (22)

Formula Eq. 14 follows by Eq. 22, and scaling of the Newtonian capacity,

cap (εK) = εm−2cap (K).

Next we consider the planar case m = 2. We use Hadamard’s method of descent so as
to avoid logarithmic potential theory. See for example p.51 in [9]. Let h ≥ R, and consider
the cylinder (D \ K) × (0, h) ⊂ R

3. Then the first eigenvalue of the Laplacian acting in
L2(D\K)) with Dirichlet boundary condition on ∂K , and Neumann boundary condition on
∂D is precisely equal to the first eigenvalue of the Laplacian acting in L2((D \K)× (0, h))

with Dirichlet boundary condition on ∂(K × (0, h)), and Neumann boundary condition
on ∂(D × (0, h)) \ ∂(K × (0, h)). We apply Eq. 21 to the setting above and obtain by
monotonicity of Newtonian capacity,

λ(εε1K,D) ≤ λ(εB(0;R),D)

≤ cap (B(0; εR) × (0, h))

|D|h
(

1 −
(

ε|B(0;R)|
|D|

)1/4)−3

. (23)

To obtain an upper bound on cap (B(0; εR) × (0, h)) we let C(R′, h′) ⊂ R
3 be an ellipsoid

with a circular cross section of radius R′ and axis h′. Then for a suitable translation and
rotation C(R′, h′) ⊃ B(0; εR) × (0, h) provided

h2

h′2 + (εR)2

R′2 ≤ 1. (24)

We let α ∈ (0, 1) be arbitrary, and choose

R′ = ε−α(εR), (25)
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and
h′ = (

1 − ε2α
)−1/2

h. (26)

The choice Eqs. 25–26 satisfies Eq. 24. For h′
R′ → ∞, or equivalently ε ↓ 0 with h fixed,

we have by formula (12) on p.260 in [6],

cap (C(R′, h′)) = 2πh′

log(h′/R′)
(1 + o(1))

≤ 2πh
(

1 − ε2α
)1/2 log(h/R′)

(1 + o(1))

≤ 2πh

(1 − α)
(

1 − ε2α
)1/2 log ε−1

(1 + o(1)).

Thus,
cap (B(0; εR) × (0, h))

|D|h ≤ 2π

(1 − α)|D| log ε−1
(1 + o(1)).

By Eq. 23,

lim sup
ε↓0

(

log ε−1)λ(εε1K,D) ≤ 2π

(1 − α) |D| .
Since α ∈ (0, 1) was arbitrary, this completes the proof of the case m = 2.

Proof of Proposition 2 To prove (i) we recall that, since D is open, D is a countable union
of open components. Suppose that this union contains at least two elements, one of which
is C. Then both C and D \ C are open and non-empty. Let 1A denote the indicator function
of a set A. From Eq. 3 we obtain,

∣
∣
∣
∣

∫

C

dy πD(x, y; t) − |C|
|D|

∣
∣
∣
∣
≤ c1|C|e−c2t , t ≥ t1, x ∈ D.

We note that

qC,D(x; t) =
∫

C

dy πD(x, y; t)

is the solution of the heat equation

�q = ∂q

∂t
,

with initial condition
q(x; 0) = 1C(x),

and with a Neumann (insulating) boundary condition on ∂D. It follows that

qC,D(x; t) = 1C(x), t > 0.

From Eq. 3 we have
∣
∣
∣
∣
1 − |C|

|D|
∣
∣
∣
∣
≤ c1|C|e−c2t , t ≥ t1, x ∈ C.

We conclude that, by taking the limit t → ∞, |C| = |D|. Since C ⊂ D, |D \ C| = 0. This
contradicts D \ C is open and non-empty. This in turn implies that D consists of just one
component C. Hence C is connected. This implies assertion (ii). To prove (iii) we have that
Eq. 3 implies

∫

D

dx πD(x, x; t) ≤ 1 + c1|D|e−c2t , t ≥ t1.
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Hence the Neumann heat semigroup is trace-class, and

1 + e−tμ(D) ≤
∫

D

dx πD(x, x; t) ≤ 1 + c1|D|e−c2t , t ≥ t1. (27)

Taking the limit t → ∞ in Eq. 27 implies the second inequality in Eq. 6. The first inequality
in Eq. 6 is due to Weinberger [11].
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