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A B S T R A C T   

Local- and regional-scale heat extremes can increase at a significantly greater rate than global mean changes, presenting challenges for human health, infrastructure, 
industry and ecosystems. We examine changes in regional absolute temperature extremes for a suite of global regions under 1.5 �C and 2 �C of warming above pre- 
industrial levels, as described by the Paris Agreement. We focus on area-average values of observed monthly averages of daily maximum and minimum temperatures 
in 12 regions and calculate the most extreme monthly records observed. Next, using a large ensemble (HAPPI; Half a Degree Additional warming, Prognosis, and 
Projected Impacts) of decade-long simulations both of the present day and stabilised at these higher warming thresholds, we explore how changes in temperature 
extremes temperatures scale with global mean warming in these timeslice simulations. In the models, we focus on the 99th percentile values of monthly maximum 
temperatures and the 1st percentile of the monthly minimum temperatures. We define and identify hotspots of warming for various global mean warming levels, 
where projected changes in regional extremes are greater than global mean temperature changes. We identify overall hotspots of extremes, which are regions where 
the tail of the temperature distribution (above 99th percentile) warms at a faster rate than the rest of the temperature distribution in response to mean global 
warming increase. For monthly maximum temperatures, Central Europe, North Asia, West and East North America experience the greatest projected increases in 
extremes relative to means, and for monthly minimum temperatures, Central, West, East and North Asia, and East North America are identified as extremes hotspots. 
Although the scaling of increasing extremes with global mean temperatures is regionally variable, all regions benefit from the reduced severity of monthly maximum 
temperatures under lower global warming thresholds.   

1. Introduction 

As extreme weather and climate events pose significant risks to 
human and natural systems, understanding past changes and future 
projections of extremes is an important and active research area. Studies 
have adopted various approaches to understanding future extremes and 
provide valuable information about possible future changes in extremes 
typically of a magnitude that has already been observed. These ap
proaches include, for example, i) quantifying changes in the character
istics of extremes attributable to specific forcings (e.g., King et al., 2017; 
Nangombe et al., 2018), ii) assessing changes in the frequency or 
duration of extremes in the future (e.g., Perkins, 2015), iii) 
process-based (dynamic and land-surface) understandings of changes 
(Zappa and Shepherd, 2017) and iv) determining the time in the future 
when current extremes can no longer be considered an outcome of 
natural climates (e.g., King et al., 2016). 

Fewer studies to date have examined potential changes in the 
magnitude of future temperature extremes (i.e. those which are 

unprecedented in the historical climate) under enhanced anthropogenic 
global mean warming levels such as Paris Agreement levels. The 2015 
Paris Agreement on Climate Change commits to ‘[h]olding the increase 
in the global average temperature to less than 2 �C above pre-industrial 
levels and to pursue efforts to limit the temperature increase to only 
1.5 �C above pre-industrial levels, recognizing that this would signifi
cantly reduce the risks and impacts of climate change’ (UNFCCC, 2016). 
Projections for Australia show unprecedented temperature extremes are 
simulated even under the Paris Agreement global mean warming tar
gets, and do not necessarily scale with global mean warming, or with 
current observational record-breaking temperatures (Lewis et al., 2017). 

Further studies have examined the relationship between regional 
temperatures and global mean temperatures (GMT) using pattern 
scaling approaches. Pattern scaling provides a means to assess future 
climate projections using spatial features of an externally forced change. 
Herger et al. (2015) explain that the “simplest traditional pattern scaling 
approach approximates future changes by the product of a time-evolving 
GMT change and a pattern that varies spatially but is constant over time, 
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scenario, and model characteristics.” Some studies have shown that 
climate change signals in large-scale temperatures and precipitation 
patterns are linear as a function of global temperature (Tebaldi and 
Knutti, 2018). Pattern scaling approaches have been successful at 
emulating forced responses for varying degrees of global warming (King 
et al., 2018; Tebaldi and Arblaster, 2014) are consistent with model 
results showing changes in regional extreme temperatures tend to scale 
with GMT, independent of the emission scenario considered (Senevir
atne et al., 2016). However, such scaling approaches are not universally 
applicable (King, 2019), and further analysis demonstrates that for ex
tremes of temperature, this assumption of linearity may not hold in all 
locations (Lustenberger et al., 2014). 

Understanding changes in the magnitude of future extremes with 
future GMT increases, in addition to previous work on changes in event 
frequency, is critical for determining the vulnerability of various systems 
to future climate change. On a global level, an assessment of changes in 
the severity of future extremes relative to global means has not been 
conducted, although previous work highlights that global temperature 
changes are much smaller than the expected changes in regional tem
perature extremes, making GMT a measure of limited use for overall 
climatic change (Seneviratne et al., 2016). In this current study, we look 
globally at how the magnitude of extreme temperatures events may 
differ from current conditions in the future by focusing on the Paris 
Agreement GMT levels. This globally-focused assessment is important, 
as exposure to future unfamiliar climates and extremes is regionally 
variable (Diffenbaugh et al., 2018). We also define and identify hotspots 
of future extreme temperatures (defined below), which are areas that 
demonstrate the strongest response in regional-scale extremes to 
global-scale mean warming of the land surface. 

2. Data and analysis 

2.1. Definitions of temperatures 

We use a combination of observations and models to assess how the 
magnitude of temperatures extremes may change in the future. We focus 
this analysis on monthly, rather than daily or shorter duration, tem
perature extremes and examine in observations and models:  

i) Tmax, which is the monthly average of daily maximum temperatures 
for all months  

ii) Tmin, which is the monthly average of daily minimum temperatures 
in all months. 

2.2. Observational data 

For observations, we first compare values in two gridded 
observation-based products (Berkeley Earth Surface Temperature and 
CRU TS) that provide gridded monthly temperature data. The Berkley 
Earth (BEST) (Rohde and Coauthors, 2013) product merges temperature 
observations from multiple sources, providing a finer spatial resolution, 
and greater spatial and temporal coverage than CRU TS (Harris et al., 
2014). We compare monthly temperature extremes in 25 
land-dominated Intergovernmental Panel on Climate Change (IPCC, 
2012) regions (excluding Antarctica, ANT) in the observed products, 
analyzing regions in which there is the closest agreement between 
products with the same spatial representation. For each IPCC region, 
area-average values of observed average monthly maximum tempera
tures are calculated and then a maximum record of regional values is 
determined (see Fig. 1a and b for BEST), rather than an area-average of 
gridbox maxima. 

Regions are included for further analysis in BEST based on two 
criteria, 1) the difference in maximum recorded area-average Tmax 
values between BEST and CRU TS is less than 1 K and 2) less than half the 
standard deviation of temperature variability for that region. The 12 
regions highlighted for further exploration in HAPPI models are listed in 
Table 1 and the similarity between observational data products can be 
seen in Fig. 1c for Tmax, and Fig. 1d for Tmin. 

2.3. HAPPI data and evaluation 

Projections of future temperature changes are determined from the 
HAPPI model dataset, which was designed for examining extreme events 
in simulated worlds that are 1.5 �C and 2 �C warmer than pre-industrial, 
in addition to the current (2006–2015) climate. Several prior studies 
have used transient, rather than timeslice, simulations (such as CMIP5) 
to examine facets of extremes although the difficulties of using such 
model frameworks have also been noted, including from the scenario 

Fig. 1. (a) Observed record monthly Tmax values (�C) from BEST and boundaries of the regions analysed here. (b) Comparison of mean (circles) and record daily 
Tmax values (�C) in BEST and CRUTS datasets. Panels (c) and (d) show equivalent for Tmin values (�C). 

S.C. Lewis et al.                                                                                                                                                                                                                                 



Weather and Climate Extremes 26 (2019) 100233

3

dependence of warming (Wang et al., 2017). Mitchell et al. (2016) point 
out that there is a large spread in timing for when transient CMIP models 
cross global mean warming thresholds and the relative importance of 
difference forcings at these disparate times. Simulations like HAPPI that 
are tailored to 1.5 �C and 2.0 �C targets provide an avenue for exploring 
extremes and return times under stabilised climates (Mitchell and Co
authors, 2017). For a comprehensive discussion of the different methods 
used in producing projections of extremes see James et al. (2017). 

Participating HAPPI models (NorESM1, ECHAM63LR, CanAM4, 
Cam4-degree and MIROC5) contribute large atmosphere-only ensem
bles for three decade-length timeslices, including 2006–2015 (historical 
or HAPPI2006-2015) and under 1.5 �C and 2 �C (HAPPI1.5 and HAPPI2) of 
warming. Realisations, or ensemble members, within an experiment 
differ in their initial weather state. Simulations of the current decade 
(2006–2015) are driven by observed sea surface temperatures (SSTs) 
and sea ice. Boundary conditions for HAPPI1.5 (HAPPI2) are calculated 
by adding the change between the decadal average of the modelled 
2006–2015 period and the decadal average of the modelled 1.5 �C (2 �C) 
world over 2091–2 100 to the observed 2006–2015 SSTs. Changes are 
determined from the CMIP5 (Taylor et al., 2012) multi-model ensemble 
from the representative concentration pathway 2.6 (RCP2.6) HAPPI1.5 
and RCP4.5 for HAPPI2. We use multiple realisations of HAPPI Tmax 
(monthly average of daily maximum temperatures) and Tmin (monthly 
average of daily minimum temperatures) data (Table 2). A minimum of 
500 decade-long realisations was used for each experiment, providing at 
least 6000 months of temperature data. Regional area-mean Tmax and 
Tmin are calculated in each HAPPI realisation. 

Model Tmax data are compared to observations to evaluate how well 

observed variability is simulated, in addition to how accurately the 
multi-model ensemble mean matches observed. Following Lewis et al. 
(2017), variability in observed temperatures is estimated using syn
thesised timeseries. Using a bootstrap resampling method; we generated 
2000 timeseries of 80-year length, calculated a suite of standard de
viations of observed temperature and obtained a spread of plausible 
observed standard deviations, based on the BEST data. In this calcula
tion, we have not removed an estimate of any trend over this period, and 
hence a larger variability in observed temperature may occur. However, 
the probability density functions (PDFs) of simulated Tmax and Tmin 
values in HAPPI2006-2015 are somewhat broader than observed in many 
regions (Supplementary Figs. 1a and b and Fig. 2a and b). 

This larger simulated variability may indicate that the substantially 
larger sample size available in model data captures a broader range of 
temperatures, and hence greater variances. It is also possible that dis
crepancies in simulated and observed temperature distributions relate to 
observational uncertainties and spatial inhomogeneities in data collec
tion (see Alexander and Coauthors, 2006). Alternatively, this may 
demonstrate key biases in capturing observed means and variability in 
AMIP runs may result from errors in model sensitivity to surface tem
perature forcings. Previous analyses of temperatures in model simula
tions demonstrate a sensitivity in simulated climates to modelling 
approach. For example, projected extreme temperatures may be sys
tematically biased towards high temperatures in SST-driven simulations 
compared to fully coupled runs (Fischer et al., 2018). Further studies, 
however, advocate for the use of SST-driven simulations for assessing 
regional climate projections over land (He and Soden, 2016). 

Due to these potential biases in SST-driven model runs, we consider 
only regions in which observed temperature characteristics are accu
rately simulated. We find 12 regions (CAS; CEU; CNA; EAS; ENA; MED; 
NAS; NAU; SAS; SSA; WAS; WNA as outlined in Table 1) in which 
simulated variability falls within the observed bootstrapped range and 
there is consistency in maximum recorded area-average Tmax in 
observed products. In addition to focusing on these 12 best performing 
regions, we use HAPPI data in combination with observed data as a 
constraint on simulated extremes (discussed in section 2.3). While a 
greater coverage of regions would be ideal for examining future 

Table 1 
Summary of regions considered in BEST and CRUTS observational products and 
HAPPI data.  

High observational 
agreement 

High model- 
observational 
agreement 

Regions 
analysed 

Regions analysed 
(full name) 

ALA CAS CAS Central Asia 
AMZ CEU CEU Central Europe 
CAM CGI CNA Central North 

America 
CAS CNA EAS East Asia 
CEU EAS ENA East North America 
CNA ENA MED South Europe/ 

Mediterranean 
EAF MED NAS North Asia 
EAS NAS NAU North Australia 
ENA NAU SAS South Asia 
MED SAS SEA Southeast Asia 
NAS SEA SSA Southeastern South 

America 
NAU SSA TIB Tiberan Plateau 
SAF TIB WAS West Asia 
SAS WAS WNA West North 

America 
SEA WNA   
TIB    
WAF    
WAS    
WNA    
WSA     

Table 2 
Summary of models and realisations analysed.  

model Number of realisations 

All-Hist 1.5 2 

NorESM-1 135 125 125 
CanAM4 100 100 100 
Cam4-2� 520 500 120 
ECHAM6-3-LR 100 100 100  

Fig. 2. Extreme monthly Tmax values (�C) in observations (grey), HAPPI2006- 

2015 (black), HAPPI1.5 (blue) and HAPPI2 (red) for each analysed region. For 
observations, the plot circles represent observed mean values and crosses the 
recorded maximum. For HAPPI, the circles show ensemble mean values across 
all realisations, and crosses the ensemble 99th percentile values. The vertical 
lines for HAPPI show the observed constraints (HAPPI1.5/Obs and HAPPI2/Obs). 
HAPPI values have been bias corrected using the observed mean and historical 
ensemble mean values. 
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extremes, we preference analysis of regions where models perform best 
compared with observed. We also note that the regions examined here 
provide coverage over many global areas (see Fig. 1a) and hence the 
potential for insight across a variety of areas. We also note that the re
gions examined here provide coverage over a diversity of areas across 
the globe (see Fig. 1a) and hence the potential for insight across a variety 
of climates. We also limit our analysis to monthly Tmax and Tmin, rather 
than daily temperatures, which demonstrate notable warm tail biases in 
many regions compared to observed (Supplementary Figs. 2a and b). 

2.4. Defining future extremes and warming hotspots 

Prior to calculating temperature values in HAPPI we apply a simple 
bias correction based on the differential between regional average Tmax 
values observed over 2006–2015 and the HAPPI2006-2015 ensemble mean 
value (historical). This correction is applied to HAPPI simulated mean 
and extreme values for all experiments. Next Tmax and Tmin tempera
tures in HAPPI experiments are investigated using several analytical 
steps. 

First, we calculate the ensemble mean Tmax values for each HAPPI 
experiment for each region for various percentile levels. Percentile 
values are calculated by first fitting a generalised extreme value (GEV) 
distribution to the Tmax timeseries for each realisation and calculating 
percentile values in the fitted distribution. Distributions are fitted to the 
raw time series rather than seasonally-corrected anomalies. Values are 
calculated for 99th, 95th, 90th, 75th percentiles in HAPPI1.5 and HAPPI2 
(e.g., HAPPI1.5/99; HAPPI2/99) in each realisation and an ensemble mean 
value calculated. Equivalently, we calculate 1st, 5th, 10th and 25th 
percentile Tmin values (e.g., HAPPI1.5/1; HAPPI2/1) from the Tmin 
timeseries. A range of percentile values are provided for comparison, 
although we focus primarily on 99th Tmax and 1st Tmin values. This 
measure ideally provides a comparatively conservative estimate of 
future extreme temperatures, with this value, for example, exceeded 
every 1-in-100 months under 1.5 �C level of global mean warming for 
HAPPI1.5/99 HAPPI2/99. As with (Wehrli et al., 2018), we also find values 
are robust to statistical model fitted, models and number of realisations 
included, including if percentile values are calculated directly from 
timeseries without fitting a GEV distribution. We also note that the 
percentile values used are not all inherently extreme, but are rather 
selected to provide information on changes across a large part of the 
temperature distribution. 

Second, we compare simulated warming across regions. We begin by 
applying an observational constraint to the magnitude of future simu
lated extremes, with the constraint based on observed and simulated 
standard deviations. Following Lewis et al. (2017), we use a two-step 
process wherein we:  

i) determine the largest temperature range in the observations 
(extending from observed average to observed record), by calcu
lating the number of observed standard deviations above the 
2006–2015 mean (NσObsmax) that defines the observed maximum 
anomaly value (Obsmax)  

ii) determine the equivalent range of extreme values in HAPPI1.5 and 
HAPPI2, based on the ensemble mean (μ) and standard deviation 
(σHAPPI1.5; σHAPPI2) in the 1.5 �C and 2 �C degree futures and the 
observed anomaly 

HAPPI1:5=Obs¼ μHAPPI1:5 þ ðNσObs max * σHAPPI1:5Þ 1a  

HAPPI2=Obs¼ μHAPPI2 þ ðNσObs max * σHAPPI2Þ 1b 

Using these calculated projected temperature extremes, we identify 
regions as hotspots for each warming threshold (1.5 �C and 2 �C). These 
hotspots are regions where scaling of extremes (HAPPI1.5/99 and 
HAPPI2/99) between the two future warming scenarios is greater than 
the rate of change in global land surface mean temperature (GLMT). 

ΔHAPPI1:5=99

ΔHAPPI1:5=GLMT
> 1 2a  

ΔHAPPI2=99

ΔHAPPI2=GLMT
> 1 2b 

Third, we identify overall hotspots of future warming of extremes, 
where the increase in 99th percentile extreme temperatures exceeds the 
increase in 95th percentile temperatures. The designation of regions as 
future hotspots of Tmax or Tmin warming can be summarised as iden
tifying regions where the tail of the temperature distribution expands 
more between 1.5 �C and 2 �C of warming, than between historical 
(2006–2015) mean warming and 1.5 �C. To identify extremes hotspots, 
we: 

i) calculate ΔHAPPI99, the difference in 99th percentile values be
tween the 2 �C (HAPPI2/99) and 1.5 �C (HAPPI1.5/99) simulations 

ii) calculate ΔHAPPI95, the difference in 95th percentile values be
tween the 2 �C (HAPPI2/95) and 1.5 �C (HAPPI1.5/95) simulations  

iii) categorise regions as maximum temperature hotspots where 
changes in extreme temperature values are greater at 2 �C of 
warming than 1.5 �C, fulfilling the condition that: 

ΔHAPPI99

ΔHAPPI95
> 1 3a 

The equivalent minimum temperature extremes hotspots occur 
where 

ΔHAPPI1

ΔHAPPI5
> 1 3b 

These steps identify hotspots regions where extremes warm faster 
than GMT (assuming that global mean warming in the historical simu
lations from 2006 to 2015 is 1 �C above pre-industrial (Haustein et al., 
2017)). 

In summary, these analytical approaches provide various assess
ments of how extreme Tmax and Tmin in various regions change with 
background global land surface warming, including how regional ex
tremes scale with GLMT and how the tails of the regional temperature 
distributions change with warming. 

3. Results 

The simulated regional-average 99th percentile Tmax values exceed 
the current observed record in all instances for HAPPI1.5 and HAPPI2 
(Fig. 2). In all regions except for WAS (West Asia) the observed 
constraint value, determined as the number of anomalous standard de
viations above the mean defining the current observed record, is lower 
than HAPPI1.5/99 or HAPPI2/99. Conversely, for WAS, the observed 
constraint is larger than the 99th percentile simulated, indicating that 
temperatures at least as large as the HAPPI1.5/99 or HAPPI2/99 values 
should be expected to occur under these warming thresholds based on 
both observed and simulated characteristics of temperatures for this 
region. In all other analysed regions, the observed constraint is larger 
than HAPPI1.5/99 and HAPPI2/99 values, and these values are used 
hereafter to described future extremes under these global mean warming 
levels. 

For Tmin, projected changes relative to observed records are less 
consistent across regions (Fig. 3). In certain regions, projected temper
atures are cooler than those encountered to date (e.g. North and South 
Asia, North Australia and Eastern North America). These regions may 
incur other climatological changes that result in less warming in cold 
extremes than elsewhere, possibly due to precipitation trends or the 
occurrence of cold outbreaks. There is also a larger range of Tmin values 
for the WAS region determined through model estimates than indicated 
by observed values, suggesting that the SSTs imposed in the model do 
not provide a sufficient constraint on WAS temperatures. The WAS 
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region, including the Arabian Peninsula, is subjected to strong westerly 
wind flow, meaning that the SST conditions imposed act as less of a 
constraint in this region compared to regions with ocean-dominated 
flow. For WAS, it is also possible that conditions occurring during 
2006–2015 may not be sufficiently representative of climatic variability. 

We next explore how extreme temperatures scale with mean 
warming (Figs. 4 and 5). For each region, we determine the relationship 
between ensemble mean and 99th percentile Tmax values in order to 
assess whether changes in extreme values exceed changes in regional 
mean Tmax values, as well as the 95th, 90th and 75th percentile values. 
The same approach is applied to the ensemble mean and 1st, 5th, 10th 

and 25th percentile Tmin values (Fig. 5). In many of the analysed re
gions shown in Fig. 4, HAPPI1.5 or HAPPI2 values fall above the identity 
line wherein mean and extreme values increase comparably. The spe
cific regions vary depending on the percentile value examined. Simi
larly, several regions demonstrate warming of Tmin (1st percentile) at a 
rate exceeding increases in monthly means of daily mean temperatures 
(Fig. 5). 

Regions in which extreme-global mean land surface scaling exceeds 
1:1 (where increases in extremes are greater than mean values) are 
designated hotspots and summarised in Table 3. These regions are 
highlighted by hatching for Tmax in Fig. 6 and Tmin in Fig. 7, and are 
notably different for the Tmax and Tmin parameters. At 1.5 �C of global 
mean warming, Tmax warming hotspots occur for Central Asia, East 
Asia, North Asia, South Asia, West Asia, Central Europe, Mediterranean 
and North Australia (Fig. 6a). At 2 �C of global mean warming, warming 
hotspots occur for East Asia, South Asia, Central Asia, Central Europe, 
Mediterranean, North Australia, Central North America and Eastern 
North America (Fig. 6b). For Tmin, 1.5 �C hotspot regions are Central 
Europe, West and North Asia, and Western and Central North America 
(Figs. 7a) and 2 �C hotspot regions are Central Europe, West, Central, 
South and North Asia, and Western, Central and Eastern North America 
(Fig. 7b). Central Europe is identified as a hotspot of warming for all 
warming levels and temperature variables and is discussed in further 
detail in section 4). 

These Tmax extreme-mean relationships are shown in greater detail 
(see Fig. 8) for the Central Europe (CEU) and Mediterranean (MED) 
regions, which are hotspots at both warming threshold levels. In both 
regions there are clear increases in extreme Tmax values above the 
global mean land surface warming for both 1.5 �C and 2 �C of global 
mean warming. The increase in Tmax 99th percentile values in these 
regions is over twice the increase in global mean land surface warming. 
While these regions demonstrate simulated warming of Tmax extremes 
occurring more than twice the rate of global mean surface temperature 
changes, ascertaining the absolute value of extreme temperatures under 
these warming scenarios remains difficult due to potential biases in 
models and uncertainties in warming responses. Although HAPPI data 

Fig. 3. As for Fig. 2, but showing Tmin values (�C) in HAPPI2006-2015 (black), 
HAPPI1.5 (blue) and HAPPI2 (red) for each analysed region (crosses show 
ensemble 1st percentile values). 

Fig. 4. HAPPI ensemble Tmax mean and 99th/95th/90th and 75th percentile values for each labelled region for each experiment (HAPPI2006-2015 in black; HAPPI1.5 
in blue; HAPPI2 in red). Scaling lines are shown for each region, demonstrating relationship if percentile values increased at same rate as mean. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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can be evaluated against observations for the recent period (2006–2015) 
to determine potential biases in mean model or variability, assessing the 
validity of HAPP1.5 and HAPPI2 simulations is harder. 

In order to assess absolute temperature extreme values for these re
gions, we impose a further observational adjustment. We apply the 
observationally constrained simulated extreme values (NσObs_max * 
σHAPPI1.5) to the recently observed regional mean temperatures 
(2006–2015) adjusted for future global mean warming levels. This aims 
to provide an observationally derived conservative estimate of future 
regional temperature extremes. Applying this approach to the high
lighted hotspots regions gives temperature extremes up to 6 �C above 
existing records for just 1.5 �C of global mean warming in the Mediter
ranean, and a 1.8 �C increase in Tmax extremes between 1.5 �C and 2 �C 
of global mean warming. We discuss this very strong warming further 
later. For Tmin extremes we focus on WNA and CEU as hotspot regions 
of interest (Fig. 9). In both these regions, warming of Tmin extremes 
occur at a rate greater than warming of the global land surface, for both 
1.5 �C and 2 �C of warming. 

We summarise these results by identifying extremes hotspots of 
projected future warming (Fig. 10), where the tail of the temperature 
distribution expands with global mean warming levels in the HAPPI 
experiments. Hotspot regions for Tmax are CEU, NAS, WNA and ENA 
(Fig. 10a). For Tmin, hotspots are CAS, WAS, EAS, NAS and ENA 

(Fig. 10b). This summary of hotspots (Table 3) provides information 
about regions where the tail of the temperature distribution is most 
sensitive to warming between the two global mean thresholds. 

4. Discussion 

The results presented here are largely consistent with previous 
studies that have shown extreme local- or regional-scale temperatures 
increasing at a faster rate than mean temperature in some regions. By 

Fig. 5. HAPPI ensemble Tmin mean and 1st/5th/10th and 25th percentile values for each labelled region for each experiment (HAPPI2006-2015 in black; HAPPI1.5 in 
blue; HAPPI2 in red). Scaling lines are shown for each region, demonstrating relationship if percentile values increased at same rate as mean. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Summary of hotspots of warming for Tmax and Tmin at 1.5 �C and 2 �C of 
warming (where regional extremes increase more rapidly than land surface 
mean temperatures) and extremes hotspots (where the tails of the temperature 
distributions expand under future warming).   

Hotspot regions 

Tmax 1.5 CAS; EAS; NAS; SAS; WAS; CEU; MED; NAU 
2 EAS; SAS; CAS; CEU; MED; NAU; CAN; ENA 
Extremes CEU; NAS; WNA; ENA 

Tmin 1.5 CEU; WAS; NAS; WNA; CNA 
2 CEU; CAS; SAS; NAS; CNA; ENA 
Extremes CAS; WAS: EAS; NAS; ENA  

Fig. 6. Hotspots of future warming for 1.5 �C (a) and 2 �C (b) of warming 
against existing record observed Tmax values. Regions are highlighted by 
hatching where warming of extremes of monthly Tmax (HAPPI1.5/99/HAPPI2/ 

99) global mean land surface warming. 
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exploring events of various durations in distinct model projects, studies 
have identified regions of accelerated warming (e.g. Coumou et al., 
2013; Coumou and Robinson, 2013; Diffenbaugh and Giorgi, 2012). 
These highlighted examples typically use CMIP5 coupled models with 
transient simulations to assess changed in extremes relative to mean 
conditions for a suite of regions and temperature metrics, including for 
example warm seasons, rates of record-breaking and percentage of 
global land area experiencing extremes. Despite exploring extremes 
using diverse measures, prior studies generally demonstrate a consensus 
of larger increases in threshold exceeding extreme temperature events 
than of mean temperatures for many regions (Coumou and Robinson, 
2013; Hansen et al., 2012). 

This effect of disproportionate increases in regional-scale extreme 
temperatures is noted even in moving between levels of 1.5 �C and 2 �C 
of global mean warming. In one study examining Australian extremes, 
including seasonal temperatures, an increase of ~25% in the likelihood 
of record heat extremes was projected if warming of 2 �C rather than 
1.5 �C occurred (King et al., 2017). Global warming of 2 �C results in 
substantially larger simulated changes in the probabilities of the 
extreme temperatures events over much of the land surface than for 
1.5 �C of warming (Kharin et al., 2018). This effect is also reported for 
the contiguous USA (Karmalkar and Bradley, 2017) and for Europe 
(Dosio et al., 2017). More detailed studies of the relationships between 
local and regional temperature changes with global mean warming of 
1.5 �C and 2 �C have been conducted (King et al., 2018). This study used 
transient CMIP5 climate simulation to evaluate how well simulated 
climates at 1.5 �C predict simulated climates at 2 �C of global mean 
warming. While in many locations, the seasonal average was determined 
to be a useful predictor of change at higher levels of global warming, 

Fig. 7. Hotspots of future warming for 1.5 �C (a) and 2 �C (b) of warming 
against existing record observed Tmin values. Regions are highlighted by 
hatching where warming of extremes of monthly Tmin (HAPPI1.5/99/HAPPI2/ 

99) exceeds global mean land surface warming. 

Fig. 8. Example of Tmax mean-99th percentile scaling between HAPPI experiments for (a) CEU (Central Europe) and (b) MED (Mediterranean). Ensemble mean 
Tmax and 99th percentile values are shown for both region for each experiment with circles (HAPPI2006-2015 in black; HAPPI1.5 in blue; HAPPI2 in red). Crosses show 
the observational constraint (HAPPI1.5/Obs and HAPPI2/Obs), indicating that values well above the observed constraint and current record (grey triangle) are simulated 
in HAPPI. Scaling lines are shown, demonstrating relationship if 99th percentile values increased at same rate as mean (1-1). The current observed record is shown 
(grey cross), in addition to the observed constraints on simulated values (blue and red crosses). Also shown (panel c and d) are assessments of simulated future 
extremes where simulated Plus15-Future (blue) and Plus20-Future (red) are adjusted based on observed mean temperatures and global mean warming levels. 
Observed mean values are shown in grey circle, and mean 2016–2016 observed values in grey circles. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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accelerated increased in extreme temperatures in the East Asian region 
were noted. In the King et al. (2018) investigation, temperature ex
tremes increased between 1.5 �C and 2 �C levels of global mean warm
ing, in part due to synoptic changes and changes in anthropogenic 

aerosol concentrations. 
The location of hotspots of monthly temperature extremes deter

mined in our current study also aligns well with previous studies, 
including the identification of East Asia as ahotspot of Tmax warming at 
1.5 and 2 �C levels (Fig. 6). We note that the developing world regions 
around the tropics tended to fail the model evaluation tests we imposed, 
and we do not provide analysis of these regions, despite their established 
vulnerability to future climatic changes (Althor et al., 2016). The regions 
analysed in our study and determined to be hotspots of warming at 
largely mid-latitude areas, including the Mediterranean. The Mediter
ranean region has been previously identified as a regional climate 
change hotspot (Diffenbaugh and Giorgi, 2012; Seneviratne et al., 
2016), and projections for increases in heatwave intensity here are the 
largest simulated globally (Perkins-Kirkpatrick and Gibson, 2017). 

The Mediterranean region is highlighted as a hotspot of warming due 
to the strong soil moisture-temperature feedback that likely enhances 
changes in temperature extremes (Diffenbaugh et al., 2007; Seneviratne 
et al., 2006). Soil moisture conditions and feedbacks also have a notably 
large impact on the heatwave magnitude of heatwaves in central Europe 
(Bador et al., 2017; Vogel et al., 2018, 2017). At the specific individual 
extreme event level, such as the 2010 Russian heatwave and 2003 Eu
ropean heatwaves, heatwaves associated with blocking high pressure 
systems and soil-moisture feedbacks can amplify warming (Quesada 
et al., 2012; Miralles et al., 2014) and result temperature extremes of 
extended duration (Coumou et al., 2013; Bador et al., 2017). The overall 
magnitude of warming in 99th percentile regional monthly Tmax values 
determined in our study is at the higher end of values reported, though 
direct comparison across studies is difficult given the differing temper
ature metrics reported and different model experiments used. For 
example, one study found changes in heatwave intensity are 0.5–1.5 �C 
above a given global warming threshold (1.5 �C/2 �C), though values are 
higher over the Mediterranean (Perkins-Kirkpatrick and Gibson, 2017). 

The high warming values determined in our study (up to 6 �C above 

Fig. 9. As for Fig. 8, but showing Tmin mean-1st percentile scaling between HAPPI experiments for (a) WNA (Western North America) and (b) CEU (Central Europe). 
Ensemble mean Tmin and 1st percentile values for each region for each experiment are shown with circles (HAPPI2006-2015 in black; HAPPI1.5 in blue; HAPPI2 in red). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Hotspots of future warming of Tmax (a) and Tmin (b). Hatched areas 
are regions where the tail of the temperature distribution (difference between 
99th and 95th percentile/1st and 5th percentile values) expands more than 
mean temperatures between 1.5 �C and 2 �C of warming. 
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present for 1.5 �C of global mean warming) may result from several 
factors. First, Diffenbaugh et al. (2007) note that increases in tempera
ture are highly sensitive to percentile analysed, and we use a compar
atively more extreme temperature metric (99th rather than 95th 
percentile). This sensitivity to percentile is also demonstrated here in 
Fig. 4 (and Supplementary Figs. 5 and 6). In studies focused on 
record-breaking temperatures (e.g. the absolute highest values recor
ded), changes in the rates of record-breaking increase 5-fold (Coumou 
et al., 2013) or greater (King, 2017). Second, this very strong result for 
the Mediterranean may be caused by a combination of genuine sensi
tivity of extremes to mean temperature changes and additionally indi
cate that the 2006–2015 period used in the HAPPI modelling framework 
does not sufficiently constrain the tail of the distribution nor tempera
ture variability in the extratropical Mediterranean location. 

We have attempted to constrain the value of future warming in three 
case study regions (CEU and MED for Tmax; WNA and CEU for Tmin) 
using a large time slice-based ensemble, and by applying bias correction 
and observational constraints (Fig. 8c and d, Fig. 9 c and d). However, 
the values presented are based on a single modelling framework and 
hence a systematic examination of projections and uncertainties in a 
greater number and variety of models would assist in providing these 
projections of possible absolute regional temperature extremes under 
various levels of global mean warming. In particular, the estimation of 
variability simulated in models requires further examination. 

While we have highlighted the MED and CEU regions, in particular, 
we note that many other regions analysed are classified as hotspots of 
warming for extreme monthly Tmax at 1.5 �C (CAS, EAS, NAS, SAS, 
WAS, CEU, MED, NAU) and/or 2 �C (EAS, SAS, CAS, CEU, MED, NAU, 
CAN, ENA) of global mean warming. In these listed regions, Tmax in
creases by more than the rate of warming of the global land surface. 
Processes such as land-atmosphere feedbacks (Seneviratne et al., 2010; 
Vogel et al., 2017) and/or dynamical changes (Wehrli et al., 2018) may 
be particularly important in these regions. For example, previous studies 
identify that land-atmosphere feedback in CEU amplify extreme tem
peratures in climate change projections (Vogel et al., 2017; Seneviratne 
and Coauthors, 2013). We also note that regions which are extremes 
hotspots of future Tmax warming (where the tails of the temperature 
distribution are most sensitive to global land surface warming) are not 
identical to Tmin hotspots. For example, NAU shows a greater sensitivity 
of Tmax to mean warming than for Tmin extremes. We label CEU, NAS, 
WNA and ENA as Tmax hotspots, and CAS, WAS, EAS, NAS, and ENA as 
Tmin hotspots. 

In general, the proportionally large increase in extremes of temper
ature relative to global or regional temperature means is well estab
lished. One important result from this HAPPI analysis is that in many 
regions, the most extreme temperature percentiles analysed warmed at a 
faster rate with mean global warming level (e.g. 99th compared to 95th 
percentiles, see Fig. 8). We also show that this is regionally variable, and 
this relationship is also critically influenced by the mean global warming 
level, the temperature variable and extreme percentile considered. We 
summarise this complexity in mean-extreme relationships by describing 
overall hotspots of extreme warming, a description of regions that tar
gets changes in the far tail of temperature distributions. Extreme tem
peratures in these regions, shown in Fig. 10 and Table 3, are most 
impacts by background changes in mean warming of the land surface. 
These results help to identify regions in which simple pattern scaling 
approaches may not be insightful about changes in regional extremes 
with increases in GLMT. Pattern scaling techniques may assist in 
approximating forced changes under increasing concentrations of 
greenhouse gases (Tebaldi and Arblaster, 2014). However, such scaling 
approaches are not universally applicable and can be model dependent. 
Further analysis demonstrates that for extremes of temperature, this 
assumption of linearity may not hold (Lustenberger et al., 2014). 

The regional variability in responses of extremes to mean tempera
ture changes is likely dependent on many factors, including forced re
sponses in circulation, local- and regional-scale feedbacks and the 

degree of natural variability in temperatures. Exploring these dynamic 
processes and feedbacks, and their regional and seasonal variations in 
further detail would be useful. In particular decomposing changes in 
extremes into changes relating to mean warming and dynamically 
driven components would provide further insight into changes in these 
hotspot regions (Wehrli et al., 2018). Previous studies have also 
explored the role of antecedent rainfall or soil moisture in driving 
extreme high temperatures (Donat et al., 2018; Vogel et al., 2018). 
Donat et al. (2018) used the observed precipitation-hot temperature 
relationship as a constraint on projections of future temperature ex
tremes. Such an approach could also be applied to simulations at varying 
levels of global mean warming, such as in HAPPI. 

In our study, we restricted the analysis to HAPPI and explored 
temperatures only in multi-model ensembles. An exploration of poten
tial inter- (between HAPPI models) and intra-model (between individual 
HAPPI model realisations) differences may provide insight into process- 
based understandings of warming of extremes. In particular, the rela
tionship between precipitation and temperatures in models may eluci
date strong Mediterranean region warming. 

5. Conclusions 

Overall, this study confirms the outcomes of prior studies that 
investigate the changing probability of current extreme temperatures 
under 1.5 �C and 2 �C of warming in transient model simulations, and 
demonstrate the overall benefits of limiting warming for reducing the 
frequency of future regional extreme temperatures (Ciavarella et al., 
2017). By estimating absolute temperature extremes under Paris 
Agreement higher global mean warming levels in stabilised model 
simulations, we provide additional information about the regions in 
which changes in extremes are greatest relative to changes in mean 
temperatures, and the severity of such changes in temperature extremes 
under the Paris Agreement temperature thresholds. 

We find that under both Paris Agreement levels of warming, in
creases in 99th percentile monthly Tmax values are projected for all 
regions, although these projections are regionally variable and values of 
these Tmax extremes do not increase 1-1 with global mean warming in 
many regions. We find many mid-latitude regions where extremes of 
Tmax (99th percentile) and Tmin (1st percentile) values increase more 
than average warming of the global land surface (the 1:1 warming line 
shown in Figs. 4, 5, 8 and 9), although the designation of these regions as 
hotspots depends on the temperature variable (Tmin or Tmax), 
percentile and global mean warming level considered. We define hot
spots of extremes as regions in which the tail of the temperature dis
tribution (above 99th percentile) increases with mean land surface 
warming at a faster rate than the rest of the temperature distribution. 
For Tmax, CEU, NAS, WAS and ENA experience the greatest projected 
increases in extremes relative to means, and for Tmin CAS, WAS, EAS, 
NAS and ENA are identified as extremes hotspots. Prior studies have also 
found that regional extreme temperatures increase with global mean 
temperatures, but with a slope greater than 1 (Seneviratne et al., 2016). 

These results using different temperature parameters (99th percen
tile values) and model frameworks re-iterate that while global mean 
warming provides a useful and necessary metric for examining large- 
scale climate changes and for policy discussions, this single metric 
does not sufficiently reveal changes in regional temperature across the 
spectrum of the temperature distribution. In some regions, changes in 
extremes are highly sensitive to and far exceed changes in global means. 
For example, we show projections for changes in Tmax extremes in the 
Mediterranean region that are up to 6 �C above present for 1.5 �C of 
global mean warming. While this specific result requires further process- 
based exploration and analysis in an expanded set of models, it further 
demonstrates the necessity for exploring projected changes in regional- 
scale temperature extremes. 
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