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INTRODUCTION 

Mental health measurement, particularly of mood disorders, is notoriously difficult. This 

difficulty is largely due to challenges of robustly quantifying an individual’s mental health 

status and ambiguity around tangible thresholds. In combination with primary care access 

issues, this results in the substantial under-diagnosis of mental health disorders with  as many 

as  45-85% of depressed individuals estimated to never receive diagnoses of depression 

(Charon Gwynn et al., 2008; Verheij, 1996). As clinical outcomes under-report psychological 

morbidity, particularly for ‘milder’ cases of depression (Garrard et al., 1998; Lecrubier, 2007), 

quantitative social scientists commonly estimate psychological morbidity from questionnaires 

distributed to a sample of the population. 

The 12-Item General Health Questionnaire (GHQ-12) is one of the most widely used responses 

in quantitative social science and epidemiology for the analysis of mental health trends. It 

contains 12 questions, each with 4 Likert response categories, which are conventionally 

summed to give a single score lying on a notionally meaningful singular dimension (Goldberg 

and Hillier, 1979). The popularity of the GHQ-12 is largely due to its ease of use, breadth of 

distribution, and capacity to reproduce “remarkably robust” results contrasted with longer 

initial versions (Goldberg et al., 1997). Initially focusing on diagnostic purposes for specifically 

at-risk individuals, the GHQ-12 has since been repurposed and validated across multiple 

languages and countries as a population screening tool for depression and depressive symptoms 

(Creed and Evans, 2002; Hankins, 2008a; Pevalin, 2000; Smith et al., 2010). The UK is no 

exception, where the GHQ-12 has become the canonical mental health measure for UK-based 

population studies (Propper et al., 2005; Thomson and Katikireddi, 2018; Weich et al., 2003), 

largely due to its inclusion as principal mental health outcome for a series of popular large-



scale surveys including the UK Household Longitudinal Survey (McFall, 2011) and the Health 

Survey for England (Mindell et al., 2012). 

Despite being extensively validated using other leading mental health metrics,  and longer 

versions of the same GHQ metric, there is still considerable debate as to what the GHQ-12 

truly captures (Werneke et al., 2000; Ye, 2009). Due to its repurposed nature, different 

disciplines treat the GHQ-12 differently, treating it either as an indicator of cases of ill-health 

(Goldberg and Bridges, 1987; Thomson and Vittal, 2018), or as an indicator of population 

trends in mental health spectra (Hu et al., 2007; Weich et al., 2003). Researchers interested in 

underpinning processes of mental health, rather than population indicators, have extensively 

interrogated what is truly captured by the GHQ-12. This has led to numerous proposed factor 

structures with little consensus on whether more complex structures are truly adding value or 

if they result from over-interpretation of substantively meaningless, stochastic variation 

(Aguado et al., 2012; Hankins, 2008a; Stochl et al., 2016).  

The critical importance of understanding composite, complex measures such as the GHQ-12 is 

clearly evidenced in genetic and psychological research., More strictly defined cases of 

depression produce higher estimates of genetic heritability for major depressive disorder (Cai 

et al., 2018). Similarly, mental illness and wellbeing, often used interchangeably in policy, can 

have widely differing covariates (Patalay and Fitzsimons, 2016; Westerhof and Keyes, 2010). 

This difference has been recognised both nationally and internationally by the UK Chief 

Medical Officer signposting greater understanding of positive and negative components of 

mental health as a public health priority (Davies, 2013, 2018).  Obtaining a more 

comprehensive understanding of the underpinning, population-scale processes of mental health 

could offer more nuanced insight into these phenomena.  



This paper uses novel Bayesian Exploratory Structural Equation Modelling techniques to 

estimate underpinning processes governing responses to the GHQ-12 in Wave 1 of 

Understanding Society. The estimation of latent scores facilitates more nuanced inference 

about processes underpinning mental health and provides an empirical framework to test the 

stability of these complex processes across populations. The increasing availability of Bayesian 

capabilities in latent variable software packages (Mplus, (Muthen and Muthen, 2017), blavaan, 

Merkle & Rosseel, 2018) enable the generation of interpretable posterior factor scores, which 

can be readily incorporated as outcomes in subsequent analyses. Taken together we argue 

Bayesian ESEM offers an opportunity for quantitative social scientists to extract more of 

existing mental health data. Furthermore, this method allows the relaxation of previously 

necessary methodological constraints which have been demonstrated to bias results towards 

simpler interpretations (Marsh et al., 2014). The factor structure provided by this procedure is 

subsequently evaluated against leading interpretations of GHQ-12 dimensionality. Moreover, 

all models are estimated using both Weighted Least Squares and Bayesian estimation  to 

highlight the capacity of the latter for more flexible estimation of non-normal values, giving 

less biased results for potentially skewed factor variances and more explicitly discern 

preferential specifications (Muthén and Asparouhov, 2010). 

The rest of the paper is organised as follows. Firstly, an overview of the methodological 

assumptions underpinning traditional factor analysis methods is provided. Secondly, we review 

previous GHQ-12 structures suggested from the literature, identifying common dimensions 

across studies. We then consider the data to be analysed from Understanding Society and 

outline a recently developed analytical approach, ESEM, which presents a less constrained 

approach to instrument decomposition than traditional factor analysis allowing for more 

nuanced factor structure. This analytical approach is then shown to identify a more theoretically 

informative factor structure for the study population, which is then contrasted with previous 



structures. We demonstrate further flexibility by deploying the ESEM measurement invariance 

model taxonomy proposed by Marsh et al. (2009) with respect to gender. An extended 

conclusion section concludes by exploring the implications and limitations of this newly found 

structure, with recommendations for best practice for quantitative social scientists interested in 

more fully exploiting complex mental health outcomes to generate substantively meaningful 

insight. 

1.1 Understanding Mental Health Measurement 

The desire for population screening metrics can be situated as symptomatic of a wider cultural 

shift in mental health perception away from an “absence of illness” perspective. Where early 

studies of the ecology of mental illness focused on diagnoses of psychosis (e.g. Faris and 

Dunham, 1939), evidencing change via reduction in illness, contemporary approaches advocate 

a more holistic approach aiming to measure improvements in “wellbeing” (World Health 

Organization, 2013). This necessarily involves the conceptualisation of a mental health 

“spectrum”, beyond binary caseness. Whilst complexity is increasingly recognised as an 

intrinsic part of mental health measures (Gnambs and Staufenbiel, 2018; Hu et al., 2007), 

quantitative social science commonly takes the reductive view of reducing questionnaire 

responses to binary “cases” or unidimensional constructs without adequate consideration of the 

methodological implications of doing so. 

The underpinning theoretical assumption of summed GHQ-12 scores is that mental health lies 

on a single spectrum, thus all variation occurs along that spectrum. This unidimensionality is 

of critical relevance in literature which recommends or posits thresholds for the GHQ-12 above 

which an individual is considered at risk, or an “ill case” (Baksheev et al., 2011; Goldberg et 

al., 1998; Tait et al., 2003). In this literature, for caseness to be meaningful at the population 

level it is critical that a unit increase can be assumed to represent the same change in mental 



status across individuals, an assumption that necessarily posits substantive equivalence in unit 

response change both between items  and within items. Ultimately all research treating the 

GHQ-12 as unidimensional, whether continuous or categorical, necessarily posits that a unit-

increase in summed GHQ-12 score implies the same change wherever it occurs across the 

metric (Brodersen et al., 2007; Marsh and Bailey, 1991). 

Moving beyond internal validity, the context-sensitivity of GHQ-12 interpretation has been 

evident for some time (Werneke et al., 2000). Goldberg et al. (1998) noted the context-specific 

nature of thresholds in the GHQ-12, documenting the clear differences in specificity and 

discriminant capacity between-items across-countries. Despite this early acknowledgement, 

the issue has been largely disregarded in subsequent literature due to necessary impositions of 

overly simplistic analyses and validation measures.  

Numerous studies have attempted to characterise the internal consistency of the GHQ-12 using 

relatively simple tests of Cronbach’s Alpha (Cronbach, 1951) or by conducting Confirmatory 

Factor Analysis (CFA) (Jöreskog, 1969). Of the two, CFA is considered the superior approach, 

providing robust evaluations of  capacity for model replication (Dunn et al., 2014). However, 

it still requires a refinement of dimensionality to “simple structure”, implying zero cross-

loadings across items (Asparouhov and Muthén, 2009a; Marsh et al., 2014). This means that 

each constituent item can only be empirically related to one underpinning construct, which has 

in turn been argued to lead to a reliance on overfitting models via model modification indices 

(Asparouhov et al., 2015), rendering the ostensibly confirmatory analysis theoretically 

exploratory (Fabrigar et al., 1999; Schmitt, 2011). The issues surrounding this approach to 

social science metrics are not solely empirical, there are also substantive concerns when using 

traditional CFA approaches (Conway and Huffcutt, 2003). The most pressing of these concerns 

is the orthogonality imposed by simple structure, which is particularly unrealistic for the GHQ-



12, as “nonzero cross-loadings are inherent in psychological measurement” (Marsh et al., 2014, 

pp.88).  

1.2 Proposed Factor Structures 

Whilst longer versions of the GHQ have long been accepted to be multidimensional (Graetz, 

1991; Martin, 1999), consensus is less forthcoming for the GHQ-12. Of the variety of proposed 

interpretive structures for the GHQ-12, there are three common interpretations. The simplest 

treats the GHQ-12 score as a unidimensional construct, taking the summed scores as a 

response, occasionally with an adjustment for positive and negative phrasing. This approach is 

backed up by a large body of research, which uses CFA to conclude that the unidimensional 

interpretation of the GHQ-12 is the most compelling (e.g. Aguado et al., 2012; French and Tait, 

2004; Winefield et al., 1989). Despite this research concluding in support of unidimensionality 

there is another important consideration here. 

Studies commonly cite high correlations between modelled multidimensional factors as 

justification for unidimensional interpretation (e.g. Gao et al., 2004; Gouveia et al., 2010; 

Padrón et al., 2012; Fernandes and Vasconcelos-Raposo, 2013; Romppel et al., 2013). Recent 

work using simulated data however has demonstrated that imposition of simple structure can 

artificially inflate correlations between modelled factors (Asparouhov and Muthén, 2009a; 

Marsh et al., 2014). Thus whilst it is not uncommon for reported correlations to be greater than 

0.9 (e.g. Aguado et al., 2012; Campbell and Knowles, 2007) or 0.95 (e.g. Sweeting et al., 2009; 

Wang and Lin, 2011), taking these correlations as justification for unidimensionality risks a 

self-fulfilling prophecy of simplicity begetting simplicity. 

Whilst many studies call for unidimensional interpretation there are numerous proposed 

multidimensional GHQ-12 structures. Several two-factor solutions have been proposed and 



validated using CFA techniques. These two factors most commonly involve a 

“Depression/Anxiety” construct and a “Social Dysfunction” construct (Andrich and 

Schoubroeck, 1989) (given by GHQ-12 items 2, 5, 6, 9, 10 and 11, and 1, 3, 4, 7, 8 and 12 

respectively - see Supplementary Material for full item list). “Depression/Anxiety” relates to 

the emotional component of psychological distress, whereas “Social Dysfunction” relates to 

the social functioning of the distressed individual. This structure, albeit with different labelling, 

has at various points been identified as the best fit to data from the UK (Smith et al. 2010), 

New Zealand (Kalliath et al., 2004), Brazil (Gouveia et al., 2010), Japan (Suzuki et al., 2011), 

Germany (Schmitz et al., 1999), Italy (Politi et al., 1994) and Turkey (Kiliç et al., 1997). 

Systematic reviews and meta analyses also consistently identify these two factors most 

commonly in both two- and three-factor solutions (Gnambs and Staufenbiel, 2018; Picardi et 

al., 2001; Werneke et al., 2000). It is important to note that these groupings align with the 

positive or negative phrasing of the constituent items. “Social Dysfunction” items are all 

positively worded and “Depression/Anxiety” items are all negatively worded, which has 

invited debate as to whether this structure solely reflects differences in phrasing (Hankins, 

2008b; Stochl et al., 2016). 

Increasing multidimensional complexity brings consideration of three-factor solutions, which 

most commonly identify “Social Dysfunction” and “Depression/Anxiety” constructs alongside 

a third construct referring to some variant of “Loss of Confidence”. This structure was initially 

identified by Worsley and Gribbin (1977) in the first factor analysis of the GHQ-12. They 

found a third “Loss of Confidence” construct alongside “Social Performance” and “Anhedonia-

Sleep Disturbance” (approximating Social Dysfunction and Depression/Anxiety respectively). 

For Worsley and Gribbin this third posited dimension was constructed of four items (6, 9, 10 

and 11) pertaining to losing confidence or feeling worthless or depressed, evidence of which 

has been subsequently supported (Campbell et al., 2003; Penninkilampi-Kerola et al., 2006; 



Vanheule and Bogaerts, 2005). Notably, Worsley and Gribbin did not refine to a simple 

structure solution, as there were no structures to test against, so this solution contains cross 

loadings. 

A similar structure was published by Graetz in 1991. Graetz analysed a large scale (N= 8998) 

Australian sample, resulting in a three-factor structure comprising “Anxiety/Depression”, 

“Social Dysfunction” and “Loss of Confidence”. The Loss of Confidence factor is similar to 

that of Worsley and Gribbin – but presented in the simple structure format of CFA, with non-

zero cross-loadings eliminated. This 3-factor structure has been the most widely accepted 

multi-dimensional structure since its introduction, supported by subsequent work both in the 

UK (e.g. Cheung, 2002; Martin& Newell, 2005; Shevlin & Adamson, 2005) and overseas 

(Gnambs and Staufenbiel, 2018; Padrón et al., 2012).  

Whilst several proposed structures from the literature are strongly validated, there remain 

certain issues with their research design. Firstly, with the exception of the Graetz 3-factor 

model (Graetz, 1991), structures are commonly generated and validated using data with  small 

sample size and limited contextual scope. It is not uncommon for validation studies to report 

sample sizes under 500 (e.g. Khan et al., 2013; Martin and Newell, 2005). Moreover, studies 

with greater statistical power commonly draw samples from heavily context-specific 

populations such as primary care users (e.g. Werneke et al., 2000) or high-school students (e.g. 

Suzuki et al., 2011), and not the general population. Secondly, there is little methodological 

consensus on effective measures and fit criteria for recommending any given structure over 

another, despite efforts to establish consistent approaches (Conway and Huffcutt, 2003; Hu and 

Bentler, 1999; Marsh et al., 2010a). 

There is clear substantive interest to social researchers in moving beyond understanding 

observed, aggregated measures of complex phenomena such as mental health. It is of critical 



importance to develop a better understanding of the underpinning processes driving these 

measures. Empirically, this means partitioning response variance into common and unique 

variation across items, explicitly factoring for individual variability in response (Conway and 

Huffcutt, 2003). There is clearly a wealth of data available for the GHQ-12 in the UK, collected 

alongside rich demographic and spatial information in several panel studies (e.g. Gnambs and 

Staufenbiel, 2018). In light of methodological developments in the modelling of complex 

responses, this data needs comprehensively re-evaluating to ensure it is fully exploited for 

given populations. These complex methodologies readily output individual scores on the 

proposed dimensions, which can be used to triangulate evidence around more complex aspects 

of mental health.  

This study proposes a multidimensional series of latent factors underlying GHQ-12 responses. 

We use the ESEM framework to test for measurement invariance, finding evidence of strict 

measurement invariance with respect to gender. The interpretation of multidimensional latent 

structures allows insight into underpinning processes producing the observational data. We 

argue that Bayesian ESEM offers a readily available methodology with which the increasing 

number of social scientists interested in mental health can ask and answer more realistically 

nuanced questions of mental health metrics. Furthermore we clarify and make explicit the 

empirical and substantive benefits of doing so in the quantitative analysis of a subject as 

nuanced and individually heterogeneous as mental health. 

  



2 DATA AND METHOD 

2.1 Data 

This study uses the first wave of the Understanding Society Survey (US), a nationally 

representative annual UK panel survey . Data collection for Wave 1 took place between January 

2009 and March 2011 and involved the completion of full interviews by 47,732 respondents 

(McFall, 2011). The GHQ-12 was administered via face-to-face interview and completed by 

40,452 respondents. For a comprehensive overview of Understanding Society Data Collection 

and methods see Quality Profile (Lynn and Knies, 2016).  

Observations were dropped from the original dataset if they did not record any responses to 

GHQ-12 items. Of the 40452 who provided responses to any GHQ-12 items, 39700 responded 

fully. Estimation was carried out on the 40452 respondents, as Bayesian estimation does not 

require the strict missing completely at random assumption typically required for modelling of 

ordinal factor indicators (Muthén and Asparouhov, 2012). Table 1 gives the response 

characteristics of the survey sample, demonstrating that including partial respondents does not 

appreciably change demographic characteristics other than to allow us to increase the number 

of non-whites considered in the sample.  For initial exploration sample weights were taken and 

applied from Wave 1. Sample weights were applied to Weighted Least Squares but not 

Bayesian analyses, as weights are not supported in Bayesian estimation. 

[Table 1 about here] 

There is strong evidence of different response patterning across positive and negative GHQ-12 

items, shown in Figure 1. There are clearly different modal responses for positive and negative 

items, giving rise to the common factor structures reflecting positive and negative items. 



Despite strong patterning in responses being somewhat corrected for in binary interpretation, 

Likert scores have been demonstrated to allow greater discrimination between different 

dimensional structures (Campbell and Knowles, 2007; Smith et al., 2013). For this reason we 

use full information Likert scoring here (see supplementary material for response coding).  

[Figure 1 about here] 

  



2.2 Methodology 

To explore the GHQ-12 data a novel approach termed Exploratory Structural Equation 

Modelling (ESEM) is deployed (Asparouhov and Muthén, 2009). ESEM combines the best 

elements of restrictive CFA and unstructured exploratory factor analysis (EFA – which is 

actually a special case of ESEM, Asparouhov and Muthén, 2009b). The key contribution of 

ESEM for this research is the specification of non-zero cross-loadings on constituent items 

(Asparouhov and Muthén, 2009). As outlined above, in a literature which cites high factor 

correlations as justification for unidimensional interpretation, it is especially important to guard 

against inflated estimates of factor correlations resulting from imposing zero cross-loadings 

(Asparouhov et al., 2015; Marsh et al., 2010b, 2014). Beyond the empirical, there is also a 

substantive argument against refining to simple structure when analysing complex social 

outcomes such as psychological constructs. Where multiple and inter-related underpinning 

processes are likely to give rise to any specific item response nonzero cross-loadings ought not 

be viewed an aberration but a logically anticipated representation of complex, underpinning 

constructs (Marsh et al., 2014). All analyses are carried out within the Mplus software 

environment (Muthén and Muthén, 2018). 

The model is estimated using both Bayesian and Mean and Variance Adjusted Weighted Least 

Squares (WLSMV) estimation to demonstrate the discriminant superiority of the former. A 

series of EFA solutions are estimated in which each and every item loads on each of 2-5 

constructs from the 40452 Likert GHQ-12 responses. All solutions are rotated using Geomin 

rotation (ε = 0.01), which has been demonstrated to be optimal when little is known about the 

true underlying structure, and when suspected variable complexity is greater than one – 

meaning there is an expectation that there will be cross-loadings (Browne, 2001; McDonald, 

2005). As we are conducting a thematically exploratory analysis, we are interested in inferring 



maximal information about unknown latent dimensions emergent from the analysis, thus 

retention is dictated by a cutoff value of 0.224 as it represents 5% explained variance of the 

latent dimension. As the need to exclude loadings purely for methodological reasons has been 

relaxed, this value is a far more tolerant exclusion criterion than typically advocated in the 

literature. To test this criterion, models were rerun with all loadings present but with 

informative prior distributions of N(0, 0.01) for these small EFA loadings in Bayesian analysis, 

and cross loadings set to 0 in target rotation for WLSMV estimation. If estimated loadings 

under these constraints were under 0.1 (<1% of factor variance explained) then this was taken 

as convergent evidence supporting zero cross-loadings. Factor loadings above this were 

replaced back into the structure. 

Partial respondent inclusion has an impact that is not consistent across methods. Under 

Bayesian estimation the posterior distribution is considered asymptotically consistent with full 

information maximum likelihood (FIML) so is unbiased in the face of missingness patterned 

with respect to known observations and known covariates (Asparouhov and Muthén, 2010). 

Conversely, although considered the optimal estimation for ordinal factor indicators (Schmitt, 

2011), WLSMV essentially estimates using pairwise deletion under missingness, which is 

asymptotically consistent with FIML only when data can be assumed to be missing completely 

at random. As WLSMV estimates are provided primarily to support and corroborate findings 

from the Bayesian solution, which can incorporate the increased non-white population included 

in the partial respondents, partial respondents are included for all models. 

Models are parameterised as multinomial probit regressions of each item on the underpinning 

latent factor (Asparouhov and Muthén, 2010; Muthen and Muthen, 2017, pp.62)). Factor 

loadings can be interpreted as likelihood changes in the log-odds of changing response category 

on the response variable, illustrating the strength of the relation between the underpinning 



dimension and the probability of response change in the associated item (Chen, 2007). 

Bayesian estimation allows less biased estimation of non-normal parameters, such as variances, 

than WLSMV estimates. It also does not require the assumption of normality of the parameter 

estimates, with prior variance-covariance estimates instead drawn from an inverse-Wishart 

distribution (Asparouhov and Muthén, 2010). 

 

To further demonstrate the utility of the ESEM approach, we subsequently tested the invariance 

of the proposed structure with respect to gender using the model invariance taxonomy 

developed by Marsh et al. (2009). Comparison of group differences for measurement 

invariance testing is not currently available in Bayesian estimation of ordinal responses in 

Mplus. Thus, whilst evidence for the factor structure is gathered using Bayesian estimation, it 

is not possible to evaluate the measurement invariance of this structure in a Bayesian 

framework. As such we do not report results for this fully here but provide model syntax, results 

and further references for emerging invariance methodologies in Supplementary Material.  

Model fit is used to both evaluate the proposed structure and to ensure that it offers greater 

predictive capacity than structures available from previous literature. For Bayesian estimation, 

fit is evaluated solely via Posterior Predictive Checking (PPC) for which we present posterior 

predictive p-values and 95% credible intervals for each model. In Mplus PPC is an extension 

of the likelihood ratio statistic taken to be an indication of the model’s capacity to reproduce 

the data and summarise the posterior distribution of the residuals (Asparouhov and Muthén, 

2010). As such, the statistic is upward biased by sample size, rendering us unlikely to 

realistically observe a non-zero p-value, thus we consider reduction towards zero of the 

predictive credible interval as evidence of improvement in predictive capacity, indicating 

proximity to a plausibly zero-sum discrepancy function(Gelman et al., 1996; Marsh et al., 



2004). We also present mean absolute factor correlation values (taken from the Bayesian 

estimation) to evidence substantive dissimilarity between modelled constructs with lower 

values indicating greater discriminant validity. In order to gain traditional fit statistics to 

facilitate comparison across methodologies, such as the Comparative Fit Index (CFI), Tucker-

Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA) and the Standardised 

Root Mean Square Residual (SRMR), WLSMV estimation was also carried out. For a more 

comprehensive discussion of the definitions of these fit indices see Hu and Bentler (1999) and 

Supplementary Material. Evidence of good fit was taken from guidelines proposed by Bentler 

(2007) and Muthén and Muthén (2014). 

  



3 RESULTS AND DISCUSSION 

Initial analysis specified a series of EFAs with between 2 and 5 factors, the results of which 

are given in Table 2. In the frequentist estimation, goodness of fit statistics evidence better 

model improvement for each added dimension up to a five-factor solution. In the Bayesian 

estimation, it is more explicit that none of the specifications provide an adequate fit to 

reproduce the 40,452 individuals’ mental health response, as shown by the consistent posterior 

p-values of 0.000, indicating almost no likelihood of fully recovering our data for any model. 

However, there is evidence of improvement of fit in the posterior credible interval with 

progression towards zero indicative of better fit. Predictive capacity improves with added 

factors up to the fourth factor; however, the five-factor solution is less robustly estimated. 

Reduction in the lower bound shows that a fifth factor could serve to improve predictive 

capacity but the increased upper bound suggests it is more probable that it will reduce the 

predictive capacity of the model. Therefore, the four-factor structure is carried forward as it 

offers the most robust reproduction of observed values. 

[Table 2 about here] 

Having identified that the four-factor solution was the most well supported from the estimation 

of the initial EFA whilst all cross-loadings are specified and estimated, the subsequent solution 

could benefit from refining to a comparable structure. This was implemented by re-specifying 

the model with all cross-loading values under 0.224 being omitted as outlined in Methods. 

Factor loadings can be interpreted as probit regression coefficients of each item on the unit-

standardised latent factor and are comparable both within and between factors. 

 

[Table 3 about here] 



Table 3 gives the loadings for the four-factor ESEM solution. The four factors are labelled 

“Lowered Self Worth”, “Social Dysfunction”, “Stress” and “Emotional Coping”. These were 

chosen to reflect existing names from the literature. The key difference from previous 

structures is that items 1, 2, 4, 5, 6, 7, 9 and 12 now load on multiple underlying dimensions. 

The loadings of Factors 1 and 2 retain the broad differentiation between positive and negatively 

worded items of previously proposed factors, and are named to reflect this, however, they differ 

empirically because they contain cross-loading items, but the. Higher individual factor scores 

across Factors 1 and 2 indicate higher levels of mental distress.  

The third factor, here termed “Stress” is seen to load most strongly on items associated with 

feeling under strain and loss of sleep. It is very similar to a factor found in one of the earliest 

factor analyses of the GHQ-12 by Worsley and Gribbin (1977), differing only in that they found 

it also loaded on item 12.  

The emergence of the fourth factor, termed “Emotional Coping” is a distinctive finding. Item 

9 initially returned a loading of 0.203, and was specified a prior distribution of N~(0,0.01) in 

the simplified analysis, however it subsequently returned a value of 0.210 and thus could not 

be assumed zero given our criteria. Factor 4 is most notable for having both positive and 

negative loadings. It is negatively associated with Item 4 – “feeling capable of making 

decisions”, but positively associated with feeling unhappy or depressed, not enjoying day-to-

day activities and not feeling happy. As such individuals with high scores on Emotional Coping 

are those  experiencing negative affect as captured by items 7, 9 and 12, whilst feeling capable 

of making decisions as captured by item 4, indicating a degree of (at least perceived) 

perseverance in the face of the distress. The negative loading highlights an ambiguity in 

interpreting latent variables. There is multidimensional symmetry between modal loadings in 

each latent axis. More simply, an empirically identical interpretation would be the inverse, with 



negative loadings on Items 7, 9 and 12 and a positive loading on Item 4. This would in turn 

invert the poles of the underlying dimension, with higher scores indicating positive rather than 

negative outcomes. Emotional Coping is structurally most similar to the “Sleep 

Disturbance/Anhedonia” construct found in work by Worsley and Gribbin (1977) although 

with the key difference in the negative loading of Item 4. 

Having detailed the theoretical implications of the proposed structure it is necessary to 

understand the substantive and empirical implications. To do so we evaluate the substantive 

dissimilarity between factor constructs .  

[Table 4 about here] 

Table 4 presents the modelled factor correlations. The factors with the highest correlation are 

Lowered Self Worth and Social Dysfunction, with a coefficient of 0.68. Although it is the 

highest identified in this structure, it is still low relative to that found in the existing literature. 

Stress is the most statistically dissimilar and therefore most substantively distinct factor, 

exhibiting uniformly low correlations with the other dimensions.  

The absolute proportion of variation in one latent variable  predictable solely from the other is 

given by the square of the correlation coefficient (Kish, 1954). For instance, knowing the 

modelled Lowered-Self-Worth scores for all individuals would only allow the prediction of 

46.24% (0.4624) of the variation in Social Dysfunction scores, despite these factors having the 

highest modelled correlation of 0.68. This is even more notable for Stress and Social 

Dysfunction, with a predictive capacity of 1.2%, leaving 98.8% of variation unexplained.  

To further demonstrate the utility of this framework the invariance of the structure was 

evaluated with respect to gender using the taxonomy developed by Marsh et al. (2009). It is 

reported only in Supplementary Material as currently it is not possible to estimate invariance 



in categorical indicators using Bayesian estimation, however the structure evidenced strict 

measurement invariance. Having identified a parsimonious summary of data from our model 

it is important to connect back to the wider literature on mental health structures to establish 

that we could not have achieved a similarly well-fitting model solely using information that 

existed a priori. The literature has proposed many different structures, seen in Table 5, which 

gives context to seven exemplar proposed structures against which we evaluate the structure. 

The full specification of these models can be seen in Supplementary Material. 

[Table 5 about here] 

Table 6 presents fit statistics for all seven models alongside the proposed ESEM structure. The 

mean absolute factor correlation is also presented for each specification to evidence the 

dissimilarity of the factors estimated in the model structure. The four-factor solution provides 

the best fit across every measure of fit under both  Bayesian and WLSMV estimation.  

[Table 6 about here] 

The best performing structure outside of the ESEM solution is the original Worsley and Gribbin 

(1977) structure with its non-zero cross-loadings. Factor structures which address the inter-

dependencies of the items via error covariance or non-zero cross-loadings perform well across 

all the fit statistics, which presents an argument for the adoption of a more realistically complex 

specification of mental health. The benefit of cross-loadings is most clearly borne out in the 

mean absolute factor correlation, which is far lower for the four-factor structure than other 

solutions. 



4  LIMITATIONS AND FUTURE RESEARCH 

Whilst we are making the case for the capacity of novel methodologies coupled with large 

datasets to offer greater insight into complex outcomes it is important to highlight the 

limitations of this study. Whilst the structure proposed here provides the best fit for the data in 

Wave 1 of Understanding Society in the UK (McFall, 2011), it is necessary to test on a wider 

range of data beyond this spatiotemporally specific dataset. More research is required in order 

to understand fully what can be gained from the modelling of decomposed processes 

underpinning survey instruments. Firstly, the structure is still specific to the current dataset. It 

should also be noted that whilst tests of measurement invariance evidence internal consistency, 

they are also sample-specific (Supplementary Material). In the instance of external application 

of the structure, the demonstrated invariance would require re-evaluation.  Moreover, whilst 

we evidenced strict measurement invariance with respect to gender, we did not test 

measurement invariance for further demographics in Table 1.As the invariance analysis was 

intended to be illustrative, and full information was unavailable for key demographics of 

interest we did not want to introduce further potential confounding by unobserved covariates 

influencing respondent tendency across constituent survey sections (Knies, 2017). Whilst it has 

been demonstrated that this structure provides a superior fit across the full population and that 

this holds consistent for males and females, measurement invariance should be investigated 

across different geographical and socio-demographic groups. There is considerable literature 

validating the overall GHQ-12 as a screening instrument over time and space (e.g. Gnambs and 

Staufenbiel, 2018), there is far less written on the temporal or geographical stability of its 

underpinning latent structure (Goldberg et al., 1997). This approach should be further applied 

across spatiotemporal contexts using the wealth of existing GHQ-12 data.  



Secondly, whilst it is clear that fit indices favour the proposed structure over previous 

structures, it is important to reiterate that the purpose of this was to highlight the enhanced 

predictive capacity gained from constructing dimensions from the given dataset. Empirically 

we are asking more of the previous structures in providing an out of sample test, than the 

solution proposed here. As such it is important to establish the proposed structure here offers 

more substantively in terms of predictive capacity than simpler structures. Recommendations 

for fit indices come from studies using sample sizes far smaller than those used here (Bentler, 

2007; Hu and Bentler, 1999). As such, in isolation there are multiple structures tested here 

which would be accepted as “adequate” under such criteria. Whilst the Bayesian fit statistics 

presented are more robust to sample size, more work is needed on the appropriateness of fit-

statistic thresholds in the face of increasingly large sample sizes (Muthén and Asparouhov, 

2010). Moreover, canonical reliability estimates are not yet available or optimised for Bayesian 

estimation of categorical factor indicators. For instance, whilst the TLI and RMSEA are 

considered appropriately robust to complexity (Marsh, 2009), the Bayesian PPC fit statistic 

presented here does not penalise as strongly for increasing numbers of parameters as other 

measures such as Deviance Information Criterion (Spiegelhalter et al., 2002), which are 

currently unavailable. Furthermore, methodological advances evolve rapidly (for instance see 

ongoing invariance work; Oberski, 2014; Seddig, 2018), and often optimal approaches are 

methodologically untenable due to software limitations, rather than theoretical implausibility. 

Against this backdrop, proposed structures must be evaluated not just numerically, but on a 

theoretical basis, identifying whether the more complex structure offers greater understanding. 

The mean absolute factor correlations give some indication of this in terms of substantive 

dissimilarity. However, comprehensive evaluation of this requires the investigation of the 

predictors of different constructs, demographically, geographically and socially to evidence 

whether they truly add to our understanding of different processes. As such, further work is 



necessary taking decomposed constructs as responses with data for which the structure is 

validated.  

Similarly, given the use of the GHQ-12 as an external validation instrument (e.g. Mukuria et 

al., 2014), it is important to incorporate these more nuanced understandings in evaluating what 

is being captured by other existing or new metrics (e.g. Tennant et al., 2007). Adopting this 

approach will allow researchers to inferentially attempt to understand similarities between 

underpinning mental health processes across populations. One such avenue is to investigate if 

any of the structures identified here are associated with similar underpinning processes of more 

recently developed well-being metrics such as the Short Warwick-Edinburgh Mental Well-

Being Scale (Stewart-Brown et al., 2009). This would facilitate empirical contribution to the 

contested relationship of mental illness and well-being (Westerhof and Keyes, 2010).  

There are further limitations in the interpretation of the resulting constructs. It has been 

suggested in GHQ-12 literature that multidimensional factor structures are simply a product of 

over-interpretation of spurious variance in negatively worded items (Hankins, 2008a). It is 

important to highlight the unidimensional correlated-error model performs very well, given its 

brevity. It seems reasonable to infer from this the potential for multidimensionality being solely 

the result of phrasing, only if one assumes unidirectional causality, i.e. items were grouped into 

positive and negative items at random, rather than based upon conceptually different 

measurements (Gnambs and Staufenbiel, 2018; Stochl et al., 2016). Empirically these two 

scenarios would present identically, although it seems reasonable to assume greater likelihood 

of the latter. 

Replicating this analysis across different temporal and spatial contexts is a clear avenue of 

further research. We highlighted a framework under which these contexts can be tested for 

invariance and strongly advocate doing so. Whilst understanding the stability of the structure 



across contexts is undoubtedly important, it is also important to demonstrate its worth in further 

developing understanding of what is being captured by these measures in large scale surveys. 

It is important, therefore, to deploy complex metrics by taking them as responses in spatial, 

social, structural and epidemiological studies. This is increasingly recognised in quantitative 

social science, evidenced by recent developments in genomic SEM (Grotzinger et al., 2019). It 

is clearly of greater benefit to social scientists in any analysis positing putative causal 

mechanisms to robustly link predictors with underpinning processes of mental health than with 

aggregate, unidimensional questionnaire responses.  

5 CONCLUSIONS  

The results of this study show that of the factor structures tested here the four-factor structure 

provides the best representation of GHQ-12 responses from the Understanding Society data, 

Wave 1. This is evidenced by traditional fit statistics as well as modelled factor correlations 

demonstrating greatest substantive dissimilarity. This involves the specification of two 

previously underexplored constructs, here termed “Stress” and “Emotional Coping”. 

Emotional Coping is particularly notable as the presence of a negative loading highlights the 

capacity for underpinning constructs to mask the presentation of psychological distress in the 

aggregated metric. Furthermore, we find evidence of strict measurement invariance with 

respect to gender, although it is not currently possible to substantiate this for categorical latent 

variable indicators in a Bayesian framework. 

Within the wider GHQ-12 literature there is little mention of dimensions analogous to the 

Stress and Emotional Coping structures beyond Worsley and Gribbin’s early analysis (1977). 

Stress-related constructs are also proposed in a structure drawn from a Spanish population 

(Sánchez-López and Dresch, 2008), and notably the “thematic analysis” of GHQ-12 content 



by Martin (1999). Constructs here would not have been identified using traditional CFA 

techniques as they consist largely of cross-loadings. The incorporation of cross-loadings 

considerably improved model fit, and the low modelled factor correlations suggest they are 

capturing substantively distinct processes. These low correlations in the results support 

suggestions that high correlations may be an artefact of  restrictive modelling procedure thus 

we caution against refining to simpler dimensionality based purely on apparently high factor 

CFA correlations (Marsh et al., 2009).   

The key message of this study is the capacity of large-scale datasets to contribute more 

comprehensive understandings of mental health outcomes in large, heterogeneous populations. 

Whilst this is not a new idea (Hu et al., 2007; Mukuria et al., 2014), the adoption of less 

stringent exclusion criteria in model selection and the incorporation of ESEM methodologies 

is something that is underexplored in large-scale survey analysis. The resultant individual 

posterior factor scores from such analyses are readily obtainable and offer inferential insight 

into processes which are more robust to confounding by item-specific variance and 

measurement error. In combination with large-scale surveys, decomposed metrics have the 

potential to offer a more comprehensive understanding of the similarities between different 

underpinning processes both between and within metrics.  

 

In conclusion this study, despite the above limitations, is one of the first to combine Bayesian 

and ESEM methodology with large-scale survey data in the UK and has illustrated the 

inferential benefits of doing so for research into population-level mental health determinants. 

Further research is needed to validate these findings, using data from wider contexts, and 

contextualise them against differing mental health responses. 
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Demographic Characteristic Full Respondents  

(N=39700) 

Full and Partial Respondents  

(N=40452) 

Age Mean = 45.8, S.D. = 18.0 Mean = 45.8, S.D. = 18.0 

Sex   

Male 43.9% 43.8% 

Female 56.1% 56.2% 

Ethnicity   

White 84.6% 83.1% 

Black 4.3% 4.6% 

Asian 7.9% 9.1% 

Mixed 3.2% 3.3% 

Job Classification   

Not in Employment 43.5% 43.5% 

Professional 3.6% 3.6% 

Managerial/Technical 21.0% 20.9% 

Skilled Non-Manual 12.7% 12.6% 

Skilled Manual 9.0% 9.0% 

Partly Skilled 8.2% 8.2% 

Unskilled 1.9% 1.9% 

Highest Educational 

Qualification 

  

Higher Education 34.0% 33.8% 

A-Level or equivalent 19.3% 19.1% 

GCSE or equivalent 20.9% 20.9% 

Other Qualification 4.9% 5.0% 

No Qualifications 20.9% 21.2% 

   

Table 1: Demographic characteristics of full and partial respondents to the GHQ-12 in Wave 

1 of Understanding Society. 

  



EFA WLSMV Bayesian 

Number 

of Factors 

CFI TLI RMSEA SRMR Posterior 

P-Value 

2.5% CI 97.5% CI 

2 0.976 0.964 0.080 0.036 0.000 2668.266 2993.799 

3 0.993 0.987 0.048 0.017 0.000 457.804 620.840 

4 0.997 0.992 0.037 0.011 0.000 197.311 331.851 

5 0.999 0.995 0.029 0.007 0.000 55.562 1073.603 

Table 1: Bayesian and ML Fit statistics for EFA factor solutions for the GHQ-12 with 2, 3, 4 and 5 factors. For further 

information on fit statistics see Supplementary Material 2. 

  



 

 

GHQ-12 Items F1 

Lowered Self 

Worth 

F2 

Social Dysfunction 

F3 

Stress 

F4 

Emotional Coping 

1. Able to 

Concentrate 

 0.659 

(0.008) 

0.227 

(0.009) 

 

2. Loss of Sleep 0.632 

(0.014) 

 0.427 

(0.007) 

 

3. Playing a useful 

part 

 

 

0.646 

(0.007) 

  

4. Capable of 

decisions 

 0.907 

(0.013) 

 

 

-0.322 

(0.017) 

5. Constantly under 

strain 

0.753 

(0.018) 

 0.617 

(0.008) 

 

6. Problem 

overcoming 

difficulties 

0.754 

(0.011) 

 0.330 

(0.006) 

 

7. Enjoy day-to-day 

activities 

 0.691 

(0.009) 

0.200 

(0.008) 

0.244 

(0.010) 

8. Ability to face 

problems 

 0.746 

(0.006) 

  

9. Feel 

unhappy/depressed 

0.746 

(0.009) 

 0.261 

(0.006) 

0.216 

(0.009) 

10. Losing 

confidence 

0.909 

(0.006) 

   

11. Think of self as 

worthless 

0.887 

(0.007) 

   

12. Feeling 

reasonably happy  

 0.577 

(0.010) 

 0.295 

(0.011) 

Table 2: Standardised Factor Loadings for 4-Factor ESEM Model of the GHQ-12 using Bayesian estimation. Standard 

Errors in parentheses. 

  



 

  

FACTOR 

CORRELATIONS 

F1 

Lowered Self-

Worth 

F2 

Social Dysfunction 

F3 

Stress 

F4 

Emotional Coping 

F1. Lowered Self 

Worth 

1.000    

F2. Social 

Dysfunction 

0.680 1.000   

F3. Stress 

 

0.178 0.111 1.000  

F4. Emotional 

Coping 

0.411 0.487 0.271 1.000 

Table 3: Modelled Factor Correlations from the Four Factor ESEM Solution for the GHQ-12 



Authors Date N Factor Structure Details 

Initial GHQ-12 

Goldberg 

Formulation 

1972 200 1 Factor – Baseline unidimensional model, all items specified to load on 

a single factor. 

Hankins 2008 3705 1 Factor – Unidimensional but with error covariance specified on 

negatively phrased items. 

Andrich & Van 

Schoenbroeck 

1989 491 2 Factor – Split into positive and negative items, each constituting a 

separate dimension. 

Kilic et al.  1997 1307 2 Factor – Anxiety/Depression, Social Dysfunction 

Worsley and 

Gribbin 

1977 603 3 Factor – Anhedonia-Sleep Disturbance, Social Performance, Loss of 

Confidence, specifies cross loadings on items 1 (F1, F2), 6 (F1, F3), 9 

(F1, F3) and 12 (F1, F2) 

Graetz 1991 8998 3 Factor – Anxiety/Depression, Social Dysfunction, Loss of Confidence  

Sanchez-Lopez & 

Dresch 

2008 1001 3 Factor – Successful Coping, Self-Esteem, Stress,  

Includes one non-zero cross-loading on Item 9 for F2 and F3. 

Table 4: Seven exemplar studies of the range of factor analytical structures obtained from the GHQ-12 data. See 

Supplementary Materials for diagrammatic representation of structures. 

  



Table 6: Bayesian and WLSMV Fit Statistics for the proposed ESEM factor structure alongside the 7 defined in Table 5.  

  

Factor 

Structure 

Factor 

No. 

SRMR CFI TLI RMSEA Posterior 

predictive 

P 

Lower 

Bound 

Upper 

Bound 

Mean 

Absolute 

Factor 

Correlation 

Unidim-

ensional 

1 0.062 0.919 0.901 0.131 0.000 7149.856 7670.342 - 

Hankins 1 0.029 0.983 0.972 0.070 0.000 1505.348 1764.743 - 

Kilic et al. 2 0.053 0.937 0.922 0.123 0.000 2665.799 3000.182 0.822 

Andrich & 

van 

Schoubroeck 

2 0.036 0.973 0.966 0.077 0.000 2653.599 2983.876 0.729 

Sanchez-

Lopez & 

Dresch 

3 0.033 0.976 0.969 0.074 0.000 2824.202 3152.636 0.772 

Graetz 3 0.032 0.978 0.972 0.070 0.000 2242.227 2552.853 0.768 

Worsley & 

Gribbin 

3 0.021 0.990 0.985 0.050 0.000 1199.430 1430.393 0.665 

ESEM 4Fac 4 0.009 0.997 0.992 0.037 0.000 376.571 526.539 0.356 



 

 

Figure 1: Graph illustrating the differential response patterning of positively (1,3,4,7,8,12) and 

negatively (2,5,6,9,10,11) phrased items in the GHQ-12 from Wave 1 of Understanding Society.  

 

 


