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Abstract

Podocytes, or glomerular epithelial cells, form the final layer in the
glomerular capillary wall of the kidney. Along with the glomerular basement
membrane and glomerular endothelial cells, they make up the glomerular
filtration barrier which allows the passage of water and small molecules
and, in healthy individuals, prevents the passage of albumin and other key
proteins. The podocyte is a specialised and terminally differentiated cell
with a specific cell morphology that is largely dependent on a highly
dynamic underlying cytoskeletal network and that is essential for
maintaining glomerular function and integrity in healthy kidneys. The
RhoGTPases (RhoA, Rac1 and Cdc42), which act as molecular switches
that regulate actin dynamics, are known to play a crucial role in maintaining
the cytoskeletal and molecular integrity of the podocyte foot processes in a
dynamic manner. Recently, novel protein interaction networks that regulate
the RhoGTPases in the podocyte and that are altered by disease have
been discovered. This review will discuss these networks and their potential
as novel therapeutic targets in nephrotic syndrome. It will also discuss the
evidence that they are direct targets for (a) steroids, the first-line agents for
the treatment of nephrotic syndrome, and (b) certain kinase inhibitors used
in cancer treatment, leading to nephrotoxicity.
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Introduction

The kidney is vital for the maintenance of water and electro-
Iyte homeostasis and for the removal of waste metabolites
from the blood while retaining or reabsorbing useful compo-
nents. The filtration unit of the kidney, the glomerulus is com-
posed of a bundle of capillaries, which are highly permeable to
water yet can retain larger macromolecules while selectively
allowing passage of solutes. This selectivity is achieved by the
action of the glomerular filtration barrier, which comprises the
glomerular basement membrane, glomerular endothelial cells
and glomerular epithelial cells—or podocytes'. Terminally
differentiated epithelial cells, podocytes are critical in preventing
protein passage across the filtration barrier. They have branch-
ing and interdigitating processes, and filtration takes place
through slits between these processes. A critical component
of the filtration barrier, the slit diaphragm is an ultra-thin
zipper-like structure that bridges the gap between interdigitat-
ing podocyte foot processes. It is a cell junction and signalling
complex that is essential for regulating podocyte cytoskeletal
dynamics’.

Podocytes have a remarkably elaborate and highly specialised
morphology that critically depends on an underlying network
of dynamic and interconnected actin and microtubule polymers
which allow them to respond rapidly to environmental changes
to maintain a healthy filtration barrier’*. Damage to this unique
cytoskeletal architecture is a hallmark of glomerular disease,
and the importance of correct regulation of this process
can be demonstrated by the fact that a number of human neph-
rotic syndromes (NS) are caused by genetic mutations cod-
ing for podocyte-specific proteins or proteins that seem only
dysfunctional within the podocyte and that are associated
with the slit diaphragm or directly link it to the podocyte actin
cytoskeleton’. Therefore, an understanding of how the cel-
Iular architecture of the podocyte is regulated in health and
how this is disrupted in disease is essential. Recent work,
which will be discussed in this review, has highlighted
the crucial role of the RhoGTPases—which act as molecular
switches regulating actin dynamics—in the unique biology
of the podocyte and the pathogenesis of glomerular diseases.
Excitingly, recent work has also suggested that pathways that
regulate RhoGTPases in the podocyte are the site of action
for steroids, the main first-line treatment for NS, thus iden-
tifying novel biological pathways that can be targeted
therapeutically®™.

The RhoGTPases RhoA, Racl and Cdc42 act as molecu-
lar switches—cycling between an active GTP-bound form
and an inactive GDP-bound form—that are crucial regulators
of several cellular processes, including actin and microtubule
cytoskeletal dynamics, cell morphogenesis and cell migration’.
The activity of these proteins is tightly regulated by a vari-
ety of guanine nucleotide exchange factors (GEFs), GTPase-
activating proteins (GAPs) and guanine nucleotide dissociation
inhibitors (GDIs) which act to control the ratio of the GTP- and
GDP-bound forms’. There is substantial evidence, reviewed
previously'’, that the RhoGTPases play a crucial role in
the regulation of podocyte biology whereby RhoA activation
increases in actin stress fibres promoting a contractile phenotype
whilst Racl/Cdc42 activation increases lamellipodia/filopodia
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formation promoting cell motility''. Tt is known that there is
crosstalk between the GTPases and that tight regulation of
their activities is crucial for maintaining a healthy podocyte
phenotype as changes to the balance of the activity of
the small GTPases lead to hypo- or hyper-motility of podo-
cytes resulting in proteinuria’. This was recently demon-
strated in drosophila nephrocytes, which are structurally and
functionally homologous to podocytes, where a tight balance
of Racl and Cdc42 activity is essential to maintain the special-
ised architecture and function of this cell’”. The RhoGTPases
appear to have different roles in specific disease states, and
controversy remains as to the exact role that alterations
in their activity play in disease pathogenesis''. For exam-
ple, alterations in Racl activity have been shown to be both
beneficial and detrimental to the podocyte and this may depend
on the type of podocyte injury involved''. Inducible Racl acti-
vation specifically in podocytes in mice induces foot proc-
ess effacement, proteinuria and the spectrum of NS ranging
from minimal change disease to focal segmental glomerulo-
sclerosis (FSGS)'*'“. In contrast, Racl has also been shown to
be important for glomerular repair as podocyte-specific knock-
out resulted in increased glomerulosclerosis via suppression
of mammalian target of rapamycin (mTOR) activity in injured
podocytes'.

The RhoGTPases are known to regulate or are regulated by a
number of factors implicated in NS, such as TRPCS5, TRPC6
and suPAR'". Mutation analysis of patients with NS has
recently revealed novel functional networks which regulate the
GTPases and which are altered in disease-causing changes to the
activity of these proteins. Braun er al. reported disease-causing
mutations in genes encoding the nuclear pore complex proteins
NUP107, NUP85 and NUP133 in patients with steroid-resistant
NS and demonstrated that knockdown of any of these three pro-
teins in podocytes led to the activation of Cdc42”. Ashraf et al.
identified mutations in six different genes (MAGI2, TNS2,
DCLI, CDK20, ITSNI and ITNS2) which result in partially
treatment-sensitive NS’. These proteins interact and form com-
plexes which are involved in the regulation of the RhoGTPases,
especially RhoA and Cdc42’. MAGI2, TNS2, DCLI1 and
CDK20 form complexes that regulate RhoA whilst ITSN1 and
2 are GEFs for Cdc42. MAGI2 also forms a complex with the
Rapl GEF, RapGEF2, regulating Rapl and this complex is
lost in the presence of the MAGI2 mutations’. Importantly,
glucocorticoids, which are the standard treatment for NS in
children, have been shown to act directly act on the podocyte™
and a potential mechanism for their beneficial effect has been
shown to be via these RhoGTPase regulatory complexes’.
In agreement with these findings that the mode of action of ster-
oids may be via direct action on the podocyte to regulate the
RhoGTPases, McCaffrey et al. have demonstrated that dex-
amethasone reduces the podocyte activity of Racl, thereby
increasing barrier function®. However, modelling MAGI2 muta-
tions in zebrafish suggest that the effectiveness of steroids
in treating alterations in RhoGTPase activity depends on the
specific genetic mutation involved and so unravelling the
specific action and targets of these agents will be crucially
important™. Maeda et al. recently delineated another protein
pathway regulating RhoGTPase activity in the podocyte, centred
on Ca?*/calmodulin-dependent kinase 4 (CaMK4)/synaptopodin,
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as a potential target for treating podocytopathies such as NS*.
Prevention of the degradation of the actin organising
protein synaptopodin and subsequent stabilisation of the
RhoA/Cdc42 signalling pathway by the direct action of the
anti-proteinuric drug cyclosporin A on the podocyte have been
reported”. It has since been shown that increased expression
of CaMK4, which is seen in FSGS, both alters the expression
of Racl and RhoA and leads to the phosphorylation of the scaf-
fold protein 14-3-3. Phosphorylation of 14-3-3 results in the pro-
teolytic cleavage of the actin organising protein synaptopodin
because of a loss of interaction between the two proteins, caus-
ing enhanced Racl signalling, decreased RhoA activity and
increased podocyte motility****. A CaMK4 inhibitor amelio-
rated synaptopodin degradation, alterations in RhoGTPase
activity and changes to motility in human podocytes. Further-
more, podocyte-specific targeting of this inhibitor prevented and
reversed podocyte injury and renal disease in both the adriamycin
mouse model of FSGS and mice exposed to lipopolysaccharide-
induced podocyte injury”. These results suggest that target-
ing the pathways regulating or regulated by the GTPase may be
a novel therapeutic area for glomerular disease. Conversely,
recent data suggested that kinase inhibitors such as deasat-
inib, used in clinical oncology, may have nephrotoxic effects by
affecting RhoGTPase signalling in the podocyte”. Therefore, a
clear delineation of the complex network of protein interac-
tions centred on the RhoGTPases in the podocyte and how
they alter the specialised biology of this cell is becoming
increasingly important.

In addition to the pathways already detailed, several other pro-
teins have been identified to be important regulators of the
GTPases in podocytes. For example, ARHGAP24 regulates
Rho/Rac signalling balance in podocytes and mutations in
this protein are associated with familial FSGS”. Mutations in
ARHGDIA (a GDI for Cdc42 and Racl), KANK2, ARHGEF17
and FAT1 all result in altered RhoGTPase activity and cause
NS#-. SLIT-ROBO pGTPase-activating protein 2a (SRGAP2a)
suppresses podocyte motility through inactivating RhoA and
Cdc42 and is downregulated in patients with kidney disease™.

CaMK4 | CaMk4 inhibition prevents
and reverses podocyte injury
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Trio, a GEF for Racl, is expressed in podocytes and is signifi-
cantly upregulated in glomeruli of patients with FSGS*. Human
FSGS-causing mutations in anillin have been shown to induce
hyperactivation of both Racl and mTOR in podocytes®. Racl
activity is also regulated via the kindlin-2-RhoGDIo~Racl
signalling axis. Knockout of kindlin-2 resulted in hyperac-
tivation of Racl via a reduction in RhoGDIol levels and an
increased dissociation of this protein from Racl, leading to podo-
cyte cytoskeletal re-organisation, foot process effacement and
massive proteinuria’’. In addition, podocyte foot process
effacement due to loss of kindlin-2 has been linked to increased
RhoA activity and resulting changes to cortical actin struc-
tures, plasma membrane tension and focal adhesion function™.
Racl activity is also regulated by the binding of RhoGDI to
the actin regulatory protein, ezrin. The ezrin knockout mouse
has significantly reduced Racl activity and is protected from
injury-induced morphological changes”. CLIC5A, a chlo-
ride intracellular channel, stimulates podocyte Racl activity
leading to the activation of both ezrin and the cytoskeleton
regulator PAK1%.

These results suggest that clearly understanding the cellu-
lar network in health and disease that both regulate and are
regulated by RhoGTPase activity will provide new therapeutic
targets for NS. Indeed, small-molecule inhibitors targeting the
RhoGTPases are already being developed in the cancer field
and several drug targets have been suggested in the NS field,
such as TRPC5, TRPC6 and suPAR, which either are known
modulators of or are modulated by the RhoGTPases'®'"*.
For example, inhibition of TRPCS5 which is activated down-
stream of Racl, leading to deleterious podocyte cytoskeleton
remodelling, has been shown to ameliorate kidney disease in
rat models of NS'. However, as detailed above, there is already
evidence for the involvement of multiple interactions and
pathways in maintaining the correct balance of activity of the
RhoGTPases and these proteins work in concert with other
GTPases such as dynamin to regulate podocyte phenotype®, so
unpicking this complex network will not be an easy proposition
(Figure 1).

Ezrin

x l and renal disease | kmockout ITNS1
14-33 , -14,3,3 ;) | MRact and Knockout P ITns2
Synaptopodin ~N o | Rho activity ’ \-Rac1 activity ,
N Synaptopodin v / Mutations associated with
s . ’ 7 partially treatment sensitive NS.
degradation ¥ 7’ Act as GEFs for Cdc42
NS GEF ’
-~ Racl activity T ~ ’ _ Arhgap24
~ o RhoA activity ~Sa , 7 -
=~ » -7 L
Stimulates™ ~ _ - - _ = 7 LRact activity
ARHGDIA Rac1 activity S~ - -
) - o o
ARHGEFL7 | = = = = = = = i’ - % o Dexamethasone reported
KANK2 Mutations associated with = to reduce Rac 1 activity
FAT1 altered RhoGTPase activity and NS - o -~ _
~
-
— inactive active Suppression of podocyte SRGAP2a
X - - motility through |-
TNS2 - - Off target effects * - RhoA/Cdc42 activity
Mutations associated with NS. of kinase inhibitors GAP ~ o
bCL1 Form a complex to regulate leading ~ -
CDK20 RhoGTPase activity. to nephrotoxicity? Knockoutofany ™~
Proposed site of action of steroids = of these ~
MAGI2 N eded?2 activity ~ ~ | NUP85
NUP107
NUP133

REGULATION OF SPECIALISED BIOLOGY OF THE PODOCYTE

Figure 1. Regulation of the RhoGTPases in the podocyte.
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