
 Mavromatis, A., Colman Meixner, C. E., Pereira da Silva, A., Vasilakos, X.,
Nejabati, R., & Simeonidou, D. (2019). A Software-Defined IoT Device
Management Framework for Edge and Cloud Computing. IEEE Internet of
Things Journal. https://doi.org/10.1109/JIOT.2019.2949629

Peer reviewed version

Link to published version (if available):
10.1109/JIOT.2019.2949629

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via [insert publisher name] at [insert hyperlink] . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1109/JIOT.2019.2949629
https://doi.org/10.1109/JIOT.2019.2949629
https://research-information.bris.ac.uk/en/publications/a-softwaredefined-iot-device-management-framework-for-edge-and-cloud-computing(951ecc90-85dc-4801-af1c-10fc14b56f1c).html
https://research-information.bris.ac.uk/en/publications/a-softwaredefined-iot-device-management-framework-for-edge-and-cloud-computing(951ecc90-85dc-4801-af1c-10fc14b56f1c).html

1

A Software-Defined IoT Device Management
Framework for Edge and Cloud Computing

Alex Mavromatis, Student Member, IEEE, Carlos Colman-Meixner, Member, IEEE,
Aloizio P. Silva, Member, IEEE, Xenofon Vasilakos, Member, IEEE, Reza Nejabati, Member, IEEE, and Dimitra

Simeonidou, Member, IEEE

Abstract—We present the design and implementation of
the Software-Defined IoT Management (SDIM) framework
based on a Software-Defined Networking (SDN) enabled
architecture that is purpose-built for edge computing multi-
domain Wireless Sensor Networks (WSNs). This framework can
dynamically provision IoT devices to enable machine-to-machine
communication as well as continuous operational fault detection
for WSNs. Unlike the existing approaches in the literature, SDIM
is mainly deployed at Multi-access Edge Computing (MEC)
nodes and is integrated with the cloud by aggregating multi-
domain topology information. Backed by experimental results
over the University of Bristol 5G test network, we demonstrate
in practice that our framework outperforms the implementations
of the LWM2M and NETCONF Light IoT device management
protocols when deployed autonomously at the network edge
and/or the cloud. Specifically, SDIM edge deployments can lower
average device provisioning time as high as 46% compared to
LWM2M and 60.3% compared to NETCONF light. Moreover,
it can decrease the average operational fault detection time by
approximately 33% compared to LWM2M and roughly 40%
compared to NETCONF light. Also, SDIM reduces control
operations time up to 27%, posing a powerful feature for
use cases with time-critical control requirements. Last, SDIM
manages to both reduce CPU consumption and to have important
energy consumption gains at the network edge, which can
reach as high as 20% during device provisioning and 4.5-4.9%
during fault detection compared to the benchmark framework
deployments.

Index Terms—Internet of Things, Edge computing, Device
Management, Software defined networking, Cloud, 5G

I. INTRODUCTION

THE deployment of massive Internet-of-Things (IoT)
infrastructures [1], [2] in urban areas and industrial

verticals is in the verge [2], [3], [4], e.g. smart city and
industry 4.0. IoT infrastructures are expected to be highly
pervasive and composed of millions of heterogeneous physical
devices distributed through multiple sites or domains [5], [6],
with each domain being connected to application platforms
hosted in cloud computing or metropolitan data-centres [7],
[8]. Therefore, IoT device management of such a complex
infrastructure will be a critical task dealing with important
issues of Fault, Configuration, Accountability, Performance,
and Security (FCAPS) [9], [6], [10].

Frameworks for IoT device management typically perform
device provisioning to initialize machine-to-machine (M2M)
communication, the necessary resource control for setting up
functional parameters like bandwidth and availability time and,
last, device failure detection, IoT network monitoring and
mitigation [11]. Most well-known frameworks such as Google

IoT Core, Amazon Web Services (AWS) IoT, Azure IoT, or
IBM Watson connect a massive number of devices as a single
domain and/or in a centralized location by abstracting the
underlying infrastructure’s network enablers and protocols [6],
[11], [12], [13], [14], [15]. Cloud solutions are widely used
for IoT, however centralized device management for massive
IoT deployments can cause bottlenecks and large delays.

As a result, the adopted distribution strategy of IoT
platforms between cloud and edge points using Multi-access
Edge Computing (MEC) nodes can reduce delay and avoid
bottlenecks not only in the data plane, but also in the control
or management plane. This is due to the fact that each MEC
node can host device management functions and control a
subset of IoT devices for a Wireless Sensor Network (WSN)
[5], [16]. Nevertheless, there is still room for improving
existing single-domain literature solutions on FCAPS [10]
regarding multi-domain or multi-edge deployments where
several WSNs require management. To this end, Software-
Defined Networking (SDN) technologies [17] can enhance
device management in multi-domain IoT deployments, as SDN
improves control plane [18], device mobility [19] and device
resiliency [20], [21], [22].

A. Motivation

In order to cover the above gaps in the literature, the current
work studies the problem of multi-domain and multi-edge IoT
device management and proposes a novel and robust Software-
Defined IoT Management (SDIM) framework as a solution.
SDIM leverages the advantages of SDN to enhance device
management functionality and to provide scalable multi-
domain IoT deployments, while dealing with FCAPS issues
more efficiently. Towards this, our proposed framework is
composed of four key novel procedures, described as follows.

1) Device provisioning: uses the SDN topology discovery
combined to M2M connectivity to enhance provisioning
time [23]1.

2) IoT operational fault detection: detects operational faults
in the IoT field.

3) Device bandwidth control: enables different Service-
Level Agreements (SLAs) and corresponding Quality of
Service (QoS) options over the WSN by modifying bit-
rate per device or per WSNs. This allows the business
logic to leverage fine-grained details, hence to perform
enhanced control over large sensor networks.

1This work extends and enhances our prior work in [23].

2

4) SDN topology aggregation: allows to perform
monitoring and actions from the cloud to the multiple
domains, thus it enables a holistic control and view
over all the IoT deployments.

Furthermore, we focus on a smart city use case to
demonstrate the feasibility of SDIM. To this end, we present
empirical results of a real multi-domain IoT deployment in
Bristol in the United Kingdom. For comparison purposes, we
deploy and test two well-known device management protocols,
namely, Light-Weight Machine-to-Machine (LWM2M) [24]
and the Network Configuration Protocol (NETCONF) [25].
Our reported experimental results confirm an improvement
on the following performance metrics: (i) fault detection
time, (ii) device provisioning time, as well as (iii) energy
consumption and CPU usage on the MEC side. Finally we
conduct experiments focused on SDN topology aggregation
time. We also demonstrate how IoT device management
performs in the edge and to the cloud.

B. Contribution
Overall, the contributions of our work can be summarized

as follows:
• We design and implement a novel IoT device

management framework for multi-domain and multi-
edge deployments, utilizing SDN principles to provision
devices and perform detection of operational failures as
well as device control over IoT networks. Moreover,
SDIM allows SLAs to leverage fine-grained details and
perform enhanced control over large sensor networks.

• We engage into a real-world edge IoT field trial
experimentation over the University of Bristol 5G test
network followed by a comparative analysis of SDIM
against state-of-the-art protocols, namely, LWM2M and
NETCONF Light.

• We present field-trial results for device management
performance regarding edge and cloud deployments.
Backed by our experimental results, we show significant
performance benefits achieved by SDIM compared
to these benchmark frameworks. Some highlighted
results include that SDIM (i) lowering the average
device provisioning times by 60-80% compared to
NETCONF Light and 46-60.3% compared to LWM2M.
(ii) reduce the average operational fault detection time by
approximately 33% and 40% compared to LWM2M and
NETCONF, respectively; (iii) reduce control operations
time from 23% up to 27% compared to both benchmark
frameworks, thus matching the needs of time-critical
use cases such as eHealth or safety in industrial
environments; and last, (iv) reduce CPU and energy
consumption at the edge during both device provisioning
and operational fault detection compared to the other
benchmark deployments. Note that we also present results
for SDN topology aggregation time and overall multi-
domain WSN management performance.

C. Paper structure
This article is organized as follows. Section II introduces

the background concepts and the related work in the literature

by providing a short survey related to IoT device management.
Section III presents our proposed framework architecture
and work-flow. Section IV presents a detailed description
of our test-bed and experimental validation setup, before
proceeding with a meticulous performance assessment of
SDIM compared to state-of-the-art benchmark models in
Section V. We conclude our work and discuss our future work
goals in Section VI.

II. BACKGROUND AND RELATED WORK

Before we introduce our framework, we present the
background and related works on multi-domain IoT
architecture and management followed by its evolution
towards Software Define Networking (SDN) IoT.

A. Multi-domain IoT Architecture

The Information and Communication Technology (ICT)
infrastructure that supports IoT applications is formed by
cloud/edge data-centres connected to networks comprised by
millions of heterogeneous IoT devices [4], [5]. A group of
IoT devices provisioned for a specific application defines a
logical domain associated to a physical domain defined at
the edge e.g., Wireless Sensor Network (WSN) [6]. A Multi-
access Edge Computing (MEC) node will play an important
role for edge network services of IoT physical domains [26].

To understand the interaction between elements of such a
complex infrastructure, we refer to the five-layered paradigm
architecture presented in [6], [27]. The two higher layers focus
more on the interaction between the applications hosted to the
cloud and multiple logical and physical domains. The lower
layers focus on the interaction inside the domains (e.g., MEC
node and IoT devices). The proposed upper layers are:
• A Business layer, which abstracts the IoT infrastructure

from the main software platform hosted in cloud data-
centres (e.g., Google IoT Core, AWS IoT, Azure IoT,
IBM Watson etc). Typically, the main software includes
the IoT management and control platform, the core
applications, the data analytic software, and big data [2],
[16].

• An Application layer, which defines tools and protocols
serving the applications and platforms from the business
layer (e.g., Constrained Application Protocol (CoAP)
[15], Message Queuing Telemetry Transport (MQTT)
[28], HyperText Transfer Protocol Representational State
Transfer (HTTP-Rest) [29]).

The proposed three lower layers are:
• A Service-management layer, that focuses on the

middleware and virtualization enablers supporting the
interaction between applications to the cloud and devices
at the edge. In this layer, virtual and physical network
functions and middleware protocols are deployed on top
of existing ICT infrastructures [8], [30]. SDN controllers
work in this layer to interact with IoT agents and resource
brokers and orchestrators through network protocols [30].

• An Objects abstraction layer, which includes network
devices and protocols, and compute nodes deployed

3

to support IoT devices. The MEC node hosts the
components of the service management layer by enabling
protocols and frameworks to connect and manage
IoT devices. Some protocols and frameworks used
for IoT device connections are 802.11x, Long-Term
Evolution (LTE), Ethernet, UDP, TCP, and SDN. Some
device management protocols are IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPAN)
[28], Network Configuration (NETCONF) protocol [25],
and Light-Weight Machine to Machine Management
(LWM2M) [24]).

• Objects layer also known as perception layer, that
focuses on the IoT device and its physical environment.
All physical connections and data digitization are
performed in this layer. Some basic device detection or
management also can be done in coordination with the
upper layers. WSNs are defined in the object layer [2],
[3].

The IoT platform for management and control and the
applications are moving gradually from the cloud to the edge,
in order to be closer to the users and devices [16]. This is why
in our model we define a domain as a set of devices connected
to one MEC node or edge node. A domain is defined between
service management layer and abstraction layer where the
MEC acts as egde points-of-presence (E-PoPs). Infrastructure
and Device management in multi-domain IoT infrastructure
is a complex task [11], and a main focus of our study.
Therefore, and in order to provide a better understanding of the
problem, we provide a brief survey of the main concepts and
frameworks related to IoT management from the perspective
of infrastructure and the devices in Section II.B.

B. IoT Management Protocols

The Internet Engineering Task Force (IETF) and
International Telecommunication Union (ITU) categorize
IoT infrastructure management frameworks based on their
abstraction (i) Management of ICT infrastructure, and (ii) IoT
device management. [11]

1) Management of ICT infrastructure for IoT: This
management part focuses on the infrastructure that supports
IoT devices by performing three main tasks [11], [27]: (i)
Provisioning of the devices. (ii) Monitoring or permanent
observations to detect any abnormal operation (e.g., failures).
(iii) Administration of infrastructure including the planing,
diagnosing, and debugging of the whole infrastructure. Given
their high complexity, the management tasks can be divided
in application level, system level, and network level ones [27].
At the application, the management is performed inside each
application. At the system level, the management is done
inside and between interconnected operating systems. Finally,
at the network level, the management is performed over
network elements such routers, servers, switches, controllers,
etc.

2) Device management: Management of many devices
usually is focused [11] on provisioning, monitoring, and
debugging [12], [27]. IoT deployments include devices
with heterogeneous and/or constrained compute, storage, and

connectivity capabilities. As a result, device interoperability,
scalability, are serious issues for device management [3],
[16], [5], [31]. To deal with them, protocols and frameworks
were proposed and extended by researchers and international
communities for standardization (i.e., the Open Mobile
Alliance (OMA), the Broad Band Forum (BBF), the Internet
Engineering Task Force (IETF), and the International Standard
Organization (ISO)).

Two widely used application layer protocols for IoT device
management are the IETF Constrained Application Protocol
(CoAP) [15], [31], and the ISO Machine Queue Telemetry
Transport protocol (MQTT) [15]. For device monitoring
purposes, CoAP adds a unified Resource Identifier (URI)
to each IoT device and send regular pings to check their
availability. MQTT uses a centralized broker to manage
multiple M2M communications over TCP. The first protocol to
complement CoAP for device management is the OMA Device
Management (OMA-DM) [13] which deploys a bootstrap
server for device provisioning, monitoring, and debugging.
The server manages parameters of each device such as an
associated proxy server, wireless access points, and access
rules to provide basic trust (security).

CPE WAN Management Protocol (CWMP-TR-069) [32]
allows the management of large number of devices
interconnected by a Wide Area Network (WAN) composed
by modems, routers, gateways, and devices. Another similar
concept for message-oriented IoT architecture was studied in
[15] as an extension of the ISO Machine Queue Telemetry
Transport protocol (MQTT) based architecture to improve
the M2M IoT device management. Two private initiatives for
enhance IoT device management are the Wireless Machine-to-
Machine Protocol (WM2MP) [33] and the iDigi Device Cloud
[34].

The OMA Light-Weight Machine-to-Machine Management
(OMA-LWM2M) [14] was proposed as an extension of
OMA-DM. OMA-LWM2M provides an agnostic interface
between physical devices and servers for remote management
[13]. In this work, we deploy and validate our SDIM
framework by comparing its permanence with NETCONF
light and LWM2M protocols. IETF introduced the Network
Configuration (NETCONF) Light protocol to extend the
Simple Network Management Protocol (SNMP) in order to
manage heterogeneous devices [25], [35]. As benchmarks
for comparison we select LWM2M and NETCONF Light,
the main reason we select these is that they are lightweight
and they are some of the latest implementations for device
management. Below we list and survey advantages and
weaknesses of both approaches.

C. LWM2M and NETCONF Light
LWM2M and NETCONF Light are platforms posing

similarities, built for network device management. Both
of them are widely used and investigated in order to
accommodate future massive IoT deployments. LWM2M is
a UDP-based protocol that is particularly built for constrained
devices, hence using primarily CoAP.

LWM2M communication is done via SMS or UDP
messaging, resulting to some level of a device-agnostic

4

protocol. LWM2M is fairly secure using Datagram Transport
Layer Security (DTLS) and operates with pre-existing data
models. These data models are mutable and extendable,
thus enabling multiple use cases. However they are not
sufficient for enterprise devices [32] to perform management
on the fly. Future extensions will also look at integrating
TCP at LWM2M, however at the moment one of LWM2M
shortcomings is UDP and the data reliability is quite low in
high bandwidth applications. Additionally, CoAP utilization
results to NAT issues which is a blocker in NAT networking
applications.

NETCONF Light [25] is an IETF network management
protocol published which is a lightweight design to target
constrained IoT and other applications. NETCONF Light is
simply a lighter version of NETCONF that was introduced
in RFC 4741, the protocol data modeling language is
YANG and coupled with NETCONF software is extremely
powerful. The virtues of NETCONF are the extendability
and the plethora of options when it comes to configurations.
Additionally NETCONF is aligned with SDN principles which
is used for management of network elements divided over
control and data plane. In terms of IoT NETCONF Light
can be a good option, however the pluralism of abilities
comes with a complexity penalty, thus not suitable for many
heterogeneous constrained devices. Another incompatibility
with IoT deployments that NETCONF faces is the session
oriented approach, this is not regulated for low-power IoT
networks where sleep and wake up functions are main part
of their architecture.

Our framework exploits the usage of MEC nodes utilizing
SDN. Hence, in this work we study, test, and propose a
framework based on the integration between infrastructure
and device management for complex multi-domain IoT
deployments. The main motivation is born from the centralized
monitoring or debugging tasks in large and dynamic IoT
deployments that is not scalable [36], [37]. Additionally, our
research shows that SDN can work well with heterogeneous
IoT devices. Before introducing our framework, we revise
related works on SDN in MEC IoT infrastructure in the context
of control and device management.

D. Related Work
Software Defined Networking (SDN) technology can

provide flexibility, security and efficient resource sharing
in IoT infrastructures. Flexibility is required by many
applications in terms of inter-domain mobility, M2M
communications and addressing. SDN controllers provide
a unified view of the network, as a result it can
be deployed to provide device mobility [19], adaptable
M2M communication [38], and device address management
[39]. Hence, infrastructure and device management can be
simplified by adding an SDN controller. One key challenge for
massive IoT infrastructures is how to secure data routing and
device provisioning [5]. [40] studies an SDN architecture for
securing data routing by deploying a centralized verification
mechanism inside the SDN controller.

The SDN controller plays an important role for network
resource sharing or slicing and overall efficient use of network

resources [41]. In [42] SDN controllers are deployed in the IoT
infrastructure to enable network sharing between smart home
applications. However, a centralized SDN controller introduces
the risk of a single point of failure or attack [18], [39]. In
addition, large number and diversity of IoT devices in terms of
capabilities and application requirements limits the scalability
and performance of a centralized control. Therefore, multiple
controllers needs to be deployed to provide resiliency and
to deal with scalability and performance issues [19], [43].
Authors in [17] proposed a comprehensive cloud oriented SDN
framework for IoT deployments (SDIoT). This framework
deploys software-defined security, routing and control (e.g.,
device management) for large IoT deployments. However, it
does not consider multi-edge deployments to deal with the
multi-domain IoT device management problem, which is the
key focus of our model.

The placement of multiple SDN controllers in clusters can
be performed dynamically or statically to minimize latency
and resource usage [44] or maximize efficiency [17]. However,
time-critical IoT applications demand millions of flows and
routes as well as extremely low latency [45]. To deal with
this scenario [46] and [47] proposed an approach for optimal
placement of SDN controllers based on the number of flows
and routes. As a result, device and network management of IoT
infrastructures combined with the placement of multiple SDN
controllers can provide load balancing, fine-grained traffic
forwarding, and improve the bandwidth availability [47].
Another example of utilizing SDN at the edge is introduced
in [48]. This work focuses on the usage of SDN technology
for the mitigation of security attacks on IoT devices.

It is also important to focus on automation when SDN
is used for IoT networks. In [49] and [41] the authors
implement a mechanism that automates services utilizing SDN
capabilities. Indeed SDN can improve automation especially
in the edge. The authors also focus on cloud performance to
prove that the edge nodes can be utilized quite successfully
with SDN. In this work we study a further design of edge
and cloud SDN and present an analysis on our findings. In
Shafi et all [50] the concept of edge SDN-based anomaly
detection is introduced, the authors use machine learning. This
work presents promising results for the detection of attacks,
however, there is no focus on infrastructure operational faults.

Our framework considers a set or a cluster of SDN
controllers per instance of IoT infrastructure management.
This set is composed by a Master SDN controller placed
at the cloud and at least one edge SDN controller
placed in each domain or edge locations. Therefore, this
integration can remove single-points of failure and introduce
localized/targeted device management at the edge, which
improves flexibility, scalability, mobility, and resiliency of IoT
deployments.

In the following section we introduce the IoT management
problem and our proposed framework.

III. SOFTWARE DEFINED IOT DEVICE MANAGEMENT

A. IoT Device Management Problem
IoT platforms will face scalability issues with

unprecedented amount of devices connected to the internet.

5

Fig. 1: Architecture of SDIM Framework for Edge and Cloud IoT Infrastructure

To this end, edge computing emerges as solution [51],
[35] for some of them i.e., real time applications requiring
IoT data. Managing all those devices to the cloud will
produce application and network bottlenecks. As a result,
the investigation of new possible ways for utilizing the
advantages of multiple edge infrastructures (e.g., multiple
domains) is essential, not only for data processing but also
for decision making.

The problem of device management is typically found for
smart city cases because the infrastructure must accommodate
resources for different verticals, e.g. Vehicle-to-Vehicle (V2V)
communication, emergency networks, and many others IoT
networks running in parallel. Therefore, in this paper we
study the device management scalability issue for a smart city
case by deploying and validating a new device management
framework.

Our framework is primarily based on the edge computing
paradigm and SDN technology. More precisely, we leverage
on lightweight device management services that can be
implemented as containers on very constrained MEC devices,
hence eliminating the handshake and control signals exchange
with the cloud. This results to faster response times

compared to the centralized device management. Therefore,
by multi-domain device management the task becomes
less complicated, and the idea of device management
decentralization leads us to utilize SDN to its fullest extend.
SDN can provide the global view of networks, as a result
provide multi-domain information that allows multi-domain
monitoring and control. Given that SDIM is designed to solve
logically centralized bottlenecks and utilize both edge and
cloud. In the following subsection we present in detail the
SDIM framework architecture.

B. Software-Defined IoT Management Architecture

The SDIM architecture is based on a multi-domain network
setup, where each domain is integrated with layer two and
layer three SDN. By exploiting SDN topology detection and
flow control over each network site, SDIM is able to construct
global networks view, and at the same time isolate the device
management procedures at the MEC nodes. To this end, SDIM
architecture can be divided into four main building blocks,
where three of them are deployed at the MEC nodes and one is
deployed to the cloud. SDIM overall architecture is presented

6

in Figure. 1, and the three edge building blocks are described
below:

1) Software Defined Provisioning (SDP) is the element
that initializes any communication between the devices
and the IoT platform. Based on a white list of MAC
addresses, SDP is able to cross-validate the white list
with the SDN topology, providing zero touch device
provisioning.

2) Device Bandwidth Control (DBC) monitors the bytes
of incoming packets and applies rules concerning the
maximum allowed bandwidth. DBC is the element that
reads Service Level Agreements (SLAs) and applies
them over a specific number of devices. Therefore,
control signals for enabling or disabling devices are also
part of DBC. The business logic integrates at this point,
by deploying multiple descriptors describing SLA’s with
different requirements that are mutable over time.

3) IoT Fault Detection (IFD) detects failures in M2M
communications by validating in real time the MAC
address of each frame with a white list. IFD is
able to detect two types of operational failures: (i)
Unavailability of data due to an inactive device. (ii)
Unauthorized devices to avoid intrusions. IFD does not
focus on application security faults.

The aforementioned architecture elements are placed on
each MEC node and are connected to the cloud elements
through a dedicated Virtual Private Network (VPN) link. The
VPN connectivity is used for control plane traffic of SDIM and
for data traffic generated by IoT platforms and applications
(e.g., big data). To the cloud, SDIM deploys two elements:

1) SDN Topology Aggregation (SDTA) that provides a
global view of the IoT deployment to a Master SDN
controller, by aggregating all the topology information
for each of the domains.

2) The Master SDN Controller that uses the aggregated
topology information from the SDTA to enable Cloud
SDN.

In the next subsection we describe the SDIM system overview.

C. SDIM Framework Overview

SDIM framework overview is divided into four main
procedures (Wireless SDN, Software Defined Provisioning,
SDN Topology Aggregation and IoT operational faults
detection). The procedures of the framework are interacting
with all the network elements that comprise IoT end-to-end
applications, such as devices, Access Points (APs), the SDN
controller which is a requirement of SDIM (both domain and
cloud), and the IoT platforms. In Figure. 2 a sequence diagram
of the SDIM system is introduced, and all SDIM procedures
described in detail below:

1) Procedure one: Wireless SDN: SDIM matches rules for
the devices based on source MAC addresses and the IoT
platform destination IP address. To this end, SDIM SDP
component requests the topology of devices connected to the
AP from the AP’s Application Programming Interfaces (APIs).
Using the AP API SDP is able to update the SDN controller
LLDP inventory and recreate the SDN topology. In this way,

the SDN controller holds the WSN topology information and
is able to add flow rules over each device or device groups.
This process is based on MAC and IP address filtering, which
is more efficient compared to IP layer control messaging
(as verified by our evaluation results), especially for larger-
scale sensor networks. Utilizing LLDP reduces significantly
the computational requirements and time for operational fault
detection, device provisioning and device control.

2) Procedure two: Software Device Provisioning (SDP):
The device provisioning is based on two main loops presented
in Figure. 2. The first loop is defined as provisioning Loop
(pL). Considering that the WSN topology is integrated at
the SDN controller, SDP is able to operate the provisioning.
Provisioning happens by cross validating the MAC addresses
currently connected at the APs with a white-list of MAC
addresses, this process runs again if the WSN topology is
updated.

The cross validation is implemented based on the Algorithm
1. Algorithm 1 is utilizing binary search which has a known
time complexity of O(log n), where n is defined as the number
of devices to be provisioned. Furthermore, a for-loop is used
to assess the status of each device. The for loop has a time
complexity of O(w) where w represents the elements of the
white list. Considering the binary search is executed as many
times the algorithm checks for the device status, the total
complexity of the Algorithm 1 is: O(log n) * O(w). This
results to O(n ∗ logw) time complexity for Algorithm 1.

3) Procedure three: SDN Topology Aggregation (SDTA):
SDTA constructs the global multi-domain network view by
integrating the topology inventory of all SDN controllers.
During the setup period, each SDN controller of the WSNs
subscribes to the cloud master SDN controller and the
inventory aggregation is automatically updated. Therefore, the
master controller gathers all the topology information, which
allows cloud SDN. SDTA is dynamic and incorporates new
network topologies on the fly.

4) Procedure four: IoT Fault Detection (IFD): IFD
component is depicted in Figure 2 as main loop faults
Loop (fL). This procedure is implemented as an event that
monitors incoming packets from the SDN switches (packet
ins) and targets operational faults. Additionally, to enhance
the fault detection procedure we develop also the Device
Bandwidth Control (DBC) component. DBC is implemented
by monitoring the byte count of each device and accordingly
adds a flow rule to the switch.

Furthermore, IFD implements Algorithm 2, the time
complexity is not very different to Algorithm 1, due to the
similar binary search use. However in the fault detection
case the algorithm will check packet in messages from the
SDN controller. To this end the for loop complexity will
be: O(p) where p is given by the following: p = Df * N .
So for the algorithm worst case time complexity we have:
O(p) * O(logw) resulting in O(p ∗ logw). Details about
implementation and field trial experimentation can be found
in Section IV.

7

Fig. 2: SDIM System Overview

IV. EXPERIMENTATION SETUP

A. Benchmarks for Comparison with SDIM

To perform a concrete performance evaluation of the
proposed SDIM framework, we conduct a comparative
evaluation between the state of the art IoT device management
protocols and our proposed SDIM. We elaborate further on
the choice of the protocols for comparative evaluation in
related work Section II. To smoothly usher into the results we
briefly introduce the way each of our benchmark frameworks
operates.

• LWM2M: specifies four stages that operate the device
provisioning and M2M communication. The first stage
is called bootstrap interface that allows devices to collect
the crucial information for communication establishment.
For device provisioning a registration interface is used,
where the client (device) sends a message to establish
the destination that wants to communicate with (i.e
IoT Platform). This is a continuous procedure where
the device needs to be synchronized for keeping the
registered state on. The third interface is the device
and service management enablement. At this stage the
server that runs LWM2M already has information about
the devices and in that way interacts with devices.
Finally, there is a fourth interface called information
interface where LWM2M is able to observe the resources
where devices are sending periodically notifications. This
interface is used for fault management.

• NETCONF Light: is comprised of four main layers
and multiple operations. However NETCONF light
implements only the necessary operations for each

application. The operations are getting and setting
configurations across the registered devices and they are
described as YANG service and device models. The
main idea behind NETCONF light is that devices need
to support at least one session which is being used
for communication. Finally, interaction with devices are
done by using session-specific attributes. The NETCONF
protocol provides a small set of low-level operations
through which the device monitoring and fault detection
is enabled. The fault detection reports inactivity timeout,
or detection of unusual behavior from the devices.

Our proposed framework targets to surpass the aforementioned
device management approaches, in Key Performance
Indicators (KPIs) defined in Section V. All of the experiments
conducted for this paper are performed over the University of
Bristol 5G Test Network (UoBTN) which is described in the
following subsection.

B. MEC IoT Test-bed

For the evaluation of the proposed framework, we have
deployed a sensor network integrated with MEC capabilities
over the UoBTN. As shown in Figure 3 the UoBTN is located
in Millennium Square at the Bristol city centre. For this work
we have extended the test-bed with installing five MEC nodes
and twenty sensor devices. The following three subsections are
describing in detail, the network topology, the IoT and MEC
node integration and setup and the implementation software.
Explicit details about software and hardware are reported in
Table 1.

1) Network Topology: The network topology used for
experimentation and validation is presented in Figure 4. To

8

Fig. 3: Bristol Smart City Test Bed at Millennium Square

Fig. 4: University of Bristol 5G Test Network Topology for
Experimentation

enable the multi-edge and multi-domain WSN setup, we
connect a group of devices with multiple WiFi APs. Each
of these APs are integrated with an SDN switch where in
the same sub-net we are also connecting the MEC nodes.
As is highlighted in Figure 4 a fiber link is connecting
all the wireless and edge compute nodes with the High

(a) Outdoor Deployment Sensor Network

(b) MEC Node Outdoor deployment

Fig. 5: Device Provisioning Comparison of Field Trial and
Emulated Large IoT Networks at the Edge

9

Algorithm 1: Device Provisioning/Blacklisting
Algorithm

Data: SDN Topology S, White list W , Provisioned
Devices P , OpenFlow Rules SDN , IoT
Platform Address IIP , Black List B

1 while ! S.updated() do
2 If SDN topology is updated start again

3 W ← getwhitelist();
4 foreach device ∈ S do
5 if

(BinarySearch(device.MAC 6∈ P.MAC)
AND
(BinarySearch(device.MAC ∈W.MAC)
then

6 P ←device.MAC;
7 SDN .addrule(Accept,

IIP ←device.MAC);
8 W.MAC.remove(device.MAC);
9 P.MAC.remove(device.MAC);

10 remove MAC address until topology gets updated

11 else
12 B ←device.MAC;
13 SDN .addrule(Accept,

IIP ←device.MAC); black listing the device using

SDN
14 end
15 end
16 end

Performance Networks (HPN) group data centre facilities. It
is important to note, that for this paper we have used AWS
for our cloud experiments. AWS is used as cloud because
the fiber connectivity between the HPN lab and the edge
network provides latency in terms of nanoseconds, therefore
for realistic cloud experiments we have deployed all the
software at AWS.

2) Edge Nodes and IoT Integration: In order to evaluate the
benefits of SDIM, as well as the IoT device management at
the edge of the network, we have deployed a sensor network.
20 environmental Pycom Pysense sensing devices are installed
as depicted in Figure 5a integrated with the MEC nodes that
are connected to the SDN switches. An example of one out
of five total MEC nodes setup is illustrated in Figure 5b. The
MEC nodes are in the same sub-network of four devices to
enable communication for provisioning and operational faults
detection. In the next subsection the software setup of the MEC
nodes is explained, as well as any other additional software
installed.

3) Software Implementation: Most of the software used in
our experiments is deployed on the MEC nodes. The MEC
nodes in our setup are Intel NUCs and we run all the software
on docker containers. SDIM is developed for this research and
it is written with Node js and python. For the LWM2M we
use the open source implementation of Eclipse Leshan. Leshan
is an OMA Lightweight M2M (LWM2M) implementation in
Java which enables us to experiment with. For NETCONF we
use the OpenDayLight (ODL) implementation in Java, where

Algorithm 2: Faults Detection Algorithm
Data: SDN Topology S, White list W , Provisioned

Devices P , OpenFlow Rules Function SDN ,
IoT Platform IP Address IIP , Black List B,
Detection Frequency Df

1 ExpectedDevices← emptylist();
2 creating expected devices list for cross validation
Nsize← P.size();

3 while Df.NotChanged() do
4 If SDN topology is updated then start again
5 for i ∈ [0, |Nsize|] do
6 Fault←BinarySearch(SDN [i].MAC,P [i].MAC);

7 if Fault then
8 ExpectedDevices[i].MAC ← P [i].MAC
9 else

10 Fault Detected B ←SDN[i].MAC;
11 SDN .addrule(Reject,IIP ←SDN[i].MAC)
12 end
13 end
14 if ExpectedDevices.Size() 6= P.Size() then
15 ReportFaults(ExpectedDevices)
16 end
17 end

we extracted only the components specified in the NETCONF
light. Furthermore, as SDN controller we work with ODL
and OpenFlow1.5, and SDIM is utilizing the REST API of
ODL. It is important to note that the software environment
and computation resources are the same in all experiments, in
order to assure consistent results.

For the emulation of devices we use Mininet WiFi [52]. In
this way we can emulate the SDN connectivity of a larger
amount of devices, without having any significant deviation
from the real scenarios. The wireless SDN is implemented
with the integration of Ruckus WiFi API and the ODL LLDP
topology inventory. Finally, both in the real sensor case and
the emulated case we implement MQTT protocol to transmit
data. The traffic rate follows Poisson distribution with range 10
to 20 messages per minute, and the message size is 500bytes.
We select these values to create a scenario of high traffic for
IoT applications.

V. RESULTS AND DISCUSSION

This section presents a comprehensive performance
evaluation analysis between SDIM and two existing
approaches, namely LWM2M and NETCONF, in both edge
and cloud computing scenarios. Our head-to-head comparison
is based on eight different key metrics defined bellow.

1) Average Provisioning Time: We calculate the
difference between the time of the device connection
established with the AP, with the reception time of the
first packet at the IoT platform. It is important to note
that the figures plotting device provisioning evaluation
are presenting the performance of all approaches after
the initialization period. The initialization period is the

10

TABLE I: Emulation & Experimental Setup

Emulation Experiments
Experimentation Details
Number of Devices 5000 20
Duration Random Random
Traffic Rate Poisson[10-20]msg/min Poisson[10-20]msg/min
Fault Rate Poisson[40-80]msg/min Poisson[40-80]msg/min
Message size 500bytes 500bytes
Protocols
Messaging MQTT MQTT
Transport Layer TCP TCP
WiFi 802.11ac 802.11ac
SDN Discovery LLDP LLDP
SDN Flows Openflow 1.5 Openflow 1.5
Hardware & Software Specifications
Sensors Mininet WiFi Pycom Pysense
MEC Intel NUC Intel NUC
Total MECs 5 5
CPU Intel Celeron 1.50GHz Intel Celeron 1.50GHz
RAM Capacity 2GB 2GB
Hard Drive 32GB 32GB
WiFi Access Point R610 T610
SDN L2 Switch Edgecore AS4610-30P Edgecore AS4610-30P

time required by each approach to acquire all required
information for provisioning, such as predefined IP
addresses, ssh keys and SDN topology information. The
average provisioning time for the IoT devices required
is defined by Equation (1):

τ̄prov =
1

n
∗

n∑
i=1

(τpi − τci) (1)

Where τ̄prov is the average provisioning time, n is the
total number of devices, τpi is the time where i is the
ith device that has been provisioned. Finally τci denotes
the time that each device connected to an AP.

2) Average Fault Detection Time: We implement a
mechanism of inserting manually operational faults in
the IoT field. The faults are of two types: The first
type is disabling randomly devices in the field. And
the second type is adding blacklisted or new devices
to the field, that are trying to sent data. With these
actions, we are able to bring all the approaches to their
limits of failing to detect 100% of the aforementioned
faults. It is important to note that SDIM, LWM2M
and NETCONF Light have diverse abilities of detecting
different faults due to the different architectures. In order
to perform a fair comparative analysis we only focus to
the aforementioned two types of operational faults for all
approaches. And evaluate realistic operational anomalies
of IoT deployments. The fault insertion to the field is
following a Poisson distribution of 40 to 80 faults per
second, which is an estimated value for the ultimate
braking point of all the approaches. The average fault
detection time is calculated by:

τ̄fd =
1

n
∗

n∑
j=1

(τdj − τij) (2)

Where τ̄fd is the average fault detection time, n is the
total number of faults, τdj is the time where j is the

jth fault that has been detected τij denotes the time
that each fault has been inserted.

3) SDN Topology Aggregation: The multi-domain cloud
IoT device management requires to collect the SDN
topology information from each of the domains at the
cloud. To this end, the topology aggregation is required
to form the global topology view. Therefore, we measure
the total time required for aggregation, given by:

τagr =

n∑
i=1

(τi) (3)

Where τagr is the average time to aggregate i number
of topologies, which each of the topologies have τ time
of completed aggregation. Equation (3) works for static
topologies, however in a realistic scenario the topologies
will change over time. Therefore, we also define the
following:

τagr(t) =

n∑
i=1

(τi(t)) (4)

In Equation (4) we calculate the total aggregation
time for dynamic topologies that change over time. To
accomplish this, we measure the aggregation time τagr
as a function of the experimentation life time t.
Finally, the derivative of tagr with respect to time
indicates the rate of change of tagr. Therefore in (5)
we define:

∂tagr
∂t

= lim
∆t→0

(
tagr(t)− tagr(t−∆t)

∆t

)
(5)

Where in this work ∆t is set to 1 second, which is a
fair approximation since tsampl << τtotal where tsampl

is the sampling time and τtotal is the total experiment
time.

4) Energy Consumption: We measure the energy
consumption of each individual process of SDIM,
NETCONF Lite and LWM2M software, by performing
energy monitoring per approach. The energy
consumption consumed by each approach is monitored
for one hundred minutes of experimentation. The
monitoring is done by, implementing a script that stores
the energy consumption of the container process over
the time of the experiment. This allows to calculate the
energy used throughout the provisioning period and the
fault detection period and assess the potential impact
that both may have on energy consumption.

5) Total Device Energy Consumption of all sensor nodes
is also calculated during the experimentation period and
is given in (6)

E(τ) =
∑
s

(Ps ∗ τs), S ∈ (Tx, Idle,DeepSleep) (6)

Where E(τ) denotes the energy at time τ by measuring
the sum of power consumption for different states
such as Tx for transmit power idle for idle mode
and DeepSleep for sleep mode. The currents used for
measurements are provided by the manufacturer [53]

11

6) Percentage of Network Control Messages This metric
evaluates how the control messages of all approaches
impact the network. By measuring all control messages
per action we are able to present results for all the
devices during the experimentation. In (7) we present
the model used to calculate the total number of control
messages per approach.

Tctlm =

n∑
i=0

(provmi + faultsmi + opsmi + sdnmi)

(7)
Where in (7) Tctlm denotes the total control messages,
measured by the sum for all control messages n where
device provisioning control messages given as provmi,
faultsmi for fault detection control messages, for
any device operations such as enable/disable control
messages are defined as opsmi and finally for any
other SDN related messages as sdnmi, results to a total
control messages summary.

7) CPU Performance: For MEC nodes it is important
to deploy light-weight functions, to this end CPU
performance is observed throughout the fault detection
period of one hundred minutes experimentation.
Similarly to the energy consumption monitoring, we also
deploy a script that stores the CPU over time.

8) Completed Operation Time: We define the time needed
to enable or disable a device as “completed operation
time”. Note that during our experiments the devices can
be controlled in following two ways:

a) Enable devices by either increasing the accepted
bandwidth or white listing a black listed device.

b) Disable devices in the field

A. Edge and Cloud Device Provisioning

Figure 6 shows the average provisioning time for SDIM,
LWM2M and NETCONF at the edge with respect to both
field trial Figure 6(a) and emulated large trial networks
Figure 6(b) per different number of devices. Note that both
Figures report a time performance measurement for the special
case of zero devices. These measurements, in particular, refer
only to the time needed for system initialization and not to
actual provisioning time. Initialization time is different for
each framework, hence the different starting points in the
corresponding Figures. Evidently, SDIM implies a much lower
initialization time compared to the benchmarks for the same
reasons it does so with respect to average device provisioning
time, and which we explain next.

Following system initialization, both field trial and
simulation results show that the average provisioning time
for all approaches converges regardless of the increasing
number of devices reported in the X-axis. Even more
importantly, SDIM’s averaged converged time performance
(~4.5ms in field trial; ~6.3ms during emulation) significantly
outperforms that of both NETCONF (~8.1ms in field trial;
~10.1ms during emulation) and LWM2M (~7.2ms in field
trial; ~9.2ms during emulation). The former field trial
performances denote an 80% and a 60% of overhead by

NETCONF Lite and LWM2M, respectively, compared to
SDIM. Likewise, the corresponding performance overheads
under large network emulation are approximately 60.3% for
NETCONF Lite and 46% for LWM2M, i.e. they are expected
to be significantly high with respect to large network setups.
This exhibited performance merit is due to SDIM’s SDN
nature, which enables to dynamically attach and configure new
devices to the network through a single interface. Unlike that,
both NETCONF Lite and LWM2M require the establishment
of additional connectivity (i.e., ssh sessions) and imply an
additional message burden to perform device provisioning.

(a) Device Provisioning at the Edge - Field Trial

(b) Device Provisioning at the Edge - Emulation

Fig. 6: Device Provisioning Comparison of (a) Field Trial
and (b) Emulated Large IoT Networks at the Edge. Note that
the portrayed performance for zero devices refers to system
initialization time and not to device provisioning time.

Moving on next to Figure 7, the figures show the average
provisioning time for field trial (Figure 7(a)) and emulated
large trial networks (Figure 7(b)) per different number of
devices, this time with regard to cloud deployments of SDIM
and the benchmark frameworks. But before we elaborate
further into these performances, we remind the reader that

12

SDIM is designed especially for edge deployments. The results
reported here for cloud deployments serve the purposes of a
more holistic evaluation approach, where even the lower gains
reported yield an added value to our SDN-based framework
design.

As done in Figure 6, we report system initialization time
and not device provisioning time for the special case of
zero devices on the X-axis. In overall, the results are again
favorable for SDIM. But as expected, the measurements on
both system initialization as well as average provisioning
times are higher for all frameworks in comparison to the
edge deployment case of Figure 6. Morever, SDIM’s time
performance gains against NETCONF Lite and LWM2M are
at a smaller scale compared to the edge deployment case.
Specifically, the averaged converged time performance in the
cloud for NETCONF Lite (~53.1ms in field trial; ~64.8ms
during emulation) accounts for an approximate increase of
6.4% in field trial and 3.2% in the emulated large network,
respectively, compared to SDIM (~49.9ms in field trial;
~62.8ms during emulation). A corresponding comparison of
LWM2M (~52.2ms in field trial; ~63.7ms during emulation)
against SDIM accounts again for an increase in average
provisioning time by 4.6% and 1.4% with respect to the field
trial and the large network emulation, respectively.

B. Edge and Cloud Fault Detection Evaluation

Figure 8a shows the average fault detection time during
the fault insertions time that follows a Poisson distribution.
The fault detection performance of all three approaches is
presented and as shown in Figure 8a SDIM is faster at
detecting faults for all of the experiments conducted. The
SDIM implements the Algorithm 2 described in Section III
for fault detection which decreases the complexity over time,
therefore contributing to reduce the fault detection time. On
the other hand, NETCONF Lite and LWM2M operate with
configurations detection and message based fault monitoring.
This way the detection of faults requires more time, since it
depends on the devices availability. Figure 8b depicts results
for fault detection, with emulated 5000 devices. We can see
that the number of devices does not impact significantly the
detection time, since the change of behaviour is very low.

Figure 9a shows the average fault detection time for field
trial and emulated devices, with faults being inserted following
a Poisson distribution. We compare SDIM, LWM2M and
NETCONF, by deploying them in the cloud. Unsurprisingly,
the fault detection time in the edge is lower than in the
cloud. However, the lowest average detection time is still
provided through the use of the SDIM. Additionally Figure
9a presents results for fault detection with emulated 5000
devices, still SDIM performs better. For the cloud fault
detection experiments we found that fault detection time is
being significantly affected by the cloud delay, in comparison
with the edge network. The detection time is increased more
than 10 times in all of the approaches. Additionally, although
the SDIM SDN based fault detection is operating faster than
the other benchmarks, here the difference is smaller than the
edge by 15% to 20%. This is an interesting finding because it

(a) Device Provisioning at the Cloud - Field Trial

(b) Device Provisioning at the Cloud - Emulation

Fig. 7: Device Provisioning Comparison of (a) Field Trial
and (b) Emulated Large IoT Networks at the Cloud. Again,
the portrayed performance for zero devices refers to system
initialization time and not to device provisioning time.

shows that the cloud detection is not leveraging SDN as much
as fault detection in the edge of the networks.

Figure 10 presents results for 1 second of faults, for the
worst case scenario of faults. This specific experiment inserts
a total of 80 faults for 1000ms. Figure 10a zooms in the fault
detected per approach and the detection time that we recorded
for experiments in the edge of the network. We selected a three
dimensional figure to depict that SDIM is performing better
by not only detecting faster the faults, but as well detecting
a larger amount of faults. The explanation for this is that
SDIM is faster in detecting faults, therefore the total number
of faults detected within a specific time is also higher. The
same experiment is conducted in the cloud and the results are
presented in Figure 10b. It is interesting to observe the larger
detection time for all of the approaches. Again in the cloud the
performance difference between SDIM and other benchmarks
is smaller. Additionally, in the cloud all of the approaches are

13

(a) Fault Detection at the Edge - Field Trial

(b) Fault Detection at the Edge - Emulation

Fig. 8: Fault Detection Comparison of Field Trial and
Emulated Large IoT Networks at the Edge

detecting almost 10% less faults. It is clear that cloud delay
impacts significantly the detection process.

C. Topology Aggregation Performance

Figure 11 shows the elapsed time to complete SDN topology
aggregation for different SDN topologies per different sets of
access points (APs) for a constant number of devices equal
to 1500 (see Figure 11a) and varied number of devices, i.e.
1500, 2000 and 2500, per APs (see Figure 11b). Furthermore,
Figure 11 maps the equations (3), (4), and (5) to visualize
the time of the static topology aggregation, dynamic topology
aggregation and the rate of change. Additionally, we want to
observe in real experiments how the overall SDN topology
aggregation operates, and how it can be affected. As shown
in Figure 11a, the modification of the topologies has a direct
impact on τagr, as every new aggregation takes a larger time.
This is due to the fact that the topologies change instantly,
therefore the previous aggregation has not been completed
yet. This results to a peak time at the 4th topology. After that

(a) Fault Detection at the Cloud - Field Trial

(b) Fault Detection at the Cloud - Emulation

Fig. 9: Fault Detection Comparison of Field Trial and
Emulated Large IoT Networks at the Cloud

point τagr(t) starts to drop. We observe the same behaviour
also in Figure 11b, where the difference of devices per APs
results into a small impact on the τagr, noting, however, that
the behaviour of τagr(t) remains the same. Finally, the rate
of change (5) allows to approximate the impact of dynamic
topologies to the SDN cloud aggregation, highlighting the
conclusions about the cloud SDN capabilities for IoT.

D. Energy Efficiency at Edge Nodes

1) Energy Consumption During Provisioning Period:
Figure 12a presents an energy consumption comparison
among SDIM and the benchmark approaches during device
provisioning. The Figure shows average consumption at all five
MEC nodes in our setup after repeating device provisioning
a hundred times, using 95% confidence intervals. Evidently,
SDIM generally outperforms the other protocols. It needs on
average 4.4% and 12% less energy compared to LWM2M
and NETCONF light, respectively, with energy gains reaching
at times as high as 20% and 15%, respectively. The reason

14

(a) Edge for 1 Second Fault Detection Speed (b) Cloud for 1 Second Fault Detection Speed

Fig. 10: Worst Case Faults Detection - 1 Second of Faults

(a) Constant # of Devices (b) Varied # of Devices

Fig. 11: SDN Topology Aggregation for Constant Number of Devices (1500) and Different Number of Devices (1500, 2000,
2500) for Different Access Points (6, 8, 10)

(a) During provisioning period

0 20 40 60 80 100
Fault Period(m)

5

6

7

8

9

10

En
er

gy
 C

on
su

m
pt

io
n

(J)

NETCONF Light
LWM2M
SDIM
SDIM + SDN

(b) During fault detection

Fig. 12: Energy consumption at the edge

for these gains lies in the fact that SDIM offloads device
and network topology discovery to the SDN controller before
on boarding the devices to the platform. Therefore, SDIM
performs very lightweight tasks during this period.

This finding is of critical importance, as IoT devices have
generally limited processing capabilities and battery autonomy,
thus leading to pushing much of the energy-hungry processing
to the edge nodes. Nevertheless, edge nodes may be running

15

on battery themselves such as in Public Protection and Disaster
Relief (PPDR) use case scenarios involving flying drones that
form an ad-hoc network edge for controlling IoT devices and
for continuously gathering and processing their sensory data.

2) Energy Consumption During Fault Detection Period:
Figure 12b illustrates energy consumption for fault detection
purposes during a hundred minute period of inserting faults to
the network. The Figure includes both the aggregated average
consumption of SDIM at the edge nodes and the centralised
SDN controller (SDIM + SDN), as well as the “stand-alone”
average consumption of SDIM at the MEC nodes against
the benchmark protocols. The “stand-alone” consumption
of SDIM is generally lower than LWM2M and practically
identifies with the one exhibited by NETCONF light for
most of the fault detection period in the Figure, converging
into roughly 4.5-4.9% of lower energy needs compared to
LWM2M. These results alongside the energy consumption
levels during device provisioning verify that SDIM can yield
significant energy gains, particularly in scenarios were the
edge nodes work under energy constraints. Regarding the
energy overhead of SDIM + SDN, this reveals a desired trade
off achieved by SDIM by offloading tasks to a centralized
SDN controller at the cost of increase energy consumption
there where energy consumption is not an issue unlike the
energy-restricted edge.

E. Network Control Messages

To provide a complete evaluation view including from a
network perspective, we conduct experiments about network
load referring to control messages only. We run the
experiments for each approach and monitor the packets that are
related to device provisioning, faults detection, device control
(operations) and for SDIM also any SDN related messages. As
depicted in Figure 14b SDIM is outperforming both LWM2M
and NETCONF by over 20%, reducing significatly the control
messages. It is important to note that this behaviour is expected
since most of the information required by SDIM is collected
during the network setup, hence we see increased control
messages for the very beginning of the experiment.

F. CPU & Device Control Performance

1) CPU Performance During Fault Detection Period: We
monitored and present in Figure 13a the CPU performance
of SDIM, NETCONF light and LWM2M at the edge nodes
during a period of one hundred minutes of sending data and
conducting fault detection. All three approaches converge to
a stable CPU consumption with SDIM (approx. 16%) and
NETCONF light (approx 18.1%) doing so between the time
period of (20, 90), and LWM2M (approx. 18.4%) between
(45, 90). This shows that SDIM manages to also reduce
CPU consumption at the edge by roughly 2.1-2.4%, which
is one of the reasons alongside messaging reduction for
reducing energy consumption at the edge with SDIM. For
completeness, we include SDIM + SDN in our Figure, i.e.
including CPU consumption at the SDN controller along with
CPU consumption at the edge nodes. As with previous results
regarding energy consumption, the evident CPU consumption

overhead denotes the cost traded for leveraging the benefits of
SDN including the ability of SDIM to move resource-hungry
computational tasks away from the edge to a centralised point
where we can assume that resources (either physical or virtual)
are not scarce and inexpensive to find.

2) Control Operations: Based on the two control operations
that define “Completed Operation time” (see point 8 on page
11), we evaluate the required time by all the framework
approaches in order to successfully control the traffic of one
or many devices. Note that we focus on how much time
each operation requires to complete successfully an action
over the devices. Figure 13b shows that SDIM performs
significantly better than both LWM2M and NETCONF, whose
performances tend to converge with only slight variations.
Specifically, control operations time gains for SDIM span from
15 ms up to almost 19 ms, which translates to reduction levels
between 23% up to 27%. This poses a powerful feature for
SDIM, particularly for IoT use cases that involve quick control
reactions such as in the context eHealth or industrial safety.

3) Sensor Energy Consumption Performance: To examine
any potential impact on the sensor network energy
consumption that the device management approaches might
have, we measure the average energy consumption of the total
number of devices. As illustrated in Figure 14a, there is no
impact on sensors’ energy consumption. In fact, SDIM yields
a non-negligible improvement on energy consumption during
our experiments that reaches up to 2.5%.

VI. CONCLUSION

This work focuses on the scalable multi-domain IoT device
management problem. We design, analyse and test a novel
Software Defined IoT Management (SDIM) framework over
a real IoT sensor network integrated with MEC capabilities.
SDIM is designed for edge network deployments, targeting
multi-domain Wireless Sensor Networks (WSNs) where cloud-
based centralized device management can not scale well
for dense IoT deployments. Nevertheless, SDIM may be
also used for cloud-based monitoring and/or control over
all IoT domains thanks to our implemented SDN Topology
Aggregation (SDTA), which enables global network topology
aggregation.

Based on performance metrics such as device provisioning
time, operational fault detection time, energy and CPU
performance of the utilized MEC nodes, we show that
SDIM outperforms other state-of-the-art IoT management
frameworks in both emulated large IoT networks and in
real field trials. Specifically, SDIM can lower average device
provisioning times by 60-80% compared to NETCONF Light
and 46-60.3% compared to LWM2M. Also, SDIM can reduce
the average operational fault detection time by approximately
33% compared to LWM2M and by 40% compared to
NETCONF light. In further, SDIM reduces control operations
time up to 27%, hence posing a powerful feature for use cases
with time-critical control requirements such as eHealth. Last,
SDIM manages to both reduce CPU consumption and to have
important energy consumption gains at MEC nodes during
device provisioning and operational fault detection periods
relevant to the benchmark framework deployments.

16

0 20 40 60 80 100
Fault Period (m)

10

12

14

16

18

20

CP
U
Us
ag
e
(%

)

NETCONF Light
LWM2M
SDIM + SDN
SDIM

(a) CPU Performance during Fault Detection Period (b) Control Time Required for Device Control

Fig. 13: CPU & Device Control Performance

(a) Energy Consumption of Devices (b) Total Network Load

Fig. 14: Energy & Control Messages Performance

Future work includes virtualizing the procedures of device
management as Virtual Network Functions (VNFs) and
evaluate the potential benefits of MANO orchestration for
IoT device management. Also, we will consider expanding
the scope of our field-trial experiments using an even larger
real IoT network deployment. Finally, we intend to experiment
with more tangible IoT use cases such as WSN on drones,
wearables and Vehicle-to-everything (V2X) 802.11p networks.

ACKNOWLEDGMENT

This paper was performed under the REPLICATE and
5GinFIRE projects funded by the HORIZON 2020 the EU
Framework Programme for Research and Innovation.

REFERENCES

[1] U. Nations, “World’s Population Increasingly Urban with
More Than Half Living in Urban Areas,” Tech. Rep.,
2014. [Online]. Available: http://www.un.org/en/development/desa/
news/population/world-urbanization-prospects-2014.html

[2] ©International Telecommunication Union (ITU-T) Focus Group on
Smart Sustainable Cities, “Overview of Smart Sustainable Cities and the
Role of Information and Communication Technologies (ICTs),” Tech.
Rep., 2014.

[3] A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, A. Khreishah,
I. Khalil, M. Guizani, and A. I. Al-Fuqaha, “Smart Cities: A
Survey on Data Management, Security, and Enabling Technologies,”
IEEE Communications Surveys and Tutorials, vol. 19, no. 4, pp.
2456–2501, 2017. [Online]. Available: https://doi.org/10.1109/COMST.
2017.2736886

[4] A. Zanella, N. Bui, A. P. Castellani, L. Vangelista, and M. Zorzi,
“Internet of Things for Smart Cities,” IEEE Internet of Things
Journal, vol. 1, no. 1, pp. 22–32, 2014. [Online]. Available:
https://doi.org/10.1109/JIOT.2014.2306328

[5] J. A. Stankovic, “Research Directions for the Internet of Things,” IEEE
Internet of Things Journal, vol. 1, no. 1, pp. 3–9, Feb 2014.

[6] A. I. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys and
Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015. [Online]. Available:
https://doi.org/10.1109/COMST.2015.2444095

[7] C. Mulligan and M. Olsson, “Architectural implications of smart city
business models: an evolutionary perspective,” IEEE Communications
Magazine, vol. 51, no. 6, 2013. [Online]. Available: https://doi.org/10.
1109/MCOM.2013.6525599

[8] J. Pan and J. McElhannon, “Future edge cloud and edge computing
for internet of things applications,” IEEE Internet of Things
Journal, vol. 5, no. 1, pp. 439–449, 2018. [Online]. Available:
https://doi.org/10.1109/JIOT.2017.2767608

[9] D. Evans, “Next generation networks – frameworks and functional
architecture models: Overview of the internet of things,” Tech. Rep.,
2012.

[10] E. ©Internet Engineering Task Force (IETF)-M. Ersue, “An Overview
of the IETF Network Management Standards,” Tech. Rep., 2012.

[11] Z. Sheng, C. Mahapatra, C. Zhu, and V. C. M. Leung, “Recent advances
in industrial wireless sensor networks toward efficient management in

17

IoT,” IEEE Access, vol. 3, pp. 622–637, 2015.
[12] A. Sehgal, V. Perelman, S. Kuryla, and J. Schönwälder, “Management

of resource constrained devices in the internet of things,” IEEE
Communications Magazine, vol. 50, no. 12, pp. 144–149, 2012.
[Online]. Available: https://doi.org/10.1109/MCOM.2012.6384464

[13] D. Evans, “Open Mobile Alliances,” Tech. Rep., June 2012.
[14] Open Mobile Alliances, “OMA Lightweight M2M,” Tech.

Rep. [Online]. Available: http://echnical.openmobilealliance.org/
Technical/technical-information/release-program/current-releases/
oma-lightweightm2m

[15] F. V. D. Abeele, J. Hoebeke, I. Moerman, and P. Demeester,
“Fine-grained management of CoAP interactions with constrained
IoT devices,” in 2014 IEEE Network Operations and Management
Symposium, NOMS 2014, Krakow, Poland, May 5-9, 2014, 2014, pp.
1–5. [Online]. Available: https://doi.org/10.1109/NOMS.2014.6838368

[16] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
854–864, 2016. [Online]. Available: https://doi.org/10.1109/JIOT.2016.
2584538

[17] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. A.
Vouk, and A. Rindos, “SDIoT: a software defined based internet
of things framework,” J. Ambient Intelligence and Humanized
Computing, vol. 6, no. 4, pp. 453–461, 2015. [Online]. Available:
https://doi.org/10.1007/s12652-015-0290-y

[18] D. M. F. Mattos, O. C. M. B. Duarte, and G. Pujolle, “Profiling software
defined networks for dynamic distributed-controller provisioning,” in
7th International Conference on the Network of the Future, NOF
2016, Búzios, Brazil, November 16-18, 2016, 2016, pp. 1–5. [Online].
Available: https://doi.org/10.1109/NOF.2016.7810139

[19] W. F. Elsadek and M. N. Mikhail, “Inter-domain Mobility Management
Using SDN for Residential/Enterprise Real Time Services,” in 2016
IEEE 4th International Conference on Future Internet of Things and
Cloud Workshops (FiCloudW), Aug 2016, pp. 43–50.

[20] S. Bera, S. Misra, and A. V. Vasilakos, “Software-Defined Networking
for Internet of Things: A Survey,” IEEE Internet of Things
Journal, vol. 4, no. 6, pp. 1994–2008, 2017. [Online]. Available:
https://doi.org/10.1109/JIOT.2017.2746186

[21] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Communications Magazine,
vol. 51, no. 2, pp. 114–119, 2013. [Online]. Available: https:
//doi.org/10.1109/MCOM.2013.6461195

[22] D. M. F. Mattos, O. C. M. B. Duarte, and G. Pujolle, “A
resilient distributed controller for software defined networking,” in
2016 IEEE International Conference on Communications, ICC 2016,
Kuala Lumpur, Malaysia, May 22-27, 2016, 2016, pp. 1–6. [Online].
Available: https://doi.org/10.1109/ICC.2016.7511032

[23] A. Mavromatis, A. P. Da Silva, K. Kondepu, D. Gkounis, R. Nejabati,
and D. Simeonidou, “A software defined device provisioning framework
facilitating scalability in internet of things,” in 2018 IEEE 5G World
Forum (5GWF), July 2018, pp. 446–451.

[24] “Open Mobile Alliance. Lightweight Machine to Machine Technical
Specification. Approved Version 1.0.1,” Tech. Rep., July 2017.

[25] J. S. V. Perelman, M. Ersue and K. Watsen, Network Configuration
Protocol Light (NETCONF Light). Freemont, CA, USA: Internet Eng.
Task Force (IETF), 2014.

[26] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile Edge
Computing: A Survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, Feb 2018.

[27] L. Gürgen and S. Honiden, “Management of Networked Sensing
Devices,” in MDM 2009, Tenth International Conference on Mobile
Data Management, Taipei, Taiwan, 18-20 May 2009, 2009, pp.
502–507. [Online]. Available: https://doi.org/10.1109/MDM.2009.88

[28] Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. A. Mccann, and
K. K. Leung, “A survey on the IETF protocol suite for the internet
of things: standards, challenges, and opportunities,” IEEE Wireless
Communications, vol. 20, no. 6, pp. 91–98, December 2013.

[29] A. H. H. Ngu, M. A. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng,
“IoT Middleware: A Survey on Issues and Enabling Technologies,”
IEEE Internet of Things Journal, vol. 4, no. 1, pp. 1–20, 2017.
[Online]. Available: https://doi.org/10.1109/JIOT.2016.2615180

[30] W. Cerroni, C. Buratti, S. Cerboni, G. Davoli, C. Contoli,
F. Foresta, F. Callegati, and R. Verdone, “Intent-based management and
orchestration of heterogeneous openflow/iot sdn domains,” in 2017 IEEE
Conference on Network Softwarization (NetSoft), July 2017, pp. 1–9.

[31] J. de C. Silva, J. J. P. C. Rodrigues, J. Al-Muhtadi, R. A. L. Rabêlo,
and V. Furtado, “Management platforms and protocols for internet of

things: A survey,” Sensors, vol. 19, no. 3, p. 676, 2019. [Online].
Available: https://doi.org/10.3390/s19030676

[32] B. Forum, “CPE WAN Management Protocol,” Tech. Rep.,
2014. [Online]. Available: http://www.broadband-forum.org/technical/
download/

[33] C. Zhou and X. Zhang, “Toward the Internet of Things application
and management: A practical approach,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and
Multimedia Networks, WoWMoM 2014, Sydney, Australia, June 19,
2014, 2014, pp. 1–6. [Online]. Available: https://doi.org/10.1109/
WoWMoM.2014.6918928

[34] Z. Su, Q. He, J. Zhang, and H. Li, “Research of Single Sign-On in
Mobile RFID Middleware Based on Dynamic Tokens and WMMP,”
in 16th IEEE International Conference on Computational Science and
Engineering, CSE 2013, December 3-5, 2013, Sydney, Australia, 2013,
pp. 1191–1194. [Online]. Available: https://doi.org/10.1109/CSE.2013.
177

[35] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation
Rate Maximization in UAV-Enabled Wireless-Powered Mobile-
Edge Computing Systems,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 9, pp. 1927–1941, 2018. [Online].
Available: https://doi.org/10.1109/JSAC.2018.2864426

[36] L. L. de Souza, P. H. M. Pereira, J. de C. Silva, C. N. M. Marins,
G. A. B. Marcondes, and J. J. P. C. Rodrigues, “IoT 5G-UDN
Protocols: Practical Model and Evaluation,” in 2018 IEEE International
Conference on Communications Workshops, ICC Workshops 2018,
Kansas City, MO, USA, May 20-24, 2018, 2018, pp. 1–6. [Online].
Available: https://doi.org/10.1109/ICCW.2018.8403543

[37] J. de C. Silva, P. H. M. Pereira, L. L. de Souza, C. N. M. Marins, G. A. B.
Marcondes, and J. J. P. C. Rodrigues, “Performance Evaluation of IoT
Network Management Platforms,” in 2018 International Conference
on Advances in Computing, Communications and Informatics, ICACCI
2018, Bangalore, India, September 19-22, 2018, 2018, pp. 259–265.
[Online]. Available: https://doi.org/10.1109/ICACCI.2018.8554364

[38] D. Evans, “The Internet of Things: How the Next Evolution of the
Internet Is Changing Everything,” Tech. Rep., 2011.

[39] D. Kreutz, F. M. V. Ramos, P. J. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, 2015. [Online]. Available: https://doi.org/10.1109/JPROC.2014.
2371999

[40] S. Chakrabarty and D. W. Engels, “A secure IoT architecture for
Smart Cities,” in 13th IEEE Annual Consumer Communications
& Networking Conference, CCNC 2016, Las Vegas, NV, USA,
January 9-12, 2016, 2016, pp. 812–813. [Online]. Available: https:
//doi.org/10.1109/CCNC.2016.7444889

[41] R. Muñoz, R. Vilalta, N. Yoshikane, R. Casellas, R. Martı́nez,
T. Tsuritani, and I. Morita, “Integration of IoT, Transport SDN, and
Edge/Cloud Computing for Dynamic Distribution of IoT Analytics and
Efficient Use of Network Resources,” Journal of Lightwave Technology,
vol. 36, no. 7, pp. 1420–1428, April 2018.

[42] A. Mckeown, H. Rashvand, T. Wilcox, and P. Thomas, “Priority
SDN Controlled Integrated Wireless and Powerline Wired for Smart-
Home Internet of Things,” in 2015 IEEE 12th Intl Conf on
Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl
Conf on Autonomic and Trusted Computing and 2015 IEEE 15th
Intl Conf on Scalable Computing and Communications and Its
Associated Workshops (UIC-ATC-ScalCom), Beijing, China, August
10-14, 2015, 2015, pp. 1825–1830. [Online]. Available: https:
//doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.331

[43] P. Bellavista, C. Giannelli, T. Lagkas, and P. G. Sarigiannidis,
“Quality management of surveillance multimedia streams via federated
SDN controllers in fiwi-iot integrated deployment environments,”
IEEE Access, vol. 6, pp. 21 324–21 341, 2018. [Online]. Available:
https://doi.org/10.1109/ACCESS.2018.2822401

[44] X. Li, P. Djukic, and H. Zhang, “Zoning for hierarchical network
optimization in software defined networks,” in 2014 IEEE Network
Operations and Management Symposium, NOMS 2014, Krakow,
Poland, May 5-9, 2014, 2014, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/NOMS.2014.6838414

[45] N. Nikaein, X. Vasilakos, and A. Huang, “LL-MEC: enabling low
latency edge applications,” in 7th IEEE International Conference on
Cloud Networking, CloudNet 2018, Tokyo, Japan, October 22-24, 2018,
2018, pp. 1–7. [Online]. Available: https://doi.org/10.1109/CloudNet.
2018.8549500

[46] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using
bargaining game for optimal placement of SDN controllers,” in

18

2016 IEEE International Conference on Communications, ICC 2016,
Kuala Lumpur, Malaysia, May 22-27, 2016, 2016, pp. 1–6. [Online].
Available: https://doi.org/10.1109/ICC.2016.7511136

[47] F. Chen, C. Wu, X. Hong, Z. Lu, Z. Wang, and C. Lin, “Engineering
traffic uncertainty in the openflow data plane,” in 35th Annual IEEE
International Conference on Computer Communications, INFOCOM
2016, San Francisco, CA, USA, April 10-14, 2016, 2016, pp. 1–9.
[Online]. Available: https://doi.org/10.1109/INFOCOM.2016.7524612

[48] P. K. Sharma, S. Rathore, Y. Jeong, and J. H. Park, “SoftEdgeNet: SDN
Based Energy-Efficient Distributed Network Architecture for Edge
Computing,” IEEE Communications Magazine, vol. 56, no. 12, pp.
104–111, 2018. [Online]. Available: https://doi.org/10.1109/MCOM.
2018.1700822

[49] M. Uddin, S. Mukherjee, H. Chang, and T. V. Lakshman, “Sdn-based
multi-protocol edge switching for iot service automation,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 12, pp. 2775–2786,
2018. [Online]. Available: https://doi.org/10.1109/JSAC.2018.2871325

[50] Q. Shafi, A. Basit, S. B. Qaisar, A. Koay, and I. Welch, “Fog-Assisted
SDN Controlled Framework for Enduring Anomaly Detection in an
IoT Network,” IEEE Access, vol. 6, pp. 73 713–73 723, 2018. [Online].
Available: https://doi.org/10.1109/ACCESS.2018.2884293

[51] H. Sun, F. Zhou, and R. Q. Hu, “Joint Offloading and Computation
Energy Efficiency Maximization in a Mobile Edge Computing System,”
IEEE Trans. Vehicular Technology, vol. 68, no. 3, pp. 3052–3056,
2019. [Online]. Available: https://doi.org/10.1109/TVT.2019.2893094

[52] C. R. E. R. Ramon dos Reis Fontes, “Mininet-wifi,” Tech. Rep., 2018.
[Online]. Available: https://github.com/intrig-unicamp/mininet-wifi

[53] Pycom, “Lopy datasheet,” Tech. Rep., 2018. [Online]. Available:
https://www.mouser.com/datasheet/2/872/lopy-specsheet-1129426.pdf

