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Abstract 

In this article, we question the prevalent assumption that teaching and learning mathematics should 

always entail movement from the concrete to the abstract. Such a view leads to reported difficulties 

in students moving from manipulatives and models to more symbolic work, moves that many 

students never make, with all the implications this entails for life chances. We propose working in 

“symbolically structured environments” as an alternative way of characterising students’ direct 

engagement with the abstract and exemplify two such environments, both of which involve early 

number learning. We additionally propose some roles for the teacher working in a symbolically 

structured environment. 
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Introduction 

 

Both in most learning theories in mathematics education, and in intuitive approaches to pedagogy, 

there are widespread assumptions that the teaching and learning of mathematics should begin with 

the concrete and familiar, more abstract and symbolic knowledge arising later. The concrete to 

abstract assumption is supported by the large number of physical manipulatives that pervade the 

mathematics education landscape, in an attempt to offer entry points that are ‘concrete’ and 

meaningful to students. While many researchers have espoused the benefits of such physical (as 

well as, more recently, virtual) manipulatives, others have questioned their effectiveness. While 

Pimm (1995) points out that much work needs to be done in order to support students’ interactions 

with manipulatives, which do not in and of themselves contain mathematical concepts, researchers 

in the cognitive sciences have argued that the use of manipulatives can prolong the learning process 

by requiring students first to learn how to engage with the manipulative and then link the 

manipulative to the mathematics concepts themselves (Uttal et al., 1997). Evidently, more research 

is needed on what effective use of manipulatives in the mathematics classroom entails.  

 

In this article, we propose that mathematics learning does not necessarily begin with the “concrete”. 

We will provide a theoretical argument for this, first by studying the acquisitionist theories on 

which this assumption rests and showing how they can be disrupted by a different set of 

philosophical assumptions that underscore the relational, embodied and material nature of thinking 

and knowing. We then will propose a different way of conceptualizing the concrete/abstract 

distinction and exemplify it by providing two examples involving the teaching and learning of 

arithmetic using specific symbolically structured environments (which we will described in more 

detail later). In discussing these examples, we draw attention not only to the design of the 

environments, but also, significantly, to the role of the teacher and the pedagogical choices involved 

in effectively using them.  

 

Concrete and abstract 

 



In this section, we survey some of the different ways in which the terms ‘concrete’ and ‘abstract’ 

have been used in the mathematics education literature, because we think that the distinctions made 

between them have played an important role in promoting the use of manipulatives in the teaching 

and learning of mathematics. A number of acquisitionist theorists posit a concrete-to-abstract 

developmental progression. This is evident in Piaget’s (1954) work, for example, where the 

“concrete operational stage” precedes the formal or abstract one. While his stages do not imply that 

learning moves from the concrete to the abstract, his postulated notion of “reflective abstraction” 

takes abstraction to be a subtractive process in which one must extract elements from a lower-level 

structure in order to reconstruct a new, higher-level structure (Piaget, 2001). The abstract depends 

on the concrete. In building on Piaget’s approach, Simon et al. (2004) characterize the “abstraction 

of the relationships between activity and effect” (p. 319) of the reflection phase in a reflective 

abstraction, which they see as the “first phase in the development of a new conception” (ibid). Here 

too, the activity (in this case, manipulating virtual ‘sticks’ in a computer-based environment in 

order partition one long stick into five equal parts) involves physical actions (moving sticks, 

observing the effect of these movements) that are then taken to be the source of the abstraction.  

 

Physical materials have long been used in order to facilitate meaningful mathematics teaching and 

learning (e.g., Sowell, 1989). The impetus to do so can be traced to Bruner (1966), whose own 

work was based on the classic theories of cognitive development of Piaget, in which learning begins 

as a concrete, sensorimotor process. Bruner’s (1996) three stages of enactive, iconic and symbolic 

privileges action on concrete objects over the more abstract manipulation of symbolic ones. Indeed, 

according to Bruner, new concepts should be presented in these three forms, one after another, 

gradually increasing the abstraction (that is, becoming symbolic). For Bruner, abstraction was 

specifically about decontextualizing, which is a form of removal, and involved removing the 

familiarity of physical, situated and non-symbolic materials. Some researchers (e.g., Fyfe, McNeil, 

Son & Goldstone, 2014) have empirically studied Bruner’s approach, first by offering students 

concrete materials and then by gradually removing (or “fading out”) contextual elements in order 

eventually to reach more abstract representations. This perspective reifies the concrete-to-abstract 

order and tightly associates the abstract with the symbolic. It is also associated with the ideology of 

‘development’, which draws on a philosophical commitment that denies the materiality of the 

mathematical concept. In other words, concepts are seen as being abstracted away from the physical 

situation, so that learners are granted only enough embodiment to perform that abstraction. 

 

Vygotsky’s (1978) approach, which is sometimes contrasted with that of Piaget because of the way 

it posits learners as moving from abstract to concrete, may seem to counter the prevailing 

assumptions outlined above. However, Vygotsky is deploying the words ‘concrete’ and ‘abstract’ in 

slightly different ways from Piaget or Bruner, attending more to the learner-object relation. For 

example, the concept of ‘honour’ will be abstract at first for learners because they have no 

experience of that concept; but it will become more concrete as they gain experience related to 

worth, war, promises, etc1. This view of the concrete/abstract duo (that we see as a ‘relational’ one) 

is also put forward by Wilensky (1991), who argues that while the alphanumeric inputs of 

programming languages such as Logo may seem abstract, being symbolic as they are, they can also 

be seen as concrete for some children inasmuch as some children will have had encounters with 

these symbols that give them a direct and visible reference. Wilensky sidesteps the question of 

whether or not learning should begin with the concrete or the abstract, and instead advances the 

relational perspective that both sides, concrete/abstract, are context-bound and subjective (i.e., one 

is not necessarily harder for learners than the other) and, further, that symbolic infrastructures may 

provide suitable environments for learning mathematics. 

 
1 This resonates with how Hadamard is said to have opined, the concrete is the abstract made familiar by time. 



 

We take a similar perspective, but one that is rooted in our respective philosophical commitments to 

enactivism (Maturana & Varela, 1987) and inclusive materialism (de Freitas and Sinclair, 2014). 

With enactivism, we view meaning as a feature of relationships, that reside neither in an individual, 

nor group, nor an object or tool (Thompson & Stapleton, 2009). In every interaction between two 

organisms, both are changed, both leave traces; our relationship with the world we experience is in 

constant flux, hence so is every meaning (Varela, Thompson & Rosch, 1991). As humans, how we 

come to experience the world is a result of our history of co-evolution with everything around us; 

meaning is an achievement of joint activity and we view knowing and doing as synonymous 

(Maturana & Varela, 1987). In the same way that every action is an interaction, everything we 

might interpret as an individual construction of knowledge can only be separated, at the cost of 

insight, from the wider relationships in which it arises (Bateson, 1972). 

 

With inclusive materialism, we further challenge the premise of ways in which the abstract-concrete 

distinction is drawn, arguing that abstract thought and materiality are entwined. Instead of seeing 

concepts as abstract, that is, as being abstracted from perceptions of and actions with manipulatives, 

which entails a binary relationship between mind and body, inclusive materialism insists on the 

materiality of concepts. This position challenges the socio-cultural assumptions prevalent in the 

current mathematics education community whereby mathematical meanings depend exclusively on 

human language and culture. From this perspective, the image of doing mathematics is neither 

dualist nor extractive, that is, about abstracting away from sensorimotor experiences or from a 

passive environment through language and other cultural tools. Rather, what is abstract is 

reconceived as being about the virtual, or the potential, that which is latent in matter but not yet 

actualised. Abstraction does not produce an escape from the real; it enlarges it.  

 

In this text, we will be mobilising the terms abstract and concrete but using them to distinguish 

different forms of relationship, or modes of engaging, with the world (Coles, 2017). In broad terms, 

we find it helpful to draw the distinction that we can attend to things (e.g., objects, concepts) and 

we can attend to relations between things (e.g., differences, changes). We will therefore speak of 

attending to things as a concrete mode of mathematical activity and attending to relations as an 

abstract one. We underscore that in our characterization, concrete and abstract are no longer 

opposites of each other. Moreover, unlike in the everyday sense of concrete and abstract, in which 

the latter is seen as more mathematical or more advanced than the former, we see both concretising2 

and abstracting as productive shifts in attention: the former moves from relations to objects while 

the latter moves from objects to relations. 

 

It is not things themselves that are concrete or abstract but rather how they come into meaningful 

relationship with (in our case) a person. For example, we can attend to a set of multi-link cubes as 

objects (e.g., noting that there is a line of 4 cubes and a line of 2 cubes) or we can attend to relations 

between the cubes (e.g., noting that one line is half the length of the other). The first mode would be 

concrete, the second abstract. Crucially, one does not necessarily, or naturally, precede the other. 

Or, to take a different example, one approach to early number might entail children being 

encouraged to count different sets of objects. Attention here is initially on the collection of objects 

being named. Perhaps by counting different sets of objects, there can then be a move to considering 

the fact that the same system of counting can be used in each case (i.e., moving to a more abstract 

consideration of the relations between counting different kinds of objects). A different approach to 

number might entail children counting in 1s from 1 to 9 (as a song) and then counting in 100s from 

 
2 It is interesting that while “abstracting” is a frequently used verb in mathematics education, the word “concretising” is 

seldom used.   



100 to 900 and then counting in 1000s from 1000 to 9000. With no objects as reference except the 

number names themselves, the focus here is on the structure of the number system and the relations 

between different kinds of count, i.e., abstract from the start—attending to relations. Curriculum 

design in mathematics has tended to prioritize the counting of objects, attending to things, 

emphasizing cardinality as the starting point. We do not see any reason why such work has to come 

before more relational, and therefore abstract, work on number naming (Coles & Sinclair, 2019). 

 

We see our characterisation of the abstract and the concrete as being relational, while leaving it an 

open question as to which focus might come first in any learning context. Additionally, we see them 

as avoiding other dichotomies that underpin most theories of learning in mathematics, including the 

doing-knowing dichotomy that ascribes conceptual understanding to reflections on doing; the 

doing-thinking dichotomy that associates doing with mere bodily actions (see also Coles & Sinclair, 

2018); and, the material-symbolic dichotomy that subordinates matter to meaning.  

 

In the next section, we trace problems that are reported around how students come to operate with 

abstract concepts and consider different historical perspectives on the use of manipulatives and their 

links to symbols. These differences suggest the move from concrete to abstract is not a 

developmental universal but an outcome of curriculum and pedagogical choices. 

 

Manipulatives and symbols 

 

One result of the assumption that learning proceeds from the concrete to the abstract has been the 

historical drive, for example as seen in the 1980s in the USA, to use manipulatives in learning 

mathematics (Sowell, 1989). The assumption here has been that manipulatives provide a 

mechanism for students to engage in giving meaning to mathematical objects, which can then be 

mapped onto more standard, abstract notation. The idea that meaning is created through an 

individual, or group, grappling with manipulatives and metaphors of mathematical concepts, and 

then generalising from particular experiences, is linked to the constructivist views of learning 

(Piaget, 1954) discussed above.  

 

Rittle-Johnson et al. (2015) have suggested that there has been an unquestioned (and un-tested) 

assumption, which we see driving manipulative use, that instruction in mathematics should proceed 

from the conceptual to the procedural. Manipulatives are then used with the aim of beginning 

instruction with conceptual understanding of processes, e.g., base-10 blocks to understand a 

subtraction algorithm (Fuson & Briars, 1990). We acknowledge that positive benefits have been 

reported in relation to manipulative-based approaches to learning arithmetic (Mix et al., 2017).  

However, as far back as 1997, Uttal et al. reported on a series of experiments that suggest the use of 

manipulatives may set up a dual-representation system, one system being the manipulatives and the 

other being the symbols or operations intended to be represented. Students frequently became 

confident working within the manipulative system, but did not see the connection to the symbolic 

system. Furthermore, learners who are able to translate between systems are doing more and harder 

work than those able to operate purely within the symbol system (as mathematicians do). These 

critiques raise the question, whether the reported advantages of using manipulatives may be 

dependent on curriculum and pedagogical choices that do not benefit all learners. 

 

We note that researchers have argued that effective virtual manipulatives should “link[ing] the 

concrete and the symbolic with feedback” (Sarama & Clements, 2009, p. 147)—as in the case of the 

virtual balance scale reported on by Suh and Moyer (2007), which links algebra symbols to the 

movement of the scale. While this emphasis on multiple, linked representations can offer benefits 

(Moyer-Packenham and Westenskow 2013), it often continues to rely on the use of metaphoric 



representations (such as the balance scale) that will still require the kind of translation Uttal et al. 

describe, where the action is on the representation rather than on the mathematics (on the numbers, 

on the shapes, on the relations). 
 

A relational perspective on the concrete/abstract rarely, if ever, features in official curriculum or 

standards documents. Consider. for example, the well-known and influential counting principle of 

Gelman and colleagues (see Gelman & Meck, 1983), who propose that the earliest experiences 

around number should centrally involve counting objects, that is, transitive counting, and culminate 

in the ability to determine the number of objects in a given set, that is, in successfully answering the 

“How many?” question. The assumption about the concrete may not at first be obvious, but that is 

because so much of early number learning is conceptualised as being cardinal in nature, in which 

the purpose of number is precisely to determine the numerosity of a set. In such a conception, it is 

natural to assume children should begin their number experiences by counting things, that is, by 

taking ‘things’ as metaphors for quantities. In this line of thinking, the very meaning of a number 

such as seventeen, for early number learners, is the existence of a set of seventeen objects. Such an 

approach begins with bringing learners into contact with numbers as objects, in other words, in a 

concrete mode. 

 

In our own work on learning number, we argue that offering low-attaining students concrete models 

of number may re-enforce the very way of thinking about number (as solely linked to objects) that 

students need to move away from to become more successful at arithmetic (Sinclair & Coles, 2017). 

It appears a short step from assuming learning begins with the concrete to concluding some children 

are not ‘ready’ for the abstract. A different conceptualisation of number can call this ‘natural’ 

assumption into question. For example, in a more ordinal conception of number alluded to above, 

the meaning of ‘seventeen’ derives from the fact that it follows ‘sixteen’ and precedes ‘eighteen’, in 

which case its meaning is a relational one and hence abstract (from the start). One may also attend 

to the symbolic patterning of the numeral 17, in which case it is the metonymic nature of number 

that is being stressed (e.g., its link, as a symbol, to other number symbols), rather than the 

metaphoric one (e.g., its link to objects). We use the word metonym in the sense of a part standing 

for a whole (Coles & Sinclair, 2017). In other words, a metonymic approach to number might make 

use of number names, initially, as the “part” of the number concept that stands for number. Within a 

relational conception of number, intransitive counting (reciting the number sequence) may be seen 

as a proper starting point. Such an approach dispenses with physical objects to be counted, and thus 

may strike educators as being rather abstract. But, in the Wilensky sense, its concreteness might be 

found in its connection to experiences like singing the number song. While Wilensky’s motive was 

to point to the potential for so-called abstract mathematical environments being motivating for 

children, through the connection that these children can make with such environments, we are also 

interested in how working within the ‘abstract’ may also be conceptually advantageous, a view that 

will challenge deep-seated assumptions about what becomes meaningful and basic in mathematics 

learning.    

 

There have been two important strands of work (Davydov, 1990; Gattegno, 1974), in the case of 

number learning, that examine an alternative to starting instruction with a concrete phase before 

moving to the abstract. In Davydov’s curriculum (Dougherty, 2008) students’ first experiences with 

number are as a comparison of measurements (of length, area or volume). The natural numbers 

appear as a symbolisation for the number of times a unit measure fits into a second measure. 

Similarly, Gattegno’s curriculum for early number begins with an exploration of relationships of 



lengths (greater than, less than) leading to the first numerals appearing to symbolise the situation 

when one length fits an exact number of times into a second length3. 

 

In both the Davydov and Gattegno curricula, although there are differences in background 

philosophical assumptions, there is a similarity in the manner in which physical materials play an 

important part. In contrast to the kind of use of manipulatives critiqued by Uttal et al. (1997), there 

is a significant and, we feel, previously unmarked difference in how the manipulatives and symbols 

are related. A typical example of using manipulatives (Fuson & Briars, 1990) introduces a direct 

and absolute relation between a symbol and object, e.g., in base-10 equipment, ‘units’ are single 

cubes, ‘tens’ are lines of 10 cubes, ‘hundreds’ are squares of 100 cubes. For Davydov and Gattegno, 

their manipulatives also have direct and absolute symbol references (Davydov gets students to 

create their own notation; Gattegno uses colour names for wooden rod lengths) but these are not the 

symbols that are important. The key mathematical symbols are the numerals. Numerals are 

introduced, in both curricula, as relations between objects (Coles, 2017). Hence the concrete objects 

are used as a context in which to make meaningful a set of symbols, but where the key symbols are 

abstract from the start, denoting actions on, or relations between objects. An immediate 

consequence is that the numeral symbols develop connections to each other, independent of objects, 

because a relationship (which is what the symbols symbolise) can be viewed from two sides, e.g., if 

one length is double another, then the second length is also half the first, so students come to see 

that if, e.g., 2w=r, then w=½r. Gattegno introduces fraction notation in the first year of his 

curriculum; conceptual work (giving meaning to symbols) and procedural work (using symbol-

manipulation rules) proceed together.  

 

The reported successes of uses of the Davydov and Gattegno approaches to learning number 

provide evidence that there is no universal pattern of learners reaching the abstract as a culmination 

of experiences that begin with concrete examples, and/or in which mathematical symbols start off 

having direct and absolute concrete referents. We propose that a common feature of these 

approaches is captured by the concept of a “symbolically structured environment”, which we 

explore in the next section. Our definition of this concept comes towards the end of the article. 

 

Symbolically structured environments 

 

The notion of a “symbolically structure environment” (SSE) first arose for us in exploring the role 

of ritualisation in early mathematics learning (Coles & Sinclair, 2019). In the work of 

anthropologist Catherine Bell (1991), we found an approach to ritualisation that eschewed the 

dichotomy between thought and action that characterises much of the work on ritual in the 

mathematics education research, and instead proposed that ritualisation “is embedded within the 

dynamics of the body defined within a symbolically structured environment. […] It is designed to 

do what it does without bringing what it is doing across the threshold of discourse or systematic 

thinking” (p. 93). Although Bell was speaking of environments that one might find in religious 

ceremonies, we see a resonance to the mathematics classroom in the notion of a way “of acting that 

is designed and orchestrated to distinguish and privilege what is being done in comparison to other, 

usually more quotidian, activities” (p. 74). In a mathematics classroom context, design and 

orchestration of ways of acting are an aspect of the role of the teacher. 

 

We see the symbolically structured environments as having features in common with the notion of a 

microworld, first introduced by Papert to describe self-contained worlds where students can “learn 

to transfer habits of exploration from their personal lives to the formal domain of scientific 

 
3 Thus using what Fowler (1979) calls “ratio numbers”.  



construction” (1980, p. 177). For Papert, the microworld was an immersive environment in which 

students could develop mathematically fluency. It was not a manipulative that made mathematics 

concrete; it was mathematics, but restricted to an accessible and generative subdomain that was 

both formal and body-syntonic. These latter qualities connect closely with Bell’s emphasis on SSEs 

that enable certain structured acts of moving. In the case of Turtle Geometry, which was an early 

LOGO-based programming language that was used to explore shape, the propositional commands 

provided structured ways of body-syntonically moving a turtle on the screen, that is, of 

experiencing movements by having the Turtle make them.   

 

Another SSE that is not computer based in nature is found in the Gattegno tens chart (Figure 1) 

which makes available the structure of our written number system, not via a cardinal linking of 

numerals and objects, but via a more ordinal, relational sense of making links among numerals 

themselves, for example, how the spoken number names form patterns, and how you can get from 

one number to the next (see Coles, 2014, for further possibilities for working with the chart).  

 
Figure 1: An example of Gattegno’s whole number tens chart 

 

The symbols used in both Turtle Geometry (such as “fd 10” or “rt 90”) and the Gattegno chart can 

be meaningful from the start if they are introduced (likely by a teacher) and used to perform actions 

or mark distinctions. Entry into an SSE requires a constrained beginning, for a teacher to establish 

the “rules” of the game (some of which are arbitrary (Hewitt, 1999)). Later on, students can have 

opportunities to instigate their own use of the symbols so that their activity is not merely repetitive 

or procedural. In these SSEs, student work is metonymical since they act on things or objects which 

are not taken to represent mathematics, but to be mathematics itself, as we illustrate in the next 

section, drawing on empirical work we have carried out using two different symbolically structured 

environments. This data is offered in an illustrative manner, to point to possibilities and ground the 

theoretical ideas above.   

 

Learning in a non-digital symbolically structured environment 

 

We have reported elsewhere (e.g., Sinclair & Coles, 2017) on student work using the tens chart and 

other SSEs. The project for which we have the most student data was one run by the first author 

(AC), with 7- to 8-year-old children in which the tens chart was used as an introduction to 

multiplication and division (see Coles, 2014). Work with the class occurred in a fairly typical (in 

terms of prior attainment) rural primary school in the UK, as part of a project linked to the charity 

“5x5x5=creativity” which place artists (in this case, a ‘mathematician’) into schools to run projects. 

Having set up how to multiply and divide by 10 and 100 on the chart, emphasising the visual and 

gestural way this can be done, AC proposed a challenge. The students had to choose a number on 

the chart, go on a journey multiplying or dividing by 10, 100 and to get back to where they started. 

There was a constrained beginning, in which the students had to learn how to ‘play the game’ and 

use the symbols (  and ) in the way that AC modelled. The idea of a teacher offering a 

           1              2              3              4              5              6              7              8              9

         10            20            30            40            50            60            70            80            90

       100          200          300          400          500          600          700          800          900

    1,000       2,000       3,000       4,000       5,000       6,000       7,000       8,000       9,000

  10,000     20,000     30,000     40,000     50,000     60,000     70,000     80,000     90,000

100,000   200,000   300,000   400,000   500,000   600,000   700,000   800,000   900,000



constrained entry into a complex mathematical environment was written about by Gattegno (1965) 

in a description of his technique of teaching and is picked up by Coles and Brown (2016) in 

discussion of task design.  

 

Linked to our discussion of Davydov and Gattegno, the symbols we cared about in this activity (  

and ) arose as standing for actions or relations on the chart (i.e., how you go ‘down’ and ‘up’ a 

row) and hence were abstract from the start. The availability to students, of the symbolic structuring 

of the chart, then allowed scope for innovation. One student, on her fourth ‘journey’, wrote what we 

have copied in Figure 2. 

 

 
Figure 2: A student’s ‘journey’ on the tens chart, “I went back in one” (from Coles, 2017) 

 

The student had chosen to extend the pattern of multiplication and division by powers of 10 (only 

10 and 100 had been modelled) to include division by 10,000, having set herself the challenge to 

“get back in one”. During each lesson there were times of whole class discussion in which students 

were invited to share what they had done, meaning that innovations by one student were sometimes 

picked up by others and, perhaps as importantly, permission to innovate was implicitly given 

through AC’s encouragement and links he made between innovations and what mathematicians do. 

Many of the students showed evidence of similar creativity in setting themselves challenges and 

extending their symbol use, in a metonymic manner, beyond that to which they had been 

introduced.  

 

The student in Figure 2 might not have been able to read “ten thousand” as a number name and we 

realise this kind of metonymical way of working may concern some readers. However, we would 

like to highlight the important role that children’s bodies are playing in their interactions within this 

SSE (i.e., gestures on the chart). This bodily engagement, which we see as an embodied extension 

with a tool, and the evident inventiveness of what children do and write, indicates that what we are 

advocating is far from a mechanical activity of meaningless symbol manipulation. It is also 

important to emphasise that it is not the symbols in the tens chart that, for us, make it “symbolic” in 

terms of a symbolically structured environment, but rather the fact it is the actions performed on the 

chart that are symbolised.   

 

There is a visual chart with symbols that might act as objects of attention (hence, concrete). 

However, the task directs students’ attention onto relationships between those objects. And it is the 

symbolisation of these relationships (multiplication and division by powers of ten) that seems key 

to what allows innovation and, for us, the power the chart affords. Attention to relationships means 

that the work done by students, described above, includes the abstract, from the start. A symbol 

such as “10” or “100” was used, by all students in the class, as both a number on the chart and as 

part of the symbolisation of a representation of relationships between numbers on the chart. There 



was seemingly no difficulty for students in handling this apparent ambiguity and the use of the 

same symbol in both a concrete (object-based) and abstract (relational) manner simultaneously. 

 

Learning in a digital symbolically structured environment 

 

We now provide a second example of an SSE, this time using the touchscreen digital tool called 

TouchTimes (TT) (Jackiw & Sinclair, 2019), which supports children’s exploration of 

multiplication. After a brief description of the Grasplify world of TT, we offer a transcript of two 

boys interacting with a researcher during pilot studies in a grade two classroom conducted in 

December, before multiplication was formally introduced to the children. When first opened, the 

Grasplify world displays a screen that is divided in half by a vertical line (Figure 3a). Whichever 

side of the iPad screen is first touched by the finger(s) of the user’s hand, a different-coloured disc 

(termed a ‘pip’) appears beneath each one and the numeral corresponding to the number of visible 

pips is displayed at the top of the screen (Figure 3b). The numeral adjusts instantly when fingers are 

added or removed, whether temporally in sequence or simultaneously. It represents the 

multiplicand. In order to preserve each pip (that otherwise vanish) the finger(s) must maintain 

continuous screen contact. When a user taps on the other side of the line with her second hand, 

bundles of pips (called ‘pods’) appear beneath each contact finger of this second hand (Figure 3c). 

The number of pods is the multiplier and each pod contains a duplicate of the pip configuration, 

matching both the relative locations created by the first-hand placement (Figure 1d) and the colours. 

When pods are created, a second numeral also appears, separated from the first by the 

multiplication sign (‘x’). 

 

When a finger is removed from above a pod, that pod remains on the screen, but becomes slightly 

smaller, so that more of them can be seen at the same time (Figure 3d). After pods are created, TT 

encircles all of them into a single unit, by surrounding them with a white line (like a lasso) and 

(after a short delay) displays the corresponding mathematical expression (e.g. ‘3x4=12’) at the top 

of the screen. The product is also in white font (see Figure 3d). If a pip-creating finger is lifted, the 

contents of each of the pods adjust accordingly: that is, each pod will then contain one fewer pip 

(the vanished pip from each pod being the same colour as the disappearing pip on the other side).  

 

    
Figure 3: (a) Initial screen of TT; (b) Creating pips; (c) Creating pods; (d) Finished expression 

Multiplying by 1 

 

The excerpt presented below, which lasted 55 seconds, occurred about 7 minutes into a clinical 

interview, which was conducted as part of a larger project investigating the potential of teaching 

and learning multiplication using TouchTimes. The two boys, both eight years old, were new to 

TouchTimes. The interviewer allowed them to explore before intervening with any questions or 

prompts. No use of the word “multiplication” or “times” was used by the researcher, who was 

trying to understand how the boys made sense of the environment. We have chosen this excerpt 

because it illustrates the co-arising of abstract and concrete modes that we see as typical in 

children’s engagement with SSEs. To help read the transcript, our interpretation is that Roger uses 

the word “minus”, part way through, for what we would conventionally take to be “multiplied by”. 



Phrases underlined correspond to gestures shown in the images on the right. RS = right side of the 

screen and LS = left side of the screen.  

 

(Roger holds his index finger on the LS and tapping on the RS with 

a pod-making finger to 10 to produce 1 x 10 = 10) 

Luke: Ten? 

T: What happens if you add a finger on this side (pointing to the 

LS)? (Roger lets go of his index finger, which makes the 

screen blank. Luke puts two pip-making fingers on the LS.)  
Roger: I think because (pointing to the top part of the screen) one 

minus (Luke puts five fingers on the RS and produces 2 x 5 

= 10) anything equals (Luke adds two more pod-making 

fingers on the RS to produce 2 x 7 = 14) the number 

(pointing to the ‘14’). 

T: Say is again, sorry. (Luke lets go of his right hand but then 

places more pod-making fingers to produce 2 x 11 = 22) 
 

Roger: So like (Luke adds three more pod-making fingers to the RS 

to produce 2 x 14 = 28) if you put the one right here 

(pointing to the symbol ‘2’) minus this (pointing to the 

symbol ‘14’) it would be fourteen. If this was sixty-four 

(pointing to the symbol ’14’) it would be sixty-four 

(pointing to the symbol ‘28’). 

Luke: Oh I get it (moving his two pip-making fingers on the LS).  

T: Would it work for this situation (Luke lifts a pip-making 

finger to produce 1 x 14 = 14) that [Luke] is doing (Luke 

places a pip-making finger to produce 2 x 14 = 28)? 

 

Roger: Well mostly what I understand (Luke moves his two pip-

making fingers on the LS and then Roger pushes his fingers 

away) what I understand (Roger places one pip-making 

finger and five pod-making fingers to produce 1 x 5 = 5). 

Luke: Equals five see (Rogers lifts both hands).  

T: So when you say see what do I see? Say it again.  
Roger: So if you (puts one pip-making finger on the LS) add one 

here and you add (puts five pod-making fingers on the RS) 

five there 

Luke: Ya (points to the equation) it’s going to make one. 

Roger: And if there’s one here (points to the ‘1’ in the equation) 

and if (lets go of his hands) there was sixty-four here (points 

to the top middle of the screen) where the five was, it would 

be sixty-four (points to the top right of the screen).  

 

 

In this episode, both children (Roger in particular) make a generalization about the relation between 

the three numbers that appear on the screen, namely that when the first number is a 1 (the 

multiplicand), the second number (the multiplier) will be the same as the last number (the product). 

The interviewer has a role in provoking a question “What happens if …” and in suggesting a way of 

testing Roger’s suggestion, “Would it work for this situation”. There is a subtlety to these 

interventions that point to the role of the teacher in a SSE. The interviewer’s suggestions support a 

noticing (Mason, 2002) of things that have already engaged the attention of the students. Roger 



does not generalize4 for any number, but chooses a large, arbitrary number (sixty-four, which acts 

as a generic example in the sense of Mason and Pimm (1984)) to illustrate the relation he has 

noticed. However, as readers will have likely noticed, Roger does not describe this verbally as a 

multiplication statement. Indeed, he points to the ‘x’ symbol and calls is “minus” and he speaks of 

“adding” numbers to each of the sides. From a certain point of view, Roger does not appear to 

understand what multiplication is. He certainly does not seem to see it as an operation offering 

repeated addition.  

 

From a Piagetian perspective, it would be tempting to say that the children abstracted a relationship 

between action (changing the number of the multiplier) and effect (the resulting product), having 

been perhaps perturbed by the double occurrence of the same number (1 as multiplicand and 1 as 

product). But this dichotomises the action (placing and removing fingers) and the thinking 

(reflecting on the effect of such actions) and takes the relationship to be emerging from the objects 

involved. If instead we notice that Roger and Luke were acting on the relation (abstractly) at the 

same time as they were producing and modifying finger touches (conjuring pips and pods), then we 

can say that they were working with the concrete and the abstract at the same time, exploring, 

indeed, the way multiplication functions or behaves. They did not first need to use a physical 

manipulative to represent multiplication (as groups of objects), before extracting a symbolic 

meaning. In other words, the meanings do not rest solely in the visual representation given on the 

screen (of pips and pods or, more formally, a unit of units). Instead, they arise from the combination 

of the manipulating fingers and the symbolic output that changes as a result of actions on the 

screen.  

 

Characterising work within a symbolically structured environment 

 

Taking our characterization of concrete and abstract from earlier in this article, we observe that in 

SSEs both concrete and abstract modes of engagement seem to be around simultaneously and 

permanently. With the tens chart there are the numbers on the chart (objects, attention to which is 

concrete) and relations between them (x10, attention to which is abstract); with TouchTimes there 

are gestures that generate pips and pods (objects, attention to which is concrete) and gestures that 

generate a relationship between pips and pods (represented by multiplicative statements, attention to 

which is abstract). In the contexts reported above it seems clear that children have no difficulty 

working with relations, i.e., abstract modes of engagement, when these are offered in ways where 

the objects being related are visible or tangible. There are, of course, many features of what we are 

characterizing as a SSE; our focus is on symbol use and the way in which concrete and abstract 

modes of engagement are mobilized. 

 

We are now in a position to offer a tentative characterization of a teacher and students’ working 

within a SSE, as meaning: (a) symbols are offered to stand for actions or distinctions; (b) symbol 

use is governed by mathematical rules or constraints embedded in the structuring of environment; 

(c) operations can be immediately linked to their inverse; (d) complexity can be constrained, while 

still engaging with a mathematically integral, whole environment; (e) novel symbolic moves can be 

made. While in a school context it is likely to be a teacher who offers the symbols and their uses 

and who constrains the entry into the environment, such roles can be taken on by students, 

particularly if they work with a particular environment over an extended period of time. 

 

 
4 While the terms generalization and abstraction are often used as synonyms of sorts, our 

charaterisation of the abstract as attending to relations clearly distinguishes these two types of 

activity. 



We will consider each element in relation to the two examples above. 

 

 Tens chart TouchTimes 

(a) Actions of moving between rows are 

symbolized by   10 and  10, etc. 

Actions of touching the screen generate 

symbols (  and =). 

(b) The structuring of the chart itself ensures 

that the actions of moving between rows 

have a consistent mathematical meaning. 

The App ensures that what is symbolized 

in numerals is always a mathematically 

accurate statement, a description of the 

relationship between objects on the screen. 

(c) Children work with multiplication and 

division at the same time, as moving up 

and down rows of the chart. 

Inverse arises in TouchTimes through the 

capacity to “do” and “un-do” actions, e.g., 

placing a second finger down has an effect 

and removing it undoes that effect on pips 

and pods. 

(d) The teacher can constrain the number of 

rows visible on the chart and e.g., in the 

context of multiplication and division, to 

constrain work initially to single columns. 

In the example above, the teacher makes 

suggestions (adding one finger on one 

side) that will entail some things changing 

and some staying the same, constraining 

the potential complexity. 

(e) In the example we offered above, Figure 2 

shows a child performing a division by 

10,000 which was not a move that had 

been demonstrated by the teacher. 

There is novelty in Roger invoking the 

number sixty-four in order to try to express 

the relationship he observes in how 

TouchTimes symbolizes the fingers on the 

screen. 

 

Across the uses we have made of SSEs, including those described above, we observe students being 

energised by making sense of the environment they are offered. We conjecture that there may be 

something engaging in being offered symbols that allow learners to do things or in learners being 

occasioned to do things which they then symbolise. There is perhaps a sense of anticipation about 

the feedback from the environment which supports the development of meaning for the symbols 

being used. While the role of the teacher has been alluded to in our discussion so far, we are aware 

that there is much more to be said and that is the focus of the next section. 

 

Roles of the teacher in a SSE 

 

One claim we are definitely not wanting to make is that providing children with symbolically 

structured environments will somehow make learning happen by itself. The role of the teacher is 

vital, albeit changed. We first consider the role of the teacher in relation to the aspects of an SSE 

that we have identified above. When working in an SSE, the teacher must: (a) devise a way to 

symbolise actions; (b) incorporate inverse processes; (c) provide constraints (such as tasks); and, (d) 

attend to students’ novel symbolic moves. We now discuss each of these in turn, exemplifying them 

with the two SSEs described above. We note that (b) has also been discussed by Greer (2012) who 

writes that “[i]nversion is a fundamental relational building block both within mathematics” (p. 

429) and who argues for a much greater focus on inversion in mathematics teaching and learning. 

Additionally, (c) has been identified over the past decade as a central feature of teaching (e.g., 

Watson & Ohtani, 2015), particularly in relation to the use of digital technologies (Leung & 

Baccaglini-Frank, 2017). We see (a) and (d) as relatively new practices that are strongly associated 

with the use of SSEs. Significantly, they avoid the procedural-conceptual dichotomy that has 

received so much attention in research on mathematics teaching and learning, and that is related to 

the more traditional concrete-abstract distinction.  



 

As mentioned earlier, our interest in symbolically structured environments arose out of our 

engagement with the work of Bell (1991) and consideration of the potential for ritualization 

practices in the mathematics classroom. We argued (Coles & Sinclair, 2019) that there is a role for 

the mathematics teacher in the “setting apart of distinct and privileged activity” (p.189), for 

instance, in proposing particular symbols and actions. These choices constrain the activity of 

students in ways that can be productive in terms of their doing of mathematics. And far from 

ritualization being a rote and meaningless practice, there can be a sense of alignment of teacher and 

student attention and a letting in on the rules of the game of mathematics, which we see as 

potentially significant in terms of access to mathematics for students. 

 

Devise a way to symbolise actions: sometimes the teacher may need to set up the ways in which 

actions are symbolized. The symbolizing function is already programmed into TouchTimes, but 

with the Tens Chart, it is the teacher who needs to introduce how to express the movement between 

rows. In general, our sense is that symbolization is arbitrary and so can be introduced without 

explanation in a game-like manner. Children need to get used to symbols and they will only do this 

by using them. It is for this reason that the teacher does not correct Roger in the TouchTimes 

episode when he says “minus” instead of “times”, since the focus is on the relation and not on the 

specific name of the relation. It is this aspect of an SSE—the symbolizing of actions—that is 

perhaps most linked to a teacher’s planning of a lesson. The actions children perform need to 

generate some feedback from the environment and that feedback needs to ensure that the symbols 

their actions create have mathematical coherence. In the case of the Tens Chart, the teacher planned 

to use the gestures of moving down and up and to do so in a deliberate way as the words ‘divide’ 

and ‘multiply’ were said. In the case of TouchTimes, the specific gestures associated with making 

pips and pods have been determined to come extent by the design of the environment.  

 

Incorporate inverse processes: allowing work to take place simultaneously on inverse processes is 

potentially one of the keys to make engaging in an SSE powerful in terms of learning mathematics. 

There is an important role for the teacher here in terms of focusing attention on the potential for 

inverse processes. This can be seen in the Tens Chart example, where the task for students 

inevitably entails them working with both multiplication and division in order to “get back where 

they started” on the chart. With TouchTimes, although only multiplication is represented, there are 

powerful inverse processes involved in the movement between a “1x …” screen and a “2x …” 

screen. The teacher has a subtle role here in terms of drawing attention to these changes. 

 

Provide constraints (such as tasks): the constraints on working within an SSE are likely to need to 

come from a teacher. We recognize there is often an urge in children to explore the limits of a new 

environment and, while this might be a useful initial task, there soon becomes a need to focus on 

something more constrained in order to build awareness of relations within the environment. 

Neither the Tens Chart nor TouchTimes comes with ready-made questions or exercises. However, 

well-designed tasks can elicit rich activity. Designing a good task can be challenging in the 

examples we have provided, since they do not benefit from a singular focus on objects, which is the 

case for many mathematical manipulatives (and certainly for most worksheets). The journey task in 

the Tens Chart cannot be done outside of this environment and depends on the feedback of the 

environment, which students can evaluate (have they returned to the starting position) without the 

teacher’s help. In the TouchTimes example, the students came up with their own task, but effective 

tasks offered by the teacher must rely on the feedback of the environment (see Sinclair & Zazkis, 

2017 for a discussion of task design for a similar touchscreen number app).  

 



Attend to students’ novel symbolic moves: such moves, by definition, need to come from the 

children. However, there is again a key role for the teacher both in terms of setting up tasks that 

allow for novelty and also in terms of noticing those novel moves. It can be powerful to point them 

out to other students, both in order to occasion the expansion of the space of possible moves for 

everyone and also to highlight that the making of novel moves is a possibility within the 

environment. 

 

Given the importance of the teacher in the effective use of SSEs, we have chosen a third example, 

better to articulate the way in which the teacher’s role differs from typical reform-based teaching in 

which, for example, children work in groups to solve a rich problem using manipulatives. The 

example comes from a National Film Board film produced in 1961, focusing on the teaching 

method of Caleb Gattegno (see https://www.youtube.com/watch?v=Kw94gmzRrOY). In the film, 

we see a lesson with kindergarten children (5 years old) using small, wooden Cuisinaire rods to 

work with fractions, a concept that would be deemed too abstract for children of that age. In the 

lesson (which is in French), Gattegno has chosen to symbolize the actions by associating the putting 

on and taking off of rods, which he does with a deliberate, large gesture, with doubling and 

halving—using those words explicitly to accompany the actions (see Figure 4). While holding two 

blocks, for example, he places another on top of his pile and says “and what happens if I double?”. 

Then he takes the block off and asks, “what happens if I halve?” thus incorporating inverse 

relations.  

 
Figure 4: Gattegno taking a rod off of the pile of rods while saying “divide by two” 

 

The children answer, in chorus, but they also have a stack of rods on their desks and make the same 

action as Gattegno. Later, after using the word/action for halving, he begins to substitute it with 

“divide by two”. These conventional words, which are arbitrary, are associated with particular 

actions, which establish the meanings of the words. Students learn not just a way to move the 

manipulatives, but also how to move them in a certain way that has a certain meaning. He thus 

offers a range of possible actions, which provide constraints around what can be done with the rods. 

In the film, evidence of attending to students’ novel symbolizing is not evident. However, there is 

novelty in the iteration of operations as Gattegno gets children working on challenges such as half 

of a half of a half of a half of a half of 128. 

 

In each of our examples, the work with a SSE has involved the concept of number. We do not see 

any barrier to developing SSEs across the curriculum. We alluded earlier to Papert’s Logo 

microworld, in which tasks can afford work within geometry, algebra and programming. Dynamic 

geometry software, such as The Geometer’s Sketchpad (Jackiw, 1991), are also environments in 

which the focus can be on objects (such as a static circle or parallelogram) or on relationships 

produced through dragging (as the parallelogram’s four angles become right) or even on 

relationships with other objects (such as diagonals). In non-digital examples, tasks on geoboards or 

on square dotted paper can provide entries into SSEs linked to geometry. While classroom research 



in the environments above has taken place, the perspective provided by a SSE points to particular 

ways of working and brings a focus on symbol use. Such new research is needed. 

 

Conclusions 

 

In the space of school mathematics, the focus on manipulatives as concrete representations seems to 

have eclipsed a more fundamental reason to incorporate tools into mathematics learning. As 

articulated by Piaget (1954), and since elaborated by many mathematics education researchers with 

interests in the bodily basis of understanding (see de Freitas & Sinclair, 2014), the goal of using 

manipulatives is neither to make a concept concrete nor to recover its Platonic meaning, but to 

move. That is, one’s senses of number, shape, and so on “have more to do with structured acts of 

moving than with acts of moving structures” (Ng et al., 2018). From our perspective, the main 

purpose of a manipulative is not to re-present mathematical concepts, but to mould the learner’s 

motions, and in the process occasioning opportunities for them to expand and weave their 

repertoires of mathematically relevant structures. 

 

With the notion of an SSE, we are attempting to provide an alternative kind of tool for mathematics 

learning that is both abstract and metonymical, but also accessible and meaningful. To re-iterate, we 

characterise an SSE as one in which: (a) symbols are offered to stand for actions or distinctions; (b) 

symbol use is governed by mathematical rules or constraints embedded in the structuring of 

environment; (c) symbols can be immediately linked to their inverse; (d) complexity can be 

constrained, while still engaging with a mathematically integral, whole environment; (e) novel 

symbolic moves can be made. 

 

We argue that such tools—along with careful teacher support—may provide students with less 

cumbersome and more direct ways of developing mathematical fluency than through the kinds of 

manipulatives that insist on offering direct, concrete representations. This argument has been 

informed by theoretical insight and our experiences working with the SSEs described above. More 

empirical research will be required to appreciate better the ways in which our approach can invoke 

significant changes in current teaching practices and curricular progressions.  

 

References 

 

Bateson, G. (1972). Steps to an ecology of mind. Chicago: University of Chicago Press, 2000. 

Bell, C. (1991). Ritual theory, ritual practice. New York: Oxford University Press. 

Bruner, J. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University Press. 

Coles, A. (2014). Transitional devices. For the learning of mathematics, 34(2), 24-30. 

Coles, A. (2017). A relational view of mathematical concepts. In E. de Freitas, N. Sinclair, A. Coles 

(Eds.) What is a mathematical concept? Cambridge: C.U.P., pp.205-222. 

Coles, A., & Brown, L. (2016). Task design for ways of working: making distinctions in teaching 

and learning mathematics, Journal of Mathematics Teacher Education, 19(2), 149-168.  

Coles, A., & Sinclair, N. (2017). Re-thinking place value: from metaphor to metonym. For the 

Learning of Mathematics, 37(1), 3-8.  

Coles, A. & Sinclair, N. (2019). Ritualization in early number work. Educational Studies in 

Mathematics, 101(2), 177-194 

Davydov, V. (1990). Types of generalization in instruction: Logical and psychological problems in 

the structuring of school curricula. Reston, VA: NCTM. 

de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the 

mathematics classroom. New York, NY: Cambridge University Press. 



Dougherty, B. (2008). Measure up: A quantitative view of early algebra. In Kaput, J. J., Carraher, 

D. W., & Blanton, M. L. (Eds.), Algebra in the early grades, (pp. 389–412). Mahweh, NJ: 

Erlbaum. 

Fowler, D. (1979). Ratio in early Greek mathematics. Bulletin of the American Mathematical 

Society, 1(6), 807-846. 

Fuson, K. & Briars, D. (1990). Using a base-ten blocks learning/teaching approach for first and 

second grade place-value and multi-digit addition and subtraction. Journal for Research in 

Mathematics Education, 21, 180-206. 

Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in 

mathematics and science instruction: A systematic review. Educational Psychology Review, 26, 

9-25. 

Gattegno, C. (1965). Mathematics and imagery. Mathematics Teaching, 33(4), 22-24. 

Gattegno, C. (1974). The common sense of teaching mathematics. NY: Educational Solutions. 

Gelman, R., & Meck, E. (1983). Preschoolers’ counting: Principles before skill. Cognition, 13(3), 

343–359. 

Hewitt, D. (1999). Arbitrary and necessary: A way of viewing the mathematics curriculum. For the 

Learning of Mathematics 19(3), 2–9. 

Jackiw, N. (1991). The Geometer’s Sketchpad [software application]. Emeryville, CA: Key 

Curriculum Press. 

Jackiw, N. & Sinclair, N. (2019). TouchTimes [software application for the iPad]. Burnaby, BC: 

The Tangible Mathematics Project. 

Leung, A. & Baccaglini-Frank, A. (Eds.), Digital Technologies in Designing Mathematics 

Education Tasks (pp. 175-192). New York: Springer. 

Mason, J. (2002). Researching your own practice: The discipline of noticing. London: 

RoutledgeFalmer. 

Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Education 

Studies in Mathematics, 15(3), 277-289. 

Maturana, H., & Varela, F. (1987). The tree of knowledge: the biological roots of human 

understanding. Boston: Shambala. 

Mix, K., Smith, L., & Barterian, J. (2017). Grounding the symbols for place value: evidence from 

training and long-term exposure to base-10 models. Journal of Cognition and Development, 

18(1), 129-151. 

Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student 

achievement and mathematics learning. International Journal of Virtual and Personal Learning 

Environments, 4(3), 35–50.  

Ng, O., Sinclair, N., & Davis, B. (2018). Drawing off the page: How new 3D technologies provide 

insight into cognitive and pedagogical assumptions about mathematics. The Mathematical 
Enthusiast. 

Piaget, J. (1954). The construction of reality in the child. (M. Cook, trans.). NY: Basic Books. 

Piaget, J. (2001). Studies in reflecting abstraction. Sussex, England: Psychology Press.  
Sarama, J., & Clements, D. H. (2009). “Concrete” computer manipulatives in mathematics 

education. Child Development Perspectives, 3(3), 145–150. 
Simon, M., Tzur, R., Heinz, R. & Kinzel, M. (2004). Explicating a mechanism for conceptual 

learning: Elaborating the construct of concrete abstraction. Journal for Research in 

Mathematics Education, 35(5), 305-329. 

Sinclair, N., & Coles, A. (2017). Returning to ordinality in early number sense: Neurological, 

technological & pedagogical considerations. In F. Ferrara, E. Faggiano, A. Montone (Eds.) 

Innovation and Technologies in Mathematics Education. Springer: Rotterdam, pp.39-58. 



Sinclair, N. & Zazkis, R. (2017). Everybody counts: Designing tasks for TouchCounts. In A. Leung 

& A. Baccaglini-Frank (Eds.), Digital Technologies in Designing Mathematics Education 

Tasks (pp. 175-192). New York: Springer. 

Sowell, E. (1989). Effects of manipulative materials in mathematics instruction. Journal for 

Research in Mathematics Education, 20(5), 495-505. 

Suh, J., & Moyer, P. S. (2007). Developing students’ representational fluency using virtual and 

physical algebra balances. Journal of Computers in Mathematics and Science Teaching, 26(2), 

155–173. 

Thompson, E. & Stapleton, M. (2009) Making sense of sense-making: reflections on enactive and 

extended mind theories. Topoi 28(1), 23–30. 

Uttal, D., Scudder, K., & DeLoache, J. (1997). Manipulatives as Symbols: A new perspective in the 

use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 

18, 37-54. 

Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind: cognitive science and human 

experience. Massachusetts: The MIT Press. 

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. 

Cambridge, MA: Harvard University Press. 

Watson, A., & Ohtani, M. (2015). Task design in mathematics education. New York: Springer. 

Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for 

mathematics education. In I. Harel & S. Papert (Eds.), Constructionism (pp. 193-204). 

Norwood, NJ: Ablex Publishing Corporation. 

 

 


