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Abstract 17 

The present-day marine nitrogen (N) cycle is strongly regulated by biology. 18 

Deficiencies in the availability of fixed and readily bioavailable nitrogen relative to 19 

phosphate (P) in the surface ocean are largely corrected by the activity of 20 

diazotrophs. This feedback system, termed the “nitrostat”, is thought to have 21 

provided close regulation of fixed N speciation and inventory relative to P since the 22 

Proterozoic. In contrast, during intervals of intense deoxygenation such as 23 

Cretaceous Ocean Anoxic Event (OAE) 2, a few regional sedimentary δ15N records 24 

hint at the existence of a different mode of marine N-cycling in which ammonium 25 

plays a major role in regulating export production. However, the global-scale 26 

dynamics during this time remain unknown. Here, using an Earth System model and 27 

taking the example of OAE 2, we provide new insights into the global marine nitrogen 28 

cycle under severe ocean deoxygenation. Specifically, we find that the ocean can 29 

exhibit fundamental transitions in the species of nitrogen dominating the fixed N 30 

inventory – from nitrate (NO3
-) to ammonium (NH4

+) – and that as this transition 31 

occurs, the inventory can partially collapse relative to P due to progressive spatial 32 

decoupling between the loci of NH4
+ oxidation, NO3

- reduction, and nitrogen fixation. 33 

This finding is relatively independent of the specific state of ocean circulation and is 34 

consistent with nitrogen isotope and redox proxy data. The substantive reduction in 35 

the ocean fixed N inventory at an intermediate state of deoxygenation may represent 36 

a biogeochemical vulnerability with potential implications for past and future (warmer) 37 

oceans.   38 

 39 

Significance statement 40 

The ratio of the dissolved inventories of readily bio-available (fixed) nitrogen to 41 

phosphorous is regulated close to 16:1 in the modern, well-oxygenated ocean. This 42 

situation – fixed nitrogen tracking phosphorous – is generally assumed to have 43 

operated for hundreds of millions of years. Here we use computer simulations 44 



combined with proxy data to instead demonstrate that the marine nitrogen cycle 45 

operates very differently when dissolved oxygen concentrations in the ocean are 46 

considerably lower than present. Not only is nitrate replaced by ammonium as the 47 

dominant component of fixed nitrogen, but the total fixed inventory collapses relative 48 

to phosphorous. This makes the strength and state of the biological pump in the 49 

ocean highly susceptible to disruption, with potential past and future implications. 50 

/body  51 



Introduction 52 

Nitrogen (N) is an essential nutrient for life, and in the modern ocean, small regional 53 

differences in the bioavailability of N induce large differences in primary productivity, 54 

ecosystem dynamics, and biogeochemical cycles (1-3). The ocean inventory of the 55 

readily bioavailable or ‘fixed’ forms of N, primarily nitrate (NO3
-) and ammonium 56 

(NH4
+), is ultimately governed by the balance between denitrification predominantly in 57 

oxygen minimum zones (OMZs) and N fixation by diazotrophs mainly in the 58 

(sub)tropical gyres (4-6). Importantly, these processes are connected on a global 59 

scale, as an increased loss of fixed N relative to phosphorus (P) favors diazotrophs 60 

that perform the energetically costly process of N fixation. As such, the marine N 61 

cycle shapes modern nutrient and ecosystem dynamics and in this system of 62 

negative feedbacks, the N:P ratio and hence fixed N inventory of the ocean are 63 

tightly regulated. Known as the “nitrostat”, these feedbacks are assumed to have 64 

been relatively stable since the origin of diazotrophs in the Archaean (7) and 65 

subsequent proliferation during the (late) Proterozoic (5). 66 

This assumption that strong negative feedbacks stabilize the oceanic N 67 

inventory, speciation, and productivity tends to frame our interpretation of future 68 

scenarios (8) and past events (9), including Oceanic Anoxic Events (OAEs). The 69 

OAEs occurred predominantly during the Mesozoic and are associated with 70 

widespread ocean deoxygenation and perturbations of major biogeochemical cycles, 71 

including the marine N cycle (10). For example, OAEs are associated with depleted 72 

bulk sediment nitrogen isotope (δ15Nbulk) values in some parts of the (proto-) Atlantic 73 

ocean (11, 12). The classical hypothesis for the operation of the marine N cycle in an 74 

extremely deoxygenated ocean – such as occurred during the OAEs – argues that 75 

primary production was dominated by diazotrophs (12, 13) to counter the high rates 76 

of N-loss in the expanded OMZs, resulting in low δ15Nbulk values. This would be 77 

generally consistent with our understanding of a dominance of nitrostat-driven 78 



negative feedbacks between denitrification and N fixation in the modern oceans, 79 

stabilizing the oceanic inventory of fixed N (1, 2, 4).  80 

However, the very negative (< -2 ‰) δ15Nbulk and even more depleted 81 

(< -4 ‰) chlorophyll-derived porphyrin N isotopes (δ15Npor) from the (equatorial) 82 

Atlantic across OAE 2 suggest a contribution, potentially major, from eukaryotic 83 

primary producers assimilating recycled ammonium (11, 14, 15). This hints at a very 84 

different operation of the marine N cycle under conditions of extreme ocean 85 

deoxygenation, in which ammonium availability may be high enough to play a major 86 

role in regulating export production, at least in the equatorial Atlantic. Similarly, very 87 

depleted δ15Nbulk (minima ~ -3 ‰) have been found in semi-restricted shelf basins of 88 

the Tethys Ocean during the Paleocene Eocene Thermal Maximum (PETM) (16), 89 

suggesting an important role for ammonium assimilation during this transient global 90 

warming event. Together, these observations suggest that ammonium assimilation 91 

might be inherent to deoxygenation events during the Phanerozoic and may reflect 92 

the changing balance in redox speciation of the major components of dissolved 93 

inorganic nitrogen (DIN), namely: NO3
- and NH4

+ (together: the fixed nitrogen pool). 94 

However, these observations highlight a major challenge: resolving the role 95 

and strength of marine N cycle feedbacks is complicated by the fact that evidence 96 

recorded in the sediments is fragmented and reflects local, not global processes (17).  97 

For OAE 2, virtually all proxy data are from the (central) Atlantic and Tethys Ocean 98 

(11). In addition, the proxy record predominantly reflects surface ocean processes, 99 

limiting our understanding of N cycle dynamics in the ocean’s interior and hence the 100 

dominant reservoir of N in the intermediate and deep ocean; upwelling of this deep 101 

reservoir supports much of primary production in modern systems, and presumably 102 

in ancient ones as well. Furthermore, although models have been used to study the 103 

marine N cycle during OAE 2 (11, 15), these models have tended to either focus on a 104 

regional scale, and the area of the (proto-) Atlantic and Tethys Ocean (11), or only on 105 

the average surface vs. average deep ocean (15). Assessment of the marine N cycle 106 



dynamics in a fully 3-dimensional and global context, as well as a more generalized 107 

understanding of how global N cycling responds to extreme ocean deoxygenation 108 

events, is still needed. To elucidate global-scale marine N cycle dynamics as the 109 

ocean is progressively deoxygenated, here we used an Earth System model of 110 

intermediate complexity (‘GENIE’) (18) and as a case study used Cenomanian-111 

Turonian OAE 2 (~93 Ma), one of the most extreme ocean deoxygenation events of 112 

the last 250 Ma. 113 

 114 

Results 115 

In our simulations, as the oceanic P inventory increases, the associated increase in 116 

export production causes the oxygen content of the ocean to decrease, leading to 117 

expanded anoxia, here defined as < 1 nM O2 (Fig. 1a). All simulations with more than 118 

1 x PO4
3- have enhanced export production and an expanded extent of photic zone 119 

euxinia (PZE) compared to modern, in agreement with previous box model studies 120 

(e.g., 19, 20). In the highest (4 x PO4
3-) scenario, export production is more than four 121 

times higher than modern rates, and the upper depth boundaries of the OMZs 122 

impinge on the photic zone, leading to PZE in ~35% of the ocean (Fig. 1a). Within the 123 

euxinic OMZs, organic matter remineralization is predominantly mediated by sulfate 124 

reduction, contributing to 21% of total OM remineralization globally (SI Appendix, Fig. 125 

S3).   126 

Our P inventory-induced changes in the extent of ocean oxygenation have a 127 

profound impact on the marine N cycle, and in particular, on which species of N 128 

dominates the fixed nitrogen pool: nitrate or ammonium. In our model, an increase 129 

from 0.25 to 1 x PO4
3- concentration enhances primary production ~4-fold, from 2.2 to 130 

8.6 Gt C yr-1, and leads to an increase in the fixed N inventory (NO3
- + NH4

+) of the 131 

ocean by around 200% due to a compensating increase in N fixation (Fig. 1b-d).  132 

Notably, this is far short of the 400% increase that would have been necessary to 133 

maintain a mean N:P ocean inventory of 16:1, the reasons for which we discuss later. 134 



The marine N cycle in the 1 x PO4
3- simulation (4 x CO2, and Cenomanian 135 

paleogeography) differs from the results for the modern (Table 1). In our 136 

Cenomanian simulations, the fixed N inventory does not reach modern values until 137 

the 4 x PO4
3- simulations (Fig. 1b), highlighting the role of atmospheric CO2 and 138 

paleogeography (affecting temperature and ocean currents, respectively) in 139 

modulating the state of marine N cycling, in addition to changes in the oceanic P 140 

inventory. In the Cenomanian simulation, higher temperatures and different ocean 141 

circulation deplete the N inventory compared to modern (Fig. 1c), implying that future 142 

warmer, deoxygenated conditions could also reduce the global ocean N inventory. 143 

As concentrations increase towards 4 x PO4
3-, the fraction of the ocean that is 144 

anoxic expands, and denitrification rates increase, resulting in up to ~15% of global 145 

organic matter being remineralized via NO3
- respiration. The value of ~15% appears 146 

to be an inherent limit for the global contribution of denitrification to organic 147 

remineralization (SI Appendix, Fig. S3). This, in turn, places a limit on the loss of 148 

fixed N and ultimately leads to a maximum contribution of N fixation to export 149 

production of ~55-60% for an ocean with widespread anoxia but operating under an 150 

oxygen-rich atmosphere (Fig. 1d). This limit is due to geographic restriction of 151 

denitrification, which mainly occurs at the edge of the OMZs, where oxygen is low 152 

enough for denitrification, yet nitrification rates remain high enough to produce 153 

nitrate. As oxygen content in the ocean decreases, higher rates of denitrification, 154 

combined with lower nitrification rates, result in a sharp decline in nitrate 155 

concentration, reducing the eventual contribution of upwelled nitrate to export 156 

production (Fig. 1b-d).  157 

Because nitrification of NH4
+ requires oxygen, NH4

+ accumulates in the 158 

ocean, mostly in the OMZs. In the 4 x PO4
3- ocean, average NH4

+ concentrations 159 

reach up to two orders of magnitude higher than in the modern ocean (Fig. 1b), 160 

reaching values similar to those observed in the modern OMZ of the Black Sea (21). 161 

In such an “ammonium ocean”, NH4
+ assimilation does not dominate the source of 162 



nutrient nitrogen for export production globally, constituting at most 22% of total 163 

export production (Fig. 1d). This is because most of the upwelled NH4
+ is nitrified in 164 

oxygenated layers underlying the photic zone. However, where local NH4
+ 165 

assimilation occurs, it can contribute > 30% of export production, for example in the 166 

tropical proto-Atlantic. The relative contribution of N fixation and NH4
+ assimilation to 167 

export production is thus controlled by the spatial structure of the OMZ relative to the 168 

base of the photic zone, which in turn is controlled by ocean circulation (i.e., 169 

upwelling regions). When the OMZ impinges the photic zone, NH4
+ becomes 170 

available for direct assimilation by phytoplankton. When the OMZ is spatially 171 

separated from the photic zone, nitrification (and subsequent denitrification) reduce 172 

the availability of NH4
+ to the photic zone.  173 

However, our results collectively demonstrate that the system does not 174 

monotonically transition from a “nitrate” to an “ammonium” ocean as oxygen 175 

progressively declines. Under intermediate conditions in the transition (in our 176 

Cenomanian simulations: 2 x PO4
3-), a unique state of N cycling occurs in which the 177 

ocean is not yet anoxic enough to develop extensive OMZs rich in ammonium. 178 

Relatively high rates of nitrification restrict the accumulation of NH4
+, yet at the same 179 

time, high rates of denitrification keep the ocean nitrate inventory low (Fig. 1d). As a 180 

result, the ocean becomes extremely depleted in all forms of fixed N (Fig. 1c).  181 

 182 

Discussion 183 

Contrary to earlier studies (22, 23), our results show how the deep ocean can 184 

become highly depleted in fixed N (Fig. 2b) relative to P, leading to a biogeochemical 185 

state that contrasts markedly to the modern oxic ocean. As P concentrations 186 

increase and anoxia expands, the ocean transitions from a feedback-balanced 187 

system where the nitrate inventory tracks phosphate (24), to a state in which the 188 

deep ocean becomes highly depleted in fixed N relative to P (Fig. 1c). And rather 189 

than a NO3
--replete deep ocean (Fig. 3a), the dominant form of nitrogen becomes 190 



NH4
+, which is furthermore localized to expanded OMZs and does not “fill” all of the 191 

deep ocean (Table 1 and Fig. 3b-c). This transformation occurs in the model despite 192 

high rates of N fixation at the surface by diazotrophs and concomitantly high export 193 

production fluxes of particulate organic nitrogen into the ocean interior – both factors 194 

that should favor a large deep ocean fixed N inventory of NH4
+ released from organic 195 

matter remineralization.  196 

But did an ocean state such as this really develop in the past? Proxy data for 197 

bottom water anoxia and photic zone euxinia during OAE 2 best match the 2 x PO4
3- 198 

simulation (25). Although there are a number of uncertainties and caveats associated 199 

with both the model simulations and proxy data, the 2 x PO4
3- scenario also is the 200 

same scenario that yields a marine N cycle simulation with minimum total fixed N 201 

inventory (Fig. 1c). In this simulation, 11% of the total volume of the ocean and 17% 202 

of the sea floor is anoxic (defined here as < 1 nM O2) (Fig. 1a and Table 1), 203 

consistent with uranium isotope data that indicate that 8-15% of the sea floor became 204 

anoxic during OAE 2 (26). We argue that the existence of an elevated oceanic P 205 

inventory compared to the modern is consistent with calcium isotope measurements. 206 

The calcium isotope data indicate an increased weathering flux during OAEs (27) 207 

and as total calcium and P concentrations can be correlated in modern rivers (28), 208 

presumably reflect an increased rate of PO4
3- supply to the ocean. Together with the 209 

likelihood that P was more strongly regenerated from the ocean floor under anoxic 210 

conditions (29), an increased PO4
3- state is a reasonable outcome, and the relatively 211 

conservative 2 x PO4
3- amplification (rather than 3 x or 4 x PO4

3-) is the scenario that 212 

leads to the greatest reduction in fixed N inventory. 213 

In the 2 x PO4
3- simulations, N fixation is the most intense in equatorial 214 

upwelling regions and in the Pacific sector of the Southern Ocean, where deep and 215 

denitrified waters with low N:P ratios reach the photic zone (Fig. 2). Globally, NH4
+-216 

assimilation is significant but is not the dominant source of nutrient nitrogen for 217 

marine production, contributing ~10% of total export production (Table 1). Regionally, 218 



however, NH4
+-assimilation is important in the most intensely anoxic and/or upwelling 219 

regions, such as the euxinic equatorial Atlantic (Fig. 2).  220 

Available nitrogen stable isotope data for OAE 2 allow for comparison with 221 

our model simulations, although published data to date are restricted to the (proto)-222 

Atlantic and Tethys Ocean. Records from the equatorial Atlantic (Demerara Rise 223 

sites and Site 367) show extremely depleted δ15Nbulk values during OAE 2, with 224 

minima of < -3‰ and average values around -2‰ (13-15). These depleted δ15N 225 

values are interpreted to reflect a region dominated by N fixation and/or NH4
+ 226 

assimilation, although it is difficult to disentangle the individual importance of these 227 

two processes (15). Our model simulations are in concordance, with a relatively large 228 

contribution of N fixation and especially NH4
+ assimilation (> 30 %), to export 229 

production in this region (Fig. 2a). By contrast, the continental margins of Europe and 230 

North America are characterized by enriched (δ15Nbulk values around 1‰), even 231 

during the peak of OAE 2 (11). This is also consistent with our simulations, which 232 

indicate a low contribution of N fixation and NH4
+ assimilation to export production on 233 

those particular margins, with productivity instead dominated by NO3
-. Sites in the 234 

subtropical Atlantic (Sites 386, 1276, and 641) (11) are characterized by negative 235 

δ15Nbulk values (average values around -1‰), although less negative then those 236 

recorded in the equatorial Atlantic (averages around -2‰). Our simulations are 237 

largely consistent with these intermediate δ15Nbulk values, as the surface ocean at 238 

Sites 368 and 641 is characterized by a high contribution of N fixation to export 239 

production (> 50 %), but no major influence of ammonium assimilation. Site 1276 is 240 

an exception to the general agreement between our model simulations and published 241 

interpretations of δ15Nbulk proxy data. In our simulations, this location is not 242 

characterized by high contributions of N fixation and/or NH4
+ assimilation that would 243 

lead to depleted δ15Nbulk, yet the available δ15Nbulk values are negative. This could be 244 

because the resolution of cGENIE is insufficient to reconstruct small-scale features in 245 

ocean circulation or biology that drive the δ15Nbulk values at Site 1276 negative. But 246 



overall our simulations compare well with the proxy record from the Atlantic and 247 

Tethys Ocean as well as regional box modelling studies (11, 14, 15, 30), providing 248 

additional confidence.  249 

Both the proxy record and previous box modelling studies are limited to the 250 

Atlantic and Tethys Ocean. Our global ocean simulations suggest that NH4
+-251 

assimilation may have fueled export production in parts of the eastern equatorial 252 

Pacific, and that N fixation was important across the equatorial Pacific and Indian 253 

Ocean and in the high-latitude southern Pacific Ocean, regions characterized by 254 

stronger exchanges between the deep and the surface ocean. However, formal 255 

assessment of these model predictions will have to await new data from these 256 

basins, and higher resolution ocean biogeochemical modelling.   257 

 If the marine N cycle of OAE 2 can maintain a fundamentally different 258 

structure from the modern version, one might expect comparably different N cycle 259 

states to occur at other times in Earth history. For example, late Devonian black 260 

shales (31) as well as Paleocene Eocene Thermal Maximum (PETM) black shales 261 

(16) are characterized by depleted δ15Nbulk values similar to those reported for OAE 262 

2. The climate state and paleogeography, which determine the specific sensitivity of 263 

the marine N cycle to changes in oxygenation state, were different during those 264 

events compared to OAE 2. However, the same mechanisms and feedback 265 

processes identified for the OAE 2 scenario presumably would operate. If the anoxia 266 

was intense enough, these events also may have promoted a depletion in bio-267 

available N; and incorporation of ammonium may have been important in euxinic 268 

(semi)-restricted basins (e.g., the Northeast Tethys during the PETM).  269 

Changing the global N inventories and spatial patterns of N cycling also has 270 

far-reaching implications for marine ecology and attendant proxies, and other 271 

biogeochemical cycles. For example, the habitat for ammonia-oxidizers (e.g., 272 

Thaumarchaeota) may have been very different in a reorganized, low-oxygen N 273 

cycle. These organisms may have moved to shallower depths if they were able to 274 



resist photoinhibition and other associated oxidative pressures. This shift in habitat 275 

may then influence TEX86-based temperature estimates in anoxic basins, as existing 276 

calibrations are based on modern systems in which the organisms primarily reside 277 

below the base of the photic zone. Marine N2O production likely would also have 278 

increased during anoxic events due to elevated rates of both denitrification and 279 

nitrification, and a potential shift between denitrification and anammox (32), which 280 

characterize some of the main pathways of N2O production in the ocean (33). If the 281 

N2O cycle shifted closer to surface waters, thereby increasing gas evasion rates, N2O 282 

could have provided a powerful positive feedback mechanism to sustain the OAE. 283 

N2O is a potent greenhouse gas, 1000 times more effective than CO2, and its release 284 

could partially offset the negative feedback on warming of the expansion in organic 285 

carbon burial. The interplay of such processes could account for the rather complex 286 

temperature changes observed across OAE 2 (34). Besides the biogeochemical 287 

implications, these changes in the marine N cycle likely also impacted marine trophic 288 

structures and food webs and could be an important mechanism for how 289 

deoxygenation events such as the OAEs drive biological turnover 290 

The scenarios modeled here may also have important implications for future 291 

climate change. Over the past 50 years the oxygen content of the ocean has 292 

declined (35) and is expected to accelerate with future ocean warming (36). Some 293 

regions of the ocean are already close to transitioning to full anoxia (<10 nM O2) (37). 294 

Our results illuminate the sensitivity of the marine N cycle to changes in ocean 295 

oxygen content, implying that the future ocean may be more vulnerable to N loss 296 

than previously recognized, which will have far-reaching consequences for other 297 

biogeochemical processes and marine ecosystems. 298 

 299 

Conclusions 300 

Our understanding of the response of the marine N cycle to changes in ocean 301 

oxygenation largely comes from past perturbation events such as the Ocean Anoxic 302 



Events of the Mesozoic, with relatively sparse proxy records and regional models 303 

informing most of our understanding to date. Here, we applied an Earth system 304 

model with 3D global ocean (GENIE), upgraded with a more complete set of N cycle 305 

processes, to provide specific insights into the global marine N-cycle associated with 306 

OAE 2 as well as to provide generalized understanding of how the marine N cycle 307 

responds under progressively extreme deoxygenation. We find that as phosphate 308 

concentrations increase and anoxia expands, the ocean transitions from an oxic state 309 

with high concentrations of nitrate to an anoxic/reducing state in which the deep 310 

ocean becomes highly depleted in fixed N relative to P, with N predominantly in the 311 

form of ammonium and mostly geographically restricted to expanded OMZs. These 312 

results point to potential breakdown in the feedbacks that were thought to keep 313 

global N marine inventories in balance, i.e., the “nitrostat”.    314 



Materials and Methods 315 

All simulations were run using the GENIE model. As employed here, GENIE includes 316 

representations of the marine cycles of phosphorus, nitrogen, oxygen, and sulfur. To 317 

extend the applicability of GENIE to a poorly oxygenated ocean, we further 318 

developed the N cycle to include second-order substrate limitation of nitrification 319 

rates by both ammonium and oxygen rather than just ammonium (see SI Appendix).  320 

 321 

Data availability 322 

The code for the version of the GENIE model used in this paper (technically: 323 

cGENIE) can be found here: https://svn.ggy.bris.ac.uk/subversion/genie/tags/cgenie-324 

NaafsMonteiro.PNAS.2019 (svn revision 10275) and includes all configuration and 325 

boundary condition files (check genie-userconfigs/MS/PNAS2019.NaafsMonteiro for 326 

the specific userconfig files). The code on the SVN repository can be accessed with 327 

the username: genie-user and password: g3n1e-user. Documentation on running the 328 

cGENIE model can be found in the genie-docs directory of the code installation. 329 
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Figure Legends 451 

Figure 1: Response of marine biogeochemistry  452 

Response of ocean biogeochemistry to an increase in oceanic phosphate inventory 453 

for the Cenomanian simulations (pCO2 at 1,120 ppmv). A) Ocean redox state with 454 

total oxygen content (O2) of the ocean, extent of photic zone euxinia (PZE), extent of 455 

pure sea floor anoxia (< 1 nM O2), and rate of export production; B) Concentration of 456 

nitrate, ammonium, total fixed nitrogen (NO3
- + NH4

+), and phosphate concentration 457 

(in μmol N l-1; multiplied by the Redfield N:P ratio); C) DINxs (DINxs = NO3
- + NH4

+ - 16 458 

x PO4
3-) (38), and D) Contribution of nitrogen fixation, ammonium assimilation, and 459 

nitrate assimilation to export production. Dashed lines represent values in modern-460 

day simulation (1 x CO2, 1 x PO4
3- , and modern geography, ocean circulation and 461 

temperature). The 2 x PO4
3- simulation has the best fit with proxy data for OAE 2 462 

(25). 463 

 464 

Figure 2: Marine N-cycle during OAE 2 (4 x CO2; 2 x PO4
3-)  465 

A) Spatial distribution of the relative contribution to export production of N fixation 466 

(top), NH4
+ assimilation (middle), and NO3

- assimilation (bottom). Green Å symbols 467 

reflect proxy records with a positive average δ15Nbulk value across OAE 2, while pink 468 

⊖	symbols reflect a negative average δ15Nbulk value. Numbers refer to sites listed in 469 

table S1 (see SI appendix for details); and B) Zonally averaged vertical concentration 470 

profiles of O2 (top), NH4
+ (middle), and NO3

- (bottom). Both panels present model 471 

results using the OAE 2 analog simulation (Cenomanian paleography, 4 x CO2; 2 x 472 

PO4
3-). 473 

 474 

Figure 3: Schematic of the marine nitrogen cycle’s response to oceanic de-475 

oxygenation 476 



The transition from an oxic, nitrate-dominated ocean to an anoxic, ammonium-477 

dominated ocean. Also shown is DINxs (DINxs = NO3
- + NH4

+ - 16 x PO4
3-) (38). During 478 

OAE 2, the intermediate N-deficit state may have prevailed. 479 
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Table 1; Marine biogeochemistry for the modern and (pre-)OAE 2  

Variable  Unit 

Modern 

(Observed) 

Modern 

(GENIE) 

Pre-OAE 

2 (GENIE) 

OAE 2  

(GENIE) 

Atmospheric CO2   1 x CO2 1 x CO2 2 x CO2 4 x CO2 

Oceanic phosphate   1 x PO4
3- 1 x PO4

3- 1 x PO4
3- 2 x PO4

3- 

     Anoxia  

Global ocean anoxia % volume < 0.1 (ref. 39) < 0.1 2 11 

Seafloor anoxia % area <0.1 (ref. 39) < 0.1 2 17 

     Euxinia  

Global ocean euxinia % volume <0.1 (ref. 39) < 0.1 4 28 

Photic zone euxinia % area <0.1 (ref. 39) < 0.1 0.5 11 

     Biological rates  

Export Production Gt C yr-1 5-20 (ref. 40) 7 8 16 

Nitrification Tg N yr-1  2312 3152 6050 

Denitrification Tg N yr-1 120-240 (ref. 41) 114 812 3249 

     Global contribution to export  

NO3-assimilation %  87 65 35 

N2-fixation %  5 28 55 

NH4
+-assimilation %  8 6 10 

     Global contribution to remineralization  

O2-respiration %  99 90 72 

Denitrification %  1 8 16 

SO4
2--reduction %  < 0.1 2 12 
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Supplementary Information Text 30 
1. Nitrogen cycle in GENIE  31 
We used the already published OAE 2 data-constrained Cenomanian 32 
paleogeography configuration of the GENIE model (1), with simulations conducted at 33 
4x pre-industrial atmospheric CO2 concentrations, and a range of different oceanic 34 
phosphate inventories (0.25 to 4 times modern PO4

3-). Although we could have 35 
explored the effects of other biogeochemical variables such as imposing changes on 36 
atmospheric pO2 and hence ocean dissolved oxygen concentrations directly, OAEs 37 
are widely regarded as being characterized by high levels of pCO2 (2) and are 38 
inferred to be characterized by a higher-than-modern oceanic phosphate. This 39 
increased P inventory resulted from extensive submarine volcanism (2, 3) and hence 40 
increased terrestrial rock (and apatite mineral) weathering rates (4), in combination 41 
with a decreased ocean sink as a consequence of benthic P regeneration under 42 
sedimentary anoxia (5). All model scenarios were run for 20 kyr to steady state. 43 

For the model configuration used for OAE 2, see Monteiro et al. (1). Genie 44 
biogeochemistry accounted for carbon, phosphorous, nitrogen, oxygen, and sulfur 45 
cycling as described by Monteiro et al. (1), including equations and parameters 46 
values for ocean productivity, a dynamical threshold for oligotrophy for nitrogen 47 
fixation, and remineralisation of organic matter (DOM and POM pools) via oxygen, 48 
nitrate and sulphate reductions. In the absence of a consensus on ocean sulphate 49 
concentrations during the Cretaceous and OAEs, we used modern sulphate 50 
concentrations as the initial concentration in all simulations (29,160 mM). The 51 
model’s nitrogen cycle includes ammonium and nitrate assimilations (with a 52 
preference towards ammonium assimilation). Nitrogen fixation is constrained to the 53 
surface layer of the ocean, whereas remineralisation of organic nitrogen into 54 
ammonium, and nitrification of ammonium into nitrate, are present in the whole water 55 
column (with rates depending on the ocean redox state). 56 
 Here, we updated the marine N cycle to allow the global nitrogen fixation rate 57 
in the modern ocean to fit more recent observations and introduced a limitation of 58 
nitrification by oxygen in addition to ammonium (see section 2.1 and 2.2 for details). 59 
All simulations were run using this updated code of the marine N cycle.  60 

To estimate the different contributions of N sources onto export production, 61 
we assumed that global scale export production is equivalent to new production, 62 
which is the sum of N2 fixation with NO3

- and NH4
+ new production (represented by 63 

DIN new production in figure S1). Export production includes here the sum of the 64 
sinking of particulate organic matter (POM) and the mixing of dissolved organic 65 
matter (DOM) out of the photic zone. In the modern ocean, new production/export 66 



production is dominated by the uptake of NO3
-, because NH4

+
new is negligible as most 67 

of NH4
+ is oxidized in the deep ocean and N2 fixation is relatively small. In an anoxic 68 

ocean, contribution to new production/export production by N2 and potentially NH4
+ 69 

become important because low oxygen content promotes denitrification (hence 70 
increasing N2 fixation) and accumulation of NH4

+ in the deep ocean. Also included in 71 
the model is denitrification, which converts organic nitrogen and NO3

- into NH4
+ and 72 

N2 (g) when oxygen content is low (below 40 µmol O2 l-1). 73 
  74 



 75 

 76 
Figure S1: Schematics of the nitrogen cycle in GENIE, distinguishing new production 77 
from regenerated production.  78 
 79 
 80 

81 
Figure S2: Comparison of modern surface N* between a) Observations from the 82 
World Ocean Atlas 2001 (6) and b) results of the pre-industrial simulation of GENIE 83 
with a modern geography (1 x CO2; 1 x PO4

3-).  84 



1.1 Nitrogen fixation rate 85 
To increase the global rate of nitrogen fixation and match more recent modern ocean 86 
estimates that range between 50 and 350 TgN/yr (7-11), for the modern day 87 
simulations we reduced the half-saturation constant for iron limitation of diazotrophs 88 
to 0.5 nmol Fe l-1 and increased the threshold of oxygen below which denitrification 89 
occurs in the water column to 40 μmol O2 l-1 (previously 1.0 nmol Fe l-1 and 30 μmol 90 
O2 l-1, respectively). These had the effect of increasing global nitrogen fixation rates 91 
to 115 TgN yr-1 for the preindustrial run (65 TgN yr-1 in the model setup of Monteiro et 92 
al., (1)).  A comparison between modeled and observed oceanic distribution of N*, 93 
demonstrated a good agreement (Fig. S2). N*= DIN – 16 x PO4

3-, where DIN is the 94 
total concentration of inorganic nitrogen DIN = NH4

+ + NO3
-. 95 

 For the Mesozoic simulations we assume no trace metal (e.g., Fe) limitation 96 
on phytoplankton (including diazotrophs). In the modern ocean, iron limitation on 97 
diazotrophs has been suggested to potentially limit global rate of N2-fixation (12). 98 
However recent evidence suggest that iron limitation influences regional patterns of 99 
N2 fixation and that rates of N loss govern basin-scale patterns (hence global N2 100 
fixation rate) (13). For our Mesozoic simulations we assume no iron limitation on 101 
phytoplankton because iron was likely more abundant during OAEs as a result of an 102 
increased input due to submarine volcanism (3, 14, 15) and weathering (4, 16, 17) 103 
and because anoxia increases iron bioavailability (18). In addition, in a reducing 104 
ocean, diazotrophs might use alternative nitrogenases, allowing for higher rates of 105 
N2-fixation despite changes in the bioavailability of trace elements such as Mo (19). 106 
 107 
1.2 Nitrification 108 
GENIE uses nitrification as the overall oxidizing process of ammonium (NH4

+) into 109 
nitrate (NO3

-), as it does not explicitly represent nitrite (NO2
-). The model version 110 

used previously in Monteiro et al. (1) accounts for the limitation of nitrification by 111 
ammonium (20). Here we added the effect of oxygen limitation on nitrification, which 112 
could be important for an OAE-like ocean where oxygen concentrations can be 113 
regionally very low. For this modification, we used the Michaelis-Menten approach to 114 
a two-substrate reaction to estimate the rate of nitrification (ΛNitri) (21):  115 
Λ
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 118 
where '

()*

"#$%# is the maximum constant rate of nitrification; 4
5,

"#$%# and 4
"612

"#$%#

	are the 119 
half saturation constant for oxygen and ammonium, respectively. We also assumed 120 



that the dissociation constant (4
"6125,

"#$%# ) is equivalent to the product of 4
5,

"#$%# and 121 

4
"612

"#$%#  based on equation 6 of Alberty (21), and assuming that the affinity of the 122 
enzyme for NH4

+ is not dependent on the concentration of O2, a reasonable 123 
assumption for this system (22). The new nitrification parameters were tuned to give 124 
a realistic global nitrification rate with a NH4

+ vertical profile of around 0.01 µmol N 125 
kg-1 below the photic zone (23) (see Table S1 for parameter values). 126 
 127 

Table S1: GENIE parameter values of nitrification 

Symbol Description Unit Value Observed 

'
()*

"#$%# 
Maximum constant 

rate of nitrification d-1 0.02 0.02-2 (ref. (24-26)) 

4
"612

"#$%#  

Half-saturation 

constant for 

ammonium μmol N l-1 0.01 0.01-100 (ref. (24, 27))  

4
5,

"#$%# 
Half-saturation 

constant for oxygen μmol N l-1 0.02 0.02-20 (ref. (24)) 

 128 
 129 
1.3. Contribution of different nitrogen sources to export production 130 
Export production in the modern ocean is mostly fueled by nitrate because of the 131 
dominance of NO3

- in upwelling waters and relatively low rates of N2-fixation. 132 
However, in low-oxygen environments such as during OAEs, N2 and NH4

+ can 133 
become important sources of nitrogen for export production because of the higher 134 
rate of denitrification (increasing N2-fixation and reducing NO3

-) and relatively lower 135 
rate of nitrification (oxidizing NH4

+ into NO3
-) below the photic zone within the 136 

widespread OMZs. To estimate the relative contribution of NO3
-, NH4

+ and N2 to 137 
export production, we first assumed export production to be equivalent to new 138 
production on the global scale. New production is the part of primary production 139 
fueled by non-regenerated nutrients (either by DIN coming from below the photic-140 
zone or via N2-fixation). We represented new production by DIN in the model as the 141 
uptake by phytoplankton of “new” DIN where new DIN is set to the concentration of 142 
DIN below a certain depth following Yool et al. (25) (referred as “Newification”). Here 143 
we generalized Yool et al. (25)’s concept to account for both NH4

+ and NO3
--driven 144 

new production, the former being negligible in the modern ocean (except for 145 
potentially above oxygen minimum zones), but not for OAEs. 146 

The diagnostic equations for new NH4
+ (NH4

+
new) and new NO3

- (NO3
-
new) are 147 



as follows: 148 
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 151 
where Uptake (NH4

+
new) and Uptake (NO3

-
new) are the uptake by phytoplankton of 152 

NH4
+

new and NO3
-
new, respectively, which represent NH4

+
 and NO3

- new productions 153 
and direct estimates of contributions to export production. Ω(z) x NH4

+ and Ω(z) x 154 
NO3

- are the newification terms as defined by Yool et al. (25), where NH4
+

new and 155 
NO3

-
new are set to NH4

+ and NO3
- concentrations below a specific depth (z). Here we 156 

took (z) to be the bottom of the photic zone. Finally, we defined the uptake by 157 
phytoplankton of NH4

+
new and NO3

-
new as: 158 
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 161 
Uptake (NH4

+) and Uptake (NO3
-) are the uptake rates of NH4

+ and NO3
- by 162 

phytoplankton, where we assumed that NH4
+ is preferentially utilized: 163 

 164 
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 168 
Γphy is the net depletion of nutrient by non-diazotroph phytoplankton in nitrogen unit 169 
as defined in Monteiro et al. (1): 170 
 171 

Γ
rst

= '
()*

rst

γ
v

γ
w

min x

r5
S

ij

r5
S

ij

2y
z

;

{w"

{w"2y
|

}min	(16	 ×	Ä+
1

Bh

; ÅÇ/). 172 

 173 
Export production here accounts for the combination of the export of particulate 174 
organic matter (POM) and the mixing out of the photic zone of dissolved organic 175 
matter (DOM). GENIE only prescribes the amount of POM export. We thus 176 
calculated the amount of DOM mixing out of the photic zone assuming that the total 177 
new production (N2 fixation + NH4

+ new production + NO3
- new production) is equal to 178 

the total export production (POM export + DOM mixing). 179 



 180 

 181 
Figure S3; response of ocean biogeochemistry (contribution to remineralization; left) 182 
and marine N-cycle (process rates; right) to changes in oceanic phosphate content in 183 
the Cenomanian simulations run with 4 x CO2. 184 
 185 
 186 

 187 
Figure S4; Globally integrated vertical profiles of the nitrification, denitrification, and 188 
sulfate reduction rates in the global ocean in the modern (left) and OAE 2 analog 189 
simulations (right).  190 

A)

0.
25

xP

0.
5x

P

1x
P

2x
P

3x
P

4x
P

Present O2

C
on

tri
bu

tio
n 

to
 re

m
in

er
al

iz
at

io
n 

(%
)

Denitrification
SO4 reduction

O2 respiration

0.
25

xP

0.
5x

P

1x
P

2x
P

3x
P

4x
P

B)
NH4

+-assimilation
N2-fixation

Export production
Nitrification

Pr
oc

es
s 

ra
te

 (G
t C

/y
r)

0

20

40

60

0

0.2

0.4

0.6

0.8

1



 191 
Figure S5; Concentrations of oxygen, ammonium, nitrate, and phosphate in bottom 192 
waters for the OAE 2 analog simulation. 193 



194 

Figure S6: Spatial distribution of the relative contribution to export production of N2 195 

fixation, NH4
+ assimilation, and NO3

- assimilation for the pre-OAE 2 simulation. Green 196 

Å symbols reflect proxy records with a positive average δ15Nbulk value across OAE 2, 197 

while pink ⊖	symbols reflect a negative average δ15Nbulk value. Numbers refer to 198 

sites listed in table S1  199 
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 200 
Table S2; Nitrogen stable isotope records that contain OAE 2 

 pre-OAE 2 (Fig. S6) OAE 2 (Fig. 2) 
Site  Average Symbol St.dev. Min Max Average Symbol St.dev. Min Max Reference 

1. Bass River 1.3  0.4 0.3 1.7 1.3  0.4 -0.2 2.0 (28) 

2. Wunstorf 0.9  0.4 0.6 1.5 0.9  1.3 -1.5 3.3 (28) 

3. Site 641 2.3  0.4 1.8 2.9 -1.0  2.7 -2.7 3.0 (28) 

4. Site 386 2.1  0.3 1.8 2.6 -2.1  1.3 -2.8 1.1 (28) 

5. Site 1276 1.7  0.6 1.1 2.8 -1.0  1.5 -2.8 2.7 (28) 

6. Site 367 -1.3  0.4 -1.7 -0.8 -1.7  0.7 -2.3 0.2 (29) 

7. Site 1258 -1.1  0.7 -1.9 -0.1 -1.5  0.6 -2.5 -0.4 (30) 

8. Site 1260 -0.6  0.3 -0.9 -0.4 -1.9  0.8 -2.6 -0.8 (31) 

9. Site 1261 -1.1  0.5 -2.0 -0.5 -2.3  0.6 -3.4 -0.9 (31) 

10. Gorgo Cerbara  >0  - - - -1.9  0.5 -2.7 -0.7 (32) 
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