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 13 

The spine is the central skeletal support structure in vertebrates consisting of repeated units of 14 

bone, the vertebrae, separated by intervertebral discs that enable the movement of the spine. 15 

Spinal pathologies such as idiopathic back pain, vertebral compression fractures and 16 

intervertebral disc failure affect millions of people world-wide. Animal models can help us to 17 

understand the disease process, and zebrafish are increasingly used as they are highly 18 

genetically tractable, their spines are axially loaded like humans, and they show similar 19 

pathologies to humans during ageing. However biomechanical models for the zebrafish are 20 

largely lacking. Here we describe the results of loading intact zebrafish spinal motion segments 21 

on a material testing stage within a micro Computed Tomography machine. We show that 22 

vertebrae and their arches show predictable patterns of deformation prior to their ultimate 23 

failure, in a pattern dependent on their position within the segment. We further show using 24 

geometric morphometrics which regions of the vertebra deform the most during loading, and 25 

that Finite Element models of the trunk subjected reflect the real patterns of deformation and 26 

strain seen during loading and can therefore be used as a predictive model for biomechanical 27 

performance.  28 
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 35 

Introduction 36 

 The spine consists of a repeated pattern of motion segments (MSs) of bony vertebrae separated by 37 

intervertebral discs (IVDs) that enable movement. Back pain and IVD degeneration affect millions of 38 

people worldwide (1,2), and vertebral compression fractures are a frequent feature of osteoporosis 39 

(3). Biomechanical pathologies of the spine are underpinned by genetic, physiological and 40 

environmental pathways that together damage IVD, muscle and the bone, changing the mechanics of 41 

the system.  42 

Animal models, typically rodents, are frequently used to study mechanisms of spinal 43 

pathology (4). However, quadrupeds are disadvantageous for studying the human spine as 44 

gravitational load acts perpendicular to their axial skeleton. Zebrafish are increasingly used as a model 45 

for human disease, due to their genetic tractability. Unlike quadrupeds, but similar to humans under 46 

gravity (Fig. 1a), their spine is antero-posteriorly loaded as a result of swimming through viscose water 47 

(5). Zebrafish are well established as models for skeletogenesis, pathology, and ageing (6), and 48 

develop spinal pathologies in response to altered genetics (7) and ageing (8). However, the 49 

biomechanics of the zebrafish spine are comparatively poorly characterised.  50 

Finite element analysis (FEA) has proven a pivotal tool in the study of biomechanical subjects 51 

(9), and offers a method for biomechanically characterising the zebrafish spine, including intact MS. 52 

This technique digitally models an object of known material properties using a series of linked nodes 53 

of known number and geometry, that can be subjected to a wide variety of forces outputting the 54 

predicted geometry, strain and deformation. Results can be validated by comparison with the results 55 

of loading experiments in which a sample is loaded ex vivo (10,11). FEA has been used in zebrafish to 56 

test contributions of shape and material properties in joint morphogenesis (12,13) and to study strain 57 

patterns in a single vertebra (14).   58 

Here, we describe a novel integrated experimental platform that brings together imaging, 59 

modelling and real-world validation to explore the biomechanics of intact zebrafish spinal MSs.  We 60 

generated an FEA model of the spine, which we validated with a loading experiment using a high-61 

precision material testing stage (MTS) under set loading regimes using micro Computed Tomography 62 

(µ-CT). Three-dimensional geometric morphometrics (3D GM) was used to explore patterns of 63 

deformation seen in each vertebra during loading. Comparison of results demonstrated that our FEA 64 

model accurately predicted the relative patterns of deformation and strain experienced by real 65 

samples loaded ex vivo.   66 

 67 

Methods 68 



Zebrafish samples 69 

1-year old, wild-type (WT) zebrafish were fixed in 4% paraformaldehyde and dehydrated to 70% EtOH. 70 

MSs were acquired by making two cuts in the trunk, between the morphologically homogeneous 71 

vertebra 18 and 24 of a total of 33 vertebrae5 (Fig. 1a-c).  72 

 73 

In vitro vertebral loading experiment 74 

Loading experiments were conducted using a custom-built Material Testing Stage (MTS2) in the Bruker 75 

SKYSCAN 1272 µCT system. Radiographic visualisation of each MS (n=3) was performed and if 76 

required, vertebrae were trimmed to retain three complete vertebrae and associated IVDs (Fig. 1b-d). 77 

Samples were stabilized (anterior-up) in the MTS2 using cyanoacrylate glue. The MTS2 was 78 

programmed to perform a sequential series of seven scans at a series of increasing loads (Table 1), 79 

using 60 KeV X-ray energy, 50 W current, 5 µm isotropic voxel size and a 0.25 mm Aluminium filter. 80 

1501 projections were collected during a 1800 rotation, with 400 ms exposure time. Reconstructions 81 

were performed using NRecon (Version 1.7.1.0). Surfaces of vertebrae, muscle and IVDs in each 82 

dataset were generated using Avizo (Avizo version 8; Vizualisation Sciences Group) (Fig. 1c-e, Table 1) 83 

and linear measurements of IVDs and MS lengths made using the “3D Measurement” tool. Vertebrae 84 

surfaces were further processed in Meshlab (Table 2).   85 

 86 

Finite Element Analysis (FEA)  87 

An MS surface mesh was created based on a 1-year-old WT specimen µCT scanned using a Nikon XTH 88 

225ST μCT system as described under two conditions; (a) native state and (b) contrast-enhanced 89 

following 14 day incubation in 2.5% phosphomolybdemic acid (15). Scan (a) was used to segment 90 

vertebrae (V18-V24), and scan (b) to segment IVDs. The resulting binary labels from scans (a) and (b) 91 

were saved as 8-bit tiff stacks, manually registered in 3D space in Avizo (‘Trackball’ tool) and 92 

algorithmically combined (‘Algebra’ tool), creating a single volume of separate materials representing 93 

three vertebrae and four IVDs (Fig. 1d-e, Table 2). A 500 µm thick cylinder was created contacting the 94 

anterior-most IVD perpendicular to the model axis, to mimic the stainless-steel compressive plate and 95 

distribution of forces applied during loading (Fig. 1f).   96 

The complete vertebral surface mesh was imported into Simpleware ScanIP (version 2018.12, 97 

Synopsys Inc.) to create an FE model. The model consisted of 1,054,187 linear tetrahedral elements 98 

joined at 257,392 nodes comprising four material types: vertebral bone, annulus-fibrosus, nucleus-99 

pulposus and stainless-steel (Fig. 1d-f, Table 2). The model was analysed in Abaqus (2018 version). A 100 

custom datum coordinate system was created centred on the antero-posterior axis of the model, and 101 

a concentrated force applied to the central node of the anterior face of the compressive plate. This 102 



loading case was repeated in each of 7 steps of a multi-step analysis, with load values matching the 103 

increments applied in the MTS (Table 1). The model was constrained in two locations using boundary 104 

conditions, at the base of the posterior-most IVD (constrained in 3 axes), and at the top of the 105 

compressive plate (constrained in 2 axes, allowing movement along the model’s antero-posterior axis 106 

(Fig. 1f). Deformed meshes from each step were exported as surface files and analysed using 3D-GM 107 

for quantitative comparison between relative and absolute patterns of deformation predicted by FEA 108 

and observed in MTS data.  109 

 110 

Three-dimensional geometric morphometrics (3D-GM) 111 

3D-GM analysis of vertebral deformation was performed using the  “Geomorph” package for the “r” 112 

statistics software (16). For each loading experiment, we used the first scan (1N load) to create a 113 

template of 3D coordinates for 22 fixed three-dimensional landmarks (Fig. 2a-c) linked by 300 surface 114 

sliding semi-landmarks (using the “buildtemplate” function). By assigning the same landmarks in each 115 

scan (using the “digitsurface” function), we compared the first scan with subsequent scans of the same 116 

vertebra using generalised Procrustes analysis (allowing semi-landmarks to ‘slide’ in order to remove 117 

arbitrary spacing). Resulting shape variables were subjected to principal component analysis (PCA) to 118 

identify the principal patterns of variation between scans of the same vertebra, and isolate trends in 119 

deformation with increasing compressive load. 120 

 121 

3. Results and discussion 122 

Vertebral motion segments fail under loading of 12-16N at positions of maximum von Mises strain.  123 

To test the range of compressive loads that the MS could resist until failure, we subjected an MS to 124 

exponentially increasing compressive forces from 1-100N. This specimen failed at 16N whereupon the 125 

central vertebra fractured mid-centrum. A primary loading regime between 1-16N was thus 126 

established (Table 1) for the three primary specimens; occupying the elastic, plastic and failure regions 127 

of the compressive loading profile of a typical MS. Failure was considered when at least one vertebral 128 

centrum fractured across the axis (e.g. Fig. 1j,l). All samples failed between 12-16N upon shallow angle 129 

fracture in the central vertebra, with the smallest specimen (specimen 3) failing at the lowest force 130 

(Fig. 1g,h). This is higher than maximum aquatic forces experienced during swim training by Fiaz et 131 

al.5, which reached ~9.5N. Minor differences in mounting orientation created differences in linear 132 

deformation between right and left sides, but specimens follow similar patterns. Prior to failure, linear 133 

measurements show an increase in IVD antero-posterior thickness (Table 1, bracketed dash line in Fig. 134 

1g) suggesting the IVD acts like a coiled spring that may further contribute to the ultimate strain and 135 

failure of the segment when released via small scale bone fracture (Fig. 1h). The surrounding epaxial 136 



musculature showed no obvious deformation or damage until the entire MS failed, at which point 137 

muscle fibre organisation was lost (Fig 1i-l). Comparison between MTS data and FEA results 138 

demonstrated strong spatial correlation between maximum predicted strain and ultimate point of 139 

failure in the central vertebra (Fig 1.m-o).  140 

 141 

Morphometric characterization of vertebral compression is predicted by FEA  142 

We found characteristic patterns of deformation and strain in response to compressive loading of 143 

zebrafish vertebrae. 3D-GM results from MTS data follow distinct trends for each vertebrae between 144 

the three specimens (Fig.2d,i,n), showing consistent dorso-ventral compression, and lateral 145 

compression that is reversed at higher loads potentially due to elastic rebound of the IVD and 146 

fracturing along the zygopophyses that occurs at these loads (Fig. 2). This relative pattern is shared 147 

between each specimen, although specimen 3 experiences this at lower loads than specimens 1-2, 148 

before failing at 12N. Fractures are observed where the arches and zygopophyses contact the 149 

centrum, at loads that precede the failure of the segment (Fig 2f, h, k, m, p & r). Comparison 150 

with FEA data  (blue points in graphs d,i,n) suggest that the FE model accurately predicts these 151 

patterns (Fig. 2d,i & n), and that patterns of deformation could explain the first signs of damage prior 152 

to failure. In both datasets the anterior vertebra undergoes most deformation, particularly 153 

posterior deformation of the arches (Fig. 2 e-h). The central vertebrae and arches show strong 154 

torsion (Fig. j-m), increasing through the loading regime leading to the failure of the segment 155 

(Fig. 1l,o). The posterior vertebra shows the least deformation and is most isotropic in pattern 156 

(Fig. 2o-r), potentially due to protection offered by the anterior IVDs.  157 

 Comparison with ex-vivo loading of vertebral MSs validates the accuracy of our FEA 158 

model for predicting patterns of deformation and strain across these structures. This offers a 159 

step towards a digital ‘sandbox’ approach to modelling the effects of genetic, physiological 160 

and morphological properties on the reaction and resistance of vertebral MSs to loading. 161 

Inputting specific properties of vertebral samples into a validated FE model will allow their 162 

effects on the biomechanics of the spine to be quantitatively tested in silico, allowing the  163 

relative contributions of shape and material properties to be explored and empirically tested. 164 

This will aid comparison of mechanical performance between different model systems. As an 165 

advantage of the zebrafish system is the wealth of mutants modelling human disease genetics 166 

(17), comparisons of mechanical performance between genotype and phenotype will be 167 

possible. In the longer term this approach may give insight into biomechanical aspects of 168 



spinal pathology; allowing identification of ‘at risk sites’ in the spine. This could provide a basis 169 

for more specific or earlier interventions than those commonly employed.   170 

 171 

Fig Legends 172 

Figure 1. Ex vivo spine loading leads to motion segment failure in a region of high strain predicted 173 

by Finite Element Analysis.  174 

a, Schematic of zebrafish motion segment (MS) dissection. b, Material testing stage (MTS) schematic 175 

and X-radiograph. c, Orthogonal reconstruction slices showing vertebrae and associated soft tissue. d, 176 

Three-dimensional reconstruction of the finite element analysis (FEA) model with colours reflecting 177 

different materials. e, Details of the nucleus-pulposus (pink) and annulus fibrosis (blue) from d 178 

showing linear measurements of inter-vertebral disk (IVD) thickness. f, Predicted compressive 179 

deformation and strain map from FEA; dashed lines indicate axes in which boundary conditions 180 

were established. g, Changes to IVD width measurements (bracketed dashed line highlights IVD elastic 181 

rebound) and h, changes in MS length with increasing load for the three MTS specimens; direction of 182 

arrowhead denotes measurement type. i, j Reconstructions of MTS Specimen 1 compressed to 10N 183 

(i), and 16N (j) with central vertebra indicated by * in each. k & l Antero-posterior cross-sections of 184 

the central vertebra at 10N (k) and 16N (l). Muscle segmented in red, and bone in grey in i-l. Red 185 

dashed line in l denotes angle of fracture at the vertebral centrum. m, o FEA strain maps at 10N (m) 186 

and 16N (o). Scale shown in n. 187 

 188 

Figure 2. Finite Element and geometric morphometric analyses model deformation patterns prior 189 

to failure 190 

a-c Landmarks assigned for Three-dimensional geometric morphometric (3D-GM) analysis. d, i & n  191 

Results of principal components analyses (PCA) of landmark deformation under increasing 192 

compressive loads for each specimen, and deformation predicted by FEA (key in s). Black bracketed 193 

lines indicate reduced lateral compression. e, j & o 3D vector plots with black line vectors representing 194 

the direction of landmark deformation and colours highlighting the extent of landmark deformation 195 

for each vertebra in Specimen 1 (vector scales magnified by 10; colour scale in t). g, i & q Deformation 196 

maps predicted by FEA (scales presented in u). f, h, k, m, p & r Examples of fractures (outlined in red 197 

for clarity) occurring at compressive loads before failure; corresponding with deformation patterns 198 

predicted in FEA and seen Ex vivo.  199 
  200 
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