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Abstract: The Cytochrome P450 family of heme-containing proteins plays a major role in catalyzing
phase I metabolic reactions, and the CYP3A4 subtype is responsible for the metabolism of many
currently marketed drugs. Additionally, CYP3A4 has an inherent affinity for a broad spectrum
of structurally diverse chemical entities, often leading to drug–drug interactions mediated by the
inhibition or induction of the metabolic enzyme. The current study explores the binding of selected
highly efficient CYP3A4 inhibitors by docking and molecular dynamics (MD) simulation protocols
and their binding free energy calculated using the WaterSwap method. The results indicate the
importance of binding pocket residues including Phe57, Arg105, Arg106, Ser119, Arg212, Phe213,
Thr309, Ser312, Ala370, Arg372, Glu374, Gly481 and Leu483 for interaction with CYP3A4 inhibitors.
The residue-wise decomposition of the binding free energy from the WaterSwap method revealed
the importance of binding site residues Arg106 and Arg372 in the stabilization of all the selected
CYP3A4-inhibitor complexes. The WaterSwap binding energies were further complemented with the
MM(GB/PB)SA results and it was observed that the binding energies calculated by both methods do
not differ significantly. Overall, our results could guide towards the use of multiple computational
approaches to achieve a better understanding of CYP3A4 inhibition, subsequently leading to the
design of highly specific and efficient new chemical entities with suitable ADMETox properties and
reduced side effects.

Keywords: docking; molecular dynamics simulation; CYP3A4; CYP3A4 inhibitors; WaterSwap;
residue-wise energy decomposition

1. Introduction

Drug metabolism has become a focus for research due to its important role in understanding
pharmacotoxicology, pharmacotherapy and applications in drug delivery [1–4]. The human Cytochrome
P450 family of heme-containing enzymes are one of the most important classes of enzymes involved
in drug metabolism due to their major role in phase I metabolic reactions (N- hydroxylation,
sulphoxidation, epoxidation, deamination, desulfuration, dehalogenation, peroxidation, O- and
S-dealkylation) of various endogenous and exogenous compounds including drugs [5,6]. The CYP3A4
subtype from the CYP3A family is one of the most dominant drug metabolizing enzymes in humans,
responsible for the metabolism of ~50% of currently marketed drugs [7]. The CYP isoforms show an
inherent ability for the metabolism of structurally diverse molecules which ultimately leads to the poor
bioavailability of various drugs [8,9]. Moreover, CYP activity in intestinal and liver microsomes has
been associated with a high number of documented drug–drug and drug–food interactions [10–12].
The combination of high abundance in the liver and a large active site cavity capable of the simultaneous
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binding of multiple diverse substrates [13,14] means that it is implicated in undesirable drug–drug
interactions and toxicological outcomes [15]. Drug–drug interactions arise mainly due to the inhibition
or induction of human CYPs where inhibition might reduce the metabolism and elimination of drugs
leading to toxicological outcomes, and induction might compromise the bioavailability and therapeutic
efficiency [16]. Similarly, the induction of CYP3A4 might lead to reduced bioavailability due to
rapid degradation whereas the inhibition of CYP3A4 leads to increased drug levels and toxicity [17].
Therefore, it is of great importance to understand the underlying mechanisms behind the induction
and inhibition of major metabolic enzymes including CYP3A4 so that the impact of these processes can
be minimized.

Generally, to probe the molecular basis of CYP450 related metabolism, inhibition and drug–drug
interaction potential a number of ligand-, structure-based and integrated modeling studies have been
reported in literature [18–25]. Particularly, to gain deeper insights into the binding of ligands to CYP3A4,
various in silico studies based on quantitative structure–activity relationships (QSAR), pharmacophore
models and machine learning methods have been undertaken [26–31]. Structure-based approaches
also provide efficient computational methods for the investigation of the interactions responsible for
ligand binding to a particular target which is indispensable for understanding metabolic processes and
the development of novel leads and therapeutic agents [32]. The availability of X-ray crystallographic
structures has also provided a sound basis for computational studies exploring the catalytic mechanism
and estimating the binding properties of small molecules with mammalian CYP3A4 [17]. Docking,
molecular dynamics simulations and binding energy predictions for the inhibitors and substrates
of CYP3A4 have been described extensively [18,33–36]. The binding affinity metric is important
and advantageous over expensive experiments for the assessment of ligand interactions with the
binding site residues and the desolvation effects [37,38]. For a ligand–protein complex, various
methods are available for the prediction of binding energy [39]. In the current study, a combination
of docking, molecular dynamics simulations (MD) and binding free energy predictions (using the
WaterSwap method [40]), molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) and
molecular mechanics/generalized-Boltzmann surface area (MM/GBSA) [41,42] have been performed
for a set of highly efficient CYP3A4 inhibitors to investigate CYP3A4 inhibition. The ligand affinity
for CYP3A4 and the overall contribution of the binding site residues towards the stabilization of the
inhibitor-bound complex can be identified through WaterSwap calculations, insight which might aid
the development of new therapeutic options by reducing drug–drug interactions and the associated
undesirable toxic effects.

2. Results and Discussion

2.1. Protein Structure Selection

To date, about 25 CYP3A4 crystallographic structures in ligand-bound and ligand-free forms
are available in the Protein databank and the structures 3NXU (2 Å) [43], 1TQN (2.05 Å) [44], 3UA1
(2.15 Å) [45] and 4K9W (2.40 Å) [46] were selected for further conformational analysis. 1TQN is a
structure of the apo-state of the enzyme, whereas the remaining three structures represent ligand-bound
states. Moreover, a few N- and C-terminal residues were also missing in all structures. In addition,
3NXU has missing G-H loop residues (Glu264-His267) and H-I loop residues (Ser281-Lys288), 1TQN
has missing H-I loop residues (Lys282-Glu285), whereas 3UA1 has missing G-H loop residues
(Ser259-Leu261, Lys266-Arg268) and H-I loop residues (Asn280-Ser286) and 4K9W has a missing region
of G-H loop (Gln265-His267) and H-I loop residues (Ser281-His287). The structure 1TQN, with fewer
missing residues (only at H-I loop in addition to the missing -N/-C terminal residues) was selected as a
template for the calculation of root-mean-square deviation of the Cα atom’s (CαRMSD) in comparison
to the 3NXU, 3UA1 and 4K9W structures. Overall, a CαRMSD of 1.28 Å of 1TQN as compared to 3NXU,
3UA1 and 4K9W shows that the backbone conformations of these structures are similar (Figure 1a).
It is notable that in 1TQN and 3UA1, Arg212 is positioned in the vicinity of heme within the active site,
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whereas in the other ligand-bound structures it is pointing outwards (Figure 1b). The positioning of
Arg212 towards the active site is implicated to be important in terms of substrate/inhibitor binding
within the CYP3A4 binding site [45,47]. Therefore, due to a reasonable RMSD of 1TQN to 3UA1
(0.52 Å) and all other structures, fewer missing residues and the position of Arg212 towards binding
site, 1TQN was selected as the final structure after building the missing residues using Modeller [48].
The overall structural organization of 1TQN is shown in Figure 1c and it is notable that the helices F-F’
and G-G’ form the roof of the heme embedded binding site.
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Figure 1. Superposition of chain A in CYP3A4 crystal structures (a) 1TQN (red), 3UA1 (cyan), 3NXU
(green) and 4K9W (pink); (b) positioning of Arg212 within 1TQN (red), 3UA1 (cyan), 3NXU (green)
and 4K9W (pink); and (c) the structural organization of 1TQN.

2.2. Ligand Selection

Initially, the concept of drug efficiency metrics has been applied for the selection of efficient
modulators against true drug targets [49]. Recently, drug efficiency metrics were used to select the
highly efficient inhibitors of CYP450 isoforms which represents an anti-target [22]. Only five CYP3A4
inhibitors (Figure 2) out of the large data set of 2747 compounds (Table S1) showing the defined
thresholds (Materials and Methods and Section S1) of activity (IC50: 0.1–38 nM), clogp (1.98–2.88),
lipophilic efficiency (LipE) (5.44–7.65), ligand efficiency (LE) (0.21–0.40 kcal mol−1 HA-1) and fit quality
≥1 (Figure S1a,b) were selected for further docking and molecular dynamics studies to probe the
binding hypothesis within the active site of CYP3A4.



Int. J. Mol. Sci. 2019, 20, 4468 4 of 23

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 22 

 

 
Figure 2. The chemical structures and experimental biological activity (IC50) values of the selected 
CYP3A4 inhibitors fulfilling the drug efficiency criteria. For structural analogues the common scaffold 
is shown in black and the R groups are presented in red. The selected CYP3A4 inhibitors YK1–5 have 
the following ChEMBL IDs CHEMBL1683444 (YK1), CHEMBL520419 (YK2), CHEMBL1683445 (YK3), 
CHEMBL482102 (YK4) and CHEMBL3145341 (YK5) and are highlighted yellow in Table S1. 

2.3. Docking and Molecular Dynamics Simulation (MD) 

Our aim here is not to investigate drug–drug interactions, but rather to investigate the potential 
binding modes of the chosen CYP3A4 inhibitors: this is the initial issue and primary question of 
interest in drug development process, i.e., is it likely that a given compound will inhibit CYP3A4. A 
secondary question, which is relevant for compounds to be used in the clinic, is whether drug–drug 
interactions may be expected, and how they occur as reported for warfarin by Lonsdale et al. [35]. 
This might be an interesting question for similar studies in the future. Therefore, the primary aim of 
our study is the elucidation of the binding hypothesis of the selected inhibitors using the 
experimentally determined structure of the soluble portion of the CYP3A4 enzyme (1TQN). 
Generally, the CYP450 microsomal enzymes are partly immersed in the membrane and anchored 
through the N-terminal helix. The heme shows a tilt angle due to its orientation with reference to the 
plane of membrane and the F’/G’ loop is deeply buried while the B/C-loop and β1, β2, β4 andβ5 
sheets also show substantial contacts s with the membrane [50,51]. The CYP proximal site shows an 
interface with the cytosol while the distal site where the substrate ingress and egress channels are 
located is positioned towards the lipid bilayer [52]. Docking, molecular dynamics and QM/MM 
approaches have remained fruitful for the elucidation of oxidation selectivity of substrates whereas 

Figure 2. The chemical structures and experimental biological activity (IC50) values of the selected
CYP3A4 inhibitors fulfilling the drug efficiency criteria. For structural analogues the common scaffold
is shown in black and the R groups are presented in red. The selected CYP3A4 inhibitors YK1–5 have
the following ChEMBL IDs CHEMBL1683444 (YK1), CHEMBL520419 (YK2), CHEMBL1683445 (YK3),
CHEMBL482102 (YK4) and CHEMBL3145341 (YK5) and are highlighted yellow in Table S1.

2.3. Docking and Molecular Dynamics Simulation (MD)

Our aim here is not to investigate drug–drug interactions, but rather to investigate the potential
binding modes of the chosen CYP3A4 inhibitors: this is the initial issue and primary question of interest
in drug development process, i.e., is it likely that a given compound will inhibit CYP3A4. A secondary
question, which is relevant for compounds to be used in the clinic, is whether drug–drug interactions
may be expected, and how they occur as reported for warfarin by Lonsdale et al. [35]. This might be an
interesting question for similar studies in the future. Therefore, the primary aim of our study is the
elucidation of the binding hypothesis of the selected inhibitors using the experimentally determined
structure of the soluble portion of the CYP3A4 enzyme (1TQN). Generally, the CYP450 microsomal
enzymes are partly immersed in the membrane and anchored through the N-terminal helix. The heme
shows a tilt angle due to its orientation with reference to the plane of membrane and the F’/G’ loop is
deeply buried while the B/C-loop and β1, β2, β4 andβ5 sheets also show substantial contacts s with
the membrane [50,51]. The CYP proximal site shows an interface with the cytosol while the distal site
where the substrate ingress and egress channels are located is positioned towards the lipid bilayer [52].
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Docking, molecular dynamics and QM/MM approaches have remained fruitful for the elucidation of
oxidation selectivity of substrates whereas to bring about complete perspective of drug metabolism
other key factors, such as substrate access through the membrane and binding to the active site, must
be taken into consideration [53,54].

Previously, several authors have investigated the effects of including the membrane on binding
with major CYP subtypes and it was shown that in comparison to crystallographic structures and
single solution simulations the consideration of membrane binding instigates conformational changes
to the substrate ingress and egress channels at the distal site [35,51,52,55,56]. We have also previously
investigated the effects of including the membrane (and the membrane binding domain) on binding
in CYP3A4 [35]. Comparisons of simulations with and without the membrane present showed that
the inhibitor binding mode is not significantly affected by the presence of the membrane; as there
was a minimal effect on the protein conformational flexibility and residues in the near vicinity of
heme proximal site yet, significant differences were observed in the substrate access channels of both
systems [35]. However, for other properties (e.g., pathways of association and binding of inhibitors or
substrates that pass through the membrane), in contrast, consideration of the membrane is essential [35].
It is also well known, that N-terminal α-helix connects the human CYPs to the membrane, but due to
difficulties in dealing with CYP-membrane-bound structures and to ease the process of crystallization,
hydrophilic residues are added as a replacement of this helix [17]. It is also observed that the deletions
in the crystallized structures did not reduce the catalytic effect or the ability of the enzyme to attach to
membrane surface hence, these engineered structures are biochemically relevant [57,58]. Therefore,
owing to the complexity of dealing with CYP-membrane-bound structures, this approach of modeling
the soluble domain only has been applied successfully in investigations of inhibition and activity of
CYP3A4 and other P450s [36,59–62].

Herein, the docking and molecular dynamics simulations are based on the experimentally
determined structure of the soluble part of the enzyme. The AutoDock [63] molecular docking platform
was used to generate a maximum of 10 different binding conformations per ligand. The concept of
alternative binding modes is clearly very important for binding in particular with the highly plastic,
CYP3A4 active site [47]. However, for our dataset, a careful inspection of the observed docking
conformations of the selected CYP3A4 inhibitors showed no evidence of binding to multiple sites
within the CYP3A4 active site rather, the docked conformations depict clustering at a similar position
with reasonable RMSD values (1.46–3.5 Å) as shown in Figure S2a–e. Therefore, as reported in various
studies the minimum energy pose ranked through the free energy scoring function was selected
for further analysis [36,64]. The docking results of the selected ligand–protein complexes including
Autodock energy (kcal/mol), the residues involved in van der Waals interactions and hydrogen bonding
in the docked structures are given in Table 1.

AMBER14 [65] was used to explore the conformational flexibility and stability of the
inhibitor-bound complexes as described in the Materials and Methods section. The trajectory analysis
was performed using CPPTRAJ [65] through the determination of root-mean-square deviation of the
Cα atoms (CαRMSD), root-mean-square fluctuation (CαRMSF), radius of gyration (Rg) and hydrogen
bond analysis for each complex. For the selected five CYP3A4 inhibitor-bound complexes multiple
runs of MD (two for each complex) were performed. The conformational analysis of the replicated MDs
indicates that the MD results do not differ significantly as shown by difference of ~0.09 to 0.57 Å and
~0.01 to 0.07 Å in the CαRMSD and the Rg values for the ligand-bound complexes (CYP3A4-YK1–5)
(for detailed analysis refer to Supplementary Materials Section S2 and Figure S3). Therefore, the initial
run of MDs (MD1) with smaller average CαRMSD and Rg values were considered final for further
analysis. The RMSD of Cα atoms in the apo-state of CYP3A4 and the five selected ligand-bound models
was measured as a function of time with respect to the initial structure (Figure S4). For the unliganded
CYP3A4 (1TQN) protein, high fluctuations were observed in the CαRMSD up to 10 ns, after which it
stabilized at an average CαRMSD value of 2.83 (±0.4) Å. However, the ligand-bound simulations took
longer to stabilize, with high fluctuations in the RMSD over the first ~25–30 ns for CYP3A4-YK1 and
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CYP3A4-YK4, and ~35 ns for the CYP3A4-YK2, CYP3A4-YK3 and CYP3A4-YK5 complexes (Figure S4).
Overall, with the exception of the CYP3A4-YK1 (average CαRMSD: 3.13 (±0.7) Å) the remaining
complexes CYP3A4-YK2-YK5 displayed average CαRMSD values of 2.23 (±0.4) Å, 2.11 (±0.6) Å, 2.09
(±0.3) Å and 2.31 (±0.7) Å, respectively, that lie in a comparable range to the average CαRMSD (2.83
(±0.4) Å) of the apo-protein (1TQN) indicating the stability of all the selected systems.

The Cα based RMSF values of the ligand-bound complexes show the highly plastic or stable
regions of the proteins during the course of MD simulations. For all five inhibitor-bound complexes
our results indicate a fluctuation pattern similar to that obtained for the apo-protein, showing the
highest fluctuations in flexible regions including the channel, loop forming regions, the N and C
terminal regions as shown in Figure S5. Overall, for all systems a few core regions and the loop regions
including the G-H and the built-in missing H-I loop demonstrated the highest RMSF values (within
2.0–5.4 Å). After the assessment of conformational changes in the CYP3A4 structure upon ligand
binding through RMSF calculations, the radius of gyration was also measured for the apo-protein and
the selected systems to predict the overall compactness of the CYP3A4-inhibitor-bound complexes.
The radius of gyration (Rg) parameter shows the equilibrium conformation of a total system and is
calculated as the root-mean-square distance of an assemblage of atoms from their common center of
mass [66]. The Rg of the apo-protein 1TQN shows a highly compact protein with an average Rg value
of 44.3 (±0.03) Å for the 50 ns MD, with the ligand-bound complexes giving very similar values at
44.3 (±0.05) Å, 44.4 (±0.06) Å, 44.5 (±0.1) Å, 44.3 (±0.03) Å and 44.4 (±0.04) Å for complexes of YK1–5,
respectively. Overall, the Rg values of the complexes CYP3A4-YK1–5 show that upon ligand binding
the CYP3A4 retains a compact conformation as shown in Figure S6.

Detailed interaction profiles of the selected CYP3A4 inhibitors with important binding site
residues of CYP3A4 before and after 50 ns of MD, along with the centroid structures for each complex,
are provided in Table 1. Here, the centroid structures for all CYP3A4-inhibitor bound complexes were
obtained after performing clustering on the basis of RMSD values of important active site residues as
described in the Material and Methods section. It is notable that for the selected inhibitors, the docking
energies vary from −11.7 to −9.5 kcal/mol, a fairly narrow range for a series of ligands that span one
order of magnitude in terms of IC50 values and the predicted ordering of the ligands shows little
correlation with the experimental data (Figure S10a). Phe57, Arg105, Ser119, Arg212, Phe215, Thr309,
Ser312, Ala370, Arg372 Glu374 and Leu483 were observed to form significant interactions with the
ligands (Table 1). The selected docking poses of the inhibitors (YK1 to YK5) were positioned in the
close vicinity of the buried helix I, near the heme and below the roof formed by the loop region between
the F’- F and G’- G helices. The docking and MD results of the selected compounds (YK1–5) show
no evidence of direct coordination to iron (i.e., type II binding), indicating that such close approach
does not occur for any of these compounds. However, the known limitations of docking methods,
and of empirical (MM) force fields for modeling metalloprotein interactions, are well known and
should be considered. Modeling such interactions where the inhibitor may bond directly to iron,
would require sophisticated methods capable of representing a bonding interaction, e.g., QM/MM
calculations employing good quality density functional theory [35,53,67–69]. Whereas, the approaches
used here allowing for movement of the ligand indicate that this mode of binding is not likely.

Overall, a close assessment of the binding modes of inhibitors (YK1–5) show that YK1, YK2, YK3
and YK4 protrude from the proximal binding site towards the distal site (Figure S8a,c,e,i) whereas,
YK5 binds at the distal binding site (Figure S8g) with the phenylalanine-cluster (Phe108, Phe215,
Phe219, and Phe304), Ser119 and arginine residues (Arg105, Arg106, Arg212, Arg372) contributing
significantly towards interactions (Table 1). The docked ligands YK1–5 within the proximal and
distal sites of CYP3A4 active site are shown in Supplementary Materials Figure S7a–e as discussed by
Tanaka et al. [70]. Residues including Ser119, Ile301, Phe304, Ala305, Ile369, Ala370 and Glu374 have
been identified as important for binding through site-directed mutagenesis and X-ray crystallographic
studies [44,71–74]. Likewise, our docking results are well in line with the previously reported studies
that have shown the importance of active site residues Val101, Asn104, Arg105, Met114, Ser119,
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Leu211, Arg212, Asp214, Asp217, Pro218, Glu374, Ile301, Ala305, Thr309, Ile369, Ala370, Leu373,
Glu374, Ser478, Leu479 and the Phe-cluster for interaction with the inhibitors and substrates of
CYP3A4 [33,44,71,74,75]. MD simulations show that the hydrogen bonds identified in the docking
poses did not persist throughout the trajectory; however, new hydrogen bonds are formed during
the course of the MD simulations. The time dependent hydrogen bond analysis of CYP3A4-inhibitor
complexes during the 50 ns simulation demonstrates that the highly potent inhibitors YK1 and YK2
form the highest numbers of hydrogen bonds in comparison to inhibitors YK3-YK5 as shown in
Figure S9a–e.

The analysis of hydrogen bond distances between CYP3A4 and YK1 shows that the
hydrogen bonds with Arg105and Arg212 in the docked complexes did not persist during the
MD. However, in the CYP3A4-YK1 centroid structure, hydrogen bonds were identified between
YK1:Carbonyl=O3-Glu374:NH and YK1:Hydroxyl-O2-Arg372: =O (Figure S8b) which remained stable
till the end of the 50 ns MD simulation (Table 1). Other residues including Arg105, Arg106, Arg212
and Ala370 formed hydrogen bonds only during part of the MD simulation as shown in Figure 3a.
For YK3, a structural analogue of YK1, three hydrogen bonds were observed between the inhibitor
and Arg105, Arg106 and Arg372 of the centroid structure (Figure S8f). Figure 3c represents the time
dependent distance analysis of the hydrogen bonds formed between YK3 and Arg105–106 during the
50 ns MD simulation. The hydrogen bond between YK3:O3-Arg105:HH1 remained stable during the
last 30 ns of the MD simulation (Figure 3c).

Additionally, the CYP3A4 inhibitors YK2 and YK4, yet another pair of structural analogues, formed
hydrogen bonds with Ser312 in the pose from docking (Figure S8c,g), whereas in the centroid structures,
YK2 and YK4 formed one and three hydrogen bonds, respectively (Table 1, Figure S8d,h). However,
after MD, hydrogen bonds between YK2:Hydroxyl-O2- Arg372:O and YK4: Hydroxyl-O1-Ser119:O
were observed as shown in Table 1. The time series distance profiles of CYP3A4-YK2 and CYP3A4-YK4
during the 50 ns MD simulations show that the hydrogen bonds formed between Arg372:O-YK2:H5
remained stable throughout the trajectory and the bond between Phe213:O-YK4:H4 was observed for a
short duration as shown in Figure 3b,d. Prior to MD, YK5 displayed hydrogen bonding interactions
with Arg212 and Glu374 (Table 1 and Figure S8i), whereas, in the centroid structure Arg212, Ala370 and
Leu483 were involved in hydrogen bonding (Table 1 and Figure S8j). A stable hydrogen bond between
Leu483:H-YK5:O was observed in the MD trajectory and hydrogen bonds between Arg212:HH11-YK5:F
and Thr309:OG1-YK5:H3 were only stable for a fraction of the simulation. The distance of the hydrogen
bonds between amino acid residues and YK5 functional groups are shown in Figure 3e.
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Table 1. Ligand–protein interaction profiles of the selected CYP3A4 inhibitors within the CYP3A4 binding site.

CYP3A4
Inhibitors

Autodock
Energy

(kcal/mol)

van der Waals
Interactions
Before MD

Hydrogen Bond Interactions in the Docked Poses van der Waals Interactions
in Centroid Structure

from Clustering

Hydrogen Bond Interactions
in the Centroid Structures

van der Waals
Interactions

after MD

Hydrogen Bond Interactions at 50 ns

Acceptor Atom Donor Atom Distance Å Acceptor Atom Donor Atom Distance Å Acceptor Atom Donor Atom Distance Å

CYP3A4-YK1 −9.9

Leu482, Thr309,
Phe304, Asp76,
Thr224, Arg372,
Leu373, Arg375

Lig: Sulphonyl=O3
Lig: Carbonyl=O10

Arg212-NH1
Arg105-NE

3.01
2.93

Phe220, Gly109, Pro107,
Leu373, Tyr53, Thr224,

Glu374, Gly481, Ala370,
Leu482, Arg212

Arg372=O
Lig: Carbonyl=O3
Lig: Carbonyl=O3

Lig: Hydroxyl-O2
Arg105-NE
Glu374-NH

2.62
3.68
3.70

Tyr53, Arg105,
Arg106, Pro107,
Gly109, Phe213,
Leu216, Phe220,
Ala370, Leu373,
Gly481, Leu482

Arg372=O
Lig: Carbonyl=O3

Lig:
Hydroxyl-O2
Glu374-NH

2.58
3.05

CYP3A4-YK2 −11.6

Phe316, Glu308,
Gln484, Thr309,
Phe304, Phe108,
Arg105, Phe213,
Glu374, Gly481,
Leu482, Leu483

Ser312-OG
Ala370=O
Arg372=O

Lig: Hydroxyl-O
Lig: Hydroxyl-O2
Lig: Hydroxyl-O2

3.01
2.81
3.13

Ser312, Glu308, Arg212,
Thr309, Phe304, Phe108,
Arg105, Phe57, Glu374,
Leu373, Leu483, Gln484

Arg372=O Lig: Hydroxyl-O2 2.71

Phe57, Arg105,
Arg212, Phe304,
Thr309, Ser312,
Leu373, Glu374,
Leu462, Gln484

Arg372=O Lig:
Hydroxyl-O2 2.96

CYP3A4-YK3 −9.5

Phe57, Arg105,
Arg106, Phe108,
Ala305, Phe304,
Thr309, Met371

Lig: Sulphonyl=O2

Lig: Carbonyl=O1
Lig: Carbonyl=O1
Lig: Carbonyl=O1

Arg212-NH1
-

Ser119-OG
Arg212-NH1
Arg212-NH2

3.05
3.53
3.18
3.02

Ile50, Tyr53, Asp76, Leu216,
Leu221, Thr224, Val225,

Gly481,
Leu482, Arg212, Ala370,

Leu373

Lig:
Sulphonyl=O1

Lig: Hydroxyl-O3
Lig: N2

Arg106:NE
Arg105:NH1
Arg372:NH

3.11
3.20
3.50

Asp76, Ile47,
Arg105, Phe215,
Leu216, Phe220,
Leu221, Thr224,
Ala370, Leu373,
Glu374, Leu482

No hydrogen
bonds formed

No hydrogen
bonds formed –

CYP3A4-YK4 −11.7

Phe108, Thr309,
Phe304, Glu308,
Ser312, Phe316,
Leu373, Met371,

Leu482,

Ser312-OG
Leu483=O

Lig: Amine-N5
Lig: Amine-N5

3.16
3.12

Ser312, Gln484, Leu482,
Thr309, Asp214, Phe316,
Leu483, Pro485, Pro368,
Met371, Ala370, Phe108,

Ser119, Arg105

Phe213=O
Arg212-NE

Arg212-NH1

Lig: Amine-N2
Lig: Amine-N3
Lig: Amine-N3

3.22
3.64
3.66

Phe57, Arg106,
Phe215, Phe241,
Ile301, Pro368,

Ala370, Glu374,
Gly480, Gly481,

Leu482

Ser119-O Lig:
Hydroxyl-O1 2.96

CYP3A4-YK5 −10.4
Arg105, Arg106,
Ser119, Phe241,
Ile301, Phe215,

Glu374-OE2
Lig: Carbonyl=O3

Lig: Hydroxyl-O
Arg212-NH1

3.32
3.13

Phe316, Ile369, Leu483,
Met371, Arg372, Phe215,
Glu374, Ser312, Gln484,

Glu308,

Lig: Carbonyl=O
Ala349=O

Lig: Carbonyl=O1

Leu483-NH
Lig: Amine-N2

Arg212:NH1

2.82
3.38
2.91

Arg105, Ser119,
Phe304, Gly306,
Glu308, Ser312,
Phe316, Ile369,

Ala370, Met371,
Gln484, Pro485

Thr309-OG1
Lig: Carbonyl=O

Lig:
Hydroxyl-O3

Leu483-N

2.77
3.00

The terms MD and Lig are used as an abbreviation for Molecular Dynamics and Ligand respectively in Table 1.
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Figure 3. The time dependent distance analysis of (a) CYP3A4-YK1; (b) CYP3A4-YK2; (c) CYP3A4-YK3;
(d) CYP3A4-YK4; and (e) CYP3A4-YK5 residues and inhibitor groups involved in hydrogen bonding.
The distances are measured in Angstrom (Å) and the time is shown along the x-axis.
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Generally, the MM(GB/PB)SA method is used for the calculation of binding free energy by
selecting snapshots at regular intervals over an entire MD simulation and it does not take into
account the protein–water and ligand–water interaction details as it uses an implicit water model.
The WaterSwap method uses explicit water molecules [76], so does not suffer from the same limitations
as the MM(GB/PB)SA method. The WaterSwap method has been applied successfully to other
systems [77–84]. Herein, we apply the WaterSwap method to estimate the binding free energies for
the five highly potent inhibitors of CYP3A4. Overall, the WaterSwap calculations for the five selected
complexes gave binding energies in the range −46.7 (±0.5) to −30.9 (±0.6) kcal/mol as shown in Table 2,
indicating that the inhibitors all bind strongly to CYP3A4. The free energy values calculated through
the BAR, FEP and TI methods differ by ≤ 1 kcal/mol indicating good convergence of the calculations.
Two values are reported for YK4 and YK5 as the cluster analysis showed that structures belonging to
the dominant cluster did not exist across the entire trajectory, so the centroid of the second dominant
cluster was also included in the analysis. The binding energies predicted for YK4 are −39.7 (±0.5)
kcal/mol and −30.9 (±0.6) kcal/mol for the centroid structures of the first two dominant clusters from
the MD simulations and for YK5 the corresponding values are −36.0 (±0.4) kcal/mol and −40 (±0.3)
kcal/mol, respectively. For YK4, a decrease of ~8.8 kcal/mol was observed in the calculated binding
energy for the second centroid structure because the residues (Arg106, Arg212, Arg372 and Gln434)
previously favoring the stabilization of the inhibitor–protein complex of the first centroid structure now
contribute significantly towards the stabilization of the water cluster as shown in Figure 5. However,
for YK5 a higher binding energy for the second centroid structure might be due the stabilization of the
inhibitor–protein complex by residues including Arg106, Arg212, Glu308, Thr309 and Gly481 that were
contributing negatively towards inhibitor–protein stabilization in the previous calculation (Figure 5).
There is a significant difference in energy for the two starting geometries, showing that even though
there will be some configurational sampling through the Monte Carlo simulations, care should be
taken in the selection of a starting geometry for the WaterSwap calculations.

Table 2. Binding free energies of the selected inhibitor-bound complexes (CYP3A4-YK1 toCYP3A4-YK5)
from Monte Carlo calculations in WaterSwap, MM/PBSA and MM/GBSA. Note that two different
WaterSwap calculations (using centroid clusters c0 and c1) were performed for YK4 and YK5 as the
dominant cluster did not include structures from the entire simulation.

Inhibitor-Bound
Complex

WaterSwap

IC50 nM Autodock Score
kcal/mol

MM/PBSA
kcal/mol

MM/GBSA
kcal/mol

BAR
kcal/mol

FEP
kcal/mol

TI
kcal/mol

Average
kcal/mol

CYP3A4-YK1 0.1 −9.9 −40.78 ± 0.43 −61.22 ± 0.43 −41.1 −40.2 −40.6 −40.6 ± 0.5
CYP3A4-YK2 0.4 −11.6 −25.50 ± 0.33 −37.44 ± 0.24 −37.5 −36.8 −37.7 −37.3 ± 0.5
CYP3A4-YK3 10 −9.5 −32.37 ± 0.31 −49.48 ± 0.31 −47.3 −46.3 −46.5 −46.7 ± 0.5

CYP3A4-YK4 2.6 −11.7 −30.87 ± 0.31 −34.96 ± 0.23
−40.3 −39.5 −39.3 −39.7 ± 0.5
−31.6 −30.6 −30.5 −30.9 ± 0.6

CYP3A4-YK5 38 −10.4 −22.52 ± 0.34 −38.46 ± 0.25
−36.1 −36.3 −35.6 −36.0 ± 0.4
−40.4 −39.8 −39.9 −40.0 ± 0.3

Furthermore, binding energy calculations were performed using the Molecular Mechanics/Generalized
Born Surface Area (MM/GBSA) and Molecular Mechanics/Poisson–Boltzmann (MM/PBSA) methods,
to analyze the interactions of the selected CYP3A4 inhibitors with the binding site residues (by taking
into account both entropic and enthalpic contributions) and for the comparative analysis of the binding
energies calculated through the WaterSwap method [41,42]. The binding energy calculations through
these methods are reproducible and computationally inexpensive with a relatively good accuracy [85].
The calculated binding free energies extracted from 100 snapshots of the MD trajectories were averaged.
The binding energy values calculated by the MM/PBSA and MM/GBSA methods were predicted
in the range −40.78 to −22.52 kcal/mol and −61.22 to −34.96 kcal/mol, respectively, as shown in
Table 2. The important energy components of these calculations are shown in Supplementary Materials
Table S2. Although the difference in solvation and gas phase Gibbs free energy is similar between the
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two methods but the comparison of binding energy predictions for the selected CYP3A4-inhibitor
complexes indicates that higher binding energies were obtained by MM/GBSA method which might
be due to the fact that MM/PBSA has an additional dispersion free energy component for calculation of
binding energy and due to the difference in ∆EEGB/EPB and ∆Gsolv values in both methods. Overall,
for all selected complexes the MM/PBSA and MM/GBSA calculations show that the van der Waals and
electrostatic interactions had the highest contribution towards the binding energy as shown in Table S2.

For the selected CYP3A4-inhibitor complexes docking scores show that, this is a relatively small
range of energies compared to the order of magnitude difference in the IC50 values of the inhibitors.
Figure 4a shows a plot of the binding free energy (calculated through WaterSwap) vs IC50 value for the
complexes, where it can be seen that there is no correlation with the experimental data. Figure 4b shows
the same plot but with the data for YK5 removed as, with an IC50 value of 38 nM, it lies far outside
the values of the other inhibitors. The correlation between the binding free energy and experimental
IC50 value is significantly improved with a correlation coefficient of R2 = 0.6 (when an average of the
two values are used for YK4). Correlation of the docking scores with the experimental data is also
improved by the omission of the YK5 data, but the correlation remains weak (R2 = 0.31) as shown in
Figure S10b. Overall, comparison of the binding energies obtained using MM/GBSA, MM/PBSA and
WaterSwap methods shows that the calculated values do not differ significantly. However, MM/GBSA
and MM/PBSA based binding energy values show little or no correlation with the IC50 values of the
selected compounds (as shown in Figure S11a,b). The removal of compound YK5, a significant outlier
in terms of activity, did not improve the R2 values for both methods. Therefore, WaterSwap provides a
good estimate of the general trends for these compounds and is better than using the docking score
alone; however, it is not very good at accounting for the differences in binding for structurally quite
similar compounds. YK1 is a better inhibitor than YK3 by an order of magnitude in terms of IC50 value,
but YK3 has a higher calculated binding free energy than YK1. A larger test set of ligands is needed to
fully benchmark the ranking of ligands in terms of binding free energy.

Raza et al. have shown that in comparison to the MM/PBSA analysis, the WaterSwap method
identifies more residues with significant contribution to the calculated binding energies [86]. Additional
insight can be obtained from the WaterSwap calculations as the binding free energy can be decomposed
in terms of individual residue contributions. It is important to emphasize that the interaction energies
calculated through this method are not directly comparable to experimental results (e.g., ∆∆G for
mutated enzymes) nor will they sum to the total binding energy; however, this type of decomposition
analysis might be useful for the identification of residues that have the largest effects on the binding
energy. The residue decomposition can be visualized and analyzed using the CHEWD plugin for
Chimera or PyMol [86]. The residue decomposition indicates favorable and unfavorable interactions,
information that is useful for lead development. Here, the WaterSwap residue-wise binding energy
decompositions were analyzed for the residues with greatest contributions to the inhibitor binding
throughout the course of MD simulations. These include 13 residues (Arg105, Arg106, Ser119, Arg212,
Phe213, Glu308, Thr309, Ala370, Arg372, Glu374, Gly481, Leu483, and Gln484) for which the total
Gresidue components are shown in Figure 5. For YK1–5 the binding energy calculations based on the
first centroid clusters show negative free energies of Arg106 and Arg372 for all five selected CYP3A4
inhibitors, favoring the stabilization of the inhibitor–protein complexes through van der Waals and
hydrogen bond interactions. Whereas, the binding energy calculations for YK4 based on the second
cluster show positive free energies for both Arg106 and Arg372 and only Arg106 for YK5 (Figure 5).
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Figure 4. (a) The correlation between the binding free energy of the complex predicted by WaterSwap
and the IC50 values for YK1–5. (b) The correlation between the binding free energy of the complex
predicted by WaterSwap and the IC50 values with the data for YK5 removed as it is a significant outlier
compared to the other compounds. Note that the values for YK4 and YK5 are the average of WaterSwap
calculations using two different starting structures to ensure that the structures were representative of
the entire MD trajectory.
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YK1 has strong interactions with both arginines 106 and 372, whereas YK3 has a strong interaction
with Arg106 and a weaker interaction with Arg372 but has an additional very favorable interaction
with Arg105 not seen in the other complexes. This additional stabilization from Arg105 may be the
reason why YK3 has a greater binding free energy than YK1. The residue contribution for Ser119
is very small in all complexes, weakly positive for complexes of CYP3A4 with YK1–4, showing a
slight preference for the water rather than the ligand, and weakly negative for YK5 (first cluster c0).
The interaction between the ligand and Glu374 is unfavorable in all complexes except CYP3A4-YK2 and
CYP3A4-YK4 (second cluster c1), where it is slightly favorable due its involvement in van der Waals
interactions. For both structurally similar inhibitors YK2 and YK4, the binding energy calculations
based on the first cluster show favorable interactions with Arg212 which are not present in complexes
of YK1 and YK3. For YK4 the calculated values using both clusters also show stabilizing interactions
with Leu483 whereas, Gln484 favors the stabilization of the inhibitor–protein complex for the first
cluster only. YK5 has the smallest binding free energy of all the ligands studied when using the first
cluster for calculation, and the residue-wise decomposition shows that it does not have as strong
favorable interactions with the arginine residues in the binding site and that the most significant
residues for binding in this complex are Ala370 and Gln484. Overall, Arg106 and Arg372 provide the
most significant contribution to the binding of the inhibitors studied here.

The availability of CYP crystallographic structures and the use of various in silico approaches
including docking, molecular dynamic simulations and the MM(GB/PB)SA method for the investigation
of ligand binding have been described extensively in literature to further supplement the understanding
of the underlying mechanism of ligand recognition by the CYP isoforms [36,87–92]. The MM(GB/PB)SA
method is commonly used for the calculation of binding free energies based on the MD simulation
trajectories [76]. The MM(GB/PB)SA analysis and per residue energy decompositions for a set
of CYP3A4 substrates used clinically in combinatorial cancer therapy (cytarabine, daunorubicin,
doxorubicin and vincristine) has shown the importance of Asp61, Asp76, Ala174, Glu122, Asp214,
Arg105, Arg212, Ala217, Glu234, Ala305, Glu308, Ala370, Ile369 and Glu374 residues for favorable
interactions with ligands [36]. Herein, the WaterSwap results were analyzed further to find the
contribution of 13 important binding site residues to the binding of the inhibitors. Arg106, Arg212,
Phe213, Glu308, Ala370, Arg372, Gly481, Leu483 and Gln484 play a major role in the stabilization of
the selected CYP3A4-inhibitor complexes. Interactions with Arg105, Ser119, Thr309 and Glu374 are
unfavorable as they show a preference for the water cluster rather than the inhibitor. This information
could be useful to help guide the development of these lead molecules to enhance binding. Principally,
the WaterSwap method is fully automated and robust, providing new tools for the analysis and
visualization of the important driving forces in binding of protein–ligand complexes and is broadly
applicable to study binding or assess the impact of mutations on binding [76,77,82,83].

3. Materials and Methods

3.1. Ligand Selection

For the identification of highly potent inhibitors of CYP3A4, a large dataset of CYP3A4 inhibitors
was extracted from the ChEMBL database (https://www.ebi.ac.uk/chembl/) [93] using a filtering criteria
of IC50 ≤ 100 µM. After removal of duplicates and fragments the remaining data set of 2747 compounds
was subjected to LipE- and LE calculations [22] as described by Hopkins et al. [49]. A brief detail of
LipE and LE calculations of the CYP3A4 inhibitors has been provided in the Supplementary Materials
(SM) (Section S1, Figure S1a,b and Table S1). Finally, five CYP3A4 inhibitors showing optimal LipE
and LE values were selected for further MD studies to estimate the binding free energy and stability of
the inhibitor-bound complexes.

https://www.ebi.ac.uk/chembl/
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3.2. Molecular Docking Studies

CYP3A4 inhibitors were built in GaussView 5 [94] and their geometry optimized using density
functional theory with the B3LYP functional and the 6–31G(d) and 6–31 + G(2d,p) basis sets. The 2.05 Å
resolution crystal structure of human CYP3A4 1TQN [44] was retrieved from the protein data bank to
provide the starting point for docking and MD simulations. The missing 1TQN H-I loop residues were
built as described by Webb and Sali [95] using Modeller version 9.15 [48]. The modeled structure of
CYP3A4 (1TQN) [44] was prepared using AutoDockTools [63] where polar hydrogens were added
after computing the Kollman partial charges and solvent parameters for the macromolecule. After
protein modification, non-polar and polar hydrogens were merged, Gasteiger charges were computed
for optimized ligands and the flexible torsions were defined.

The CYP3A4 binding site is large and highly promiscuous allowing multiple ligands to bind
simultaneously [96]. Additionally, for CYP3A4 two different binding cavity volumes (1,386 Å3 and
520 Å3) have been reported previously [44,71]. Therefore, in order to provide the appropriate docking
area and dimensions of the CYP3A4 binding site, the Grid Box pointer was centered above the heme
at grid points x: −20, y: −21 and, z: −11 with a grid size of 60 × 60 × 60 Å and a grid spacing of
0.375 Å. The conformational space of ligands was explored using a Lamarckian genetic algorithm
(LGA) that is based on a local search method for the energy minimization [97]. AutoDock evaluates
conformations during docking simulations using a semi-empirical free energy force field that accounts
for the intramolecular and desolvation terms along with directionality in hydrogen bonds [98]. The free
energy scoring function involves two steps; firstly, the evaluation of the intramolecular energetics
for the transition from the unbound state to the bound conformation for each molecule separately
(Equation (1)), followed by the intermolecular energetics evaluation of bringing the two molecules
together into the bound complex (Equation (2)) [99].

∆G =
(
VL−L

Bound −VL−L
Unbound

)
+

(
VP−P

Bound −VP−P
Unbound

)
+

(
VP−L

Bound

)
−VP−L

Unbound + ∆Scon f (1)

Here, V indicates the six pairwise evaluations, ∆Sconf gives an estimate of the conformational
entropy lost upon binding, L and P refer to the ligand and protein in a protein–ligand complex.
Equation (2) includes a pairwise atomic term in the evaluation of dispersion/repulsion, hydrogen
bonding, electrostatics, and desolvation:
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)
e
−r2

i j
2σ2
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A maximum of 10 different conformations were generated for each ligand during the docking
run and the minimum energy pose was selected for further investigation. The CYP3A4-inhibitor
interaction profiles were analyzed to assess whether the binding conformations agree with available
data reported for other CYP3A4 inhibitors. The stability of the selected CYP3A4-inhibitor docked
complexes was evaluated using MD simulations.

3.3. Molecular Dynamic Simulations using Graphical Processing Units (GPUs)

The unliganded 1TQN structure and the finally selected inhibitor-bound complexes were prepared
using the LEaP module in AMBER14 [65]. All protein complexes were solvated using TIP3PBOX [99]
with a margin of 12.0 Å and an appropriate number of Cl− ions were added to neutralize the overall
charge on the system. The GAFF force field [100] was used to parameterize the ligands using the
ANTECHAMBER program with AM1-BCC charge assignment method [65], while the proteins were
modeled using AMBER force field FF14SB [101]. The topology and coordinate files for the entire system
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were generated by the LEaP module of AMBER 14 [65]. Heme parameters were adopted from an
earlier study [102] and the bond between CYS442 SG atom and Fe atom of heme was explicitly defined.

MD simulations of the selected conformers were performed after optimizing the positions of
hydrogen atoms, water molecules and all atoms within each complex by energy minimizations through
the SANDER module in AMBER14 [65]. MD simulations were performed using a 2 fs time step with a
cutoff radius of 8.0 Å for nonbonded interactions. The particle-mesh Ewald method [103] was used
for the calculation of long-range electrostatic interactions and all bonds containing hydrogen were
constrained using the SHAKE algorithm [104]. Heating was performed by gradually increasing the
temperature from 0 to 300 K over a period of 20 ps. Langevin temperature control with a random
number assignment to each trajectory (random initial velocities) was used. A 100 ps equilibration was
carried out at a temperature of 300 K with 1 atm pressure which was followed by 140 ps under the same
temperature and pressure conditions. A 50 ns MD simulation was performed for all the complexes
using PMEMD.CUDA from AMBER14 [65]. Trajectory analysis was performed using the CPPTRAJ
module in AMBER14 [65]. The stability of each CYP3A4-inhibitor complex was assessed by evaluating
the CαRMSD, CαRMSF, Rg and hydrogen bond analysis with respect to the starting structures.

3.4. Binding Energy Predictions Using WaterSwap

The WaterSwap method from the Sire package [40] was used for the prediction of absolute
binding free energies for the CYP3A4-inhibitor docked complexes. The conformational landscapes of
the CYP3A4-inhibitor complexes obtained after the molecular dynamics simulations were clustered
using CPPTRAJ [65] based on the hierarchical agglomerative approach using average-linkage [105].
Clustering was performed based on the RMSD of important active site residues including Tyr53, Phe57,
Asp76, Arg105, Arg106, Phe108, Ser119, Arg212, Phe215, Ile301, Phe304, Ala305, Thr309, Ile369, Ala370,
Met371, Arg372, Glu374, Leu482 and Leu483 with no fit. For each complex the centroid of these clusters
was used as the starting structure for WaterSwap calculations [40].

The WaterSwap method calculates the absolute protein–ligand binding free energy using an
explicit water model by essentially swapping the ligand dimensions with an equal volume of water
within the binding site [40]. The method takes into account the protein–water, ligand–water and
protein–water–ligand interactions thus, removing the double decoupling cavitation problems existing
in the implicit solvent methods for the estimation of binding free energies [76]. The WaterSwap
method uses the Monte Carlo simulations [106] for attaining the WaterSwap reaction coordinates
(WSRC) representative of the ligand swapping with water and also for the calculation of binding free
energies [40]. The WSRC is augmented with the identity constraint [107] that identifies a cluster of
water molecules equivalent to the volume and shape of the ligand within the protein binding site
which is achieved by coupling two periodic boxes including the protein box (protein–ligand complex
solvated in water box) and the bulk-water-box (box of water centered on the ligand coordinates) to the
same thermostat and barostat [40], followed by the subsequent swapping of the two systems using a
dual topological approach [108,109]. Equation (5) is used for the calculation of binding energy of all
systems:

E(λ) = Eproteinbox + Ewaterbox + Eligand + Ecluster + (1− λ)
(
Eligand:proteinbox

+Ecluster:waterbox) + (λ)
(
Ecluster:proteinbox + Eligand:waterbox

) (3)

where, Eproteinbox is the energy of all molecules within the protein excluding the ligand, Ewaterbox is the
energy of all molecules in the water box excluding the water cluster, Eligand denotes the intramolecular
energy of the ligand, Ecluster represents the interaction energy between all the water molecules present
within the water cluster, Eligand:proteinbox shows the interaction energy between all atoms of the protein
box and the ligand, and Ecluster:waterbox is the interaction energy between all water molecules in bulk
water box and the identified water cluster.

The reaction involves simultaneous decoupling of the ligand from the protein box and the water
cluster from the water box followed by parallel coupling of the ligand to the water box and the water
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cluster to the protein box. λ is the WaterSwap reaction coordinate that transforms from λ = 0 to λ = 1
to assist the transfer of the ligand from the protein bound state (at λ = 0) to the water box (at λ = 1).
Additionally, the transformation also corresponds to the transfer of water cluster from water box to fill
the resultant cavity in the protein box. For a WaterSwap calculation of a system, the absolute binding
free energy is estimated using replica exchange thermodynamic integration method (RETI) [77,110,111]
that takes into account replica exchange moves along the WSRC on the basis of calculated energy
gradients using finite-difference TI (FDTI) with respect to λ (Equation (5)). However, to calculate the
free energy gradients along λ, the collective averages are computed using Equation (5).

dE/dλ = (Ecluster:proteinbox+Eligand:waterbox) − (Eligand:waterbox + Ecluster:waterbox) (4)

dG/dλλ= dE/dλλ (5)

Monte Carlo simulations [110] are used to accept or reject neighboring replicas periodically during
the replica exchange, thus allowing full sampling of ligand-bound and ligand-free states during the
simulation of the connected protein box/bulk-water-box. Moreover, the quality of the WaterSwap
estimations is also dependent on the number of Monte Carlo simulations used to calculate the energy
gradients across λ. The potential of mean force (PMF) along the WSRC was obtained by the integration
of the energy gradients along λ using Equation (7) [40].

GBind = −
1
0

DG/dλ λ d λ (6)

The ligand unbinding from the protein is represented as the negative integral in WSRC. The absolute
binding free energy in WaterSwap is based on a single reaction coordinate which is approximated by
averaging the total energy gradient along λ to achieve free energy gradient followed by the integration
over the entire WSRC. Since the WaterSwap method for calculating binding free energy is based on
averages of the gradients of total WaterSwap energies across the sampled configurations, it is therefore
also reasonable to average the gradients of the total energy components (Gproteinbox, Gwaterbox) with
respect to λ. These decompositions are approximations and as a result, Gproteinbox and Gwaterbox will
not be exactly equal to Gbind. Therefore, the decomposition of components would assist in revealing
whether a favorable binding free energy is due to ligand showing a strong affinity for protein or a low
affinity for water [76].

Finally, in this study the most representative cluster for each complex was selected for
further analysis, where the ligands were swapped with the representative water clusters after the
construction of WaterSwap coordinates for the calculation of the PMF using the RETI method. For all
CYP3A4-inhibitor-bound complexes WaterSwap calculations were performed for 1000 iterations using
25 million moves of Monte Carlo (MC) sampling across each of the 16 λs (0.005, 0.071, 0.203, 0.269,
0.335, 0.401, 0.467, 0.533, 0.599, 0.665, 0.731, 0.797, 0.863, 0.929, 0.995) at a temperature of 298.15 K and
pressure of 1 atm on each replica. For the WaterSwap calculations the MC across the 16 λ windows
have been used since it is already reported that sixteen MC simulations are adequate, generating
sixteen free energy gradients spaced across λ [76]. The free energy of binding was evaluated using
three different statistical techniques: free energy perturbation (FEP), thermodynamic integration (TI)
and the Bennett’s acceptance ratio (BAR) algorithm. Furthermore, the degree of convergence of the
calculated results can be assessed by considering the level of agreement between these three energy
values, where ideally the deviation should be within 1 kcal/mol [76].

Furthermore, the application of MM/PBSA and MM/GBSA methods to assure the accurate ranking
of inhibitors on the basis of their binding energy can add value to the drug design research. The binding
energies of the five CYP3A4 inhibitor docked complexes were estimated through (MM/PBSA) and
(MM/GBSA) method using Equations (7) and (8) [41,42].

∆Gbinding = Gcomplex −Gprotein −Gligand = ∆EMM + ∆GPB + ∆Gnonpolar − T∆S (7)
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∆∆Gbinding = ∆EMM − ∆Gsol + ∆GSA (8)

Herein, the ∆EMM accounts for the difference between the minimized energies of the CYP3A4
inhibitor-bound complexes and the total energies of the enzyme and inhibitor (including electrostatic
and the van der Waals energies), T∆S shows the change in entropy of the ligand binding conformations,
Gsolv is the summation of contributions from the polar states and ∆GSA parameter accounts for the
difference in the surface area energies and is estimated from the solvent accessible surface area (SASA)
(using a water probe radius of 1.4 Å).

4. Conclusions

The CYP3A4 binding site is highly promiscuous in nature and therefore, it is more prone to
drug–drug interactions due to the inhibition or induction of the metabolic enzyme. The interaction
of CYP3A4 with a broad spectrum of chemical entities leads to greater chances of inhibition. Thus,
highly potent inhibitors were selected to elucidate the mechanism of CYP3A4 inhibition and extend
the understanding of CYP3A4 mediated drug–drug interactions. The current study provides an
overview of the most probable binding poses and energy values of CYP3A4 inhibitors which may
further help to address the primary question of CYP3A4 inhibition. Ultimately, the probable binding
modes and interaction profiles of the selected CYP3A4 inhibitors were explored by docking and
MD simulations. Binding site residues including Phe57, Arg105, Arg106, Ser119, Arg212, Phe213,
Thr309, Ser312, Ala370, Arg372, Glu374, Gly481 and Leu483 were observed to be significant in terms
of interactions with CYP3A4. The binding energies were calculated within considerable range using
MM/GBSA, MM/PBSA and the WaterSwap methods. The WaterSwap calculations demonstrate that the
highly potent inhibitors show an overall greater affinity towards CYP3A4 and the binding site residues
Arg106 and Arg372 favor the stabilization of the all CYP3A4-inhibitor complexes. The ultimate goal of
this study and a follow up study is to design a pipeline for CYP3A4 inhibition to be used in the lead
optimization programs. However, herein, we present ligand binding and the estimation of free energy
of binding with CYP3A4. The estimation of free energy could pave the way towards understanding
the strength of CYP inhibition. In a follow up study the ligand–protein complexes with minimum
binding free energies could be used as a reference/template for building predictive models for CYP3A4
inhibition that may have advantage over the already existing predictive models due to the use of
more appropriate templates based on binding free energy. This study provides an understanding of
CYP3A4 inhibition process and our results could guide the use of multiple approaches, including
simulations, relevant to CYP3A4 inhibition for the virtual screening of new chemical entities during
lead optimization programs, to provide basis for early screening of CYP inhibitors ultimately leading
to the design/selection of new chemical entities with suitable ADME-Tox properties and reduced
side effects.
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