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ABSTRACT: Volcanic ash is dispersed in the atmosphere according to meteorology and particle properties,
including size and shape. However, the multiple definitions of size and shape for non-spherical particles affect our
ability to use physical particle properties to understand tephra transport. Moreover, although particles >100 um are
often excluded from operational ash dispersion model setups, ash in tephra deposits > 1000 km from source can
exceed 100 um. Here we measure the shape and size of samples of Vedde ash from Iceland, an exceptionally
widespread tephra layer in Europe, collected in Iceland and Norway. Using X-ray computed tomography and optical
microscopy, we show that distal ash is more anisotropic than proximate ash, suggesting that shape exerts an
important control on tephra dispersion. Shape also impacts particle size measurements. Particle long axis, a
parameter often reported by tephrochronologists, is on average 2.4x greater than geometric size, used by dispersion
modellers. By using geometric size and quantifying shape, we can explain the transport of Vedde ash particles
<190 um more than 1200 km from source. We define a set of best practices for measuring the size and shape of
cryptotephra shards and discuss the benefits and limitations of using physical particle properties to understand
cryptotephra transport. © 2019 Crown copyright. Journal of Quaternary Science Published by John Wiley & Sons Ltd.
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Introduction

The ejection of fine ash [defined by Rose and Durant (2009) as
diameters <1000 um, which fall in the intermediate flow
regime] into the atmosphere from large volcanic eruptions can
result in widespread dispersal of tephra. Distal ash deposits
(here > 1000 km from source) are often preserved as non-
visible (crypto-) tephra layers comprising low concentrations
of ash shards preserved in peat or lake sediments or ice cores.
Shards can be identified by their characteristic translucent
glassy appearance and bubbly or platy morphologies and are
linked to tectonic regions or specific volcanoes by geochem-
ical analysis (Tomlinson et al., 2015). By linking the ash to an
eruption of known age, cryptotephra deposits provide
continental-scale age frameworks for their host sediment
sequences. Cryptotephra studies can also improve under-
standing of volcanic processes, constrain eruptive histories
(Wastegérd, 2002; Lawson et al., 2012) and, when combined
with dispersion modelling, be used to assess past atmospheric
conditions (Lacasse, 2001; Lacasse and van den Bogaard,
2002) and ash transport mechanisms (Stevenson et al., 2010,
2013, 2015; Watson et al., 2016; Dunbar et al., 2017). When
particle size distributions (PSDs) and ash shard concentrations
are reported, these data can improve constraints on total
eruptive volumes, which are usually only calculated from
proximal tephra (Ponomareva et al., 2015).
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Many cryptotephra layers originating from Iceland can be
found in northern Europe (Lawson et al., 2012); these distal
deposits provide a valuable record of eruptions in Iceland during
the Quaternary, for which proximal deposits are scarce due to
glaciation (Lane et al., 2012). However, dispersion modellers
have been unable to account for the travel distances of the largest
grains (typically >80 um) in such deposits (Lacasse, 2001;
Beckett et al., 2015; Stevenson et al., 2015; Watson et al.,
2016). Numerical models show that dispersion distance is
sensitive to particle size and shape for cryptotephra-sized grains
(Beckett et al., 2015; Saxby et al., 2018). Cryptotephra studies
often report size as maximum grain length L (the greatest distance
between two parallel tangents on the grain), and do not report
shape, while models use the geometric size d, (diameter of a
volume-equivalent sphere) and can include a shape parameter.
For very non-spherical particles, L and d, can differ significantly
(Saxby et al., 2018).

We explore here whether particle shape is one of the
contributing factors in long-distance ash transport, using
proximal and distal samples of the 12.1 ka sp Vedde tephra
from Katla volcano, Iceland. We quantify the shape and size of
ash shards and use these data to model their transport. We
show that by quantifying geometric size and particle shape, we
can explain the dispersion of the largest shards (<191 um) of
the Vedde tephra to sites in Norway, a distance of > 1200 km,
given a plume height of > 20 km above ground level (agl).
Travel distance is sensitive to particle shape, and the method of
size measurement; we can only account for the significant
travel distance of some large cryptotephra shards by using
consistent size and shape parameters from measurement to
modelling. We also assess different measures of particle size
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and determine the dependence of shard size on the amount of
material sampled.

Particle shape and tephra transport

Far from the vent, where the influence of plume dynamics
is negligible, volcanic ash dispersion is controlled by
meteorological conditions (e.g. wind advection and turbulent
diffusion) and the sedimentation velocity of the particles. In dry
conditions, sedimentation velocity is controlled by terminal
fall velocity, which is sensitive to air density, air viscosity, and
particle size, shape and density (Folch, 2012; Beckett et al.,
2015). Non-spherical volcanic ash particles have a lower
terminal velocity than equivalent-volume spheres (Riley et al.,
2003). Therefore, to understand the dispersion of cryptotephra
it is essential to constrain particle properties. The influence of
shape on cryptotephra dispersion distance, however, has not
been examined.

Cryptotephra are typically characterized by ash grains of
L = 25 — 80 um (Blockley et al., 2005). However, grain size is
not often reported. Where sizes are given, they are often modal
or maximum sizes, and the amount of material required to
accurately constrain these parameters is unclear. In addition,
the process of extracting cryptotephra from sediment often
involves the mechanical removal of larger and/or smaller
sediment particles by sieving (e.g. Turney, 1998; Blockley
et al., 2005), limiting the range of observed sizes. Descriptions
of cryptotephra morphology are often qualitative, with ash
particles characterized by glassy bubble wall fragments with
winged, platy or fluted morphologies (e.g. Mangerud et al.,
1984; Stevenson et al., 2013). Although this suggests a link
between ash morphology and distal transport, shape measure-
ments are scarce, and where given, are often ratios between
particle axis lengths measured in 2D (e.g. Watson et al., 2016).
Shape-dependent particle terminal velocity equations used in
dispersion models, in contrast, are calibrated using 3D shape
measures (e.g. Wilson and Huang, 1979; Ganser, 1993;
Bagheri and Bonadonna, 2016). By measuring the 3D shape
of distal tephra particles we can better determine the sensitivity
of travel distance to particle shape using dispersion modelling.

The Vedde ash

The Vedde ash, dated to 12.1 ka sp (Rasmussen et al., 2007), is an
exceptionally widespread event horizon that is described in > 60
terrestrial and ice sequences and > 30 marine deposits
throughout Europe and the north Atlantic, as distally as the Ural
Mountains, Siberia (Haflidason et al, 2018), making it an
important marker for the correlation of Quaternary sequences
(Lane et al., 2012). Few proximal outcrops are described,
probably due to the extensive glaciation of Iceland during the
Younger Dryas at 12.6-12.0 ka sp (Ing6lfsson and Norddahl,
2010). The Vedde ash, with a bimodal composition (45-58% and
72-76% SiO,), has been geochemically linked to Katla volcano,
Iceland (Mangerud et al., 1984). Distally it is characterized by
cuspate, winged or platy shards (Fig. 1) interpreted as thin bubble
wall structures (Norddahl and Haflidason, 1992). It is unclear to
what extent these particle shapes have influenced distal transport.

Although the Vedde ash mostly occurs as cryptotephra, there
are several lake and peat bog sites in the Alesund and Nordfjord
areas of western Norway (Fig. 2, inset) with exceptionally thick
(<50 cm) deposits, created by drainage into palaeolakes from
larger catchment areas (Mangerud et al., 1984). We examine six
Vedde ash samples from visible deposits (thickness 0.5-21 cm) in
Norway as well as one proximal sample from Iceland (Fig. 2;
Table 1). The deposits provide large sample sizes, allowing us to
accurately quantify maximum and modal shard size and

© 2019 Crown copyright. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

determine the number of shards necessary for accurate measure-
ment. The reworked ash in Norway is in both marine and
lacustrine sediments, ruling out ocean circulation or ice rafting as
a transport mechanism (Mangerud et al., 1984), and so we can
assume the ash was transported to the lake catchments by
atmospheric circulation. The distance over which the ash has
been transported after deposition is therefore negligible com-
pared to the distance it was transported before deposition.

Methods
Determining particle size, shape and density

We sieved all samples at half-¢ intervals, apart from sample
KV5 which was sieved to >62.5 um prior to this study. We
manually picked ~ 10 of the largest ash shards from each
Norwegian sample and mounted them on tape with maximum
projected area in view. Maximum projected area Ap.y,
perimeter P and maximum axis length L were obtained
through optical microscopy images analysed with Image)
software. Grain depth D was estimated by focusing down
through the translucent particles using a dial with increments
of 1 um; we estimated volume by V = A, D and surface area
by Asurr = 2Amax + PD. This approximation does not consider
surface roughness, which is a reasonable simplification as the
particles examined are smooth-sided bubble wall shards. We
calculated sphericity as a function of volume and surface area:

1
Asurr’ W

P =

(Ganser, 1993). With this definition, a sphere has ¢ = 1 and
the value decreases towards zero with increasing difference
from a spherical shape; for example, an oblate spheroid with a
ratio between semi-major and semi-minor axes of 2:1 has a
sphericity of 0.91. We obtained d, by solving for the diameter
of a volume-equivalent sphere. We averaged the five particles
with the largest d, as representative of maximum d, (d,s) and L
(Ls) for each sample.

To obtain bulk shape descriptors, and determine the impact
of sample size on measurements, we also scanned > 300
particles from the 62.5 — 125 um (3 — 4 ¢) sieve fraction of
each sample, using X-ray microcomputed tomography (CT). We
used a single size fraction, where the proximal and distal PSDs
overlap, as particle shape can be size-dependent (e.g. Mele and
Dioguardi, 2018). To separate particles, we encased them in
epoxy resin within 6-mm-diameter, 20-mm-long plastic cylin-
ders. X-ray projections were taken as the cylinders were rotated
3600. The resolution of 3.5 um voxel edge length gave > 2800
voxels/particle; a minimum of 1200 voxels/particle gives an

Figure 1. Vedde ash shards from western Norway (sample KV1);
125 — 180 um sieve fraction. Scale bar = 500 um.
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Figure 2. Documented occurrences of the Vedde ash in terrestrial and marine sites. All data sources are given in the Supporting Information. Sites
labelled KV are the source of samples described in this study. Area in red is enlarged in the inset to show locations of samples from Norway.
Numbered black crosses denote weather stations in the North Atlantic region from which we analyse wind velocity data. [Color figure can be viewed

at wileyonlinelibrary.com].

accurate mean ¥ (Saxby et al., 2018). A 3D volume, constructed
from 2D image slices using CT Pro 3D, allowed segmentation of
the particles from the much less dense epoxy according to
greyscale values, and the surfaces of the particles were
reconstructed with Avizo software. We employed the Label
Analysis module to calculate V/, Ayr, and the three principal
axis lengths L, I, and S (long, intermediate and short axes,
respectively) of each particle. Using these axis lengths we
calculated form factor F:

F=ltS 2)
2L

(Wilson and Huang, 1979), elongation e:
/

e=— (3)
L

and flatness f:

f= % (4)

(Bagheri and Bonadonna, 2016). We calculated 3 using
Equation (1).

For the largest shards we estimated a density of
2456 kg m=3, based on glass composition (lacovino, 2017;
Lange and Carmichael, 1990; Ochs and Lange, 1999). We
used the average composition of the rhyolitic component of
the Vedde ash from Mangerud et al. (1984) and assumed there
are no internal bubbles; in reality ~20% of the selected shards
contain one or two visible bubbles, but these are small relative
to the grain size. The density is consistent with observations by
Turney (1998) who extracted the Vedde ash from sediment
using liquids with densities of 2400 — 2500 kg m=3.

Dispersion modelling

To test the hypothesis that particle shape is an important factor
in distal ash transport we used NAME (Numerical
Atmospheric-dispersion Modelling Environment; Jones et al.
(2007)). NAME is a Lagrangian atmospheric dispersion model,
in which model particles are advected by 3D meteorological
fields and dispersed using a random walk scheme which
includes parameterizations for sub-grid-scale atmospheric

Table 1. Sample codes and locations for samples of the Icelandic Vedde ash used in this study. Latitude and longitude are in decimal degrees

(WGS84).
Distance from
Sample Latitude Longitude Site Country Core type source (km) Reference
KV1 63.65914 10.53415 Rertjgnna Norway Lake 1454
KVv2 62.02756 5.004157 Krakenes Norway Lake 1232 Mangerud et al. (1984); Lohne et al. (2014)
KV3 62.52116 6.641243 Stettetjon Norway Bog 1296 Mangerud et al. (1984)
Kv4 62.48559 6.506024 Slettebakktjonn Norway Lake 1291 Mangerud et al. (1984)
KV5 62.42842 6.249304 Gjglvatn Norway Lake 1280 Mangerud et al. (1984)
KV6 62.27965 5.817248 Litletjgrn/ Litlevatn Norway Lake 1264 Svendsen and Mangerud (1987)
Kv7 65.74995 17.89799 Fnjoskadalur Iceland Palaeolake 240 Norddahl and Haflidason (1992)

© 2019 Crown copyright. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

J. Quaternary Sci., Vol. 35(1-2) 175-185 (2020)



178

JOURNAL OF QUATERNARY SCIENCE

turbulence and mesoscale motions (Thomson et al., 2009;
Webster et al., 2018). NAME also includes parameterizations
for wet and dry deposition, with sedimentation schemes for
both spherical and non-spherical particles (Webster and
Thomson, 2011, 2014; Beckett et al., 2015).

To initialize NAME to model the transport and dispersion of
a volcanic ash cloud the following parameters must
be provided: source location, eruption start and end times,
plume height, source strength (mass eruption rate, MER) and
particle characteristics (size, density and shape).

To consider the eruption and meteorological conditions
conducive to transport the ash to Norway we first ran a 2D
stratified model in MATLAB; full details are given in Support-
ing Information. This allowed us to test multiple plume height
and wind speed scenarios and determine the sensitivity of
travel distance to physical particle properties.

We analysed modern meteorological (met) archive data to
provide realistic bounds on atmospheric conditions at the time
of the Vedde eruption. Single-site met data were obtained from
the Wyoming Soundings archive (http://weather.uwyo.edu/
upperair/sounding.html). We downloaded soundings from
radiosonde ascents for the weather stations at Keflavik, lceland
(site code 04018); Toérshavn, Faroe lIslands (06011); and
Orland, Norway (01241; see Fig. 2 for locations), for the
period 1973-2018. Data are collected twice daily to measure
atmospheric parameters including wind speed, direction,
temperature and relative humidity as a function of altitude
(<~ 30 km). Monthly average horizontal wind velocities and
exceptional records are shown in Fig. 3. In our analysis, we
included only single wind speed records containing > 20
discrete height records, with the highest > 25 km. In winter,
stratospheric winds over Iceland are generally westerly, with
monthly average wind speeds up to ~ 40 m s7! in the
stratosphere (Fig. 3; Lacasse, 2001). Several individual records
show mean velocities of > 80 m s~! (averaged over 0-25 km).

We found that, assuming a constant wind field in our simple
modelling setup, to explain the transport of the largest Vedde
ash shards we needed:

¢ A high plume (> 20 km).

b 06011 (Térshavn, Faroe Islands) €

* Wind speeds higher than the stratospheric monthly averages
shown in Fig. 3.

Travel distance was more sensitive to size than shape, in
agreement with Beckett et al. (2015). Uncertainties in particle
density translate into differences in travel distances which are small
compared to the differences due to size and shape, suggesting our
measurement methods are robust. A full description of the model
setup, our calculation of uncertainties and their propagation into
travel distance is given in the Supporting Information.

We then ran NAME using 3D analysis meteorology from the
Unified Model (UM; Cullen, 1993). The UM met data are from
2011 to the present, have a horizontal resolution of between
17 and 25 km, have a temporal resolution of 3 h, and include
wind speed and direction as well as other meteorological
parameters such as cloud water and ice, precipitation, and
boundary layer height (Thomson et al., 2009; Webster and
Thomson, 2011; Witham et al., 2017). As our initial sensitivity
analysis determined that wind speeds higher than any monthly
average were necessary, we used the radiosonde dataset
(Fig. 3) to identify dates with favourable conditions for ash
transport from Iceland to Norway. Dates (dd/mm/yy) where
mean wind speed from 0 to 25 km was > 40 m s™' and the
mean wind direction from 0 to 25 km was between 220 and
3200 for at least two sites out of three North Atlantic weather
stations (Fig. 2) are: 07/03/11, 08/03/11, 23/03/11, 10/03/14,
16/03/14, 26/01/15, 11/02/15 and 28/12/16. NAME runs for
these eight dates used UM data from 59 pressure levels to
~ 29 km altitude; the meteorological conditions higher in the
stratosphere were taken to be the same as at 29 km. A full
description of this ‘persisted met’ approach is given in the
Supporting Information. Particles were released in a uniform
distribution from the vent height to the plume top at 35 km agl
over an 8-h period from 00:00 to 08:00 h on each day and
tracked for 48 h to ensure deposition of at least 99% of the
mass released. As we are interested in particle travel distance
rather than deposit thickness, we plot deposition as the fraction
of total mass in each grid cell, using a minimum contour of
10729, The chosen MER is therefore arbitrary; we
use 2 X 10'2 g h~1.

01241 (@rland, Norway)

a 04018 (Keflavik, Iceland)
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Figure 3. Balloon-borne radiosonde data for the weather stations at (a) Keflavik, Iceland, (b) Térshavn, Faroe Islands, and (c) @rland, Norway.
Station codes correspond to locations in Fig. 2. Coloured lines show monthly mean speed at each height for the period 1973 - 2018. Dashed lines
show individual records for days with extremely high winds, with the day and time chosen based on the highest (height-averaged mean) wind

velocities. [Color figure can be viewed at wileyonlinelibrary.com].
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Plume height can be constrained using empirical fits to mass
eruption rate (Mastin et al., 2009), or maximum clast size in
very proximal deposits (within tens of kilometres; Burden et al.,
2011) but this is not feasible for the Vedde eruption due to the
near-absence of proximal deposits. Maximum plume height
estimates for recent Icelandic eruptions range from 10 to 20
km (e.g. Biass et al., 2014; Leadbetter and Hort, 2011), but our
initial analysis (Supporting Information) indicated a plume
>20 km was needed. Carey et al. (2010) estimated a maximum
plume height of 34 km for the 1875 explosive eruption of
Askja volcano using the method of Carey and Sparks (1986).
Sharma et al. (2008) estimated a plume height of 30-34 km for
the 1362 eruption of Orafajokull, using maximum clast size
data. Both eruptions transported ash to Scandinavia (Pilcher
et al., 2005; Carey et al., 2010). Based on these estimates we
use 35 km agl as an upper bound.

We calculated terminal velocity w; using the drag laws of
White (1974) for spherical particles and Ganser (1993) for
non-spherical particles; full details of the drag laws are given
in the Supporting Information. For particle size, we used
191 um, the d,s of sample KV4, as a maximum; runs with a
shape parameter use ¢ = 0.55, the mean 3 of those particles.
We chose sample KV4 as these particles had the highest w; of
the Norwegian samples according to preliminary calculations
using Ganser’s (1993) drag law, allowing us to constrain the
minimum conditions necessary for transport.

Results
Particle size and shape

The Vedde ash sample collected in Iceland, KV7, has a single
modal sieve size of 250 — 354 um with the largest grains > 1
mm; grain sizes in the Norway samples (KV1-6) are smaller
(Fig. 4a), as anticipated (e.g. Carey and Sparks, 1986; Folch,
2012). Samples KV1-6 have a single common mode of
45 — 90 um, despite a range of geographical settings and
distances from source (Table 1). Optical microscopy measure-
ments of the size parameters d,s and Ls are >100 um in all
distal samples, with KV4 having the largest d,5 and Ls of
191 um and 451 um, respectively. All data are presented in the
Supporting Information.

The standard size parameter for ash dispersal modelling is d,
although L is more commonly measured. L/d, for samples
KV1-6 ranges from 1.7 to 3.3 with a mean of 2.3 (Fig. 4b). In
total, 81% of the CT data for the 90 — 125 um sieve fraction
from these samples are in this L/d, range (contours in Fig. 4b),

although the minimum L/d, is close to 1, the value for a sphere,
and the maximum L/d, = 10.9. The range of L/d, ratios we
observe is similar to the range of L/l ratios measured by
Mangerud et al. (1984) for the Vedde ash.

We obtained bulk shape descriptors from CT scans of the
62.5 — 125 u m sieve size fraction of each sample (Fig. 5). The
proximal and distal samples do not differ significantly in form
factor F (Equation (2)), although the Iceland sample has the
highest mean F (0.58). Mean flatness f (Equation (4)) and
elongation e (Equation (3)) are similar. KV1-5, however, have
higher e than f, indicating shards are generally flatter (ratio of
short to intermediate axis) than they are elongated (ratio of
intermediate to longest axis). Sample KV6, in contrast, has
equal mean e and mean f (0.65). Distal samples KV1-6 have
flatter shards (mean f of 0.60 — 0.66; Fig. 5¢) than proximal
sample KV7 (mean f = 0.74). Differences between proximal
and distal ash are most pronounced in the surface-area—based
shape factor sphericity (), which ranges from a mean of
P = 0.56, with 50% of the data between 0.45 and 0.67, in the
Iceland sample KV7 to a mean 3 of 0.37 — 0.43 for distal
samples KV1-6. Sphericities of larger shards measured by
optical microscopy fall within the range of values observed
using tomography (Fig. 5a) but are generally higher than the
mean. We note that the optical microscopy method approx-
imates particles as smooth flat plates and therefore does not
account for small-scale surface roughness measured by CT; in
addition, shape can vary with particle size.

Modelled travel distance

Preliminary analysis (Supporting Information) suggested that
measuring Ls could not explain the transport of the largest
Vedde shards even assuming extreme idealized conditions
(plume height of 35 km and a constant wind speed of 80 m s~!
for the entire particle trajectory, which is unlikely). Modelling
using NAME confirms the discrepancy in travel distance
between runs with Ls of sample KV4 (451 um; Fig. 6a,b) and
dys (191 um; Fig. 6¢,d).

Even using d,5, we must model particles as non-spheres
using Ganser’s (1993) drag law and our measured 3 of 0.55 to
explain the transport of the largest Vedde ash shards to
Norway. In one NAME simulation using particle size =191 um
and ¥ = 0.55 (23/03/11), five of the six sites fall within the
great circle distance enclosing 95% of erupted mass deposition
(Fig. 6d). For the other dates we modelled, sites KV1-6 fall
outside this distance, but the results show that a small amount
of mass (< 5%) can travel the distance required for deposition
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Figure 4. Vedde ash particle size. (a) Sieve size distributions for samples KV1-6 (Norway; excluding KV5 which was sieved to >63 um prior to this
study) and KV7 (Iceland). (b) Particle long axis L and geometric size d, for the five largest particles in each of the samples KV1-6, measured using
optical microscopy. L ranges from 1.7 to 3.3 X d, . For comparison X-ray CT data from 5241 ash particles are contoured for the same samples. [Color

figure can be viewed at wileyonlinelibrary.com].
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in western Norway. Simulations for the other seven days for
which we ran NAME are given in the Supporting Information
(Supplementary Figures S1-S2; corresponding wind profiles are
given in Supplementary Figure S3). In all simulations using
spheres with d, =191 um, 95% of the mass is deposited within
880 km of the source and no mass travels to the Norwegian
sites (minimum distance of 1232 km, Fig. 6c; Supporting
Information), indicating that particle shape exerts an important
control on distal dispersion of the largest Vedde ash shards.

Modelling transport of the modal size fraction (45 — 90 um)
shows that its maximum travel distance is less sensitive to
shape (Fig. 6¢,f) than the largest grains, and that deposition of a
single size fraction can occur over a wide area.

Cryptotephra sampling strategies

The discrepancy between modelled travel distances of the
largest Vedde ash shards for different methods of quantifying
size and shape (Fig. 6) illustrates the need for accurate
measurements of maximum particle size and shape. Con-
sideration must be given, therefore, to sampling strategy
(Bonadonna et al., 2006).

The Norwegian Vedde ash deposits KV1-6 are thicker (Fig.
7a) than other samples collected at a similar distance from the
source. Mangerud et al. (1984) calculated the original
thicknesses in the Alesund area of western Norway, the
location of Vedde samples KV3-5, to be about 2-3 mm
(compacted thickness) based on a regression between the lake

© 2019 Crown copyright. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

area to catchment area ratio and the Vedde ash thickness
observed; even these corrected thicknesses are anomalous
relative to other locations in Scandinavia. The narrow
geographical distribution of visible tephra (Fig. 2) suggests
that the western Norway Vedde sites could be on-axis (in line
with the prevailing wind direction). On-axis transport may
also explain the higher maximum shard size of the visible
tephra layers (Fig. 7b), where maximum shards are
140 < dys < 191 um and 306 < L5 < 451 um. As western
Norway has mountainous topography, orographic effects
could also explain the greater fallout of ash in this region
(e.g. Watt et al., 2015).

To determine whether the large maximum ash size is a
function of the large available sample, we progressively
subsampled the X-ray CT dataset for the 62.5 — 125 um
sieve fraction of sample KV3, the largest CT dataset. Our
results show that the method of size measurement (L or d,)
has more of an impact on results than the number of
particles averaged or the choice of mean or median as an
averaging technique (Fig. 8a), in agreement with observa-
tions using much coarser proximal tephra deposits (Bona-
donna et al., 2006). For example, a sample of > 1000
particles is required to obtain a consistent maximum size ds
(Fig. 8b), which suggests that measurements of maximum
shard size are not accurate where only a few shards are
available, as in very distal cryptotephra deposits. Accurate
calculation of mean size, in contrast, requires only about 50
shards (Fig. 8b).

J. Quaternary Sci., Vol. 35(1-2) 175-185 (2020)



TEPHROCHRONOLOGY AS A GLOBAL GEOSCIENTIFIC RESEARCH TOOL 181

a 451 um, spherical

24 -18 -12 -6 0 6 12 18 24
7259 = J72

R e

-
60 e -2 60
L3 s "
ey Bl
54 ..5.33‘ "5') /’ R _4‘:/' 54
—_— éS% modelled ash deposited
48 o Sample locations 48
A s 99

-24 -18 -12 -6 0 6 12 18 24

c 191 um, spherical
-18

-24 -12 -6 0

(o)}
—
N
—-
[oe]
N
N

72

66 [

60

54

48

-24 -18 -12 -6 0 6 12 18 24
e 45-90 um, spherical
-20 0 20 40 60 80 100 120 140

b 451 um,y=0.55
—-18

-12 -6 0 6 12 18 24

60

54

48

-24 -18 -12 -6 0 6 12 18 24

d 191 um, y = 0.55
-24 -18 -12 -6 0 6 12 18 24

72

66 |52

60

54

48

-12 -6 0

[}
=
N
=
©
N
N

-24 -18

f 4590um,y=0.55
-20 0 20 40 60 80 100 120 140

-20 O 20 40 60 80 100 120 140

-20 O 20 40 60 80 100 120 140

10720 10-1° 1078 10-%7 10-!¢ 10%> 104 10-%3 1012 107! 1071 10°°
Deposition (Fraction mass released / m?, uncalibrated)

Figure 6. Simulated isomass maps for a Vedde-like eruption of Katla volcano (black triangle) on 23/03/2011 using a 35 km agl plume height.
Sample locations are given for sites KV1-6 to provide a reference for observed particle travel distances. The red line indicates the great circle
distance from the source at which 95% of the erupted mass has been deposited. In the figure, 451 um is Ls of sample KV4; 191 um is d,s of sample
KV4; and 45 — 90 um is the modal sieve fraction for all western Norway samples. [Color figure can be viewed at wileyonlinelibrary.com].

Discussion

We show that particle shape, and conversion to size, is one of
the major contributing factors in the distal transport of the
Vedde ash. Importantly, particle shape affects size measure-
ments (e.g. d, < L); our results suggest that the discrepancy in
methods of size measurement between the dispersion model-
ling and cryptotephra communities can explain much of the
reported discrepancy between observed and modelled travel
distances (Lacasse, 2001; Beckett et al., 2015; Stevenson et al.,
2015; Watson et al., 2016).

Quantitative size and shape data for distal tephra are scarce,
but are important for understanding eruptions for which
proximal data are unavailable (Lane et al., 2012), and for the
validation of dispersion models (Witham et al., 2007). Distal
Vedde ash samples are not only finer grained but also less
spherical on average than the proximal sample: the distal
samples have a modal sieve size 45 — 90 um and mean % of
0.37-0.43; the proximal sample has a modal sieve size of

© 2019 Crown copyright. Journal of Quaternary Science Published by John Wiley & Sons Ltd.

250 — 354 um and mean % = 0.56 (sphericity values are for
sieve size 62.5 — 125 um). This indicates that physical particle
properties are a strong control on distal tephra dispersion.

The difference in shape between proximal and distal
samples is most pronounced when we measure 3, which
may be because 1, as a surface area-based measure, is
sensitive to surface roughness. Proximal and distal samples
also differ in flatness f. In contrast, all samples have similar
mean values for elongation e and form factor F, suggesting a
narrower range of these shape measures produced by
fragmentation at source, and/or that flatness and surface
roughness have a greater impact on terminal velocity.

The influence of shape and size on travel distance is
confirmed by dispersion modelling, by which we can
explain the travel distance of the largest grains in Vedde
sites KV1-6 only if we quantify size as d, and model
particles as non-spheres with sphericity calculated by
Equation (1) and using the drag law of Ganser (1993)
(Fig. 6). To be confident in this conclusion also requires
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Figure 7. Published measurements of (a) tephra layer thickness and
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consideration of uncertainty in the model physics and the
associated sensitivity of NAME output. Of six eruption
source parameters and 12 internal model parameters,
Harvey et al. (2018) found that NAME outputs are most
sensitive to plume height, MER, the precipitation threshold
for wet deposition, and free tropospheric turbulence. We
suggest uncertainty due to the model physics is less than the
uncertainty in source parameters. The particles we modelled
are sufficiently large to be unaffected by turbulence as
their terminal velocities are much greater than turbulent
vertical velocities (Saxby et al., 2018). We normalize our
model results to be independent of MER and take a
maximum likely plume height for Icelandic eruptions. Even
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maximum transport distance. The terminal velocity of very fine
particles is low compared to atmospheric vertical velocities
(advection and diffusion) meaning that travel distance does not
strongly depend on their physical properties; the residence
time of particles with d, = 10 um is insensitive to shape while
for particles with d, = 100 um it is highly sensitive to shape
(Saxby et al., 2018). The exact size at which terminal velocity
becomes dominant depends on atmospheric velocities, parti-
cle shape and density. The influence of atmospheric velocity
partly explains why grains of a single size fraction
(45 — 90 um) can deposit over a range of distances (Fig. 6);
this is also due to the vertical spread of ash in the plume and
spatial variation in depositional processes such as removal by
precipitation (Webster and Thomson, 2014), aggregation
(Bagheri et al., 2016), topographic effects (Watt et al., 2015)
and gravitational instabilities in the proximal ash cloud
(Manzella et al., 2015). Aggregation causes both early fallout
of fine particles and delayed sedimentation of larger particles
due to coating with finer particles, forming low-density
composites in a process known as ‘rafting’ (Bagheri et al.,
2016). All these factors may explain the poor correlation
between modal cryptotephra shard size and distance (Watson
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Figure 8. Effect of (a) the size parameter measured, and the averaging technique (mean or median, and the number of largest particles averaged n)
on the maximum size observed in a sample of 1507 particles; and (b) by randomly subsampling the same dataset, the effect of sample size on
measurement of maximum shard size. Data are for sample KV3; 62.5 — 125 um sieve fraction. [Color figure can be viewed at

wileyonlinelibrary.com].
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et al., 2016), and explain why a range of ash particle sizes are
found in any given sample location.

We therefore suggest that modelling transport distance as a
function of terminal velocity is only meaningful when the
largest shards of a sample can be accurately identified,
meaning a sample of 500 and ideally > 1000 shards, and
those shards have d,s5 on the order of 100 um. However,
measurements of smaller or fewer shards are useful in other
volcanological applications: shard size can inform estimations
of total grain size distribution, eruptive style and magnitude
(see Cashman and Rust in this issue).

The Vedde ash was selected for this study of the impact of
size and shape on travel distance due to its characteristic platy
shard morphology (Mangerud et al., 1984) and its abundance
in European sediment sequences (Lane et al., 2012). However,
it is important to note that the samples are from deposits that
have been reworked. Ash particles can undergo sorting by size
and shape due to fluvial processes; for example, Watson et al.
(2016) found that cryptotephra shards were larger in lakes than
in neighbouring peat bogs. However, despite differences in
deposit thickness and drainage basin size, we find no
significant difference in the particle shape and size distribu-
tions for the six Norwegian sites studied, suggesting that our
observations of shard size and shape are representative of the
primary air fall deposit.

We present a method of assessing the transport of ash from an
eruption at a time for which no meteorological data are
available, by setting upper limits on plume height and wind
speed based on modern met data. Tephra may have been able
to travel further in the Pleistocene, however, due to stronger
atmospheric circulation (Sigurdsson, 1990). Additionally,
changes in atmospheric temperature during cold stadials, and
the resulting atmospheric density increase, could increase the
neutral buoyancy height of the plume (Lacasse, 2001). Our
results should therefore be interpreted as maximum possible
dispersion distances under ideal modern conditions. Further-
more, controls on tephra transport (e.g. plume height, meteor-
ology) can change during an eruption and so another major
assumption in linking ash transport models to deposit char-
acteristics is that all samples are from the same eruptive phase.
This is particularly relevant when studying cryptotephra deposits
for which the eruption chronology is unknown. The Vedde ash
has been tentatively linked to the Sélheimar ignimbrite in
Iceland (Lacasse et al., 1995), raising the possibility of additional
atmospheric ash injection via a co-ignimbrite plume, which
could have been subject to different meteorological conditions.
In fact, although our model runs can account for the transport of
ash from Iceland to Norway, they cannot account simulta-
neously for deposition of the Vedde ash to the north and west of
the vent (northern Iceland and Greenland; Fig. 2). A change of
wind direction during the eruption, or vertical inhomogeneity in
the wind field, may be necessary to explain these deposits.

Finally, our results suggest additions to cryptotephra
sampling and measuring techniques for volcanological
applications. ldeally, maximum shard size should be
measured, although this requires a sample of at least 500
and optimally > 1000 shards (Fig. 8). Measurements taken
from smaller samples are still useful as the mean shard size
can be accurately quantified using fewer (~ 50) shards; the
number measured should be noted. Also important is
calculation of the size parameter d,, the parameter most
often used in dispersion models; estimates can be obtained
rapidly for translucent shards using an optical microscope. It
is useful to report particle sphericity ¥ where surface area
can be measured. For eruptions where 3 is not available, it is
reasonable to assume a non-spherical shape (Dunbar et al.,
2017). If there is a relationship between maximum shard
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size, particle shape, and transport distance, as shown
here, modelling of cryptotephra transport could be used
to estimate eruption parameters (Watson et al.,, 2016);
inverting for plume height (mass eruption rate) and wind
speed from proximal deposits is already common (e.g. Carey
and Sparks, 1986). Note that plume height and wind speed
constraints will be minima because of uncertainties in
defining particle size and the modelling assumption that
samples are collected on-axis. For most cryptotephra
deposits, the plume axis is poorly constrained, and particles
are unlikely to have followed the shortest path from source
to deposit.
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Figure S1: Simulated isomass maps for a Vedde-like eruption
of Katla volcano(black triangle), using the NAME model with
the Ganser (1993) sedimentationscheme for non-spherical
particles, d, = 191 um and ¢ = 0.55. Sample locations(red
circles) are given for sites KV1-6 to provide a reference for
observed particletravel distances.

Figure S2: Simulated isomass maps for a Vedde-like eruption
of Katla volcano(black triangle), using the NAME model with
the White (1974) sedimentationscheme for spherical particles
and d, = 191 um. Sample locations (red circles)are given for
sites KV1-6 to provide a reference for observed particle
traveldistances.

Figure S3: Single-site met (radiosonde) data for the days in
correspondingpanels of Supplementary Figures ST - S2. Line
colours refer to the weather stationsin the north Atlantic
region; their locations are shown in Figure 2.

Figure S4: Sensitivity of NAME modelled volcanic ash air
concentrations to thechoice of vertical UM model levels used
and the plume height. a) Wind speed in the troposphere and
stratosphere for 63.6467°N, 19.1303°W on 2018/12/20,using
70 UM model levels; b) Wind speed persisted above UM
model level 59for the same day; the remaining panels are air
concentrations two hours after theeruption end, shown as a
single contour with a threshold of 0.002 g m-3: c¢) 25km
plume, 70 model levels; d) 25 km plume, 59 model levels; )
35 km plume,70 model levels; f) 35 km plume, 59 model
levels.

Figure S5: Sensitivity of particle travel distances in a
stratified atmosphere toaltering the physical particle properties
(d = 191 um or d = 451 um, and shape= spherical or
¢ = 0.55), and transport conditions (plume height H and
windvelocity W). For each of the four particles, 112 points are
plotted, each for adifferent combination of H and W (see text
for full ranges). The inset shows therange of H and W for which
particles with d = 191 um and ¢ = 0.55 travelledas far or
further than the great circle distance from Katla volcano to
sample sites KV1-6 (green shading).
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