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Abstract 
Three rectilinear blocks of the aluminium alloy 7449 were characterised using neutron and X-

ray diffraction. One block was heat treated normally and two blocks were subject to uphill 

quenching from -196°C to 100°C. Boiling water and steam were used to rapidly increase the 

temperature of the blocks to reverse the thermal gradients introduced by cold water 

quenching. It was possible to detect the beneficial influence of uphill quenching on residual 

stress using either fluid. The influence of steam was very effective but localised and limited 

to the surface in close proximity to the steam jet. For more uniform stress relief, multiple 

steam jets will be required to ensure the entire surface receives a significant thermal input. 

Introduction 
Quenching heat treatable aluminium alloys has the unfortunate consequence of introducing 

large magnitude residual stresses. In thick aerospace product forms (t > 15 mm), residual 

stress magnitudes of ± 200 MPa are common after cold water quenching from the solution 

heat treatment temperature.[1] In this condition, subsequent machining can result in 

distortion or cracking. For uniform rectilinear shapes, application of plastic deformation is 

used to reduce the residual stresses.[2-5] However, for complex shapes such as die forgings 

this is much more difficult.[6] For complex critical parts where residual stresses cannot be 

tolerated, current practice is to reduce the thermal gradients during quenching, but this 

compromises the mechanical properties. A long established but rarely used technology is 

uphill quenching (UHQ) which attempts to reverse the thermal gradients encountered during 

quenching.[7-9] The interest in uphill quenching arises because it has the potential to be 

applied to complex geometries that cannot be stress relieved economically by mechanical 

methods. Complex die forgings (and castings) are good candidates. Only very limited data 

exists that fully quantifies the stress reduction process and how the distribution of residual 

stresses is changed through the thickness of components. Uphill quenching, despite being 

labelled a “cryogenic or cold stabilisation” process and therefore treated with suspicion, does 

reduce residual stresses when applied to as quenched products. It should not be confused 

with the simple exposure of parts to sub-zero temperatures which has no effect. It is the 

technological difficulties of applying the sudden increase in temperature in a controlled 



manner that have limited its more widespread application. There is also the requirement to 

minimise the amount of natural aging that can take place between the water quench and 

immersion in the cryogenic fluid. If the material strengthens at this stage, uphill quenching 

becomes less effective. In this experiment blocks of the alloy 7449 were processed using 

conventional quenching and uphill quenching techniques. The through thickness residual 

stress distribution has been characterised using neutron and X-ray diffraction. Both uphill 

quenching in boiling water and steam result in stress relief. The effect of steam impingement 

is shown to be very effective in lowering surface residual stress but the effect is very localised 

and the depth of penetration is shallow. 

Experimental details  

Materials and heat treatment 
Six rectilinear blocks of 7449 were extracted from a large spar like forging, originally triaxially 

forged from a large round ingot. Individual blocks were 56mm (Longitudinal - L) x 75mm (Long 

Transverse - LT) x 125mm (Short Transverse - ST) in size and each had a mass of 1.4 kg. 

Shrouded type K thermocouples of 1.5 mm diameter were inserted into a spare 7449 test 

block to allow time temperature profiles to be determined during cold water and uphill 

quenching. The size of the specimen blocks and the thermocouple tip locations are shown in 

figure 1. T0 and T2 thermocouple tips were located within 2.25 mm of the block surface, while 

T1 was located at the block centre. 

The microstructure of the blocks, consisted of approximately rod shaped grains elongated 

into the longitudinal direction with a typical grain length being <1000 m. In the transverse 

directions, the grain characteristic dimension was <200 m. Within these grains a 

substructure was observed consisting of well-defined polygonised equiaxed subgrains. The 

diameter of the subgrains was <20 m. Other coarse phases noted were fragmented Al7Cu2Fe 

constituent particles, and a very small volume fraction of undissolved MgZn2. The material 

can be classified as completely unrecrystallised. The 0.2% tensile proof stress of cold water 

quenched 7449 measured in small samples is in the range 140 – 150 MPa. 

 
Figure 1. Specimen size and thermocouple locations. Residual stress measurements by neutron 
diffraction were made on the dark grey face x-y (L-LT). 

Heat treatment and uphill quenching 



The normal precipitation hardening heat treatment for 7449 includes solution treating at 

472°C, followed by cold water (<20°C) immersion quenching and then aging for 6h at 120°C + 

10h at 160°C. This procedure was followed but included the UHQ step conducted as soon as 

possible after cold water quenching. The blocks were cooled to -196°C in liquid nitrogen. As 

soon as the blocks equilibrated, they were either immersed in a large volume of boiling water 

or enclosed in a box with two nozzles connected to a 40 kW steam generator capable of 

delivering dry, or slightly superheated steam, at a nominal flow rate of 0.02 kg s-1. Steam 

conditions could be varied from atmospheric (100°C at 1 bar) to a maximum of 170°C at 7 bar, 

depending on the circumstances. In this case, high velocity steam jets at slightly elevated 

atmospheric conditions were directed onto either side of the x-z (L-ST) faces of the block. A 

complete thermal profile up to the end of the UHQ is shown in figure 2. 

In summary, three conditions were examined, cold water quenched (CWQ) and aged, 

CWQ+UHQ (boiling water)+aged and CWQ+UHQ (steam)+aged. The over-aging treatment 

lowers the as quenched residual stress magnitudes, but in 7449 with a maximum aging 

temperature of 160°C, the influence is small.[10]  

 

 
Figure 2. Typical temperature time data including solution heat treatment, cold water 
quenching, immersion in liquid nitrogen and uphill quenching to 100°C.  

Residual stress characterisation 
Neutron diffraction  

Measurements were made following the guidelines present in recently published papers.[11-

13] Neutron diffraction was performed on the strain scanning instrument, STRESS-SPEC (FRM 

II, Munich, Germany). A take off angle of the Si (400) monochromator was set to produce a 

beam with a wavelength of approximately 1.67 Å, which defines the diffraction angle of the 

Al [311] at 2 ≈ 86.50° 

The sampling gauge volume was approximately 2 x 2 x 2 mm3 as defined by the incident beam 

slit width and height, and the diffracted beam radial collimator. The blocks were positioned 

on the instrument stage to permit measurements of strains on a central quarter plane defined 



by the x and y directions (L and LT) as shown in figure 1. Strains were measured in all three 

working directions and these were assumed to be the principal stress directions, being 

coincident with the direction of maximum heat flow out of the block surfaces during 

quenching. Strain measurements were made at 40 discrete points on the plane for the CWQ 

and UHQ (boiling water) blocks, and at 60 points for the UHQ (steam) block. 

Each block had a complimentary duplicate subject to the same processing. A strain free 

reference prism was extracted from each duplicate using wire cutting. This prism had 

dimensions 8 (x, L) x  75 (z, ST)  x 10 mm (y, LT). Multiple orthogonal strain measurements 

were made long the length of the prism. Lattice spacings were converted to residual strains 

and stresses using the standard three dimensional Hooke’s law.[14] A Young’s modulus (E) of 

70 GPa and a Poisson’s ratio () of 0.3 was used in all the calculations. These elastic constants 

have been found by the authors to offer the best agreement between neutron diffraction and 

other residual stress measurement techniques, including X-ray diffraction, incremental centre 

hole drilling and deep hole drilling for 7000 series alloys.[15, 16] Multiple (repeatability) 

neutron diffraction measurements on the blocks and the associated stress free samples 

allowed an estimation of one standard deviation random uncertainties as ± 30 MPa. These 

uncertainties were larger than the peak fitting errors. The microstructural induced variation 

along the length of the strain free reference was small, and encapsulated by the random 

uncertainties. 

X-ray diffraction 

Surface residual stress measurements using a Sin2  technique were performed on a 

Panalytical X'Pert X-ray diffractometer using Cu K radiation operating in the  configuration. 

The measurement procedures followed best practice guidelines.[17] The position of the 

aluminium [422] peak was measured (136°<2<139°). Sixteen scans were performed for each 

stress measurement using equally spaced  values within the range 060° (positive tilting 

only,  - angle between the surface normal and the bisector of source and diffracted X-ray 

beam). The resulting spectra were analysed using Panalytical residual stress software (Version 

2.3) with peak locations determined using a Pearson VII fitting technique. In all cases, the 

sixteen peak positions were used to calculate the straight line d422 (interplanar spacing) versus 

Sin2 plots. The calculation of residual stress from the measured peak position was made 

using the established theory.[18] The elastic constants were taken from literature for the 

[422] planes.[19] The irradiated area was in the form of a line 2 mm thick and 12 mm long. 

The penetration depth of the X-rays was assumed to be of the order of 100 m calculated 

using reference data.[18] Calibration of the diffractometer was performed using a specimen 

with a “known” residual stress. This specimen was a piece of cold water quenched and aged 

7010 alloy that had been characterised on multiple neutron and X-ray diffractometers located 

in different institutions over a period of 19 years. The measurement locations were on the 

surface of the block on the perimeter of the quarter plane shown in figure 1. 

Mechanical testing 
The progress of precipitation hardening was monitored using Vickers hardness equipment 

calibrated with a standard test block to the requirements of ASTM E92–92.[20] 

Results and discussion 

Cold water quenched only 



Cooling from the solution heat treatment temperature by immersion in cold water is rapid, 

and it is the thermal gradients from surface to core that cause inhomogeneous plastic flow 

which in turn give rise to residual stress. The cooling curves from two of the embedded 

thermocouples are shown in figure 3. The surface thermocouple (T1) was located adjacent to 

a small surface defined by the x and y directions (L and LT); the cooling curve from the large 

surface was almost identical. The maximum temperature difference between the surface and 

core was 165°C and this occurred 3.7 seconds after immersion when the surface was at 185°C 

and the core at 350°C.  

 

 
Figure 3. Cooling curves from a cold water quenched block quenched into water at T<20°C. 
Cooling curves from a small surface (T1) and the core (T0) are shown and the temperature 

difference between these curves is also indicated (T). Thermocouple locations in figure 1. 

The residual stresses within the block are displayed as contour maps in figure 4. The core of 

the block was in a state of triaxial tension with large tensile stresses occurring in the z (ST) 

and y (LT) directions. In the x (L) direction the residual stresses were much lower in the interior 

but turned highly compressive as the x-z face was approached. The distribution and 

magnitudes of residual stress in the cold water quenched and aged block were typical for this 

alloy, geometry and treatment. The maximum tensile residual stress measured in the core 

was a stress in the z (ST) direction and had magnitude 237 MPa. The maximum compressive 

residual stress close to the surface was a stress in the y (LT) direction and had magnitude -208 

MPa. In addition to the neutron diffraction measurement, surface X-ray diffraction 

measurements were made for certain locations and stress components. These were 

consistent with extrapolation of the neutron diffraction stresses to the surface. 

 

 



 

  
Figure 4. Residual stresses in the cold water quenched block. Part a) Residual stress xx (in the 

x (L) direction). Part b) Residual stress yy in the y (LT) direction. Pact c) Residual stress zz in 



the z (ST) direction.  Black crosses indicate neutron diffraction measurement locations. Crosses 
in the block surfaces are X-ray diffraction measurements. (COLOUR FIGURES ONLINE ONLY) 

Cold water quenched and uphill quenched in boiling water 
Uphill quenching into boiling water caused a layer of ice to form on the block upon immersion. 

This slowed the uphill quench. The process was repeated, but the block was manually agitated 

through the boiling water to accelerate the melting of the ice and increase the rate of heat 

transfer into the block by forced convection. This halved the duration of the uphill quench 

with the block interior attaining 0°C after 17 seconds. The heating curves from three 

embedded thermocouples are shown in figure 5. . Both surfaces heated up at similar rates 

and faster than the core. The maximum T from small surface to core (T0-T1) was 77°C, when 

this surface was at 8°C. This occurred 11 seconds after immersion in the water. For the larger 

surface, the maximum T was 56°C after 9 seconds. 

 
Figure 5. Heating curves from the block during an uphill quench into boiling water with manual 
agitation. Thermocouple locations in figure 1. 

The residual stresses within the uphill quenched block are displayed as contour maps in figure 

6. The distribution and magnitudes of the residual stresses were similar to the cold water 

quenched block. The impact of the uphill quench could be detected and while limited, 

exceeded the experimental uncertainty. The maximum tensile residual stress measured in the 

core was a stress in the z (ST) direction and had magnitude 182 MPa. The maximum 

compressive residual stress close to the surface was a stress in the y (LT) direction of 

magnitude -137 MPa. Examining the stress change in all measured locations the average 

stress change was a 20% reduction compared to the CWQ block 



  

 
Figure 6. Residual stresses in the cold water quenched block, subsequently uphill quenched 

into boiling water. Part a) Residual stress xx (in the x (L) direction). Part b) Residual stress yy 



in the y (LT) direction. Pact c) Residual stress zz in the z (ST) direction. Black crosses indicate 
neutron diffraction measurement locations. (COLOUR FIGURES ONLINE ONLY) 

Cold water quenched and uphill quenched in steam 
Uphill quenching into steam initially caused the steam to condense on the block. Very little 

water vapour emerged from the box for about 30 seconds. This then increased and water 

vapour was seen emerging from the box in large volumes. The block interior attained 0°C after 

22 seconds. The heating curves from three embedded thermocouples are shown in figure 7. 

The large face receiving the steam jet heated up quickly and reached 0°C after 6.5 seconds. 

In contrast, the small face not in direct line with a steam jet heated up at the same rate as the 

block interior, and only achieved 0°C after 22 seconds. However, the maximum temperature 

difference between the large face receiving the steam and the core was 164°C after 9.5 

seconds  

 
Figure 7. Heating curves from the block during an uphill quench using two steam nozzles. One 
steam nozzle was adjacent to thermocouple T2. Thermocouple locations in figure 1. 

The residual stresses within the block uphill quenched using steam are shown as contour 

maps in figure 8. X-ray diffraction measurements of the zz component of stress at the uphill 

quenched surface are incorporated into contour map 8 c). Due to limitations of the X-ray 

diffractometer stage, it was not possible to measure the xx component of stress. The 

distribution and magnitudes of the residual stresses were similar to the cold water quenched 

block in most locations except where the steam jet had directly impinged onto the side of the 

block. The maximum tensile residual stress measured in the core was a stress in the z (ST) 

direction and had magnitude 203 MPa. The maximum compressive residual stress close to 

the surface was a stress in the z (ST) direction of magnitude -206 MPa. Examining the stress 

change in all measured locations, the average stress change was a 14% reduction compared 

to the CWQ block. The impact of the steam can be seen in 8 c). The effect is localised despite 

the block being completely surrounded with steam within the box. It is clear that the steam 

has to impinge on the surface to gain significant benefit. However where the steam did impact 



the sample, the residual stress was almost completely relieved. The depth of stress relief was 

of the order of 5 mm. 

 

 



Figure 8. Residual stresses in the cold water quenched block, subsequently uphill quenched 
using steam. The impingement of the steam jet was at the surface located at y (LT) = 37.5 mm 

and x (L) = 0 mm. Part a) Residual stress xx (in the x (L) direction). Part b) Residual stress yy 

in the y (LT) direction. Pact c) Residual stress zz in the z (ST) direction. Black crosses indicate 
neutron diffraction measurement location, except at surfaces where they are by X-ray 
diffraction. (COLOUR FIGURES ONLINE ONLY) 

These data confirm uphill quenching has the potential to effect significant localised stress 

relief. This information is not new and the process has been available commercially in the US 

for many years.[21, 22] Nevertheless, these diffraction results now show how localised the 

influence of the steam is and the shallow depth of penetration. For this reason, it is clear the 

process will only be applicable to specific types of component geometries with relatively thin 

cross sections amenable to the access of jets of steam. What is also clear is the requirement 

to make sure all the surfaces requiring stress relief be exposed to a jet of steam. The early 

pioneers of this process were aware of these limitations, but the recurring interest in the 

uphill quench process arises from the relative low cost and simplicity of the process.[23-27] 

Influence of the UHQ process on mechanical properties 
Uphill quenching relies on the introduction of non-uniform plastic strains during the 

temperature increase. The amount of natural aging that can take place between the water 

quench and immersion in the cryogenic fluid must therefore be minimised. Another 

constraint is the temperature dependence of the inherent strength of the aluminium matrix 

as shown in figure 9. Here the solution treated and cold water quenched 7449 alloy was 

cooled to -196°C and hardness tested as the temperature increased. The heating rate was 

12°C/min up to 0°C and approximately 20°C/min above 0°C. This demonstrates that the 

aluminium alloy becomes stronger at sub-zero temperatures, which does not aid the uphill 

quench process. It also shows how soft aluminium alloys are at high temperatures, which 

contributes to the introduction of residual stresses during quenching from the solution heat 

treatment temperature.  

 



Figure 9 Solution treated and cold water quenched 7449 alloy after cooling to -196°C and 
being heated back to the solution treatment temperature. The increase in hardness between 
100°C and 250°C is due to precipitation hardening. 

Another limitation of the UHQ process is the requirement to uphill quench into a fluid at 

elevated temperature, be it boiling water, steam, or the saturated vapour of a 

perfluorocarbon compound [28]. Most highly alloyed aerospace alloys age rapidly at elevated 

temperatures so this could influence subsequent aging treatments. This is shown in figure 10 

where it will be noted the hardness increases significantly even after just one minute at 100°C.  

 
Figure 10 Aging response of 7449 at 100°C  

For this experiment, the small specimens were hardness tested immediately after cold water 

quenching and uphill processing. In the as cold water quenched condition, the blocks had a 

hardness of 115 HV20. After uphill quenching into boiling water, the hardness increased to 

135 HV20. After uphill quenching by steam, the hardness was 130 HV20. However, after 

subsequent artificial aging (6h at 120°C + 10h at 160°C) all three blocks were 195±5 HV20. 

This confirms the limited impact of uphill processing on the resulting strength of the alloy 

7449. 

Conclusions 
1. Uphill quenching in boiling water and dry steam have both demonstrated the potential 

to lower residual stress introduced during the quenching stage of the heat treatable 

aluminium alloy 7449. 

2. Uphill quenching into boiling water from -196°C results in limited detectable stress 

relief. The change is ~20% but affects most locations uniformly. Uphill quenching into 

steam at 100°C caused rapid heating of the material adjacent to the steam jet. At these 

locations, the residual stress was completely relaxed. The effect was localised and 

other surfaces only demonstrated very limited stress relief which did not exceed 14%. 

The depth of penetration of the stress relief under the steam jet was 5 mm.  



3. A constraint in the process is caused by the alloy being significantly harder when 

cooled to sub-zero temperatures. 7449 is 60% harder at -196°C compared to the as 

quenched condition. 

4. With multiple steam jets and informed component selection, there is no reason why 

uphill quenching cannot have a role in the post heat treatment processing of parts 

sensitive to the presence of residual stress. 
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